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This note discusses how data might be used to correct the input uncertainties used

for polynomial chaos expansions. At the heart of the correction is the usual Bayesian

formalism, but this note attempts to bypass much ofthe details of that formalism and

get to the aspects that are essential in actual computations. For concreteness and

simplicity the focus here is on a single parameter, the drag coefficient, and on the

use of axbt data to provide information about its likely values. The generalization to

other or more parameters and to other data is straightforward.

First, it is useful to establish notation. The axbt data di are values of oceanic

temperature at discrete points (xi, yi, zi, ti), i = 1, . . . , I, where x denotes longitude,

y latitude, z depth, and t time. The drag coefficient, which can be denoted as θ,

is presumed to be between between θmin and θmax. Its probability density, which is

assumed to be uniform on this interval, can be regarded as uninformative when the

interval is sufficiently large as to encompass all reasonable values. To evaluate the

polynomial-chaos expansion coefficients, HYCOM is run for particular values of the

drag coefficient θq, q = 1, . . . , Q dictated by the quadrature points used for evaluating

integrals. In order to infer a posterior distribution for θ, it is necessary to compare the

axbt data with their counterparts from HYCOM. Thus, PCE coefficients are needed

for the HYCOM counterparts of di; these simulated data si depend on the drag

coefficient: si,q = si(θq) . Once the coefficients have been evaluated, the polynomial

expansions can be used to emulate the axbt data for any value of θ, so let ei(θ) denote

the emulated values.

The next step is to specify a statistical model for the axbt data, given a HYCOM

model with drag coefficient θ. If the model does a good job at characterizing the

data, it is reasonable to assume that the errors are normally distributed. This leads

to the possibility of determining the optimal values of θ by (weighted) least squares.,

i.e., by minimizing:

J(θ) =
1

2
(d− e(θ))T D−1(d− e(θ)) , (1)

where d and e are column vectors containing the data and their emulated counterparts

and D is a covariance matrix. Minimizing J is equivalent to assuming that the

probability density for the data axbt given HYCOM with drag coefficient θ has the

form:

pd(d|e(θ)) ∝ exp (−J(θ)) . (2)

From the Bayesian perspective, minimizing J is equivalent to maximizing a like-

lihood function that is proportional to the probability density for θ given the axbt
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data:

L((θ)) = pd(d|e(θ))pe(e(θ)|θ)pθ(θ) . (3)

The last factor is simply a constant, as the prior density for θ has been assumed to be

uniform. The middle factor drops out, because e(θ) provided by the polynomial-chaos

expansions is completely certain, so the joint density for the counterparts of all the

axbt data is generated from the uniform density for θ. Thus, L(θ) is given by the

right-hand side of (2) minimizing J is equivalent to maximizing L when e(θ) is given

by the polynomial expansions.

The minimization of J can be done in two different ways. The first is to exploit

the polynomial expressions for e(θ) and solve dJ/dθ = 0. This would determine the

optimal value of the drag coefficient to be θ = θopt at the maximum of the posterior

density . Then the spread of the posterior density could be approximated as the stan-

dard deviation of a Gaussian centered on the optimum and having the same second

derivative: 1/
√

d2J/dθ2. The second is to evaluate exp(−J(θ)) for values of θ uni-

formly distributed over the allowed interval to generate the posterior density for the

drag coefficient. Plotting this posterior density will show how it differs from a Gaus-

sian and whether the median or mean might be preferable to the mode (maximum

Likelihood) as a preferred value for the drag coefficient.

The utility of the polynomial expansions is principally in their computational sav-

ings. If expense were no object, then the emulated values e(θ) might be replaced by

simulated values s(θ), which would be evaluated using HYCOM integrations for a

large number of values of the drag coefficient. As the simulated values have no easily

evaluated expression, the first method would require either an adjoint code or divided

differences to approximate dJ/dθ and a descent algorithm to compute the optimal

drag coefficient. The second method (Monte Carlo) would require many expensive

HYCOM simulations in the place of the more economical emulations.

The approach outlined above can be compared with data assimilation, which is

commonly based on minimizing an objective function like J(θ). There are two dif-

ferences that are immediately seen. First, in the place of a single parameter θ the

objective function would depend on HYCOM’s entire initial state and might also de-

pend on it’s surface or lateral boundary conditions, so there would be an extremely

large number of uncertain variables characterizing these fields. Second, because the

axbt data are far fewer in number than the variables to be updated, the objective

function would contain and additional term, generally referred to as the background

term, characterizing the uncertainties in the absence of the axbt data. This term

reflects a non-uniform, often Gaussian, prior probability density for the fields to be

updated, which would correspond to the third factor on the right-hand side of (3), so

prior information about the drag coefficient is easily accommodated. There is a third
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aspect of data assimilation that has been neglected in the above discussion, namely

the uncertainties associated with the inadequacies of HYCOM, which are often called

process errors. When these are neglected, HYCOM would be regarded as providing a

”strong constraint’, but ”weak-constraint” methods like the Kalman filter do account

for process errors. As the middle factor on the right-hand side of (3) reflects these

uncertainties, the approach outlined above can be expanded to handle both the inad-

equacies of HYCOM and of the polynomial interpolation, if an appropriate density is

used.

Most important is that all the additional inputs to HYCOM, whose uncertainties

have been neglected, should have reasonable values. In other words, their simulated

and emulated counterparts should resemble the axbt data. After the optimal drag co-

efficient has been determined, any systematic differences between the data and their

counterparts would point to an inadequacy in their simulation or emulation. Subse-

quent determination of additional parameters might improve the fit, but care should

be taken to insure that HYCOM is provided with reasonable initial fields, surface

winds, etc. Thus, before attempting to find the optimal input, plots comparing the

axbt data with their simulated counterparts based on commonly used parameters,

including the drag coefficient, should be carefully examined to insure that HYCOM

is capable of hitting the target. Then, the simulated values from the quadrature

runs should be examined to get a first impression of how changing the drag coeffi-

cient might improve agreement with the axbt data. Finally, after determining the

optimal value and the posterior density, similar plots should be examined to see how

much the agreement has actually been improved and whether there are systematic

disagreements that might be improved by updating a second parameter.
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