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1. Introduction

The ocean is driven primarily by processes occurring

JOURNAL OF PHYSICAL OCEANOGRAPHY

A Two-Level Wind and Buoyancy Driven Thermocline Model

PETER D. KILLWORTH*
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England
(Manuscript received 6 August 1984, in final form 30 April 1985)

ABSTRACT

A simple two-level model is designed to simulate the “thermocline equations,” applicable for large-scale
steady oceanic flow. The model serves two functions. First, it replaces problems with the interpretation of
slablike dynamics (e.g., Luyten et al., 1983) by using continuously horizontally varying buoyancy, but at the
cost of reducing the vertical resolution drastically. The equations used are geostrophy (plus a small linear drag
to close a Stommel-like western boundary layer), mass conservation, and buoyancy conservation with a small
but necessary horizental diffusion. (Inclusion of vertical diffusion has little effect.) The ocean is driven by an
Ekman layer, whose functions are to provide a given surface input of mass (through Ekman pumping) and
buoyancy (through a specified buoyancy in the Ekman layer), i.e., to maintain the same boundary conditions
as in classical thermocline studies. Sidewall conditions are not well understood and are almost certainly over-
specified in this formulation. Second, the model works toward the development of a simple numerical model
which can permit rapid, cheap evaluation of the ocean circulation on climatic timescales.

The depth integrated flow is known from the Ekman pumping, so that the only unknown flow is the (single)
baroclinic mode, which may be derived from the thermal wind equations as the density field is advected and
diffused. The time taken to a steady solution is a few hundred years for a two-gyre basin of side 4000 km.

Despite the apparent simplicity of the model, the solution is fairly realistic and quite complicated. The
solution involves convective adjustment in the northern (cool) part of the basin. The area occupied by convection
increases with the amplitudes of both buoyancy forcing and Ekman pumping. There is a strong western. boundary
current, that separates farther south of its equivalent North Atlantic latitude, and flows toward the northeast
corner of the basin where there is strong downwelling as the flow is returned in the lower level. The average of
the level densities serves as an approximate streamfunction for the baroclinic flow that spins up initially like a
long Rossby wave response of a linear ocean to wind forcing. Transfer from the southern to the northern gyre
is produced by diffusion and ageostrophic effects in midocean, and not at the western boundary.

To examine the ventilation of the lower subtropical level of the ocean, trajectories were examined for water
partxcles emitted from the downwelling Ekman layer. Those released in the southern half of the subtropics have
quite complex tracks, with a tendency for anticyclonic circulation for several years followed by a cross-gyre
movement to the subpolar gyre and circuitous routes back to the subtropics. The net result scems to be little
direct ventilation. Particles released nearer the gyre boundary also show little tendency to direct lower ventilation.
Adding random walks to the particle tracks to simulate the horizontal diffusivity shows that diffusion made
little qualitative difference apart from an expected smearing out of the tracks.
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understanding of ocean circulation on climatic time

at its surface. Wind stress drives horizontal fluxes in
the surface mixed layer and produces Ekman diver-
gence at its base. Surface buoyancy fluxes (due to heat-
ing/cooling and evaporation/precipitation) yield vary-
ing densities in the upper layer of the ocean that drive
motions through the resulting pressure imbalance.
Whereas motions on short timescales (days to
months) are dominated by wind driving, those on lon-
ger time scales are produced by an intricate and highly
nonlinear interaction between wind and buoyancy ef-
fects. It is this nonlinear aspect—induced by advection
of buoyancy, if not momentum—that has inhibited
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One solution has been to examine the steady-state
response to surface forcing; this response is implicitly
large-scale and excludes many of the direct effects of
eddy motions. The period between the late 1950s and
the early 1970s saw much work on the “thermocline
equations,” i.e., conservation of mass and buoyancy,
together with the geostrophic and hydrostatic relations.
These equations are mathematically quite curious and
possess a variety of similarity solutions (Welander,
1971, discusses these in detail). They cannot, however,
hold throughout an entire midlatitude basin, as no
western boundary layer is pertmtted

In the past few years, interest in the dynamlcs rep-

resented by these equations have reappeared because
of the growing need to add to our understanding of the
oceanic circulation by using information contained in



NOVEMBER 1985

the buoyancy field. Inverse calculations (e.g., Schott
and Stommel, 1978; Wunsch and Grant, 1982; or Kill-
worth, 1983a) have used these dynamics as a basis for
constructing best-fit solutions to flow fields from den-
sity observations. The active tracer, linearised potential
vorticity is also conserved, and maps of potential vor-
ticity on density surfaces have been constructed as an
aid to understanding the constraints on the large-scale
circulation (McDowell et al., 1982).

In parallel with these developments has been a return
to an examination of the solutions to the thermocline
equations themselves. In a series of papers, beginning
with Luyten ez al. (1983), these authors and their co-
workers have explored the dynamics of a layered ocean
driven by a specified Ekman pumping and surface
density field (or, to be precise, known latitudes where
each layer outcrops at the surface). Using potential
vorticity conservation within layers, they were able to
show the existence of “shadow zones” containing water
that was never ventilated at the surface.

In commeon with all layered models, there is a prob-
lem of interpretation of layer thickness in terms of
stratification, especially since the extension to a con-
tinuous stratification is not obvious. Additionaily, there
are problems about boundary conditions at rigid walls
(cf. Pedlosky, 1983a; Killworth, 1983b; Huang, 1984)
generic to thermocline theory. Indeed, the mathemat-
ical character of the thermocline equations is still not
understood (cf. Huang, 1984, for a discussion).

The inclusion of dissipative effects means that po-
tential vorticity is no longer conserved. Rhines and
Young (1982) showed that closed, nearly horizontal
streamlines would wind up lines of potential vorticity
and then homogenize it, via dissipation. They predicted
large pools of near-uniform potential vorticity that were
also indicated in the maps of McDowell et al. (1982).
Recently, Pedlosky (1983b) has argued that even small
regions of surface forcing can overcome the tendency
to homogenization (in his case, by Ekman pumping,
though perhaps potential vorticity creation by retreat-
ing mixed layers in spring may be an even more effi-
cient mechanism). The large-scale numerical solutions
of Cox and Bryan (1984) seem to support both views.
They find ventilated zones of low potential vorticity
created in convective areas, together with pool zones
which are never in contact with surface forcing. Similar
analytical findings are given by Pedlosky and Young
(1983).

There is a need for more large-scale models which
contain the thermocline physics, permit a continuously
varying forcing, and yet permit rapid evaluation of the
solution. One such model is the Hamburg climate
model (Hasselmann, 1982) which has, at its core, con-
tinuously stratified thermocline physics. Numerical
problems in that model forced high viscosities (104 m?2
s1); a possible explanation for these problems will be
given here. Another approach by Davey (1983) pro-
duced a two-level ocean model by truncating the Bryan
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(1969) multilevel model in a manner similar to Kill-
worth (1974). The model was forced thermally to give
only a baroclinic flow, although wind driving could be
added.

The model to be discussed here draws on Davey’s
work, while also possessing similarities with some of
the models of Pedlosky and Young. It will allow surface
forcing in the manner normally used for thermocline
studies: the surface density and the Ekman pumping
are both specified, and act as joint driving forces. A
simple linear drag is included to permit a western
boundary layer that allows a closed midlatitude double
gyre solution with a flat bottom.

Section 2 describes the model and Section 3 shows
the natural decomposition into barotropic and baro-
clinic modes. Section 4 discusses the method of nu-
merical solutions and the solutions themselves are given
in Section 5. Some elementary analysis is given in Sec-
tion 6 and the trajectories of water particles are dis-
cussed in Section 7.

2. The model

To allow for continuously varying density gradients
in the horizontal, we use a model with two levels in
the vertical resembling a vertically truncated Bryan
(1969) model. Level and layer models both have ad-
vantages and disadvantages for modeling purposes. The
rationale for choosing a level model is twofold: it allows
a more precise specification of boundary conditions
relating to buoyancy forcing and a great deal is known
about the properties of level models (Bryan, 1969). The
horizontal motion and density field are assumed ver-
tically uniform within each level. All quantities may
vary in the horizontal and vertical velocities linear in
depth exist between the levels. On top of the upper
level a mixed layer of uniform depth is placed giving
the configuration shown in Fig. 1. The only function
of the mixed layer is to mimic the boundary conditions
of the thermocline equations by requiring it to provide
two conditions for the interior flow in the levels be-
neath.

The first of these is dynamical: the Ekman vertical
velocity w; is specified at the base of the mixed layer.
The second is a thermodynamic condition: the density
of the mixed layer p, is specified. (The complicated
interactions of heat and salt that yield the actual den-
sity, both in the mixed layer and in the fluid below,
are subsumed by this simple model into a single density
field.) Thus, the mixed layer density is not allowed to
be altered by upwelling from the interior fluid; later
models will allow a proper dynamically and thermo-
dynamically interacting mixed layer. Both p, and w;
vary only north-south for simplicity.

The dynamics of the two levels are assumed almost
geostrophic. The concept is that, over the majority of
the ocean, the dynamics should be exactly geostrophic
but that sufficient extension to geostrophy is made in
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FIG. 1. The two-level model. .

order to provide the simplest of western boundary cur-
rents to close the circulation. Accordingly, we allow
for a linear drag term in the northward equation of
motion, exactly paralleling the Stommel (1948) model
of barotropic ocean circulation. There seems little point
in using a higher-order closure scheme since the closure
is only required near the western boundary current re-
gion and is hoped to be unimportant over the remain-
der of the flow. This may or may not be the case (cf.
Young, 1984; Huang, 1984).

In a similar vein, we would like to require that den-
sity be a conserved quantity on a streamline that would
again recreate the thermocline dynamics. Initial nu-
merical experience showed this hope to be vain. Hence,
- a little lateral diffusion «7 (10* m? s™!) is included in
the density equations. A vertical diffusion «, is included
in the initial formulation, although its effects are small
and will be ignored for most of this paper.

Mass continuity in the two levels then gives

W1=H1V‘U1+Ws (2.1)
2.2)

where w; is the upwelling velocity at the base of level
one and the divergence operator acts only horizontally.
Density conservation in the two levels gives

wy = —H,V-u,

i) 1 _ o
_8_? + V- (up) + E (wsps — wipr) '
s, K 2(ps — p1) 4S:|
= LN )
KTV P1 + Hl [ H1 + H ( 3)
33 Lo, 4kS
% + V- (uzp) + 7 (wipr) = k7V7p2 HH (2.4)
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where

S=3(m— ) @.5)
is a (nonnegative) measure of the vertical stratification
and py, p; are as yet undefined densities at the interfaces
between surface and upper level and upper and lower
levels, respectively. The natural form of these values
is suggested by conservation properties (Bryan, 1969):

_ 1 - 1
Ps =3 (os + p1); pr= 3 (o1 + p2).

This formulation, however, has unpleasant side effects.
Specifically, the lower level density can take values
outside the range imposed by p; in a steady state, which
is physically meaningless. The effect occurs because
centered vertical differencing produces a second, un-
physical mode. A similar problem occurs in equatorial
ocean models where the temperature in the highest
level can exceed physical bounds.

Complicated multigrid methods exist to remove
these effects, but this model only has two levels and
cannot use them. We choose instead to abandon the
analytic ease of centered differences in favor of more
physical solutions and choose a one-sided difference
scheme in the vertical, using upstream differences. We
take .

- {pl, ws >0 i /
Ps =
ps, Ws <0 (2.6)

f_) = p23W1>O
! pi, wr <0

One-sided differencing induces an artificial diffusion
in the direction of differencing anyway, so that the im-
posed vertical diffusion has little effect and can be ig-
nored. One of many alternative forms for (2.3), (2.4)
is

9 PAY . Ws 7
éitl +u,-Vp, — H, * H(wy) + H, (ps — PYYH(—wy)

= KTV2P1 + O(x,) (2.3)
66_? + uy+ Voo + 2SH(—wpV - uz = k79V2p; + O(ky)

2.4)

where H(x) is the Heaviside unit function and the ver-
tical diffusion terms are as before and will be dropped
henceforth. Note that answers using this scheme differ
qualitatively from those using the Bryan scheme.

The momentum equations are exactly geostrophic
north-south and almost so east—west:

2.7

1 dp,
fiy, = — — 22 2.8
o2 e o (2.8)
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1 dp,
=———- 2.
fir == 2.9)
1 dp,
Uy = — — —— — KUy, 2.10
Jur 0 9y 2 ( )

where f(y) = fy + By is the vertical component of the
Coriolis force, p; the pressure in level i, po a reference
density, and « is a small linear drag to permit a Stom-
mel-like western boundary layer. Here « takes the value
4 X 107® 57! numerically, corresponding to a decay
time of about three days; the value is chosen to permit
numerical resolution of the western boundary layer.

To close the equations, the hydrostatic condition
must be added. Of the many forms possible, we follow
Davey (1983) and take

1
D2 — D =§g(H1 + H,)0 (2.11)

where
1
2

Steady state solutions of (2.1)-(2.12) are to be found
subject to given wyy), py). There are also boundary

0 ==(p1 + p2). (2.12)

conditions to be satisfied. We take the basin to lie be-

tween x =0and x = L, y = 0 and y = M, and require
uy=u =0, x=0,L (2.13)
vy=1v,=0, y=0,M. (2.14)

Additionally, because of the diffusive terms, we shall
require

n:Vp,=n-Vp,=0, x=0,L; y=0,M (2.15)

where n is an outward normal to the boundary.

It should be stressed that the mathematically correct
boundary conditions for (2.1)-(2.12) are unknown (cf.
the discussion by Huang, 1984). Certainly (2.13) to
(2.15) overspecify the linear diffusive planetary wave
problem, for example. Various boundary conditions
have been tried numerically; at the coarse resolution
used, little difference was observed between conditions.
" (I hope to discuss boundary conditions more fully in
a later paper.) .

Statically unstable solutions may occur, either those
for which S < 0 (p, > p,) or those for which p, > p;.
In the former case, S is reset to zero and p; and p, are
replaced by their depth-weighted average. In the latter
case, the surface Ekman layer is assumed a reservoir

with an infinite supply of p, and so p, (and if necessary

p2) is replaced by p;.

3. Barotropic and baroclinic modes

We may resolve the velocity field u,, u, into baro-
tropic and baroclinic modes. Taking H, times (2.7)
+- H, times (2.8), and H, times (2.9) + H, times (2.10)
gives
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—fHV=—iPx 3.1)
Po
jHU=—iPy—xHV -(3.2)
Po
where
H= H] + Hz (33)
is the total depth,
HU = Hllll + Hzllz (34)

is the barotropic (i.e., depth-independent) flow, and P
= H\,p; + H,p, is the depth integrated pressure. Elim-
inating the pressure gives

fV-U+ BV =—«V,. (3.5)
Subtraction of (2.2) from (2.1) gives
Ws
V-U= - o (3.6)

(which is divergent because the Ekman layer flux is not
included) so that

fw—;gy—) 3.7)

kV,y+ BV =
represents the Sverdrup-Stommel solution for barotro-
pic flow. Provided that « (BL)™' < 1, the solution of
3.7is
Jws _
V="o+ Bl
8H Ay)e
for some Q(y) that assumes w(0) = w(M) = 0 to avoid

boundary layers at north and south walls. Then, (3.6)
and (2.13) imply

(3.8)

-L
U= - (X—H) (2ws + g wsy) + %Qy e (3.9)

where Q(y) is now given by the requirement that U
vanish on x = 0, i.e.,

- 25([ )

Thus, the vanishing of ¥ on y = M implies QM) = 0,
so that consistency requires

(3.10)

M
f wydy = 0 3.11)
0
i.e., no net up- or downwelling into the interior fluid.
The width «3~! of the boundary layer is 200 km, de-
liberately rather wide, and is just resolved numerically.
Thus, the barotropic flow is unaffected by density
gradients and is known from the Ekman pumping
condition. However, the baroclinic flow
i=u —u

(3.12)
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will be driven almost entirely by the density field. Sub-
tracting (2.8) from (2.7), and (2.10) from (2.9), and
then using (2.11), gives the “thermal wind equations”

=8y (.13)
2/’0

=y s (3.14)
2p0

so that 6, defined by (2.11), serves as an approximate
streamfunction for f1. Thus, u - V6 is small, by (3.13),
(3.14), and we note for later use that

_ gH .
Veu= —2p0f2 (B0, + k). (3.15)

4. Method of numerical solution

Numerical solutions use a 20 X 20 C-grid discreti-
zation shown in Fig. 2 that has the advantage of placing
the velocities normal to a wall exactly on that wall.
Steady solution to the system of equations in Section
2 is achieved by time-stepping, as follows. First, U and
V are computed from (3.8)—(3.10). [More properly, they
are defined to satisfy the discretized form of (3.6) ex-
actly]. Then p, and p, are set to some uniform initial
values. At each time step, ¥ is deduced from (3.13),
and then # from (3.14), using centered and averaged
differences. The values of normal velocity on the
boundaries are set to zero identically. Then, u;, u, are
calculated from the definitions of U and u. These are
used to drive the time-stepping of p; and p, in (2.3)
and (2.4) using leapfrog time steps and time-lagged dif-
fusive terms in the normal way. The new values of p,,
p, are used to update #, ¥ and the time- -stepping pro-
ceeds.

A
%

7

% x o

g

7

? +" +
%

/

%" x P o x
g

%

// v

/S S S S S

FIG. 2. The discretisation scheme used for numerical computation.
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Various restrictions on the time step must be ob-
served. The apparent virtue of the thermocline equa-
tions with a known barotropic field is that all motions
more rapid than long internal Rossby waves have been
filtered out of the dynamics, so that CFL criteria would
allow a time step of the order of a month. Indeed, the
Hamburg model (Hasselmann, 1982) uses this fact ex-
plicitly. Thus, the only obvious restrictions are for drag
and diffusive terms, which are small and have little
effect on the time step.

On running the model, however, a rapidly growing
instability near the boundaries was observed. Experi-
mentation showed this to be a linear instability asso-
ciated with the condition of no normal flow at bound-
aries. In the Appendix it is shown that the change over
one grid point between geostrophic flow and a rigid
wall induces a numerical rapid tangential advection of
density near the boundaries. The strength of the ad-
vection varies inversely with the grid spacing. For typ-
ical grid spacings of 200 km, the CFL condition requires
a time step of the order of a day for stability. The effect
is not unique to two-level simulations or one-sided dif-
ferencing, and will occur in multilevel models. Since
the restriction on time step is quadratic in both grid
spacing and internal wave speed, the Hamburg model
(Hasselmann, 1982) with its 5° spacing can apparently
just manage a time step of a month; the need for the
large viscosity may thus be to damp out marginally
growing instabilities.

The results settle to an approximate steady state after
several centuries, and results are quoted for 400 or more
years of integration. The parameters used numerically
are:

Ax = Ay =200 km (L = M = 4000 km)

f=10"%s"Y B=2X10"m!s!,
H, = 400 m, H, = 4000 m
k=4X10"s7, =10 m?s!

so that the spin-up time is approx1mately the diffusive
time L%7', as would be expected.

" 5. Numerical results

Two experiments will be reported; both used surface
densities and Ekman suctions of the form

pLY) = (5.1

wiy) = (5.2)

which are shown in Fig. 3. The value of p,, was always
taken as 2 X 1073 gm cm™3; the value for w,, varied
between experiments. The divergent barotropic field
given by (3.8) and (3.9) is shown in Fig. 4 for wy,
= 107* cm s™!; even in the western boundary layer
barotropic velocities only reach a little over 1 cm s™".

~pso COSTY/M
— Wy, Sin2wy/M
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FI1G. 3. The Ekman layer forcing and density,
as functions of northward distance y.

a. Experiment 1: wy, = 107% cm s~/
X 1073 gm cm™? initially

This experiment is taken as the standard case for
the rest of the paper. The first five years of integration
(Fig. 5) are dominated by the westward passage of a
long Rossby wave, clearly visible in the southern half
of the basin. A single gyre exists in the p,, 6, and S
fields at this time, but the p, field is largely unaffected
save in the region of strong downwelling in the north-
east corner of the basin. The variation in p, or 8 is
already some 60% of that for the final steady state.
Overturning between mixed layer and level 1 is visible
over much of the northern basin. The baroclinic ve-
locity field is of order 10 cm s™!, even away from the
western boundary current.

The final steady state is shown in Fig. 6. The p, field
(Fig. 6a) shows a large patch of light (i.e., warm) water
in the south, but not skewed to the southwest as in the
Atlantic or Pacific. Since the imposed p, has a mini-
mum of —2 X 1073 gm cm™3, but the most buoyant
water has p; only just positive, there is effectively a
strong pycnocline in the southern basin between p,; and
p1. Proceeding -northward, there is a concentration of
isopycnals in the western half of the basin that fans out
and moves northeast to the eastern boundary. This
feature is familiar from mean oceanographic data (cf.
Levitus, 1982; or Esbensen and Kushnir, 1981). The
corresponding current leaves the western boundary
rather south of the latitude of zero wind stress curl.
This is not the case for the Gulf Stream, however. The
observed anomalous warming of the Northeast Atlantic
by this current is reproduced here. The accompanying
downwelling is rather less physical unless it is inter-
preted as the Greenland Sea sinking, as was suggested
by Worthington (1970) as an alternative source of warm
water for western Europe.
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Farther north is a wide region of overturning from
the Ekman layer to level 1. The region is narrowest in
the northwest and widest in the northeast. There is also
deep convection (level 1 to level 2) in the north, most
clearly seen in the S field below. There are three main
regions: the northwest corner, the northeast corner, and
a narrow east-west oriented section touching the west-
ern boundary a little north of the gyre boundary. Both
of the Robinson et al. (1979) and Levitus (1982) atlases
show an increase eastward in depth of winter convec-
tion at 50-60°N in the Atlantic, which is perhaps the
best field for comparison. Likewise, the northwestern
convective region could be interpreted as the model
version of the spasmodic deep convection in the La-
brador Sea. Finally, there is some evidence in Levitus’
(1982) atlas for denser water north of the Gulf Stream,
and the area of deep convection here in the model
could perhaps be interpreted as 18° water.

Figure 6b shows the lower level density. This is fairly
zonal, and mainly increases northwards except for a
reversal of gradient towards the northeast. Agreement
with Levitus’ (1982) maps of temperature at 1500-2000
m is striking, although the warm tongue in his maps
is more properly a product of Mediterranean outflow.

Figure 6¢ shows the upper level velocity field. A pro-
nounced anticyclonic surface gyre is evident in the
subtropics, with a broad western boundary current that
transports about 24 X 10° m?® s™! northwards at its
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the maximum and a minus sign shows the minimum of the contours. Circles show the area of convection between Ekman layer and level

1; squares the area of deep convection between levels 1 and 2.

maximum. The current leaves the coast as a broad jet
and flows northeast across the basin carrying around
35 X 10° m® s~ in the upper level. The picture resem-
bles Leetmaa and Bunker’s (1978, Fig. 4) dynamic to-

pography map quite well, although topographic fea-
tures clearly restrict the available paths for the Guif
Stream Extension. The model current turns north
about halfway across the basin (again, similar to the
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FIG. 5. (Continued)

Leetmaa and Bunker map) and then impinges on the
coast to sink.

The upper layer flow resembles Huang’s (1984) su-
percritical two layer solution. There, too, the western
boundary layer leaves the coast and moves northeast
into a weak subpolar gyre. However, it is returned in
his model by a northern boundary current, whereas
the overturning in this study prevents that.

The flow is returned (Fig. 6d) in the lower level (note
the change of scale) in two branches. One is essentially
baroclinic and follows the same path as u; but with
opposite sign; the other flows across the northern
boundary and returns as a deep western boundary cur-
rent (the model Labrador outflow) with a transport of
23 X 10° m*s™!. Note that the subtropical deep western
boundary current is northward and in the same direc-
tion as the upper level flow. There is an anticyclonic
gyre in the northwestern subtropics, again, similar to
Huang (1984), although produced in his model by in-
terfacial friction. ~

Figure 6e shows the 6 field, an approximate stream-
function for fi. The subtropical gyre is pronounced,
and there is a tendency for long-shore gradients of 6 to
vanish at all but the western boundary as (3.13) and
(3.14) suggest; the overturning in the north counters
this effect. Figure 6f shows the stratification S, again
reflecting the strong subtropical gyre. It is tempting to
examine Rhines and Young’s (1982) ideas on potential
vorticity homogenisation using this map. However, no
straightforward equation for £S5, a measure of potential
vorticity, can be written down for this system. The
fractional change of /5 is 68% across the basin, mea-

sured in terms of the maximum values of fand S, so
there is some tendency toward uniformity of potential
vorticity. More levels would be required to test out the
hypothesis properly, however.

Figure 6g shows the interface vertical velocity wy.
Two very strong areas occur of upwelling at the western
boundary near the zero wind stress curl latitude, and
downwelling in the northeast corner. With this contour
interval the remainder of the field is fairly featureless,
with upwelling in the eastern basin and downwelling
in the west, although most of the northern basin is
upwelling. This suggests (see Section 7) that direct ven-
tilation of the deep eastern subtropical gyre will be dif-
ficult.

b. Experiment 2: wy, = 107> cm 5!

Although the forcing and barotropic flow are weaker
by a factor of 10 from experiment 1, the spinup time
remains of the same order because diffusion effects be-
come more important. Figure 7 shows the solution.
The variation in p;, p,, 8, and S is smaller than the
case wg, = 107* cm s™!, but not by a factor of 10. As
we shall see, this is because density variations scale on
{(wyo)'72. Although the flow is weaker, the solution re-
mains qualitatively similar to case (a), with a single
anticyclonic subtropical gyre and a (now diffuse) North
Atlantic current; the area of overturning is much
smaller than in case (a).

A further reduction of wy, to 107® cm s™! again re-
mains qualitatively similar and is not shown here. The
overturning region shrinks to a single line of gridpoints
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at the north, which is in agreement with the theory of
the next section.

6. Analytical theory

The solutions in Section 5 show many interesting
features. However, the problem remains complicated
even after the simplifications made, and only simple
arguments can be made to explain some of the observed
features.
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0, max. 6.4 X 107% (g) wy, c.i. 5 X 107> cm s™.. Dashed lines indicate
negative values. .

a. Convection

We first show that deep convection must occur in
the steady state. Two proofs are useful, the first specific
to the forcing used here, and the second quite general.
Taking H, times (2.3) plus A, times (2.4) gives, for a
steady flow,

V- (Hyup, + Hyuyp,)

= —wsps + k7 VA(H py + Haps) + ¢ 6.1)
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RG. 6. (Continued)

where ¢ represents a possible convective effect. Inte-
grating (6.1) over the entire basin, and use of the
boundary conditions, yields

[ winsxay = [ sdxay

=f0wmaw+f(¢wwmamm

Assuming (as used here) that w, and p, are antisym-
metric about y = M/2, (6.2) becomes

M/2
f¢dxdy = f dx fo Twd (e (M — ) — p(¥))dy.

(6.3)
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Now pi(M — y) = p{M — y), or else the fluid would
be unstably stratified, so that

oM — y) — ply) = pM — y) — p(y) > 0.
Hence,

f ¢dxdy > 0 6.4)
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FIG. 7. The steady solution for case (b): (a) p,, contour interval
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min. 0, max. 1.74 X 1074 (g) wy, c.i. 103 cm s7'.

N

so that overturning must occur either from the Ekman
layer to level 1 or between levels 1 and 2.

Separate, and general, arguments now prove that
convection occurs both between levels and from Ek-
man layer to level 1. In the lower level, p, must reach
a maximal extremum somewhere—(xo, o), say. If this
is in the interior, this will be a local maximum; if at
the boundary, its normal derivative vanishes by the
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F1G. 7. (Continued)
boundary condition. In both cases, at (X, yo) the steady Wr - _ _ —
version of (2.4) gives ’ f{; (01 02) = D2+ 62, X = %o (6.6)

Wip; . o -
V. (up;) + ST D, + ¢y, x=x9 (6.5) Now, (2.6)implies that (i) if w; > 0, p; = p, and s0 ¢,
2 L - )
> 0; and (ii) if w; < 0, p; = p1 < p, and s0 ¢, > 0 again.
where D, < 0 represents diffusion and ¢, the possible In both cases, therefore,
overturning. Rewriting the first term, using Vp, = 0

and (2.2), we have $>0, x=xp 6.7)
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and so there is active convection where p, is maximal,

gxtending to the bottom. As a corollary, p;, = p2, Vp,
= Vp, = 0 at (xo, o).
We now expand (6.1) in a similar manner:
Hip\V - uy + HypoV - up + wipg
=D+ Hy¢s + Hip, + H2¢2,. x=xp (6.8)

where D < 0 is the depth integrated diffusion, ¢; is the
possible surface to level 1 overturning, and ¢; the level
1 to 2 overturning effect at level i. We note that

H\¢, + Hyp, =0 (6.9)

for a steady state. Using (2.1), (2.2), and the equality
of densities, (6.8) becomes

wlps —p) =D+ Higs, x=xp. (6.10)

If (i) wy > 0, ps = p; and ¢; > 0; while if (ii) w, < 0,
ps = ps and p; < p, so ¢; > 0 again. Hence,

¢s>0, x=xg (6.11)

so that overturning occurs from the Ekman layer into
the top level, and, by (6.7), the bottom level as well.

Since p,, p, cannot exceed the maximum value of
ps, convection must occur in the region of this maxi-
mum (along the northern boundary in the cases studied
here). The extent of this region, and the possible oc-
_currence of other areas of overturning, are difficult
nonlinear problems and will not be addressed here.

Overturning causes problems with eastern boundary
conditions. The condition % = 0 is applied on x = L,
yet 0, = pyin a region of overturn, and # varies as ,.
A dlscontmulty is thus produced near the boundary
one of many possible connected with the still unsolved
problem of relevant boundary conditions for the ther-
mocline equations (Huang, 1984).

b. Scaling arguments

Scaling arguments may be examined to show that
certain terms may be neglected and to deduce some
qualitative features about the solution. There are two
relevant scalings depending on the importance of dif-
fusion; we examine the more relevant case of advection
dominating diffusion (as measured by a Peclet number,
wy L2/ H k7, being large).

Let us first discuss how large 1 (or equivalently, Ad,
a measure of the variation of 6) ought to be. If Af were
as large as Ap, (a measure of the variation in py), an
estimate from (3.13) would be

A _ gHAf _ gHAp;
Poﬁ)L pofoL

Another estimate would be to require from mass con-
servation

6.12)

n Lwg,

U, = H, (6.13)
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These two estimates are not the same in general. In

fact,
(&)1/2 - (ﬁOﬁ)szso)l/2 =p
7 gH\HAp;
Here the small quantity u takes the values 0.15 and

0.05 as w,, = 1074, 10~ cm s~!. To accommodate this
difference, A8 must become

A0 = ulApg 6.15)

equalmg 6 >< 1074,2 X 107 gm cm” 3as wy, = 10‘4
1073 cm s™'. Thus, a scale for # is

i = (i)' = (g_H WsoAPs)"z
" pofoH,

which equals 6.5, 2cm s™' as wy, = 1074, 10 cm s~
These estimates are in excellent agreement with the
computed solutions, and are similar to those made by
Welander (1971) for the continuous problem.

Now S vanishes in regions of overturning, and is
positive elsewhere; hence, S scales on uAp;. However,
0 is constrained to equal p, in regions of overturning,
so that the magnitude of § is Ap;, although its variation
is typically O(u) smaller, by (6.15). This suggests that
the area of overturning must also vary as some power
of u (depending on the spatial structure of p; near the
northern boundary) to maintain the variation in 6 in
(6.15). Thus, the area of the overturning increases both
with the strength of the wind-driven circulation and with
the buoyancy variation.

This yields approximate scalings for the variables as:

fbwso .

BH °
gH A,os

A oL

rAps;

(6.14)

(6.16)

1

UV,Q on

u, v on

Aa: Ss Apl) APZ on

X,y on L. 6.17)

Rewrltmg the steady versions of (2.3) and (2.4) and
ignoring overturning, gives

(1-&u-vV@e-S)+U-V@o-S)

+ 23*(1—;‘52 V. (U — s)H[-V - (U — 8dd)]
+ F{’Yi (ps — 0 + S)EH(—wy) = k7V%0 — S)  (6.18)
1

-6i-V(@ +S)+U-V(@ +8)+28V-(U

— 80)H[V - (U — )] = k7VH6 + S) (6.19)
where

6 =H\/H (6.20)

is a depth ratio. Actually it is unnecessary to nondi-
mensionalize since analytic solutions cannot be found.
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Instead, we simply compare terms. Note that V-a
< 10, by (3.15), but 6V - i is still about 3 (9) times larger
than V- U according as w,, = 1074, 107> cm s™'. After
evaluation and comparison of terms, (6.18) and (6.19)
reduce approximately to

—(1 — 8)d- VS — 2(1 — $)SV - 4H(V - i)
+ ;{W—] (ps — O)H(=w) = 0 (6.21)

~8u-VS+ U V(@ + S) — 265V -4H(-V-d) = 0.
(6.22)

(Note that V- U has been neglected against 6V - for
simplicity.) Diffusion does not appear in these approx-
imate balances except where w, becomes small, and
the barotropic flow appears only in the lower level.

These equations remain complicated, mostly be-
cause of the one-sided differences, and no combinations
of them yield any simplifications. However, we may
isolate four distinct regimes depending on the signs of
ws and V - u. Of these, only those for which the V-
terms vanish in (6.21) are of interest. If V - & is negative
(i.e., > 0), (6.21) becomes

W
(1 — 8)H,

and the rhs in the northern basin vanishes. Then, S is
advected by the 1 field, or, equivalently, Sis a function
of 8. This is clearly seen in Figs. 6¢ and 6f in the north-
ward flowing jet, for example, where S and 8 contours
are exactly overlaid. In such a region we may also ex-
amine (6.22), which becomes

64-VS =U-Vp, — 265V -1

0-VS = (s — OH(-w)  (6.23)

(6.24)
ie.,
U:Vp, <0 (6.25)

so that the lower level density decreases eastwards as
it is advected across the northward jet, again as ob-
served.

If w, is negative but V - & remains negative, the region
of applicability is the northwestern half of the southern
gyre. Here, (6.23) implies

i-VS>0 (6.26)

so that streamlines for the upper level flow (roughly 1)
must cross S contours so as to increase S in the direction
of flow. Comparison of Figs. 6¢ and 6f confirms this
feature.

Although useful, these results underline the intrin-
sically nonlinear character of the thermocline equa-
tions; even this simple model is analytically intractable.

¢. Initial spinup

We examine the process when Ekman pumping and
buoyancy are turned on from rest. Linearizing the re-
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sponse about the initial stratification p,, p,, (2.3) and
(2.4) become, neglecting overturn,

- wy _ .
put (pr — p)V-u; = —;{—S(ps—m)
1

P2 + (/_)2 - [_)I)V'llz = (), (627)
After adding, and a little algebra, this yields
gH

20, + ——
' Zﬁszo

[(1 = 61 — p)

— 852 = WO+ KB) = 2= (1 — 5 (6.28)
1

which takes the form of a long Rossby wave equation,
damped slightly by the terms of order «. Initially, w; is
dominated by w, so that in the subtropics the un-
damped wave satisfies

_6ng§ _ Wy _
2f2p0 x = (o1 — py)

2H,
This travels westward at speed 8gH,S/2fpo leaving
the Sverdrup solution

0

(6.29)

_ Wdp1 — ps)f?po
2BgH 1 2S
behind it. It is straightforward to show that this does

not initially alter the sign of w;. In the subpolar region,
w; is positive and @ satisfies

0, = (6.30)

ﬂgHZS wsS_
0, — ——0,= 6.31
2% H, 6.31)
whose speed is formally faster, despite the increase

in f.

A qualitative picture of the spinup process now
emerges. At time zero, ¢ is constant, and the forcing
(which is independent of x) begins to spin up the entire
basin linearly in time. Information about the eastern
boundary, where the requirement of no normal flow
means that 8, approximately vanishes by (3.14), prop-
agates westwards, leaving an essentially steady Sver-
drup-like solution behind it. The process is identical
to the insulated wind-driven problem of Anderson and
Gill (1975) where windstress is inserted into a vertical
normal mode. In that case, the forcing in the § equation
is replaced by (pfH;)”'S curlr, for some windstress r.
From the definition of w;, this is formally of the same
order as the forcing in (6.29), although the baroclinic
velocity response would be more rapid because of the
direct wind forcing.

These arguments establish the two wavelike time-
scales. The shorter is the long Rossby wave transit time

2f2po L

68H15_
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of order a few years, depending on the initial stratifi-
cation, and the longer is the spindown time for the
damped Rossby wave for the linear drag «,

2f 21001_‘2
kgHS

of order a century for the values used here. The largest
timescale is the diffusive scale L2/xr, as mentloned
previously.

d. Transfer between gyres

In either the layer model of Luyten ef al. (1983), or
in a continuously stratified fluid, it may be shown that
there is no flow across the latitude where w, vanishes
(e.g., Huang, 1984), except in the western boundary
layer. In the current level model, a strong flow is ob-
served between the gyres (y = M/2) in the interior (Fig.
6c). What is the origin of this flow?

Taking (1 — 8)™! times (2.3) plus 67! times (2.4) at
y = M/2 (where V = w, = 0) gives

R _ V2p, _V2P2
20-V0 —« =0 3 )
_ 28wH
=g How — Hewl, y =M. (6.32)

If k7 and « are both negligible, the lhs vanishes, im-
plying that w; vanishes, and hence ¢ also, giving no
gyre transfer. Since estimates of (6.32) show both effects
to be important, transfer between gyres is driven both
by diffusion and by ageostrophic effects. As a check, a
calculation with «r halved yielded a narrower region
of northward flow between the gyres.

7. Particle trajectories

The solutions of the previous sections were quite
complicated, although the resulting flow fields were well
behaved. Nonetheless, such solutions conceal many
features of interest, in particular the ventilation of the
subtropical gyre. This topic is discussed by Luyten et
al. (1983), who conclude that for their multislab model
of a northern basin, a considerable portion of the deep
subtropics consists of water which has never been in
contact with the surface.

Rhines and Young (1982) were also concerned with
the depth to which surface effects could reach. They
concluded, on the basis of closed potential vorticity
contours, that a suitable scale was

_/
=5 B,

7.1
where N is the buoyancy frequency and U is a velocity
scale. The same scale emerges from the differential
equations for the thermocline problem (Killworth,
1983a) and can be thought of as the vertical scale as-
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sociated with quasigeostrophic motions with a hori-
zontal scale equal to the Rhines scale (U/8)"/2.

In the level model, the depths to which water par-
ticles sink depend on the signs and sizes of w, and w;.
The sign of w; is specified, and we can obtain w; either
from Fig. 6g directly or from

wp = (1 —6)(ws—%ﬁ)

from the definitions in Section 2. Using the scalings in
Section 6, BH 9/fw, ~ 5 for case (a), so that w; varies
roughly as —9. Since u, and 1 are fairly similar, Fig.
6¢ shows that w; can take either sign in either basin. It
is thus impossible to define a depth of sinking for water
particles, since in the several years it takes a particle
to descend 400 m (H,) at a speed of several times 10™*
cm s~ the particle will pass completely around a gyre
and pass through regions of positive and negative w;.
So the only way to investigate particle motions is to
follow particles directly.

Nonetheless, we may still estimate (7.1) using the
scalings of Section 6. We use N? ~ gS/poH, to find

(7.2)

H 1/2 .

D~ fi—jl—*) ~ e P(H H)? ~ 1.5km (7.3)
BL ‘

which, surprisingly, is only a geometric result and does

not depend on the magnitude of either forcing (note

that a measure of stratification is assumed in the choice

of H)).

To understand the ventilation of the lower subtrop-
ical level, we return to the problem of particle trajec-
tories. For the simple dynamics in this paper, it involves
solving for particle position (X, Y, Z) from

dx

= = u{X, Y) (7.4)

dy

i v,(X Y) (7.5)

az

= = w(X, Y) (7.6)
i=1, Z>-Hy; i=2, Z<-H, (1.7)

"and W is the linear interpolation of either w, and w;

(level 1) or w; and O (level 2).

Particles are assumed to leave the base of the Ekman
layer in the subtropical gyre, where w, is downwards,
and then follow (7.4)—(7.7). As examples of the very
different behavior which can ensue, consider Figs. 8-
11, which show particles injected at 700 km north,
with X values of 500, 1300, 2100, and 2900 km east
of the western boundary.

Figure 8 shows the 500 km particle. This lies on the
separated current which flows northeast across the ba-
sin, and follows this current, gradually descending, for
a year before being deposited in the slower region near
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4—.1@3_ N B B RS
3.10° -
2.10° ' -

1.10°- :

T
3 3 3 3

0 1.10 2.10 3.10 4.10
FIG. 8. Particle trajectory for case (a), X = 500 km, Y = 700 km.
Circle marks injection point from Ekman layer. Solid line denotes
downward movement; dashed line upward movement. Crosses drawn

every year. An arrow marks the point of upwelling into the subpolar
Ekman layer.

the eastern boundary, where it upwells and reaches the
surface. Figure 9 shows the 1300 km particle, whose
path is much more complex. It spends many years in
the anticyclonic southern gyre, rising in the east and
sinking in the west, and gradually diverging outwards.
It then passes into the subpolar region, and reaches a
near stagnation point near the eastern boundary. Here,
it drops to the lower level after many years, and slowly

retraces its path, now at depth, into the southern gyre -

R L A D |
) 1.10> 2.120° 3.10° 4.10°
FiG. 9. As in Fig. 8 but for X = 1300 km.
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0 1.19° 2.10° 3.10° 4.10°
FI1G. 10. As in Fig. 8 but for X = 2100 km.

which it now follows cyclonically. It suffers several re-
versals of direction, caused by transition between levels,
and its track has not terminated in the figure. Thus,
this particle ventilates the deep subtropics only via the
deep subpolar region.

The 2100 km particle is shown in Fig. 10. After some
years in the subtropical gyre, it descends to the lower
level and diverges slowly outward. It rises in the east
and moves rapidly west, then executes a jagged motion,
caused again by transition between levels, and finally
ends up in the weak deep descending gyre shown in
Fig. 6d. Finally, the 2900 km particle (Fig. 11) also

AL LA L L N R A B AL
0 1.1¢> 2.18° 3.10° 4.10°
FiG. 11. As in Fig. 8 but for X = 2900 km.
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spirals slowly out, reaches the subpolar region near the
east wall, and propagates slowly south over many years.

These particles are chosen from calculations repeated
every 400 km across the basin, but their range of be-
haviour typifies all the responses. Only on rare occa-
sional does a particle reach the deep subtropics by direct
sinking,

The calculations were repeated with particles begin-
ning at 1700 km north, just south of the zero wind
stress curl line, and perhaps rather more relevant to
the Luyten et al. (1983) calculation. Particles originat-
ing at X values less than 2500 km moved north a few
hundred km and surfaced. Those 2900 km or more
from the western boundary (i.e., 1100 km or closer to
the eastern boundary) produced tracks similar to the
2900 km particle in Fig. 11. These latter superficially
resemble the Luyten et al. (1983) solution, except that
there is both up- and downwelling, where their solution
would imply only downwelling.

Particle motions in a diffusive fluid are not well de-
scribed by a purely advective model. In order to sim-
ulate the effects of the (small) diffusion in the model,
the particle trajectories were repeated but this time for
an ensemble of particles all originating at the same

point. At each time step, each particle was advected °

by (7.4)-(7.7), and then moved in a random horizontal
direction a distance (k7Af)!/?, where At is the time step
used in the simulation.

Figure 12 shows a typical example for particles orig-
inating at X = 2900 km. The general picture remains
qualitatively similar to those without diffusion, but no-
tice how very scattered are the endpoints of the cal-
culation. Particles either remain within the anticyclonic
subtropical gyre, or are ejected from it into the northern
basin where the motion is less well organized.

|
4.10°

T T T l T T T g [ T T T Al ' iy T

3 3 3

) 1.1e* 2.10° 3.10°
FI1G. 12. As in Fig. 11 but for an ensemble of ten particles for 20

years, and a random walk as described in the text. The end of each
track is shown by an asterisk.
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Thus, little of the deep subtropical gyre seems to be
ventilated. The western area, which is partially venti-
lated, achieves this by a complex series of flow inter-
actions between subpolar and subtropical gyres, in a
manner which is presumably highly model dependent
(e.g., Young, 1984).

8. Discussion

This paper has described a simple numerical model
that attempts to reproduce the thermocline dynamics.
Unlike the multislab model of Luyten et al. (1983),
which could not permit realistic horizontal stratifica-
tion but allowed in principle a well resolved vertical
structure, the use of a two-level model permits realistic
horizontal stratification but very poor vertical resolu-
tion.

Even given such simple dynamics, the resulting so-
lutions are quite complicated, with convective over-
turning a key ingredient in the production of a steady
state solution. Within the limited model framework,
the solutions are fairly realistic.

The model here “finesses” certain fundamental
problems related to thermocline dynamics, specifically
the sidewall boundary conditions. For zero diffusion,
it is possible to show that for a continuously stratified
model, a plane eastern boundary must possess uniform
density (Killworth, 1983b; Huang, 1984). In the slab
models, this appears as a requirement of vanishing layer
depth for all but one of the layers, whose depth is uni-
form (no matter how many layers). In the level model
here, @ is essentially uniform on the eastern boundary
but S varies. If the number of levels were increased,
all the interface mean densities would become uniform
along the boundary, with one measure of stratification
still able to vary. Neither model is thus a satisfactory
reproduction of reality (which has a strong northward
density gradient at the east coast). Pedlosky (1983a)
circumvents the problem by permitting an unspecified
flow connection between the various layers of the slab
model, but one probably needs a more complete eastern
boundary layer specification to proceed further.

It would be interesting to employ various closure
schemes for the western boundary layer, rather than
the simple Stommel formulation used here. The po-
tential-vorticity and buoyancy distributions in the in-
terior surely depend strongly on the degree and form
of mixing in this layer (cf. Young, 1984), and the so-
lution in this simple model may be dependent on these
details. Further discussion must await future papers.

Several extensions to this model could be made. It
is straightforward to add more levels to produce fluid
remote from both surface forcing and the rigid bottom.
However, a more realistic model that still retained the
thermocline physics, and one which would allow more
freedom in the surface forcing, would be to make the
Ekman layer into an active dynamical level. In such a
model, wind stress would be inserted into the new sur-
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face level exactly as in the Bryan (1969) model. The
dynamics of this level would be geostrophy plus wind
stress. There would be a buoyancy forcing at the sur-
face, perhaps a Haney (1971) relaxation to atmospheric
value. Such a model would allow a more complete in-
vestigation of the coupling between wind and buoyancy
forcing than the current model permits, and it is hoped
to report on this model at a later date. !
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APPENDIX
The Numerical Boundary Instability

Consider the flow near the western boundary as in
Fig. 13 and linearization about some mean stratifica-
tion p,, p,. The buoyancy conservation equations, ne-
glecting diffusion and forcing, become

d _ Wip
-ﬁl+p|V‘U|“—£I=0

ot H, _(Al)
902 4 5V + WP g, (A2)
ot H, ’
i.e.,
i) _ -
= AV w =0 (A3)
92 L (= - \V.u =
a_t + (p2 — p)V -u; = 0. (Ad)
Using the definition of p; and adding gives
0
%=S(V~U+(l-—6)v-ﬁ) (AS)
/]
/|
Auz0
u_s u
?0 x P o°¢ x
/]
/]
/
/]
/

FIG. 13. Notation for the Appendix.
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in upwelling regions and

% _ S(-V-U +8V-0)
ot

in downwelling regions. In either case, the first term is
a known constant forcing. The second term is propor-
tional to V - ii. (Such a term also occurs with centered
differences.) We evaluate V - @ at the point b in Fig. 13
and it has two components. The first is

(A6)

A uAc -0 1ic
= =— A7
U= =1 T Ax (A7)
and the second is 7). Except near the boundary ¥, will
be of the same order as #,, but at the first grid point
the divergence is dominated by the sudden change from
geostrophy (at ¢) to zero normal velocity (at a). Thus,

00 aS .
% e (A8)
aSgH
~ nodx (4%

by (3.14), neglecting the viscous term, where « is either
(1 —6)oro.

The form of (A9) is thus a wave equation along the
boundary, whose speed C is given by ¢/fAx, where ¢
is the speed of the first baroclinic internal wave mode,
here equal to (agHS/2po)"%. This result immediately
generalizes to a multilevel model.

The CFL criterion must therefore be satisfied for
(A9), despite the fact that the wave is of numerical and
not physical origin. Thus,

CAr _ At _ agHSAt <
Ay  fAxAy  2pofAxAy

(A10)

together with a rather stronger condition in the corners
of the domain where waves in both horizontal direc-
tions come into play.

Since C varies inversely as Ax or Ay, the finer the
resolution the more restrictive is the choice of time
step. The restrictions also grow nearer the equator,
where f is smaller. With our choice of 200 km grid
spacing, a time step of 1 day is just stable. It is possible
to use the definitions of u;, u, to eliminate this nu-
merical mode. The increase in time step allowed is not
worth the added complexity in boundary conditions
for this simple model, but might be so in multilayered
models.
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