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Abstract

Previous projection of climate change impacts on global food supply focuses solely on

production from terrestrial biomes, ignoring the large contribution of animal protein

from marine capture fisheries. Here, we project changes in global catch potential for 1066

species of exploited marine fish and invertebrates from 2005 to 2055 under climate change

scenarios. We show that climate change may lead to large-scale redistribution of global

catch potential, with an average of 30–70% increase in high-latitude regions and a drop of

up to 40% in the tropics. Moreover, maximum catch potential declines considerably in the

southward margins of semienclosed seas while it increases in poleward tips of con-

tinental shelf margins. Such changes are most apparent in the Pacific Ocean. Among the

20 most important fishing Exclusive Economic Zone (EEZ) regions in terms of their total

landings, EEZ regions with the highest increase in catch potential by 2055 include

Norway, Greenland, the United States (Alaska) and Russia (Asia). On the contrary, EEZ

regions with the biggest loss in maximum catch potential include Indonesia, the United

States (excluding Alaska and Hawaii), Chile and China. Many highly impacted regions,

particularly those in the tropics, are socioeconomically vulnerable to these changes.

Thus, our results indicate the need to develop adaptation policy that could minimize

climate change impacts through fisheries. The study also provides information that may

be useful to evaluate fisheries management options under climate change.
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Introduction

Climate change is likely to affect the goods and services

provided by ecosystems and its impacts on provisioning

services such as food supply will have direct implication

for the welfare of human society (e.g., Antle et al., 2001;

Easterling et al., 2007; Battisti & Naylor, 2009). In terres-

trial systems, using empirical and simulation modelling,

food-crop production is projected to be negatively

affected under the more intensive CO2 emission scenar-

ios, with most severe impacts projected for low-latitude

regions (e.g., Parry et al., 2004, 2005; Fishcher et al., 2005;

Easterling et al., 2007). Similar projections for pastures

and livestock production have also been made (East-

erling et al., 2007). Although such projections are uncer-

tain, they allow analysis of potential socioeconomic

vulnerability, impacts on global food security and bene-

fits and costs of climate change. In the marine biome,

projections of climate change impacts on fisheries focus

largely on a few species, regional climate variability and

regime shifts, or qualitative inferences of potential

changes (e.g., Lehodey, 2001; Lehodey et al., 2003; Roessig

et al., 2004; Drinkwater, 2005; Brander, 2007). Despite the

large contribution of marine capture fisheries to global

animal protein supply [Pauly et al., 2002; Food and

Agriculture Organization (FAO), 2008], a global-scale

projections of climate change impacts on marine fisheries

is lacking.
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Marine fisheries productivity is likely to be affected

by the alteration of ocean conditions including water

temperature, ocean currents and coastal upwelling, as a

result of climate change (e.g., Bakun, 1990; IPCC, 2007;

Diaz & Rosenberg, 2008). Such changes in ocean condi-

tions affect primary productivity, species distribution,

community and foodweb structure that have direct and

indirect impacts on distribution and productivity of

marine organisms. Empirical and theoretical studies

show that marine fish and invertebrates tend to shift

their distributions according to the changing climate in

a direction that is generally towards higher latitude and

deeper water, with observed and projected rates of

range shift of around 30–130 km decade�1 towards the

pole and 3.5 m decade�1 to deeper waters (e.g., Perry

et al., 2005; Cheung et al., 2008b, 2009; Dulvy et al., 2008;

Mueter & Litzow, 2008). Relative abundance of species

within assemblages may also change because of the

alteration of habitat quality by climate (e.g., Przeslawski

et al., 2008; Wilson et al, 2008). Global primary produc-

tion is projected to increase by 0.7–8.1% by 2050, with

very large regional differences such as decreases in

productivity in the North Pacific, the Southern Ocean

and around the Antarctic continent and increases in the

North Atlantic regions (Sarmiento et al., 2004). Cheung

et al. (2008a) has developed an empirical model that

predicts maximum catch potential based on primary

production and distribution range of 1066 species of

exploited fishes and invertebrates. Such a model can be

applied to evaluate how changes in primary productiv-

ity and species distributions under climate change

would potentially affect fisheries productivity. Given

the availability of projected primary productivity (Sar-

miento et al., 2004) and future distributions of major

exploited marine fishes and invertebrates under climate

change scenarios (Cheung et al., 2009), it is possible to

make quantitative projections of climate change impacts

on global fisheries productivity.

Despite the uncertainty of global-scale projection of

climate change impacts on fisheries productivity, such

projection is useful in informing policy makers and

stakeholders about the potential scale of the impact

and in developing policy scenarios. Uncertainty exists

in the prediction of primary productivity (Sarmiento

et al., 2004). Simultaneously, previous applications of

bioclimate envelope models to project changes in spe-

cies’ distribution range have mixed success and failure.

For example, predictions from selected bioclimate en-

velope models for bird species agree reasonably well

with observations (e.g., Araújo et al., 2005), while Beale

et al. (2008), using null models developed from simu-

lated distributions without climate association, reports

that only 32 of 100 studied European bird species

distributions show significant association with climate

variables. For marine ectotherms such as fish and shell-

fish, theoretical and empirical studies show that phy-

siology, life history, productivity and distributions are

strongly dependent on ocean conditions such as tem-

perature (e.g., Pauly, 1980, 1981; Perry et al., 2005; Dulvy

et al., 2008; Pörtner & Farrell, 2008; Pörtner et al., 2008).

However, the performance of models that project the

effect of changes in ocean conditions on distributions

and productivity of marine species has not been system-

atically assessed. Notwithstanding such uncertainty,

projection of future distributions under changing ocean

conditions is important, at least, in formulating null

hypotheses of potential climate change impacts on

marine species and fisheries (Cheung et al., 2009).

In this study, we aim to project future changes in

maximum catch potential from global oceans by 2055

under various climate change scenarios. Maximum

catch potential is defined as the maximum exploitable

catch of a species assuming that geographic range and

selectivity of fisheries remain unchanged from the

current (year 2005) level. We include 1066 species of

marine fish and invertebrates, representing the major

commercially exploited species, as reported in the FAO

fisheries statistics (see http://www.fao.org), belonging

to a wide range of taxonomic groups from around the

world. Future distributions of these species are pro-

jected using a dynamic bioclimate envelope model

(Cheung et al., 2008b, 2009) while primary production

is projected by empirical models (Behrenfeld & Falk-

owski, 1997; Carr, 2002; Marra et al., 2003; Sarmiento

et al., 2004). Coupling these data with an empirical

model (Cheung et al., 2008a) allows us to project future

changes in catch potential. The results should contri-

bute to comprehensive assessments of climate change

impacts on global socioeconomic and food security

issues.

Materials and methods

Projection of distributions of exploited fish and
invertebrates

Our analysis included 1066 species of exploited marine

fishes and invertebrates, representing a wide range of

taxonomic groups, ranging from krill, shrimps, anchovy

and cod to tuna and sharks (see supporting information

Table S3). Overall, they contributed 70% of the total

reported global fisheries landings from 2000 to 2004 (Sea

Around Us Project database: http://www.seaaroundus.

org). The remaining 30% of the global landings was

reported in the original FAO fisheries statistics as tax-

onomically aggregated groups such as groupers (Epi-

nephelidae) and snappers (Lutjanidae). Because the
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species composition of these aggregated groups is un-

known, we did not include these groups in our analysis.

The distribution map of each species in recent dec-

ades (i.e., 1980–2000) was derived from an algorithm

described in Close et al. (2006). Basically, this algorithm

estimates the relative abundance of a species on a 300

latitude� 300 longitude grid of the world ocean. Input

parameters for the model include the species’ maxi-

mum and minimum depth limits, northern and south-

ern latitudinal range limits, an index of association with

major habitat types and known occurrence boundaries.

The parameter values of each species, which could be

retrieved from the Sea Around Us Project website

(http://www.seaaroundus.org/distribution/search.aspx),

were obtained from online databases such as FishBase

(http://www.fishbase.org) and SealifeBase (http://www.

sealifebase.org). Specifically, the index of habitat asso-

ciation scales from 0 to 1 (0: no association; 1: very

strong association) and is a semiquantitative represen-

tation of the strength of association with specific habi-

tats (see Cheung et al., http://www.seaaroundus.org/

doc/saup_manual.htm, for details of this index). The

types of habitat include coral reef, seamounts, estuaries,

inshore, offshore, continental shelf, continental slope

and the abyssal. For all the 1066 species, we determined

the index values from qualitative description of the

species’ biology and ecology. Based on the input para-

meters and predetermined rules on the latitudinal,

bathymetric and habitat gradients of relative abun-

dance, the model predicted a distribution map for each

species (Close et al., 2006). Thus, the model assumes that

species distributions are directly or indirectly depen-

dent on these factors.

We simulated future changes in species distribution

by using a dynamic bioclimate envelope model

(Cheung et al., 2008b, 2009). First, the model identified

species’ preference profiles with environmental condi-

tions that were defined by seawater temperature (bot-

tom and surface), salinity, distance from sea-ice and

habitat types (coral reef, estuaries, seamounts, coastal

upwelling and a category that include all other habitat

types). Regions of coastal upwelling were identified

from temperature anomalies (see supporting informa-

tion). Preference profiles are defined as the suitability of

each of these environmental conditions to each species.

Suitability, represented by the relative density of the

species in each environmental conditions and habitat

types, was calculated by overlaying environmental data

(from 1980 to 2000) with maps of relative abundance of

the species. For example, for each species, the model

calculated a temperature preference profile based on the

relative density of the species in different seawater

temperature (Cheung et al., 2009) (See Supplementary

Information). Sea surface and bottom temperature data

were used for pelagic and demersal species, respec-

tively.

Species’ environmental preferences were linked to the

expected carrying capacity in a population dynamic

model in which growth, mortality and spatial dynamics

of adult movement and larval dispersal along ocean

currents were explicitly represented (Cheung et al.,

2008b, 2009). The model simulated changes in relative

abundance of a species by

dAi

dt
¼
XN

j¼1

Gi þ Lji þ Iji ð1Þ

where Ai is the relative abundance of a 300 � 300 cell i, G

is the intrinsic population growth and Lji and Iji are

settled larvae and net migrated adults from surround-

ing cells, respectively.

Intrinsic growth is modelled by a logistic equation:

Gi ¼ rAi 1� Ai

KCi

� �
ð2Þ

where r is the intrinsic rate of population increase,

Ai and KCi are the relative abundance and population

carrying capacity at cell i, respectively. The model

assumes that carrying capacity varies positively

with habitat suitability of each spatial cell and habitat

suitability is dependent on the species’ preference

profiles to the environmental conditions (e.g., tempera-

ture, ice-coverage) in each cell. The final value of

carrying capacity of a cell is calculated from the product

of the habitat suitability of all the environmental

conditions considered in the model. The model

explicitly represents larval dispersal through ocean

current with an advection–diffusion–reaction model

(Cheung et al., 2008b, 2009). The distance and direction

of larval dispersal are a function of the predicted

pelagic larval duration estimated based on an empirical

equation (O’Connor et al., 2007). In addition, animals

are assumed to migrate along the calculated gradient

of habitat suitability. Thus, changes in habitat suitability

in each cell, determined by ocean conditions, lead

to changes in the species’ carrying capacity, population

growth, net migration, and thus, relative abundance

in each cell. Given the projected changes in ocean

conditions and advection fields from ocean–

atmosphere-coupled global circulation model (GCM)

under climate change scenarios, the model simulated

the annual changes in distribution of relative

abundance of each species on the global 300 � 300

grid.

We included two climate scenarios, each representing

high- and low-range greenhouse gas emissions. These

included the Special Report on Emission Scenarios

(SRES) A1B (CO2 concentration at 720 ppm in 2100)

and the stable-2000 level scenario (CO2 concentration
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maintains at year 2000 level of 365 ppm), respectively.

Climate projections were generated by the Geophysical

Fluid Dynamics Laboratory of the US National Oceanic

and Atmospheric Administration (GFDL’s CM 2.1; Del-

worth et al., 2006). The original resolution of the outputs

from the coupled model is 11 at latitudes higher than

301 north and south, with the meridional resolution

becoming progressively finer towards the equator. We

interpolated the physical variables from the coupled

model with resolution of 300 in latitude and longitude

using the Inverse Distance Weighted method, thus we

avoided making complicated assumptions about the

relationship between the coarser-resolution model out-

puts and their downscaled values.

Projection of future primary production

Using published empirical models and algorithms, we

predicted primary production from the world ocean.

First, to predict surface chlorophyll content in the ocean

from GCM outputs, we used an empirical model de-

scribed in Sarmiento et al. (2004). The model was

developed by fitting chlorophyll data from SeaWIFS

remote sensing to sea surface temperature, sea surface

salinity, maximum winter mixed layer depth and length

of growing season. Second, we used three published

algorithms to predict ocean primary production. These

algorithms, described in Carr (2002), Marra et al. (2003)

and Behrenfeld & Falkowski (1997), calculate

phytoplankton primary productivity as a function

of the modelled surface chlorophyll content and its

distribution, light supply and vertical attenuation,

and sea surface temperature (Sarmiento et al., 2004).

All the physical parameters are outputs of the NOAA/

GFDL’s coupled model. The estimated annual average

primary productivity is scaled onto a 300 latitude� 300

longitude grid. Thus, we predicted annual primary

production in the world ocean from 2001 to 2060 for

the two climate change scenarios using each of the

above algorithms.

Estimation of maximum catch potential

Using a published empirical model described in

Cheung et al. (2008a), we calculated the annual max-

imum catch potential for each of the spatial cells. The

empirical model estimates a species’ maximum catch

potential (MSY) based on the total primary production

within its exploitable range (P), the area of its geo-

graphic range (A), its trophic level (l) and includes

terms correcting the biases from the observed catch

potential (CT: number of years of exploitation and

HTC: catch reported as higher taxonomic level aggrega-

tions):

log10MSYt ¼� 2:991þ 0:826� log10 Pt�0:505� log10 At

� 0:152� lþ 1:887� log10 CT þ 0:112

� log10 HTCþ e

ð3Þ

where t is year and e is the error term. We assume that

the proportion of exploitable range relative to the geo-

graphic range of a species (a) remains constant in the

future. Thus, P was calculated from the sum of primary

production (estimated from each of the three primary

production algorithms) from the exploitable range

weighted by the relative abundance (Abd) in each

spatial cell (i):

Pt ¼
Xn

i¼1

P0i;ta
Abdi;t

MAXðAbdi;tÞ
ð4Þ

Range area (A) was the sum of area of all spatial cells

that contribute to 95% of the total abundance (n) at year

t from which distributions of relative abundance were

simulated from the dynamic bioclimate envelope model

described above. Trophic level (l) of each species was

obtained from FishBase (http://www.fishbase.org), Sea-

LifeBase (http://www.sealifebase.org) and the Sea

Around Us Project database (http://www.seaaroundus.

org) and was assumed to be constant over time. How-

ever, change in species distributions and community

structure resulting from climate change may affect the

trophic level of the species. This would affect the

estimated change in maximum catch potential and

remains a major uncertainty of our projections. The

spatial distribution of the calculated maximum catch

potential was assumed to be proportional to the relative

abundance of each species in each cell.

We projected the global pattern of change in maximum

catch potential from 2005 to 2055 under the two climate

change scenarios. First, we calculated the predicted total

maximum catch potential in each spatial cell for the 1066

species for each year from 2001 to 2060. To reduce the

effect of interannual variability of the climate projections,

we applied a 10-year running average to the estimated

catch potential. We then plotted the percent change in

catch potential in the world ocean between 2005 (i.e.,

average of 2001 to 2010) and 2055 (i.e., average of 2051 to

2060), with the ensemble mean of catch potential esti-

mated from the three primary production algorithms.

We also calculated the zonal (latitudinal) changes in total

maximum catch potential of the period for each ocean

basins and for the continental shelf ( � 200 m in depth)

and offshore regions (4200 m in depth). Bathymetry

data are based on mean depth from real topography by
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300 � 300 cell. To evaluate projected climate change im-

pacts at country level, we aggregated our results by

country’s claimed Exclusive Economic Zone (EEZ).

Results

Global maps of maximum catch potential by 2055

Overall, although the projected total global maximum

catch potential varies by � 1% between 2005 and 2055

(10-year averages), climate change may considerably

alter the distribution of catch potential, particularly

between tropical and high-latitude regions (Fig. 1).

Specifically, impacts in the Indo-Pacific region appear

to be most intense, with up to 50% decrease in 10-year

averaged maximum catch potential by 2055 under a

higher greenhouse gas emission scenario (SRES A1B)

(Fig. 1a). Simultaneously, catch potential in semien-

closed seas such as the Red Sea and the southern coast

of the Mediterranean Sea suffer from a reduction in

catch potential. In fact, catch potential from many

coastal regions appear to decline. In addition, maxi-

mum catch potential in the Antarctic region declines

considerably. By contrast, catch potential in the higher

latitudinal regions, particularly the offshore regions of

the North Atlantic, the North Pacific, the Arctic and the

northern edge of the Southern Ocean increased greatly

by more than 50% from the 2005 level. However, the

pattern of change in catch potential is less clear under a

low greenhouse gas emission scenario (Fig. 1b).

Studying the map of the absolute change in 10-year

averaged maximum catch potential from 2005 to 2055,

the change in the bulk of the catch concentrates along

the continental shelf (Fig. 2). The projected baseline

(10-year average in 2005) maximum catch potential

concentrates along the continental shelf, offshore is-

lands and mid-oceanic ridges or seamounts (Fig. 2a).

These also coincide with areas where large changes

in catch potential occur. Particularly, we project a

large reduction in catch potential in the tropics,

Fig. 1 Change in maximum catch potential (10-year average) from 2005 to 2055 in each 300 � 300 cell under climate change scenarios:

(a) Special Report on Emission Scenarios A1B and (b) stabilization at 2000 level.
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semienclosed seas and inshore waters, while catch

potential increases largely in the North Atlantic, North

Pacific (particularly the Bering Sea) and the poleward

tips of continental margins such as around South

Africa, southern coast of Argentina and Australia

(Fig. 2b and c).

Zonal average change in maximum catch potential

The general pattern observed from the map can be

better illustrated by the zonal-average changes in max-

imum catch potential (Fig. 3). Globally, 10-year average

maximum catch potential reduces by up to 20% from

Fig. 2 The estimated 10-year averaged maximum catch potential for 2005 (a) and the difference in the absolute catch potential between

2005 and 2055 under two climate change scenarios: (b) Special Report on Emission Scenarios A1B and (c) stabilization at 2000 level.
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2005 to 2055 in areas between 101N and 101S under the

high-range greenhouse gas emission scenario (Fig. 3a).

In the northern hemisphere, catch potential declines

moderately in the temperate regions (around 251–

501N) but increases in the higher latitudinal regions,

particularly the subarctic. In the southern hemisphere,

the pattern is less clear in nontropical regions, except

that there are large variations in changes in maximum

catch potential ( � 30% from 2005 level) around the

Antarctic region. Overall, under the low-range green-

house gas emission scenario, projected changes in catch

potential show a similar pattern, but with lower mag-

nitudes of changes.

The zonal pattern of change varies in different ocean

basins. In the Pacific Ocean, the pattern of change in

10-year average maximum catch potential parallels the

global trend, but with a much higher magnitude of

change (Fig. 3b). For example, catch potential in the

tropical Pacific is projected to decrease by up to 42%

from the 2005 level, while those in the sub-Arctic region

doubled the 2005 level. In the Atlantic Ocean, the

projected magnitudes of change in the tropical and

temperate regions is much smaller than those in the

global average and the Pacific Ocean (Fig. 3c), and

mostly within 10% of changes from the 2005 level.

However, the projected large increase in catch potential

around the poles is consistent with projections for the

global ocean. In the Indian Ocean, the projected trend in

the tropics is different from other ocean basins, with

considerable increase in catch potential by up to 20%

from the 2005 level under the high-range scenario

(Fig. 3d). Moreover, catch potential declines largely

along the northward continental boundary of the Indian

Ocean.

The zonal average shows a clear contrast between the

changes in 10-year average maximum catch potential in

the continental shelf and offshore regions (Fig. 4).

Under a high-range greenhouse gas emission scenario,

projected catch potential from the continental shelf

decreases throughout most of the latitudinal zones by

2055 except in the high-latitude region (Fig. 4a). In

contrast, projected catch potential increases consider-

ably in offshore regions, except around the equator (01)

where projected increase in catch potential is relatively

low. Relative to the shelf-offshore pattern of change in

catch potential, the variation in projected changes under

the three different primary production estimation algo-

rithms is small (Fig. 4b and c).
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Fig. 3 Projected zonal (latitudinal) changes in 10-year average maximum catch potential from 2005 to 2055 under the high-range (black

line) and low-range (grey line) greenhouse gas emission scenarios. Resolution of the latitudinal zones was originally in 300, which was

then smoothed by 51 latitude running averages to reduce the variability from the finer resolution. The dotted line indicates no change in

catch potential.
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Changes in maximum catch potential by EEZ regions

Aggregating maximum catch potential by 240 EEZ

regions (see http://www.seaaroundus.org), we find

that some high-latitude countries/regions in the north-

ern hemisphere largely gain in catch potential, while

many tropical and subtropical countries/regions may

lose (Fig. 5). Among the 20 Atlantic EEZ regions with

the highest recorded catch in the 2000s, 10-year aver-

aged catch potentials in Nordic countries/regions such

as Norway, Greenland and Iceland are projected to

increase by 18–45% under the high-range emission

scenario (SRES A1B). In the Pacific, catch potentials

from Alaska and Russia are projected to increase by

around 20%. On the other hand, catch potential from

most other EEZ regions declined to varying degrees,

with tropical and subtropical countries/regions such as

Indonesia having the largest projected decline by 2055.

The projected decline in catch potential in the United

States (excluding Alaska and Hawaii), China, Chile and

Brazil are moderate, ranging from 6% to 13% under the

high-range emission scenario.

Comparison between greenhouse gas emission scenarios

Comparing between the high- and low-range (stabiliza-

tion at 2000-level) scenarios, the average changes in

catch potential by 2055 for all the 240 EEZ regions

under the high-range scenario are generally 1.6 times

the changes under the low-range scenario (Fig. 6). The

relationship between the projections from the two cli-

mate change scenarios is described by a linear relation-

ship with a slope of 1.6 and a zero intercept (Po0.05,

r2 5 0.58). Thus, the projected climate change impact on

catch potential in EEZ regions is positively related to

the level of greenhouse gas emission.

Discussion

Our results suggest that climate change may have a

large impact on the distribution of maximum catch

potential – a proxy for potential fisheries productivity

– by 2055. Such a redistribution of catch potential is

driven by projected shifts in species’ distribution ranges

and by the change in total primary production within

the species’ exploited ranges (Sarmiento et al., 2004;

Cheung et al., 2008a). In the tropics and the southern

margin of semienclosed seas such as the Mediterranean

Sea, species are projected to move away from these

regions as the ocean warms up. Thus, the catch poten-

tial in these regions decreases considerably. Simulta-

neously, ocean warming and the retreat of sea ice in

high-latitude regions opens up new habitat for lower-

latitude species and thus may result in a net increase in

catch potential. Moreover, catch potential increases in

the poleward continental margins (e.g., southern parts

of Australia and Africa) because most commercially

exploited species are associated with continental

shelves. Thus these continental margins represent a

limit of species’ distribution shifts. In subtropical and

temperate regions, cold-water species are replaced by

warm-water species, rendering the trend in catch

potential changes in these regions generally weaker

than in tropical, high-latitude and polar regions. The

large reduction in catch potential in the southern ocean
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Fig. 4 Projected changes in 10-year average maximum catch

potential from 2005 to 2055 in continental shelf (depth � 200 m,

grey line) and offshore (depth 4200 m, black line) regions: (a)

zonal (latitudinal) averages under the high-range greenhouse

gas emission scenarios. Bathymetry is based on mean depth from

real topography by 300 � 300 cell. Resolution of the latitudinal

zones was originally in 300, which was then smoothed by 51

latitude running averages to reduce the variability from the finer

resolution. The dotted line indicates no change in catch potential.

(b) Global changes of maximum catch potential in continental

shelf and offshore regions in two climate change scenarios under

the three primary production estimate algorithms (Carr – Carr,

2002; Marra – Marra et al., 2003; B & F – Behrenfeld & Falkowski,

1997).
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is the result of a shift in the lower-latitude range

boundary of many Antarctic species, resulting in a loss

of catch potential. In addition, as species move offshore

to colder refuges as the ocean warms up, catch potential

also shifts to offshore regions from coastal areas. Such

inshore-to-offshore shifts as estimated here corroborate

observations from field studies (Dulvy et al., 2008).

The projected change in maximum catch potential

may have large implications for global food security. If

the decrease in catch potential in tropical countries is

directly translatable to actual catches, climate change

may have a negative impact on food security in many

tropical communities that are strongly dependent on

fisheries resources for food and revenues. Such com-

munities may already have high socioeconomic vulner-

ability to climate change in fisheries (Allison et al., 2009).

In fact, the reduction in catch potential in tropical

countries and the increase in high-latitude countries

coincide with similar projections for terrestrial-based

food production systems such as agriculture and live-

stock farming (Easterling et al., 2007). Given that agri-

cultural food production in many tropical developing

countries may become vulnerable to climate change, the

additional stress from the reduction in fisheries catch

potential may further exacerbate the food security

problem. The problem is especially apparent in the

Pacific, where climate change is projected to have

very different impacts between the tropical and high
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Fig. 6 The projected change in 10-year averaged maximum

catch potential from 2005 to 2055 between the high-range green-

house gas emission scenario (Special Report on Emission Sce-

narios A1B, scenario 2) and the low-range scenario (Stabilization

at 2000-level, scenario 1) for 240 Exclusive Economic Zone

regions is roughly proportional, with the high-range scenario

having approximately 1.6 times higher impact than the low-

range scenario. The line was obtained from a linear regression of

projections from the two scenario with intercept 5 0. As the

linkages between greenhouse gas concentration, ocean condi-

tions and fisheries potential are complex, the high variability of

the points from the fitted line is expected.
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latitudinal regions. The offshore shift of catch potential

may also render fishing activities more costly as fishing

boats may have to operate further offshore. In addition,

as most marine fisheries resources in the world are

currently fully exploited, over-exploited or collapsed

and the global marine catch appears to reach or has

exceeded its biological limits (Pauly et al., 2002; FAO,

2008), it is expected that climate-induced changes in

catch potential will strongly affect global fisheries pro-

duction and food supply.

While this study provides an important basis to

understand climate change impacts on marine capture

fisheries, various uncertainties are associated with our

projections. Firstly, we did not consider the effect of

changes in eco-physiology, such as the increased phy-

siological stress resulting from ocean acidification (e.g.,

Orr et al., 2005; Pörtner & Farrell, 2008; Cheung et al.,

2009). These factors would likely have negative impacts

on the maximum catch potential. Secondly, projections

from dynamic bioclimate envelope model are uncertain

(Cheung et al., 2009). The current distribution maps may

not adequately reflect species’ habitat preferences.

Accurate estimates of population and dispersal para-

meters were not available. However, sensitivity analysis

of the dynamic bioclimate envelope model shows that

its projections are generally robust to key input para-

meters (Cheung et al., 2008b). Also, our projected rates

of range-shift for exploited fishes are of similar magni-

tude to the observed rates in the North Sea (Perry et al.,

2005) and the Bering Sea (Mueter & Litzow, 2008) in

recent decades (Cheung et al., 2009; W. W. L. Cheung,

unpublished data); this provides support to the validity

of our projections. Distribution shifts may be influenced

by species’ evolutionary or physiological adaptation,

and interactions between species or anthropogenic fac-

tors that were not captured in our model (Davis et al.,

1998; Harley et al., 2006; Hsieh et al., 2008). Considera-

tion of these factors is expected to increase the rate of

range-shifting of the species; thus our projected distri-

bution shifts are considered conservative (Cheung et al.,

2009). Moreover, there are uncertainties associated with

projections of ocean conditions that were applied to

predict primary production and changes in species

distributions. Particularly, because of the coarse resolu-

tion of the GCM, representation of dynamics in finer

spatial resolution (e.g., coastal processes) is particularly

uncertain. Also, we do not explicitly consider the re-

sponses of fisheries to potential changes in species

distribution and catch potential. We implicitly assume

that the exploitable area of a species follows the species

distribution. However, the validity of this assumption is

uncertain, depending on changes in fishing dynamics.

Such changes depend on a network of factors, including

changes in fishing costs and revenues, global and local

demand and supply of seafood and the global trade

system. Based on the experience from studying climate

change impacts on food supply from agriculture and

livestock production systems, these socioeconomic fac-

tors are important in evaluating climate change impacts

(e.g., Parry et al., 2004, 2005; Easterling et al., 2007). This

study provides a basis for incorporating these factors

for future analysis.

Our projected catch potential is less sensitive to the

choice of particular algorithms for estimating primary

production relative to the effects of the projected shifts

in range areas (see supporting information Figure S5).

Because of the difference in predicted change in pri-

mary production at high temperature between models,

the projected changes in primary production in the low-

latitude regions vary. Specifically, the Behrenfeld &

Falkowski (1997) method has a polynomial tempera-

ture-dependence function that predicts a decrease in

primary productivity at higher temperature, whereas

the Carr (2002) and Marra et al. (2003) methods have a

more physiological-like temperature-dependence func-

tion that predicts exponential increase in primary pro-

ductivity as temperature increases. As a result, using

the Behrenfeld & Falkowski (1997) method, a decrease

in primary production by 2055 was calculated, but an

increase was calculated from the Carr (2002) and Marra

et al. (2003) methods (Sarmiento et al., 2004). However,

most of the exploited marine species considered in this

study have large distribution ranges. Their maximum

catch potentials are estimated from integrating primary

production from large areas, which dampens the effect

of the variation in the change of primary production on

the projected maximum catch potential. Thus, globally,

projected change in maximum catch potential is not

sensitivity to the different primary production estima-

tion algorithms. Regionally, the tropical region (be-

tween 301 north and south) is relatively more sensitive

to the different algorithms with the Behrenfeld and

Falkowski algorithm predicts slightly stronger decrease

in maximum catch potential than the predictions using

the Carr and Marr algorithms (see supporting informa-

tion). However, such differences do not affect the pat-

tern of changes and the overall conclusion of the

analysis. Moreover, we use an ensemble mean of pro-

jected catch potential projected from the different pri-

mary production algorithms, thus making our projected

catch potential more robust to the uncertainty in

primary production estimation.

Conclusions

This study projects climate change impacts on global

catch potential, which is a fundamental step towards

filling the gap of predicting future food supply from the
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ocean and the livelihood of people depending on mar-

ine fisheries resources. Our estimates suggest that the

high-range greenhouse gas emission could result in a

world-wide redistribution of maximum catch potential

and the level of impacts is positively related to the

emission level. Remaining conservative, we did not

include the highest emission level scenario considered

by the IPCC (e.g., SRES A1F), and it is expected that

such a scenario would result in much stronger impacts

on maximum catch potential.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Brief summary of the structure of the dynamic

bioclimate envelope model developed in this study which

was implemented in Visual Basic.Net environment.

Figure S2. Distribution of relative abundance (A) and the

inferred temperature preference profile (TPP) (B) of the Small

yellow croaker (Larimichthys polyactis).

Figure S3. A series of cells at the same latitude within the

same ocean basin. T is the sea surface temperature at each

particular cell.

Figure S4. Map showing the upwelling indexes assigned to

each upwelling region.

Figure S5. Projected zonal (latitudinal) change in 10 years

average maximum catch potential calculated between 2005 and

2055 using the three primary production estimation algorithms:

B & F – Behrenfeld & Falkowski, 1997; Marra – Marra et al.,

2003; Carr – Carr, 2002. Globally, projected change in maximum

catch potential is not sensitivity to the different primary pro-

duction estimation algorithms (A, top). Regionally, the tropical

region (between 30o north and south) is relatively more sensi-

tivity to the different algorithms (B, bottom) with the B & F

algorithm predicts slightly stronger decrease in maximum catch

potential than the predictions using the Carr and Marr algo-

rithms. However, the selection of particular algorithm does not

affect the overall conclusion of the analysis.

Table S1. List of environmental and species distribution

variables and the sources of data that the dynamic bioclimate

envelope model accounts for in predicting the current and

future distributions of marine fish and invertebrate.

Table S2. Upwelling index computed from the SST anomalies

data or wind-induced upwelling data. Regions with upwel-

ling index equal to 6 have the strongest upwelling. Regions

would have the weakest upwelling within the upwelling

region if their index value is 1.

Table S3. List of families of the 1066 species of marine fish

and invertebrates that are included in the analysis.
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content or functionality of any supporting materials supplied

by the authors. Any queries (other than missing material)

should be directed to the corresponding author for the article.
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