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ABSTRACT

Well-known problems trouble coupled general circulation models in the

eastern Atlantic and Pacific ocean basins. Model climates are significantly

more symmetric about the equator than is observed. Model sea surface tem-

peratures are biased warm south and southeast of the equator and the atmo-

sphere too rainy within a band south of the equator. Near-coastal eastern

equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic

opposite in sign to that observed. The U.S. CLIVAR Working Group on East-

ern Tropical Ocean Synthesis has pursued an updated assessment of coupled

model SST biases, focusing on the surface energy balance components, on

regional error sources from clouds, deep convection, winds and ocean ed-

dies, on the sensitivity to model resolution, and on remote impacts. Motivated

by the assessment, the WG makes the following recommendations: 1) en-

courage identification of the specific parameterizations contributing to the bi-

ases in individual models, as these can be model-dependent, 2) restrict multi-

model intercomparisons to specific processes, 3) encourage development of

high-resolution coupled models with a concurrent emphasis on parameteriza-

tion development of finer-scale ocean and atmosphere features, including low

clouds, 4) encourage further availability of all surface flux components from

buoys, for longer continuous time periods, in persistently cloudy regions, and

5) focus on the eastern basin coastal oceanic upwelling regions, where further

opportunities for observational-modeling synergism exist.
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1. Capsule69

Warm tropical SST biases in coupled climate models can be improved through a focus on iden-70

tifying and rectifying systematic biases in individual models and on the representation of specific71

processes in the upwelling regions.72

2. Introduction73

Most contemporary coupled general circulation models (CGCMs) produce a climate that is sig-74

nificantly more symmetric about the equator than in observations (Mechoso et al. 1995; Davey and75

Coauthors 2002; Biasutti et al. 2006; deSzoeke and Xie 2008; Richter et al. 2014c; Richter 2015;76

Siongco et al. 2015). Outstanding features include positive sea surface temperature (SST) errors77

south-southeast of the equator (Fig. 1a), colocated in part with an intertropical convergence zone78

(ITCZ) precipitation band (Fig. 1b) much stronger than that observed in nature. The ”double-79

ITCZ” error is further implicated in the simulated Hadley circulation, seasonal cycle and winds on80

the equator, and equatorial modes of variability such as the El Nino - Southern Oscillation (ENSO)81

in the Pacific, casting doubt on the ability to model and predict both regional and global climate.82

These positive SST biases are only apparent in the Pacific and Atlantic basins (Fig. 1a), indicating83

the Indian Ocean’s precipitation biases have other origins. The CMIP5 models only demonstrate84

a slight improvement in the mean from CMIP3 (Fig. 2a, see also Richter et al. (2014b) and Zhang85

et al. (2015)), revealing the stubbornness of the biases, although some individual models are more86

successful (Fig. 2b; Richter et al. (2014b)).87

Another interhemispheric asymmetry with which models have difficulty is subtropical stratocu-88

mulus clouds. The planetary stratocumulus decks are not symmetric about the equator, but rather,89

about the ITCZ located at approximately 10◦ N. The equatorial climate is linked directly to the90

southern hemisphere subtropical highs and stratocumulus cloud decks through the westward trade91
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winds (Ma et al. 1996; Bellomo et al. 2014, 2015). The longwave stratocumulus radiative cool-92

ing further strengthens the tropical atmospheric circulation (Bergman and Hendon 2000; Peters93

and Bretherton 2005; Fermepin and Bony 2014). Global models have struggled to capture the94

low-level, geometrically thin but optically significant stratocumulus clouds. The lack of clouds95

may then seem to be an agent for the warm SST biases, by allowing excessive sunlight to reach96

the surface (e.g., Huang et al. 2007). However, CMIP models often overcompensate by cooling97

excessively through their surface turbulent fluxes (deSzoeke et al. 2010; Xu et al. 2014).98

At the equator, the ocean’s thermocline structure is sensitive to atmospheric wind perturbations,99

and positive air-sea feedbacks amplify SST variability (Bjerknes 1966, 1969; Philander 1981; Ze-100

biak and Cane 1987). While Pacific zonal SST gradients tend to be realistic and have a magnitude101

comparable to the observation, those in the Atlantic can have the opposite sign to that observed102

(Fig. 2b). Gulf of Guinea SSTs can be too warm (Fig. 2b), with biases beginning in the boreal103

spring and peaking in summer (DeWitt 2005; Song et al. 2015). The smaller Atlantic basin means104

its equatorial climate is influenced by the monsoons over Africa, America and perhaps even Asia105

(Rodwell and Hoskins 1996; Okumura and Xie 2004; Siongco et al. 2015). More recently appre-106

ciated is that the most severe SST biases, reaching 6-8◦ C, occur in the coastal southeast Atlantic107

(SEA) away from the equator (Xu et al. 2013; Toniazzo and Woolnough 2014). Observational108

studies have suggested oceanic Kelvin waves link the equatorial and southeast Atlantic oceans109

since Hirst and Hastenrath (1983), a process also diagnosed in CMIP5 models (Xu et al. 2014).110

A brief description of the two basins sets the stage for further discussing their physical processes.111

The southern hemisphere SST distributions differ, in keeping with a different spatial structure to112

the oceanic eastern boundary currents (Fig. 3) that reflects different bathymetry (Mazeika 1967)113

and land topography (Philander 1979). The surface winds stream toward the ITCZ in both basins114

(not shown), but the near-equatorial eastern basin coastal surface current is poleward in the At-115
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lantic, and equatorward in the Pacific (Fig. 3). The eastern Pacific boundary current ultimately116

merges with equatorial waters cooled by upwelling. In contrast, the equatorward Benguela current117

off the coast of southern Africa is met by the warmer waters of the poleward Angola current, form-118

ing the Angola-Benguela Front (ABF) migrating seasonally between 15◦–17◦ S. Furthermore, a119

raised upwelling oceanic thermocline north of the ABF, the Angola dome, has no counterpart in120

the southern Pacific (Doi et al. 2007).121

The warm Atlantic near-equatorial waters coincide with a reduction in the cloud fraction that122

does not exist in the Pacific (Fig. 4). To the south, the southern boundary of the stratocumulus123

decks abuts the northern edge of coastal atmospheric wind jets (Fig. 4). All basins possess signifi-124

cant low-level atmospheric coastal jets above oceanic upwelling regions, but these winds are most125

pronounced in the southern hemisphere. The wind spatial distribution is important for establishing126

the upwelling structure (Fennel and Lass 2007; Small et al. 2015). In the southeast Pacific (SEP),127

the wind jet exit into the Arica Bight supports an elevated, cloudy coastal boundary layer (Zuidema128

et al. 2009). In the Atlantic, the coastal surface winds south of 20◦ S are guided northwestward129

along with the Benguela current by the convex Angolan-Namibian coastline (Nicholson 2010),130

and the stratocumulus deck is primarily offshore. The monthly-mean SSTs are 1-2K warmer in131

the southeast Atlantic than in the Pacific (Fig. 4b), reducing the monthly-mean atmospheric lower132

tropospheric stabilities accordingly. Nevertheless, the SEA cloud fraction exceeds that of the SEP133

during the austral spring (Fig. 4c), despite being thinner clouds (Fig. 4d), coinciding with a time134

when the aerosol optical depth over the SEA is also greater (Fig. 4f).135

Our discussion cannot be fully comprehensive of this vast, complex, and long-studied problem136

(see also Richter (2015)). The main goal is to articulate the rationale for recommended near-137

future improvements in individual models’ mean tropical climate. The following Section 3 further138

assesses the surface energy balance in models and observations. Section 4 discusses regional er-139
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ror sources for the SST biases, selected for their perceived importance: the stratocumulus cloud140

deck, deep convection, oceanic eddies, surface winds, and model resolution. Section 5 highlights141

attributing bias through evaluating fast versus slow SST error growth. Section 6 discusses the142

impact of basin-specific SST biases upon the global climate and Section 7 concludes with recom-143

mendations.144

3. The surface energy balance in models and observations145

Differences in CMIP5 model-mean surface flux biases, shown in Fig. 5 with respect to the Ob-146

jectively Analyzed air-sea Fluxes product (OAFLUX; Yu et al., 2008), suggest different processes147

dominate the SST biases in the two basins. The CMIP5 net radiative (shortwave and longwave)148

surface fluxes are more biased in the SE Pacific, where they are spatially collocated with the thicker149

SEP cloud deck, than in the SE Atlantic. In contrast, the turbulent (primarily latent heat) fluxes150

are more biased in the Atlantic, where they ultimately dominate the net CMlP5 surface flux biases.151

Analysis of AMIP simulations has shown that even with observed SSTs, surface energy flux biases152

of the same sign remain, if reduced (Zheng et al. 2011; Vanniere et al. 2014; Xu et al. 2014).153

Issues with the surface flux products used to assess CGCM biases will also affect the assessment.154

For example, OAFLUX does not have a globally-closed surface energy budget, in that the turbulent155

fluxes are derived from NCEP data and the radiation fluxes from the International Satellite Cloud156

Climatology Product (ISSCP). A further assessment uses data from two buoys that measure all the157

surface energy components of the net heat flux: the Woods Hole Oceanic Institute STRATUS buoy158

at 20◦S and 85◦W, and a Prediction and Research Moored Array in the Atlantic (PIRATA; Bourlès159

et al. 2008) buoy at 10◦S, 10◦W (Fig. 4). Approximately twenty buoys world-wide measure the160

full surface energy budget, with the primary limitation being the availability of a pyrgeometer161
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(longwave radiation sensor), as these are difficult to calibrate and maintain (Yu et al. 2013). Our162

assessment neglects spatial weighting issues (Josey et al. 2014)163

Figure 6 shows the buoys’ climatological annual cycle along with OAFLUX, and the Clouds164

and the Earth’s Radiant Energy System (CERES) surface radiative fluxes (Kato et al. 2013). The165

buoy radiation measurements indicate more surface longwave radiation loss, and less shortwave166

radiation flux going into the ocean, than in either the CERES or OAFLUX dataset, consistent with167

Fig. 8 of de Szoeke et al. (2010). The shortwave bias is generally larger than the longwave bias,168

leading to an approximate positive bias (an ocean warming) in the net heat flux of 10 W m−2 at169

the cloudier STRATUS site.170

A more quantitative comparison of the buoy, CERES and OAFLUX annual means is shown171

in Table 1, and includes values from ERA-Interim (ERA-I) and TropFlux. TropFlux is a grid-172

ded energy-balanced surface flux product developed explicitly to drive ocean dynamical simula-173

tions. TropFlux combines ERA-I with ISCCP shortwave fluxes and includes buoy-based bias-174

and amplitude corrections (Kumar et al. 2012, 2013). Buoy, OAFLUX, and TropFlux turbulent175

flux calculations all rely on the COARE v3 bulk algorithm (Edson et al. 1998; Colbo and Weller176

2009). CERES, OAFLUX and ERA-I report a larger net radiation flux into the ocean than the buoy177

at both locations, with the CERES-buoy difference exceeding the reported CERES uncertainties178

(Kato et al. 2013). In contrast, TropFlux does not allow enough radiation to enter the ocean.179

The overestimated OAFLUX net radiative fluxes combine with underestimated turbulent fluxes180

to yield too much net surface warming, by almost 20 W m−2, at both buoy sites. In contrast, weak181

TropFlux and ERA-I net fluxes do not warm the ocean enough at the STRATUS buoy location, by182

10-25 W m−2, primarily because the turbulent fluxes overcompensate. At the Atlantic PIRATA183

buoy, the ERA-I net fluxes similarly do not produce enough warming, but here the individual184

biases in the TropFlux fluxes compensate to yield a reasonable net flux. Overall the ERA-I, and,185
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to a lesser extent, TropFlux, biases are similar in sign to that of CMIP3 models (not enough186

ocean warming; deSzoeke et al. 2010). An annual-mean 2001-2009 time series of the STRATUS187

buoy and OAFLUX surface flux components confirms the consistency of the OAFLUX (ISCCP)188

radiation biases (Fig. 7). An interesting increase in the turbulent fluxes is attributed to increasing189

winds by Weller (2015), more weakly apparent in the OAFLUX time series.190

Net gridded flux terms indicate either too little or too much heat going into the ocean,191

by ± 10-20 W m−2, compared to buoy values, depending on the product. This influences192

interpretation of CMIP model surface energy budget biases. The main constraint on using193

buoy data for climate model validation is lack of longwave radiation data and data gaps.194

4. Main regional processes contributing to coupled climate model SST biases195

OAFLUX allows for more ocean warming than is observed, an error that implies the CMIP5196

model net flux biases are even larger, by at least 10 W m−2, than reported in Fig. 5. This only197

reinforces the sense of the net CMIP5 errors, particularly in the cloudier regions. We next focus198

on how the CGCM model representations of clouds, deep convection, oceanic eddy-mixing, winds199

and the model resolution contribute to perceived model SST biases.200

a. Clouds201

Improvements in cloud radiation fields improve the equatorial climate through altering equato-202

rial winds, SSTs and ITCZ rainfall (Ma et al. 1996; Hu et al. 2008; Wahl et al. 2011). More recently203

the underrepresentation of clouds in the southern ocean has also been linked to the spurious double204

ITCZ in CMIP models (Hwang and Frierson 2013). The cloud measure most directly relevant to205

the surface energy balance is the cloud impact on the radiation. A cloud radiative effect (CRE), de-206

fined as the difference between the net top-of-atmosphere radiation (longwave+shortwave) when207
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clouds are present, and when clouds are absent, can be directly compared to satellite-derived val-208

ues. The CRE avoids complications in different cloud cover measures (Kay et al. 2012), although209

models tuned to produce a ”reasonable” CRE pattern may compensate between cloud cover and210

optical thickness (Nam et al. 2012). Mean CMIP5 net CRE biases are very large, up to 40 W m−2,211

relative to CERES values (Fig. 8 a and b, see also Lin et al. (2014)). This is especially the case212

in the Pacific, consistent with Fig. 5. The CMIP5 models generally continue to underestimate213

subtropical stratocumulus cloud cover relative to observations (Fig. 9), similar to CMIP3 (Klein214

et al. 2013), although fewer subtropical clouds are overly optically-thick (Klein et al. 2013).215

A natural question to ask is whether the strong SST bias initially creates the cloud bias, or216

vice versa. The CMIP5 archive also includes atmosphere-only simulations that prescribe observed217

SST (the so-called AMIP simulations). These provide a test of the model’s atmospheric errors,218

with cloud errors coupled with the circulation but not with the SSTs. The AMIP ensemble-mean219

CRE bias relative to CERES shows remarkable similarity to the coupled GCM results. Closer220

inspection reveals that the biases in the coupled models do tend to be larger than in the AMIP221

models, suggesting some role for surface temperature feedbacks in exacerbating the atmosphere’s222

cloud bias (Fig. 8e and f). In addition, more of the AMIP simulations show negative biases, which223

implies that fixing the SST can lead to an overcorrection in the clouds, a feature also noted in some224

regional climate models (Richter 2015). The atmospheric model component is thus implicated as225

the main cause of the cloud errors (see also Lauer and Hamilton 2013).226

The question is then whether climate models fail to produce the large-scale conditions conducive227

to cloud formation, in particular the lower-tropospheric stability (LTS), or if climate models strug-228

gle to depict low clouds realistically even when the large-scale circulation is correct. Most CMIP5229

models possess lower tropospheres over the stratocumulus regions that are less stable than within230

ERA-I Reanalysis, but with reasonable seasonal phasing (Fig. 9e and f). Yet, many CMIP5 model231
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annual cycles in stratocumulus cloud amount and liquid water path are opposite to that in observa-232

tions (Fig. 9a-d), with too much cloud during January-March when the atmosphere is less stable.233

Models with stronger correlations between low cloud cover and the LTS generally possess more234

realistic cloud annual cycles (see also Noda and Satoh 2014; Lin et al. 2014).235

In Fig. 9, the CESM-CAM5 model is best able to reproduce a realistic seasonal cycle. In236

the CAM5 model, underestimates of the offshore stratocumulus can be thought of as an over-237

eager transition to trade cumulus (Medeiros et al. 2012). Near the coast, land-induced subsidence238

significantly adds to the larger-scale subsidence (Munoz and Garreaud 2005; Toniazzo et al. 2011),239

generating a positive correlation between boundary layer depth and cloud cover that contrasts with240

that off-shore (Garreaud and Munoz 2005). Model-intercomparisons in the southeast Pacific reveal241

model underestimates in the near-coastal boundary layer depth (Wyant et al. 2010, 2014), related242

to relatively low model vertical resolution and poor treatment of cloud top entrainment mixing243

in some models (Sun et al. 2010). The dynamic and thermodynamic environments occupied by244

the coastal and offshore stratocumulus regions may be best considered individually, particularly245

for the Pacific (Fig. 4). The direct radiative effect of aerosols as a cause for SST biases must246

be small simply because aerosol optical depths are small compared to that of clouds (Fig. 5f).247

Interest in aerosol-cloud interactions nevertheless aid useful low cloud parameterizations efforts248

(e.g., Mechoso et al. 2014, see also the Sidebar).249

The atmospheric model component is implicated as the cause for too-few low clouds in250

coupled models.251

b. Deep Convection252

Tropical precipitation in coupled climate models is offset from observations (Fig. 1b), and the253

large-scale circulation links the precipitation to the SST biases. In and around the smaller Atlantic254
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basin, South America and Africa also compete for the precipitation, affecting the hemispheric dis-255

tribution, evident in AMIP runs already (Siongco et al. 2015). Although the process(es) linking256

the precipitation and SST biases are still under debate (Richter and Xie 2008; Zermeno-Diaz and257

Zhang 2013; Richter et al. 2014a), it is self-evident that models with better precipitation represen-258

tations can more accurately capture realistic air-sea coupling.259

The question arises whether the convective parameterizations are themselves to blame for the260

precipitation biases, or, other model aspects affect how the precipitation is distributed. Little261

progress is evident moving from CMIP3 to CMIP5 models (Zhang et al. 2015), despite significant262

efforts to improve some of the convective parameterizations (e.g., Gent et al. 2012). Increases in263

model resolution (both atmospheric and oceanic) do slightly improve the precipitation placement264

(Gent et al. 2012; Patricola et al. 2012), related by Siongco et al. (2015) to an improved continental265

geography surrounding the Atlantic basin, and not to the convective parameterizations. It is only266

at resolutions that begin to permit convection explicitly - ten km or less - that convective repre-267

sentations clearly improve (Dirmeyer et al. 2012), supporting the use of a multi-scale modeling268

framework that intersperse explicit simulations of convection into climate models (Randall et al.269

2003).270

Until climate model resolutions of ten km or less are readily available to many, efforts to improve271

convective parameterizations remain warranted. A well-known shortcoming of cumulus parame-272

terizations is their insensitivity to the environmental air and particularly to humidity (Derbyshire273

et al. 2004; Genio 2012). This curtails climate models’ ability to capture the full range of ITCZ274

convective variability (shallow, congestus, and upper-level stratiform in addition to the prototyp-275

ical deep convective towers) and mesoscale organization. The inability to represent small-scale276

convection-humidity interactions (entrainment, rain evaporation) affects the sensitivity of ITCZ277

precipitation to larger-scale local versus remotely-driven changes in the atmospheric thermody-278
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namics. Higher grid resolutions challenge a basic assumption of most convection schemes, namely279

that the updraft fraction be small within a gridbox, introducing new difficulties in parameterizing280

mesoscale organization (Arakawa 2004; Arakawa et al. 2011; Genio 2012). Convection-humidity281

interactions may be particularly difficult to capture well for the narrow Atlantic and eastern Pacific282

ITCZ regions because of their strong meridional SST and free-tropospheric pressure and humidity283

gradients (Zuidema et al. 2006; Zhang et al. 2008).284

Some skill in reproducing observed relationships between convection, relative humidity and285

vertical velocity has been demonstrated using stochastic physics (Watson et al. 2014). System-286

atic biases in model physics can also be uncovered through comparison to observations at high287

temporal and vertical resolution (Phillips et al. 2004; Webb et al. 2015; Nuijens et al. 2015).288

Efforts to improve tropical precipitation biases requires both increased model resolution289

and sustained parameterization development in individual models.290

c. Oceanic eddy-mixing291

Warm SST biases are also apparent, if sharply reduced, in ocean-model-only (so-called OMIP)292

simulations forced using realistic atmospheric forcing estimates such as the Common Ocean Ref-293

erence Experiment version 2, or CORE2 (Yeager and Large 2008). This suggests that model ocean294

processes also do not provide sufficient surface cooling. Furthermore, an early assessment of four295

years of sub-surface data from the STRATUS buoy suggested the mean ocean circulation did not296

advect enough cool waters to balance the time-mean upper ocean heat budget (Colbo and Weller297

2007, 2009). These observations motivated work during VOCALS dedicated to understanding the298

role of ocean eddies in redistributing heat.299

Subsequently, several regional eddy-resolving ocean modeling studies have highlighted the con-300

tribution of eddies to the SST (Colas et al. 2012, 2013), most pronounced within several hundred301
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km of the south American coast, but with little influence by eddy transport over 1000 km offshore302

(Toniazzo et al. 2009; Zheng et al. 2010, 2011). A longer buoy time series providing five more303

years of data, combined with Argo floats, drifters, and satellite altimeter data, now suggests that304

the mean oceanic circulation, rather than eddies, does provide sufficient surface cooling 1000 km305

offshore (Holte et al. 2013, 2014).306

An important lesson may be that one isolated buoy is not adequate for robustly determining307

an eddy contribution. A long time series, approaching 20 years, is needed to establish the mean308

upper-oceanic heat budget because of the slow evolution of individual eddies. This is because309

the three or four eddies passing a buoy annually provide considerable interannual and perhaps310

even interdecadal variability to the terms in the upper-ocean heat budget. More crucially perhaps,311

other means are required to establish the spatial context. Modeling challenges also still remain,312

as robustly modeling oceanic eddies requires high resolution at both spatial and vertical scales313

and attention to diffusion and numerical schemes. The emergent properties of eddying versus314

non-eddying models may allow for a more definitive evaluation of the effect of eddies.315

Atlantic turbulent fluxes are more biased than in the Pacific, with large near-coastal model SST316

biases (Fig. 5j) that are not colocated with the shortwave errors (Fig. 5e). This is consistent with317

ocean models contributing more to the SST biases in the Atlantic than the Pacific, in keeping with318

Xu et al. (2014). For the coastal region, the extent of the eddy contribution to maintaining the319

Angola Benguela Front is still unknown but may be significant, given the strong frontal structure320

and density gradient (Fig. 3).321

Available evidence now suggests a contribution by oceanic eddy-mixing to SEP SST 1000322

km offshore that is less than the still-significant sampling error from one buoy, while the323

contribution of eddies to the SEA SST is still unknown.324
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d. Winds and Model Resolution325

The history in understanding the wind contribution to SST error growth is closely tied to that of326

model resolution. Along the equatorial Atlantic, the most robust process contribution to SST error327

growth occurs through reinforcing too-weak easterlies. The wind bias is linked to incorrect model-328

dependent distributions of tropical precipitation (Biasutti et al. 2006; Richter and Xie 2008; Richter329

et al. 2012; Siongco et al. 2015) and is also present in AMIP simulations (e.g., Zermeno-Diaz and330

Zhang 2013), although the ocean model can also contribute through too weak entrainment through331

the ocean thermocline (Song et al. 2015).332

The most significant improvements in the equatorial climate have come from improvements in333

model resolution both in the atmosphere and ocean, arguably first noted in the eddy-resolving334

regional ocean simulation of Seo et al. (2006). Equatorial and eastern Pacific SSTs improved in335

higher-resolution versions of CCSM (McClean et al. 2011) and GFDL CM2.5 (Delworth et al.336

2012). A notable success is the first realistic climate model depiction of the Atlantic cold tongue337

and ITCZ location using a high-resolution CESM version (Small et al. 2014). Thus, equatorial338

SST biases ultimately appear solvable once individual CGCMs can acquire sufficient resolution in339

their individual atmosphere and ocean components to resolve the dynamics unique to the equator.340

That said, a remaining question is how the equatorial Atlantic westward winds are maintained341

when they oppose the sea level pressure gradient (Richter et al. 2014c).342

Improvements in the equatorial winds do, through coastal Kelvin waves, also improve the coastal343

climate at the eastern basin boundaries (Richter et al. 2012). However, this is not sufficient to344

remove the coastal SST biases altogether, in particular in the southeast Atlantic. Further work has345

clarified that increased resolution in the atmospheric model component is more important than in346
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the ocean component, once the latter is of the order of 0.25◦ resolution (Fennel and Lass 2007;347

Small et al. 2014, 2015).348

The relationship between model resolution and SST biases is explored in Fig. 11 using low-349

and high-resolution versions of the CCSM4 and the CESM1/CAM5 model. The low resolution350

models are approximately 1◦ in both atmosphere and ocean, while the two higher-resolution ver-351

sions both possess 0.1◦ resolution oceans, but a 0.5◦ atmosphere for CCSM4 (Kirtman et al. 2012)352

and 0.25◦ atmosphere for CESM1/CAM5 (Small et al. 2014). The high-resolution simulations353

both show improvements in the broader, more meandering western boundary currents, with the354

overall warm bias in the CCSM4 simulation reflecting a large sea ice melt event. The narrower,355

more coastal-hugging southeast Atlantic coastal region is basically unchanged with improvement356

in ocean resolution in the CCSM4 simulations. The CESM/CAM5 high-resolution model, with357

a 25-km atmosphere, does show clear improvement over the low-resolution version, also in the358

southeast Atlantic region. Nevertheless, the improvement may not be happening for the right rea-359

sons. The way POP2 receives the wind data includes partially land-covered atmosphere cells that360

bias the wind speed low close to the coast, and an area of large wind stress curl is created between361

the coast and the offshore atmospheric jet, displacing the location of the upwelling offshore.362

The sensitivity of the upwelling to the structure of the coastal winds is shown for a regional363

climate model in Xu et al. (2013) and by embedding a high-resolution ocean model within the364

CCSM4 in Small et al. (2015). Part of the warm coastal SST bias is related to meridional ocean365

transport by an erroneous warm southward current near the coast that is forced by an excessive366

cyclonic wind-stress curl. Indeed, Xu et al. (2014) attribute approximately 50% of the southeast367

Atlantic SST bias to the poor simulation of the wind stress curl in CMIP5 models. The excessive368

cyclonic wind-stress curl then forces an erroneous warm southward coastal current (Xu et al. 2014;369
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Small et al. 2015). The largest model SST improvements were found by adjusting the model370

coastal wind structure to observations within a narrow ( 2◦) coastal zone (Small et al. 2015).371

The differences in how CMIP5 models, the ocean-forcing CORE2 dataset, and satellite winds372

resolve the surface winds and their stress curl for the coastal southeast Atlantic are shown in373

Fig. 12. The CMIP5 winds and stress curl region is broad and pronounced, with the wind stress374

curl maximum displaced too far offshore, related by Richter (2015) to the offshore placement of375

the CMIP5 winds and too weak near-coastal CMIP5 winds. The importance of the spatial wind376

distribution (Jin et al. 2009) can mean that even the reanalysis-derived CORE2 surface forcing377

dataset, with its approximately 1◦-1.5◦ spatial resolution (Fig. 12b; Large and Yeager 2008), will378

adversely affect OMIP simulations when compared to the Scatterometer Climatology of Ocean379

Winds (SCOW; Fig. 12a; Risien and Chelton 2008). Only at a spatial resolution of ∼ ten km do380

the two wind maxima evident in the SCOW climatology become fully resolved (Fig. 12d).381

The problem of adequately attributing causes is particularly complex near the Benguela up-382

welling region, because the Angola-Benguela Front is also not well resolved in CMIP5 models.383

A southward displacement of the Angola-Benguela Front occurs in all CMIP5 models, and is384

correlated to the strength of the SST biases (Xu et al. 2014). Too-diffuse coastal and equatorial385

thermoclines and warm subsurface temperature biases at the equator reinforce the southeast SST386

bias (Xu et al. 2013; Small et al. 2014; Richter 2015).387

Equatorial SST biases become mitigated with higher model resolutions, whereas eastern388

basin coastal SST biases are alleviated more by resolution improvements in the atmosphere389

surface wind stress, once the ocean model component is adequately resolved.390
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5. Model error growth attribution391

Interim solutions for SST bias identification and correction include prescribing observed quanti-392

ties for some variables such as clouds (Huang et al. 2007; Hu et al. 2008) or surface radiative fluxes393

(Wahl et al. 2011). Other studies assess process biases through correlations and lead/lag analyses394

(Richter and Xie 2008). More recent efforts evaluate the evolution in time of the systematic de-395

parture from well-defined initial conditions (observations or reanalysis) to identify the processes396

responsible for the initial fast SST error growth. These are termed ’initial tendency’ assessments,397

if data assimilation is applied to identify the forecast error (Klinker and Sardeshmukh 1992; Rod-398

well and Palmer 2007), and hindcast or ’transpose-AMIP’ (Williams et al. 2013)) when weather399

forecasts assess fixed-SST models initialized with conditions common to a weather forecasting400

center.401

In coupled models, similar decadal hindcast experiments can assess both fast and slow SST error402

growth over timescales between days and a few years (Toniazzo and Woolnough 2014). Errors403

more directly linked to the model can then be identified before larger-scale coupled feedbacks404

and remote influences overwhelm the error structure in long-term simulations. This is particularly405

effective for assessing the impact of parameterized fast processes such as clouds and turbulence406

on the SST error growth (Ma et al. 2014). The initialization must reflect the full ocean-atmosphere407

system, and the biases calculated with respect to the same dataset used for the initialization. Care408

must also be taken that the error growth is not simply ’initialization shock’ (Klocke and Rodwell409

2014). A challenge remains to establish realistic initial conditions (Ma et al. 2015); an alternative,410

albeit technically more demanding approach is to analyze variable increments in data assimilation411

systems (e.g., Jung 2011).412
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An ensemble-mean example from CCSM4 highlights that errors after five days can show the413

initial seeds of a warm bias that develop a year later in the southeastern Pacific, despite differences414

in the overall error structure (Fig. 13). The initialization is done with NCEP’s coupled reanalysis415

product CFSR (Saha et al. 2010), which is generated from a coupled seasonal Climate Forecasting416

System, CFSv2-2011 (Saha et al. 2014), and its adjoint; a weakness remains a deficit in the low-417

cloud CRE (Hu et al. 2008). In a more thorough analysis of three models within the CMIP5 data418

base (Toniazzo and Woolnough 2014), large surface wind biases were the first to appear, especially419

over the equatorial region, driving many of the subsequent errors. These initial wind errors are420

generally coupled with areas of deep convection (Richter et al. 2012), suggesting that atmospheric421

circulation errors coupled with model physics, especially tropical convection, originate the short-422

term systematic biases.423

Analysis of fast SST error growth processes is a promising computationally-efficient ap-424

proach for pinpointing the importance of parameterized fast processes such as convection,425

clouds and turbulence to short-term SST-error-growth.426

6. Remote impacts of eastern tropical SST biases427

What is the impact of the individual basin SST biases upon the SST and precipitation distribu-428

tion outside of the basin? This is important to gauge in individual models, towards establishing429

model development priorities. Large and Danabasoglu (2006) concluded that within-basin impacts430

of the coastal biases, through surface current advection of the coastal SSTs, are substantial. At an431

intermediate stage of complexity between fully coupled and A/OMIP experiments, we performed432

similar experiments with a succession of atmospheric models (CAM3 (T42; Xu et al. 2014),433

CAM4 (2◦ x 2◦) and CAM5 (2◦ x 2◦)) coupled to a slab ocean, meaning ocean dynamical adjust-434

ments are neglected. First, a surface heat flux representing the divergence of the ocean heat flux435
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together with biases in the atmospheric model processes (commonly called the Q-flux) is found436

which, when included in the forcing of the ocean, produces a modeled annual mean SST clima-437

tology matching observed SST. Then, two further SST-bias simulations set the Q-flux of zero, in438

one case within an Atlantic region and, in the second case, in a Pacific region, while applying the439

original Q-flux (adjusted by a constant to preserve the global mean Q-flux) everywhere else. As is440

evident in Fig. 14, the Q-flux differences (negative changes corresponding to heating and positive441

to cooling) are smaller in magnitude in the CAM5 experiment than CAM4, and in CAM4 than442

CAM3, for both the Atlantic and Pacific cases, indicating a reduced role for the ocean heat fluxes443

and atmospheric process biases going from CAM3 to CAM4 to CAM5.444

In both experiments, large SST biases appear in those regions where the Q-flux is set to zero.445

Everywhere else, the changes in surface temperature and precipitation result from the remote in-446

fluence of the original bias. The local impact of the Atlantic Q-flux adjustment on the SST is447

prominent, in agreement with Small et al. (2015). The precipitation impact in CAM3 exhibits448

a pronounced southward shift of the Atlantic ITCZ as well as a northward shift in the Pacific449

low latitude precipitation. The impact on precipitation in CAM4 has a structure similar to that in450

CAM3, but with weaker amplitude, while the impact in CAM5 is an east-west dipole rather than451

a north-south shift in the Atlantic, with little remote impact in the Pacific. In the Pacific Q-flux452

experiments, all three model versions show eastern Pacific warm bias-like patterns of SST impacts453

in the changed Q-flux region, but they are strongest in CAM3, reduced in CAM4, and weakest454

and more coastally trapped in CAM5. The remote SST impacts have globally similar patterns in455

all three models. The impact of the Pacific Q-flux change on precipitation is an equatorward shift456

across the Pacific in all three model versions, strongest in CAM3 and smallest in CAM5. Over-457

all, the most recent and highest resolution model version shown here demonstrates the smallest458

impacts.459
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When the CAM3 Q-flux change was used to force CAM5, the SST and precipitation responses460

were quite similar to those found in CAM3. This indicates that the primary cause of the weak461

response in CAM5 compared to CAM3 is the larger Q-flux forcing inferred for CAM3, rather462

than a difference in the response of the atmospheric dynamical and physical processes to the463

SST forcing in the two versions. This neglects why the Q-fluxes differ initially between the three464

models, but does provide a clue to isolating the processes responsible for the coupled model biases.465

Pacific SST biases have more pronounced remote impacts than Atlantic SST biases in three466

atmospheres coupled to slab ocean models.467

7. Gaps and Recommendations468

One consistent theme is that the dominant causes for the tropical ocean SST biases can vary469

between individual models. Given that the improvement in reducing coupled climate model SST470

biases between CMIP3 to CMIP5 was small in model-mean assessments, we suspect that CMIP6471

will only produce further incremental improvement in its mean. We therefore recommend a contin-472

uing focus on identifying and addressing the causes of biases in individual models, and restricting473

multi-model assessments to processes and regions that remain at the frontier of our understanding,474

such as the coastal upwelling regions. Individual model experimentation ideally includes com-475

parisons between high- and low-resolution versions of the same model towards elucidating the476

contribution of the smaller-scale processes (e.g., oceanic eddies) and has wider benefits, for ex-477

ample for improving predictability of extreme events (Walsh et al. 2015; Murakami et al. 2015).478

Simultaneously, since higher model resolutions can highlight other model difficulties, a continuing479

focus on the difficult work of parameterization is encouraged, particularly on processes affected by480

fine-scale vertical structure, such as cloudy turbulence and mixing, and ocean thermocline depth481

and mixing.482
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We further encourage confronting models with data. Campaign datasets elucidate causes for483

SST and cloud errors in the southeast Pacific, not yet the Atlantic. Ongoing relevant European-484

funded Atlantic fieldwork is focusing on oceanic processes, while upcoming US-funded efforts485

also useful for climate model improvement will examine the southeast Atlantic atmosphere (see486

Sidebar).487

Reduction in the maximum Atlantic SST biases requires more work to better understand and488

represent the coupled atmosphere-ocean processes of the coastal upwelling region. The vertical489

structure and offshore evolution of the near-shore winds along the southwest African coast needs490

more detailed documentation. Plans for dedicated atmospheric observations at and slightly south491

of the oceanic Angola-Benguela Front are still lacking. Because the ocean upwelling responds492

quickly to changes in the surface wind structure (Desbiolles et al. 2014), assessments of fast-493

SST-error growth can potentially readily identify the importance of wind errors for the upwelling494

regions for individual models. A search for the commonalities across models in the upwelling495

regions can help narrow down the root causes.496

A further recommendation is to enhance the value of existing buoys for climate model valida-497

tion through focusing on their data return and quality control while continuing their web-based498

dissemination. Currently only six of the buoys in the Atlantic also include a downwelling long-499

wave radiation sensor (Fig. 1 of Yu et al. 2013), and only one full year of Atlantic buoy data was500

available for our assessment (Table 1), although a new full-flux buoy has been placed at 8◦S, 6◦E,501

underneath the aerosol optical depth maximum (Rouault et al. 2009). The buoy observational ar-502

ray in the Pacific is currently being redesigned for the next-generation Tropical Pacific Observing503

System. In this capacity, we recommend more buoys capable of measuring all components of the504

surface energy balance, including at least one at a stratocumulus-dominated location. We further505
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emphasize the workshop recommendation of Yu et al. (2013) for a working group to establish506

metrics for surface flux evaluations and improvements.507

Other recent work points to remote sources that are connected to the Tropics through the Hadley508

circulation (Wang 2006; Wang et al. 2010), consistent with recent studies suggesting that the ITCZ509

is drawn towards heating even outside the Tropics (Hwang and Frierson 2013; Kang et al. 2014).510

Efforts to improve the hemispheric distribution of atmospheric heating in CGCMs (in part through511

the cloud parameterizations) are therefore also encouraged.512

Sidebar: A 30-year History Continues513

A long history of interest exists in solving ”the double-ITCZ problem”, beginning with meet-514

ings in the late 1980’s-early 1990’s focused on the Pacific, co-organized by George Philander and515

others in Toledo, Spain, then Paris, France, and later in Los Angeles, California (Mechoso et al.516

1995; Mechoso and Wood 2010). A consensus that available datasets for the eastern Tropical517

Pacific were not sufficient to support a detailed model validation spawned the 1995-2005 U.S.518

Pan-American Climate Study (PACS) program, which oversaw the development of the Eastern519

Pacific Investigation of Climate (EPIC) field campaign in 2001. EPIC connected observations520

in the eastern Pacific ITCZ (Raymond et al. 2004), to the stratocumulus-covered southeastern521

Pacific (Bretherton et al. 2004b). The newly-created panel on the Variability of American Mon-522

soon Systems (VAMOS) of WCRP’s CLIVAR thereafter developed and implemented the more523

comprehensive VAMOS Ocean-Coupled-Atmosphere-Land Study (VOCALS) Regional Experi-524

ment held in 2008 (Mechoso et al. 2014). This comprehensively documented the southeast Pacific525

aerosol-cloud environment, and VOCALS datasets have been used to constrain climate model mi-526

crophysics (Gettelman et al. 2013) and turbulence (Kubar et al. 2015). A subsequent workshop in527

2011 focused on the physical processes underlying model biases in the tropical Atlantic (Zuidema528

et al. 2011b,a).529
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In parallel with PACS, meetings more specifically focused on the performance of CGCMs con-530

tinued. A 2003 meeting directed by NSF specifically sought a modeling strategy for reducing the531

biases through a ”mini-CMIP” multi-model comparison, followed by workshops in 2005, 2006532

and 2007. A further concept introduced at the 2003 meeting was to bring smaller teams of ob-533

servationalists and modelers together in Climate Process Teams (CPTs), to develop and improve534

relevant and specific model parameterizations (Bretherton et al. 2004a)). CPTs, with lifetimes535

of approximately three years, have addressed cloud parameterizations, oceanic deep mixing, and536

oceanic eddies to date, building on datasets from the southeast Pacific and the oceanic Diapycnal537

and Isopycnal Mixing Experiment in the Southern Ocean (DIMES).538

US oceanographic activity in the Atlantic primarily occurs through cooperation with France and539

Brazil in PIRATA (Bourlès et al. 2008)), as well as within internationally-coordinated multi-year540

process studies focusing on the eastern equatorial Atlantic cold tongue (see Johns et al. 2014, and541

corresponding special issue) and the variability of the African Monsoon (AMMA, see also Roehrig542

et al. (2013)). A recent, large European Union consortium is now conducting the oceanographic543

”Enhancing PREdiction oF tropical Atlantic ClimatE and its impact” (PREFACE) campaign, fo-544

cusing on the near coastal southeastern Atlantic SST bias. Significant atmospheric fieldwork in545

the southern Atlantic, originating largely outside of the WCRP/CLIVAR framework, is now un-546

derway (Zuidema et al. 2016). These campaigns are part of a strategy to understand low cloud547

adjustments to biomass-burning aerosols from African continental fires and further feedbacks to548

regional climate. Efforts to improve SST biases in global aerosol models will improve climate549

simulations of the aerosol effects as well.550
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TABLE 1. Annual-mean surface fluxes from buoy, CERES, OAFLUX, TropFlux and ERA-Interim datasets

STRATUS (85◦ W, 20◦ S)1 PIRATA (10◦ W, 10◦ S)2

net SW net LW net SW+LW SH+LH SH net net SW net LW net SW+LW SH+LH SH net

W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2

buoy 191.0 -42.6 148.4 -111.9 -7.4 36.5 219.8 -48.7 171.1 -150.5 -5.4 20.6

CERES 201.1 -39.4 161.7 (52.4) 224.7 -49.5 175.2 (38.0)

OAFLUX 195.3 -30.0 165.3 -109.3 56 223.0 -42.3 180.7 -137.2 -9.9 43.5

TropFlux 175.8 -42.7 133.1 -121.2 -16.8 11.9 209.5 -46.4 163.1 -143.3 -12.0 19.9

ERA-I 207.0 -47.0 160.0 -137.8 -15.4 21.8 229.1 -51.0 178.1 -170.7 -15.0 7.7
1January 1, 2001-December 31, 2009 2 January 1, 2009-December 31, 2009
SW= shortwave; LW=longwave; SH= sensible heat; LH=latent heat. net CERES fluxes in parentheses are calculated using the
OAFLUX turbulent fluxes. All values are positive downward. The buoy turbulent fluxes are calculated using the COARE 3.0 bulk
formulae, with an estimated error of 5 W m−2 (Colbo and Weller 2009; Edson et al. 1998). These algorithms are also used within
OAFLUX and TropFlux. The STRATUS buoy sensors were evaluated and calibrated annually for nine years (Colbo and Weller
2007; Holte et al. 2014).
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Fig. 1. a) CMIP5 ensemble annual-mean SST error in the historical 1960-2004 integrations of 25898

coupled GCMs relative to the Hadley SST climatology. b) CMIP5 ensemble 1979-2004899

annual-mean precipitation errors in same 25 models relative to CPC Merged Analysis of900

Precipitation (CMAP) data, and mean wind (arrows) errors in 22 models relative to ERA-901

Interim reanalysis 10-m winds. Arrows plotted only where all individual model wind errors902

fall within 90 degrees from the mean. White hatching denotes areas where the sign of the903

error agrees in all models; black dots where all but one (CSIRO-Mk3.6.0) agree. Adapted904

from Toniazzo and Woolnough (2014). . . . . . . . . . . . . . . . . 46905

Fig. 2. a) CMIP5-CMIP3 model-mean SST differences reveal little improvement, while b) the906

equatorial Atlantic SST gradient is only slightly improved in CMIP5 (blue) from CMIP3907

(red), (solid line model-mean and color-filled standard deviation), with the Reynolds908

climatological-mean values as the black line. The three models capable of reproducing909

the correct asymmetry are highlighted. . . . . . . . . . . . . . . . 47910

Fig. 3. The surface currents help bring colder waters up to near the Equator in the Pacific, while,911

in contrast, in the Atlantic, the warmAngola Current flows south from the equator to 15◦ S,912

establishing a strong SST gradient with the northward-flowing cool Benguela Current to its913

south. Annual-mean SST and surface current data from the Simple Ocean Data Assimilation914

Reanalysis. . . . . . . . . . . . . . . . . . . . . . . . 48915

Fig. 4. The September-mean SST, cloud, and coastal wind climatology and annual cycle in cloud916

and atmospheric properties for the two basins. a) based on 2000-2010 September-mean SST917

from the TRMM Microwave Imager (colored contours), 2001-2010 MODIS (Terra) cloud918

fraction (grey filled contours, values spanning 0.6-1.0), and 1999-2009 Quikscat coastal919

wind maxima (yellow-red filled contours, values spanning 7.5-9.0 m s−1, isolated from920

other wind speed maxima). Domain-mean annual cycles in b) SST, c) cloud fraction, d)921

daily-mean liquid water paths, e) lower tropospheric stability (LTS, here the 2000-2010 hPa922

ERA-Interim 700-1000 hPa potential temperature difference), and f) MODIS aerosol op-923

tical depths shown for the two indicated boxes: 10◦S-20◦S, 80◦W-90◦W and 10◦S-20◦S,924

0-10◦W average, following Klein and Hartmann (1993). Liquid water paths from 2002-925

2011 Advanced Microwave Scanning Radiometer for Earth Observing Systems (AMSR-E).926

Locations with indicated buoys (STRATUS and 10◦S, 10◦ W) are assessed in Section 3. . . . 49927

Fig. 5. a)-d) CMIP5 biases for the eastern Pacific show different spatial structures than those for928

the eastern Atlantic. a), e) net shortwave, b), f) net longwave, c), g) turbulent (sensible plus929

latent heat) and d), h) net surface flux CMIP5 biases averaged from 1984-2004 relative to930

OAFLUX. i), j) CMIP5 SST biases relative to the Reynolds climatology. Buoy locations931

considered in Figs. 6 and 7 and Table 1 are indicated with black or yellow boxes throughout. . 50932

Fig. 6. The mean annual cycles in the net shortwave, net longwave, turbulent (sensible+latent heat)933

fluxes and their sum at the a) STRATUS WHOI buoy (85◦W, 20◦S) and b) PIRATA 10◦W,934

10◦S buoys (see also Figs. 4 and 5), from buoy data (black solid line), CERES EBAF935

radiation data (red and blue solid lines), and OAFLUX (ISCCP) data (dashed and green solid936

lines). Annual-mean buoy values are indicated to the right of each plot. The STRATUS937

buoy annual cycles are based on complete data spanning Jan. 1, 2001-Dec. 31, 2009,938

while the PIRATA buoy annual cycles span intermittent and differing time lengths: March,939

2000-November, 2013 for CERES, October, 1997-May, 2014 for the buoy turbulence and940

shortwave radiation data with occasional data gaps and August, 2005-May, 2014 for the941

buoy longwave radiation data with missing data in 2011-2012. The OAFLUX dataset spans942
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1985-2009. The CERES EBAF data have a resolution of 25 km, and the OAFLUX dataset943

has a 1◦ resolution, averaged over 2◦x2◦ at the two buoys. . . . . . . . . . . 51944

Fig. 7. 2001-2009 annual-mean time series in a) net shortwave, b) net longwave, c) turbulent (sensi-945

ble+latent heat) fluxes and d) their sum at the STRATUS WHOI buoy (85◦W, 20◦S) spanning946

2001-2009, using buoy data (black solid line), CERES EBAF radiation data (colored solid947

lines), and OAFLUX (ISCCP) data (dashed lines). Mean values shown at right. . . . . . 52948

Fig. 8. Composite annual-mean net cloud radiative effect (CRE) biases with respect to CERES val-949

ues reveal larger cloud radiative biases in the a) Pacific than b) Atlantic, based on 22 CMIP5950

models. The largest biases occur at the coast. Fixed-SST (AMIP) simulations reveal similar951

annual-mean cloud biases in c) and d), implicating the atmosphere as the source for low952

cloud errors, based on 28 models spanning 1950-1999 when available, with most simula-953

tions beginning in 1979. The AMIP ensemble is comprised of different models than the954

CMIP5 ensemble, based on data availability. CREs from atmosphere-only versus coupled955

simulations of the same model are compared in e) Pacific (10◦S-20◦S, 80◦W-90◦W) and f)956

Atlantic (10◦S-20◦S, 0-10◦W), dashed line indicates y=x. CMIP5 ’historical’ simulations957

span 1950–1999, all months, and CERES EBAF (Ed2.8) spans 2000-2013. No attempt is958

made to account for model independence (Caldwell et al. 2014). . . . . . . . . . 53959

Fig. 9. CMIP5 model seasonal cycles (grey lines) in stratocumulus cloud are often out of phase with960

observations. Total/low cloud amount in southeast a) Atlantic and b) Pacific, liquid water961

path in southeast c) Atlantic, and d) Pacific, lower tropospheric stability (θ700hpa −θ1000hpa)962

in southeast e) Atlantic and f) Pacific. In a) and b), MODIS low cloud indicated in blue,963

ISCCP total cloud in red, COADS surface observations of total cloud cover in aqua. In c)964

and d), AMSR-E 2002-2012 liquid water paths in red. Models most highly correlated to965

observations highlighted in black and labeled. The model with the highest dual correlation966

is the CESM-CAM5, CSIRO is second. Domains as shown in Fig. 4. . . . . . . . 54967

Fig. 10. Ocean simulations with fixed atmosphere forcings (termed OMIP) also produce SST biases,968

if less pronounced than in CMIP simulations, as shown in the 22-ensemble OMIP SST bias969

relative to CORE2 surface forcing for a) Pacific and b) Atlantic (Danabasoglu et al. 2014).970

This suggests oceanic origins also contribute to the SST biases. . . . . . . . . . 55971

Fig. 11. SST biases from low-resolution (approximately 1◦ in both the ocean and atmosphere) a)972

CCSM4 and b) CESM1/CAM5 simulations, and high-resolution c) CCSM4 (Kirtman et al.973

2012) and d) CESM1/CAM5 (Small et al. 2014) simulations. The high-resolution CCSM4974

coupled simulation uses a 0.1◦ ocean with 42 oceanic levels and a 0.5◦ atmosphere, and975

the high-resolution CESM1/CAM5 model possesses a 0.1◦ ocean with 62 levels, a 0.25◦976

atmosphere and a spectral element dynamical core. Both high-resolution simulations use977

the Parallel Ocean Program version 2 (POP2 Danabasoglu et al. 2012). The low-resolution978

simulations are averaged from 1850 through 2005 and compared to the 1850-2005 merged979

Hadley-OI SST climatology (Hurrell et al. 2008). The high-resolution simulations are com-980

pared to ten-year-mean observed SSTs centered on the appropriate observed annual-mean981

CO2 concentration (1986-1995 for CCSM4’s imposed CO2 forcing of 355 ppm and 1996-982

2005 for CESM1/CAM5’s CO2 367 ppm forcing). . . . . . . . . . . . . . 56983

Fig. 12. Coastal southeast Atlantic meridional winds at 10-m (a-d) and surface wind stress curls (e-984

h) differ significantly between observations and models, and depend on spatial resolution.985

a, e) 0.25 Scatterometer Climatology of Ocean Winds (SCOW) ocean surface wind vectors,986

averaged 1999-2009; b), f) 1 CORE-II ocean forcing dataset, averaged 1999-2009; c), g)987

CMIP5 multi-model mean, averaged 1984 to 2004;, and d), h) a 9-km simulation with the988

Weather Research and Forecasting Model, averaged 2005-2008. See further discussion in989
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Patricola and Chang, The Benguela Low-Level Coastal Jet: Structure, Dynamics, and Biases990

in Models and Reanalyses, manuscript in preparation. . . . . . . . . . . . 57991

Fig. 13. Fast and slow SST error growth, derived from a 10-member ensemble of retrospective992

CCSM4 forecasts initialized every 12-hrs starting on 00Z December 27th of each year from993

1982-2009 with NCEP’s coupled reanalysis product CFSR (Saha et al. 2010), show similar-994

ities between the a) mean SST anomaly error of all the forecasts averaged over the first five995

days. b) error average from days 361-365. Both represent an average over 1370 forecast996

days. . . . . . . . . . . . . . . . . . . . . . . . . 58997

Fig. 14. Ocean heat flux divergences (Q-fluxes), initially computed by constraining the modeled SST998

to match observations, are reduced to zero within a slab ocean coupled to CAM3, CAM4999

and CAM5 atmospheres in the SE Atlantic (5◦S-30◦S, 15◦E-50◦W, a)-i)) and the SE Pacific1000

(5◦S-30◦S, 70◦W-135◦W, j)-r) ), with the total Q flux held constant. SST biases depicted in1001

a)-c) and j)-l), and precipitation biases in d)-f) and m)-o). Q-flux differences shown in g)-i)1002

and p)-q). . . . . . . . . . . . . . . . . . . . . . . . 591003
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AR5 (25 models): SST - Hadley SST [K]
             Annual mean 1960-2004

AR5 (25 models): Precip - CMAP [mm/day]
             Annual mean 1979-2004

FIG. 1. a) CMIP5 ensemble annual-mean SST error in the historical 1960-2004 integrations of 25 coupled

GCMs relative to the Hadley SST climatology. b) CMIP5 ensemble 1979-2004 annual-mean precipitation errors

in same 25 models relative to CPC Merged Analysis of Precipitation (CMAP) data, and mean wind (arrows)

errors in 22 models relative to ERA-Interim reanalysis 10-m winds. Arrows plotted only where all individual

model wind errors fall within 90 degrees from the mean. White hatching denotes areas where the sign of the

error agrees in all models; black dots where all but one (CSIRO-Mk3.6.0) agree. Adapted from Toniazzo and

Woolnough (2014).
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a)

b)

FIG. 2. a) CMIP5-CMIP3 model-mean SST differences reveal little improvement, while b) the equatorial

Atlantic SST gradient is only slightly improved in CMIP5 (blue) from CMIP3 (red), (solid line model-mean

and color-filled standard deviation), with the Reynolds climatological-mean values as the black line. The three

models capable of reproducing the correct asymmetry are highlighted.
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FIG. 3. The surface currents help bring colder waters up to near the Equator in the Pacific, while, in contrast, in

the Atlantic, the warmAngola Current flows south from the equator to 15◦ S, establishing a strong SST gradient

with the northward-flowing cool Benguela Current to its south. Annual-mean SST and surface current data from

the Simple Ocean Data Assimilation Reanalysis.
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FIG. 4. The September-mean SST, cloud, and coastal wind climatology and annual cycle in cloud and atmo-

spheric properties for the two basins. a) based on 2000-2010 September-mean SST from the TRMM Microwave

Imager (colored contours), 2001-2010 MODIS (Terra) cloud fraction (grey filled contours, values spanning 0.6-

1.0), and 1999-2009 Quikscat coastal wind maxima (yellow-red filled contours, values spanning 7.5-9.0 m s−1,

isolated from other wind speed maxima). Domain-mean annual cycles in b) SST, c) cloud fraction, d) daily-

mean liquid water paths, e) lower tropospheric stability (LTS, here the 2000-2010 hPa ERA-Interim 700-1000

hPa potential temperature difference), and f) MODIS aerosol optical depths shown for the two indicated boxes:

10◦S-20◦S, 80◦W-90◦W and 10◦S-20◦S, 0-10◦W average, following Klein and Hartmann (1993). Liquid water

paths from 2002-2011 Advanced Microwave Scanning Radiometer for Earth Observing Systems (AMSR-E).

Locations with indicated buoys (STRATUS and 10◦S, 10◦ W) are assessed in Section 3.
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FIG. 5. a)-d) CMIP5 biases for the eastern Pacific show different spatial structures than those for the eastern

Atlantic. a), e) net shortwave, b), f) net longwave, c), g) turbulent (sensible plus latent heat) and d), h) net

surface flux CMIP5 biases averaged from 1984-2004 relative to OAFLUX. i), j) CMIP5 SST biases relative to

the Reynolds climatology. Buoy locations considered in Figs. 6 and 7 and Table 1 are indicated with black or

yellow boxes throughout.
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FIG. 6. The mean annual cycles in the net shortwave, net longwave, turbulent (sensible+latent heat) fluxes

and their sum at the a) STRATUS WHOI buoy (85◦W, 20◦S) and b) PIRATA 10◦W, 10◦S buoys (see also Figs. 4

and 5), from buoy data (black solid line), CERES EBAF radiation data (red and blue solid lines), and OAFLUX

(ISCCP) data (dashed and green solid lines). Annual-mean buoy values are indicated to the right of each plot.

The STRATUS buoy annual cycles are based on complete data spanning Jan. 1, 2001-Dec. 31, 2009, while

the PIRATA buoy annual cycles span intermittent and differing time lengths: March, 2000-November, 2013 for

CERES, October, 1997-May, 2014 for the buoy turbulence and shortwave radiation data with occasional data

gaps and August, 2005-May, 2014 for the buoy longwave radiation data with missing data in 2011-2012. The

OAFLUX dataset spans 1985-2009. The CERES EBAF data have a resolution of 25 km, and the OAFLUX

dataset has a 1◦ resolution, averaged over 2◦x2◦ at the two buoys.
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FIG. 7. 2001-2009 annual-mean time series in a) net shortwave, b) net longwave, c) turbulent (sensible+latent

heat) fluxes and d) their sum at the STRATUS WHOI buoy (85◦W, 20◦S) spanning 2001-2009, using buoy data

(black solid line), CERES EBAF radiation data (colored solid lines), and OAFLUX (ISCCP) data (dashed lines).

Mean values shown at right.
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[22 models]
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 AMIP CRE
[28 models]

c) d)

e) f )

FIG. 8. Composite annual-mean net cloud radiative effect (CRE) biases with respect to CERES values re-

veal larger cloud radiative biases in the a) Pacific than b) Atlantic, based on 22 CMIP5 models. The largest

biases occur at the coast. Fixed-SST (AMIP) simulations reveal similar annual-mean cloud biases in c) and d),

implicating the atmosphere as the source for low cloud errors, based on 28 models spanning 1950-1999 when

available, with most simulations beginning in 1979. The AMIP ensemble is comprised of different models than

the CMIP5 ensemble, based on data availability. CREs from atmosphere-only versus coupled simulations of the

same model are compared in e) Pacific (10◦S-20◦S, 80◦W-90◦W) and f) Atlantic (10◦S-20◦S, 0-10◦W), dashed

line indicates y=x. CMIP5 ’historical’ simulations span 1950–1999, all months, and CERES EBAF (Ed2.8)

spans 2000-2013. No attempt is made to account for model independence (Caldwell et al. 2014).
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e)

f )

ERA-I

ERA-I

FIG. 9. CMIP5 model seasonal cycles (grey lines) in stratocumulus cloud are often out of phase with observa-

tions. Total/low cloud amount in southeast a) Atlantic and b) Pacific, liquid water path in southeast c) Atlantic,

and d) Pacific, lower tropospheric stability (θ700hpa −θ1000hpa) in southeast e) Atlantic and f) Pacific. In a) and

b), MODIS low cloud indicated in blue, ISCCP total cloud in red, COADS surface observations of total cloud

cover in aqua. In c) and d), AMSR-E 2002-2012 liquid water paths in red. Models most highly correlated to

observations highlighted in black and labeled. The model with the highest dual correlation is the CESM-CAM5,

CSIRO is second. Domains as shown in Fig. 4.
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a) b)

FIG. 10. Ocean simulations with fixed atmosphere forcings (termed OMIP) also produce SST biases, if less

pronounced than in CMIP simulations, as shown in the 22-ensemble OMIP SST bias relative to CORE2 surface

forcing for a) Pacific and b) Atlantic (Danabasoglu et al. 2014). This suggests oceanic origins also contribute to

the SST biases.
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CCSM4                10 ocean/atmosphere

CCSM4     0.10 ocean/0.50 atm

a) b)

c) d)

FIG. 11. SST biases from low-resolution (approximately 1◦ in both the ocean and atmosphere) a) CCSM4

and b) CESM1/CAM5 simulations, and high-resolution c) CCSM4 (Kirtman et al. 2012) and d) CESM1/CAM5

(Small et al. 2014) simulations. The high-resolution CCSM4 coupled simulation uses a 0.1◦ ocean with 42

oceanic levels and a 0.5◦ atmosphere, and the high-resolution CESM1/CAM5 model possesses a 0.1◦ ocean

with 62 levels, a 0.25◦ atmosphere and a spectral element dynamical core. Both high-resolution simulations

use the Parallel Ocean Program version 2 (POP2 Danabasoglu et al. 2012). The low-resolution simulations are

averaged from 1850 through 2005 and compared to the 1850-2005 merged Hadley-OI SST climatology (Hurrell

et al. 2008). The high-resolution simulations are compared to ten-year-mean observed SSTs centered on the

appropriate observed annual-mean CO2 concentration (1986-1995 for CCSM4’s imposed CO2 forcing of 355

ppm and 1996-2005 for CESM1/CAM5’s CO2 367 ppm forcing).
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surface wind stress curl

FIG. 12. Coastal southeast Atlantic meridional winds at 10-m (a-d) and surface wind stress curls (e-h) differ

significantly between observations and models, and depend on spatial resolution. a, e) 0.25 Scatterometer Cli-

matology of Ocean Winds (SCOW) ocean surface wind vectors, averaged 1999-2009; b), f) 1 CORE-II ocean

forcing dataset, averaged 1999-2009; c), g) CMIP5 multi-model mean, averaged 1984 to 2004;, and d), h) a 9-

km simulation with the Weather Research and Forecasting Model, averaged 2005-2008. See further discussion

in Patricola and Chang, The Benguela Low-Level Coastal Jet: Structure, Dynamics, and Biases in Models and

Reanalyses, manuscript in preparation.
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a)

b)

‘Fast’ SST error growth

‘Slow’ SST error growth

FIG. 13. Fast and slow SST error growth, derived from a 10-member ensemble of retrospective CCSM4

forecasts initialized every 12-hrs starting on 00Z December 27th of each year from 1982-2009 with NCEP’s

coupled reanalysis product CFSR (Saha et al. 2010), show similarities between the a) mean SST anomaly error

of all the forecasts averaged over the first five days. b) error average from days 361-365. Both represent an

average over 1370 forecast days.
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FIG. 14. Ocean heat flux divergences (Q-fluxes), initially computed by constraining the modeled SST to

match observations, are reduced to zero within a slab ocean coupled to CAM3, CAM4 and CAM5 atmospheres

in the SE Atlantic (5◦S-30◦S, 15◦E-50◦W, a)-i)) and the SE Pacific (5◦S-30◦S, 70◦W-135◦W, j)-r) ), with the

total Q flux held constant. SST biases depicted in a)-c) and j)-l), and precipitation biases in d)-f) and m)-o).

Q-flux differences shown in g)-i) and p)-q).
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