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SUMMARY 

A simple model of the circulation of the tropical atmosphere is constructed where the circulation is 
determined entirely by the sea surface temperature (s.s.t.) pattern, or rather by a forcing field which is closely 
related to s.s.t. It is an equatorial beta-plane model with an assumed simple baroclinic vertical structure. The 
moisture and precipitation fields are allowed to evolve freely so there are feedbacks between the latent 
heating, which contributes to driving the motion, and the low-level velocity field which produces the moisture 
convergence required to generate precipitation. 

Experiments with idealized Pacific s.s.t. distributions produce qualitatively realistic precipitation patterns 
for January (a patch in the west Pacific over the equator) and July (a zonal strip north of the equator). 

Analytic solutions for zonally symmetric flow are given to illustrate the basic dynamics and to study the 
parameter dependence of the precipitation. An analysis of zonal variations shows that a good simplifying 
approximation for this component is to neglect Rayleigh friction while retaining Newtonian cooling. 

The effect of changing the zonal contrast in the prescribed forcing is to gradually alter the circulation from 
Hadley-like to Walker-like. The model suggests that along the equator a relatively small contrast is needed to 
break a zonal band of precipitation. 

1. INTRODUCTION 

Much of the large-scale tropical circulation is directly driven by heat sources and 
sinks, so considerable insight into the dynamics follows from a study of the response of 
an atmosphere to sources and sinks placed near the equator. Simple models with fixed 
heating have been investigated by, for example, Gill (1980), Lau and Lim (1982), Zebiak 
(1982), Lim and Chang (1983), Heckley and Gill (1984), Phlips and Gill (1987), all based 
on linear equatorial beta-plane equations. Hirst (1986) has coupled such a model to a 
shallow-water ocean to investigate free coupled modes. Webster (1972) has used linear 
continuous and two-layer models with prescribed heating. 

Specifying the heating begs the question of why sources and sinks are located at 
particular spots, however. In practice, the main sources are due to latent heat release in 
the troposphere in regions of deep convection. The fuel for such heat sources is the 
moisture which is carried to the source by a field of motion which itself depends on the 
strength and location of the source. Understanding the dynamics requires an appreciation 
of the interdependence between the moisture field and the flow field. In a series of 
papers, Gill (1982b, 1982c, 1985) has developed the simplest possible model for examining 
this relationship. A more complex model with active moisture can be found in Lorenz 
(1984), and the two-level model by Held and Suarez (1978) is a further step toward the 
full physics of a general circulation model. 

The simplicity of the Gill model stems from assuming a fixed baroclinic structure in 
the vertical which leads to the linearized shallow-water equations. With this structure, 
flow in the lower troposphere is oppositely directed to  that in the upper troposphere, 
with zero horizontal velocity at mid-level. The vertical velocity is maximum at mid-level, 
as are thermal perturbations produced by heating. Simplicity in the moisture equation 
comes from the assumption that moisture is confined to the lower troposphere, so the 
moisture flux is determined by the low-level winds and the total column moisture. Thus 
the full set of equations consists of the shallow-water equations plus a dynamic moisture 
equation and a condition (namely that a saturation level is reached) for precipitation and 
latent heat release. The equations involve only horizontal position and time, as vertical 
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structure is specified. Recently Weare (1986a, b) has presented results from a similar 
model wherein steady states were calculated by iteration of the latent heating and the 
circulation thus produced. 

The model needs some representation of the forcing which would occur even in the 
absence of latent heat release. In particular, a simple representation is required of the 
heating that takes place due to the sun shining on the ocean and setting off the chain of 
processes that determines the sea surface temperature (s.s.t.) and the structure of the 
atmosphere above it. In the simple model this heating can only be represented by a 
source term in the thermal equation. This term defines a temperature BS towards which 
the mid-level temperature perturbation 8 is driven. The equations are linearized about 
a state of rest with horizontally uniform stratification. 

The purpose of this paper is to determine the response of the moist model for 
different prescribed fields of 8,. For instance, what properties of the 8, distribution 
determine whether the response circulation is predominantly Hadley-like or Walker- 
like? For answering such questions the precise relationship between 8, and fields one 
might observe is not important. However, it is clear that 8, will be closely related to 
s.s.t . ,  i.e. that there are thermal processes which will tend to make the mid-level 
temperature field in the tropics vary with latitude and longitude in a similar way to the 
surface field. For instance, a constant lapse rate between the surface and mid-levels 
would require the two fields to be identical. In a numerical experiment by Rowntree 
(1972) using a general circulation model of the atmosphere with a specified s.s.t. anomaly, 
a direct relation between mid-level heating and s.s.t. was apparent. 

Following a detailed presentation of the model equations in section 2, we examine 
in section 3 the response to Bs distributions based on observed s.s.t. fields for the tropical 
Pacific Ocean, for January and July conditions. Circulation and precipitation patterns 
quite like actual ones are found. 

In sections 5 and 6 some simple examples are examined for zonally symmetric flow 
with and without precipitation, showing how latent heat release intensifies and narrows 
regions of upward motion. The dependence of precipitation location and magnitude on 
the saturation moisture level is also examined analytically. Departures from zonal 
symmetry are similarly treated in sections 7 and 8. We find that it is a good approximation 
to neglect Rayleigh friction while retaining Newtonian cooling in the dynamics of zonally 
varying flow. The influence of zonal variations on precipitation patterns is discussed 
further in section 9, with reference to Hadley-type and Walker-type circulation. 

2. THE MODEL AND THE GOVERNING EQUATIONS 

In this section the basic equations are derived in some detail using vertical modes. 
Further discussion can be found in Gill (1982b). 

( a )  Dimensional form 
We will consider small perturbations from a state of rest with potential temperature 

O,(z), density p , ( z ) ,  pressure p,(z),  and buoyancy frequency N defined by 

N* = (g/e , )de, /dz .  (2.1) 
For simplicity the model atmosphere is bounded by rigid horizontal planes at 

z = n H  and at the sea surface z = 0. An equatorial beta plane is used with ( x , y )  as 
distance (eastward, northward) and Coriolis parameter 

f = PY. (2.2) 
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The linear momentum equations are 

u, - fu = - p x / p o  + dissipation (2.3a) 

U ,  + fu = - p , / p o  + dissipation (2.3b) 

The atmosphere is taken to be incompressible, as only baroclinic motion will be 
where p is the pressure perturbation from p o .  

considered, so 
u, + u y  + w ,  = 0. (2.4) 

Pressure and potential temperature perturbations p and 8 are related through hydrostatic 
balance by 

( P l P O ) ,  = S S / @ o .  (2.5) 

A second term ( N z / g ) p / p o  has been neglected on the right as it is relatively small for the 
scales of interest. 

The linear temperature perturbation equation is 

8, + w 8 , N 2 / g  = Q ,  + Q + dissipation (2.6) 

where Q represents latent heating. The term Q, represents other forms of heating which 
in this simple model takes the form of Newtonian cooling 

Q,  = (0, - 8 > / ~  (2.7) 
to force 8 towards 8, on a timescale z. Here 8, is prescribed with the same horizontal 
pattern as the underlying sea surface temperature. Effectively we assume that, apart 
from latent heating, thermodynamic processes are spatially uniform so in the absence of 
motion this model atmosphere would have the same vertical lapse rate everywhere and 
8 would adopt the same pattern as the s.s.t. 

A vertically integrated form of the moisture equation will be used to determine the 
latent heating. For specific humidity s the total moisture in a column of air is 

4 = i j :Hsdz /Pw.  (2.8) 

Here pw is the density of water, so q is expressed as the depth of precipitable water. We 
assume that water vapour is concentrated near the sea surface, so the moisture flux is 
approximately 

usdz = qu, I H  
where us = (us, us)  is the horizontal velocity at z = 0. Then the moisture balance is 

q,  + P = -V  . (u,q) + E + diffusion. (2.10) 

= (4 - 4 > / T  (2.11) 

Evaporation in the form 

drives the moisture content q toward a saturation value 4, with the same timescale as in 
Eq. (2.7) for convenience. The term 4 can be related to surface temperature, but as such 
variations were found to have only a qualitative effect for the cases considered we will 
henceforth take 4 to be constant. 
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Precipitation at rate P occurs when q is tending to increase beyond some threshold 
value, here taken to be 4. All excess moisture is precipitated. This can be expressed 
mathematically as 

q t = O ,  P = R  (2.12a) 

when q = 4 and R > 0, else 

q t = R ,  P=O (2.12b) 
where R is the right-hand side of (2.10). 

(b )  Vertical structure 
The equations (2.3) to (2.6) can be separated into vertical modes. For simplicity we 

u = i i ( x , y ,  t )  cos(z/H) (2.13a) 

w = $sin(t/H) (2.13b) 

(e,e, , Q 1 = (g,g, , Q) sin(z/H) 6, (z>/eo, (2.13~) 

P = ij cos(z/H) Po (Z)lPoo (2.13d) 

where Oo0 and poo are characteristic values of 8, and po. Pressure perturbations and 
horizontal velocity are largest at upper and lower levels with opposite sign, whereas 
vertical motion and temperature perturbations are largest at mid-level as shown in Fig. 1. 

Higher-order modes will be neglected, though the modes are coupled via the 
precipitation, because latent heating mainly forces the first baroclinic mode. This is a 
reasonable approximation for the tropics where deep convection produces maximum 
heating at mid-levels. 

From Eq. (2.5) horizontal pressure and temperature variations are related by 

take N to be constant so the modes are sinusoidal. For the first baroclinic mode 

FlPoo = -gH8/600 * (2.14) 

Other equations for horizontal structure are 

Lit -fi5 = gH8,/8,, + dissipation 

C t  +fii = gH8,/8,, + dissipation 

(2.15a) 

(2.1%) 

Figure 1. The vertical structure assumed in the model. Potential temperature perturbation 0 and vertical 
velocity w are largest at the mid-troposphere level. Horizontal velocity u, u and pressure perturbation p have 

largest and opposite values at lower and upper levels. Specific humidity s is concentrated at low levels. 
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ii, + ijy + G/H = 0 

6 ,  + wN2eo0/g = (8 ,  - 8 ) / r  + 6 + dissipation 

(2.16) 

(2.17) 

and the moisture equation becomes 

q ,  + P = -V .(iiq) + (q  - q ) / t  + diffusion. (2.18) 

A relation between P and Q is needed to complete the model. By unresolved deep 
convection processes the condensation of water vapour contributing to P has some 
vertical distribution, projecting onto that of the first baroclinic mode for Q. The actual 
relation is complex; here we simply specify 

Q = ( L P ~ / ~ , P , ~ H , ) ~ '  (2.19) 

where cp is the specific heat of air, L is the latent heat of condensation, and H ,  is a 
constant projection factor with units of height. If all latent heating goes into the first 
baroclinic mode then H ,  -L 2H. 

From (2.15) to (2.17) the speed of the first baroclinic mode gravity waves is 
C =  N H .  

(c )  Non-dimensional variables and equations 
The equatorial Rossby radius, a = (C/2/3)1/2, is a natural length scale. The typical 

value C = 50ms- '  gives a = 1000 km, and a timescale a/C of a quarter of a day. We 
choose 

f = 2Paf *. 

(2.20) 

Then, dropping the asterisks used above to denote non-dimensional variables, the basic 
non-dimensional equations are 

U ,  - f u  = ex - E~ + vv2u 
u ,  + f u  = ey - EU + vv2u 

(2.21a) 

(2.21 b) 

u, + uy + w = 0 (2.22) 

el + w = E ( e ,  - e )  + Q + vv2e 
q ,  + P = -v . (uq) + &(q - q )  + vv2q 

(2.23) 

(2.24) 

Q = P  (2.25) 

where f =  4y and E = a/(Ct). Laplacian dissipation and diffusion terms have been 
specified, along with Rayleigh friction with the same timescale as the Newtonian cooling. 
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(d) Static stability 
The saturated moisture content 4 plays a very important role in determining the 

behaviour of the system. In a region of rain, where q = 4 is constant, (2.24) reduces to 

p = q w  (2.26) 

and the temperature equation (2.23) becomes 

e, + (1 - Q)W = &(e, - e) + vv2e. (2.27) 

The form of this equation is the same as in the dry region where Q = 0, except that the 
buoyancy restoring term w in (2.23) is replaced by (1 - 4)w in (2.27). The difference 
arises because latent heat release opposes the reduction of buoyancy due to upward 
motion, so the static stability is reduced in the wet region. The non-dimensional form 
(2.20) has been chosen such that moist static stability is zero when 4 = 1. 

The effect of this reduction was examined in Gill (1982b) and many interesting 
phenomena were found, such as propagating fronts and rainbands. Features propagate 
at unit speed in dry regions, but at speed (1 - q)'I2 in wet regions. 

When q > 1 the system is locally unstable in wet regions: this corresponds to the 
vertical potential temperature gradient being moist unstable. Some solutions for a 
uniformly rotating atmosphere with 9 > 1 were discussed in Gill (1982~) which correspond 
to hurricane-like disturbances with a 'moist Rossby radius' length scale equal to 
(q  - 1j*/2 times the dry value. Equatorial numerical solutions with 4 > 1 appear in 
Davey (1985). 

Equatorial solutions with 9 s 1 have been described in Gill (1985): in particular a 
zonally-symmetric solution with a feature corresponding to the intertropical convergence 
zone was obtained, and an analytic solution found for 4 = 1. 

For the large-scale tropical circulation problems studied in the following sections we 
take q = 8/9 unless otherwise specified. 

3. NUMERICAL RESULTS FOR 'JANUARY' AND 'JULY' SIMULATIONS FOR THE PACIFIC 

The simple model was constructed as a means of improving understanding of 
moisture effects on the large-scale circulation in the tropics, so can it produce reasonable 
precipitation fields for the Pacific Ocean? 

The model is for flow over the ocean only, and requires a sea surface temperature 
pattern as input. To achieve this, an equatorial beta-plane channel was set up with 
boundaries at y = ?4 (about 240" latitude) and with periodic east-west boundary 
conditions-effectively a periodically repeated Pacific Ocean with no land or other oceans 
in between. The length of the model Pacific is 16 units (about 160" longitude). The forcing 
temperature 8, was set by specifying a western meridional profile Bw(y) to apply at 
x = -4, and an eastern profile B,(y) for x = +4, with periodic behaviour in between: 

28, = O E  + Ow + (6, - 0,) sin(nx/8). (3.1) 

The eastern and western profiles were chosen by constructing analytic curves with similar 
properties to the observed ones. For the western Pacific, 

ew = 1 - (y - yj2(y2 + 2yy  + i6)/(y2 + 1 6 ) ~  (3.2) 

with Y = 0 for January and Y = 1-5 for July. This curve has a maximum of one at 
y = Y. The eastern profile is 

8, = 0*6(1 - y2/16) + A eXp{-(y - 1)') ( 3 . 3 )  
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with A = 0.1 for January and A = 0-3 for July. The first term in (3.3) gives a parabolic 
shape vanishing at y = k 4  and with a maximum of 0.6 at the equator. The second term 
adds a Gaussian bump centred at y = 1. Overall, the maximum eastern value is 0.67 in 
January and 0-87 in July. 

Equations (2.21)-(2.25) were solved by numerical integration, time-stepping on a 
finite-difference spatial C-grid with spacing of half a Rossby radius in each direction. To 
ensure numerical stability the Laplacian diffusion of u,  u ,  I3 and q was included. Results 
are shown for the parameter values 4 = 8/9, E = 0.1, and v = 0.025. Integration is carried 
out to t = 60, by which time the response is effectively steady. 

Figure 2 shows the temperature patterns Os that force the motion. Precipitation 
rate P,  dryness D = 1 - q/4,  low-level velocity and mid-level potential temperature 
perturbation I3 appear in Figs. 3-6 for January and July. 

In January the forcing field is characterized by having the maximum temperature on 
the equator in the west, with a relatively large east-west temperature contrast (0.33 
difference between eastern and western maxima). As shown in Fig. 3(a), the rainfall is 

I 

-8.0 X 8.0 

-8.0 X 8 -0 

I I 

Figure 2. Forcing temperature 0, has the same horizontal pattern as tropical Pacific sea surface temperatures 
for (a) January with minimum value 0.73, max = 1.0; and (b) July with min = -0.02, max = 1.0. Contour 
interval ( c i )  = max/5. Zonal and meridional cross-sections indicated by arrows are shown below and to the 

right of the contour maps. Distance units are equatorial Rossby radii, about 10" of latitude or longitude. 
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-8 -0 X 8.0 

c 4 -0 

Figure 3. Precipitation P at  time t = 60 for E = 0.1, v = 0.025, 4 = 8/9. Non-dimensionally P is equal to the 
latent heating rate Q. The zero contour is dash-dotted. (a) January with max = 0.11; (b) July with max = 0.11. 

c.i. = max/5. 

centred over the warmest ocean, thereby giving a response like the winter monsoon with 
heavy precipitation over the Indonesian region. The driest regions in Fig. 4(a) (which 
mark the zones of maximum downward motion) are an extensive area on the eastern 
side south of the equator and a less extensive area on the eastern side north of the s.s.t. 
maximum. The moister zone has a narrow westward extension along the equator from 
its centre over Indonesia, and broader extensions on the east to both the north-east and 
south-east. The south-east extension is a sharper feature which can be related to the 
South Pacific convergence zone. The main contrasts are between east and west, giving 
the impression of a Walker cell type of structure. 

In July the forcing field is rather different, with maximum values in the northern 
hemisphere near y = 1. The precipitation (Fig. 3(b)) is again found over the warmest 
ocean, but is now very elongated east-west to form an extensive intertropical convergence 
zone. The driest area in the tropics in Fig. 4(b) is now at the same longitude as the 
warmest water, in the west, but located in the opposite hemisphere to the precipitating 
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4.0 

Y 

-4.0 I 
-8.0 X 8.0 

4 -0 

Y 

-4 -0 

Figure 4. 
q = 

Dryness 1 - q/q at time f = 60, for E = 0.1, v = 0.025,q = 8/9. Within the dash-dotted zero contour 
and precipitation will occur where there is low-level convergence. (a) January with max = 0.15; (b) July 

with max = 0.22. c.i. = max/5. 

region. Thus a Hadley-like circulation is apparent with rising motion over the warmest 
water and a descending branch in the southern hemisphere. 

The low-level winds shown in Fig. 5 are dominated by easterly trade winds off the 
equator, being associated with the thermal wind due to the north-south temperature 
gradient. In January the trades extend right across the equator in the central Pacific, 
where they reach their strongest values and constitute the low-level branch of the Walker 
circulation. To the west of Indonesia there are very strong westerly monsoon winds 
directed into the zone of heavy precipitation. 

In July the southern hemisphere trades are strongest and a marked cross-equatorial 
flow can be seen in Fig. 5(b), particularly in the west, providing the low-level branch of 
the Hadley cell. This flow veers strongly as it crosses the equator and becomes westerly 
in the northern hemisphere. There is a region of very weak flow at about 15"N 0, = 1-5) 
where a very shallow trough separates these westerlies from the easterlies further north. 

The maps of mid-level potential temperature perturbation 8 in Fig. 6 are relatively 
featureless, showing much less zonal contrast than 8, and with no clear indication of the 
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Figure 5 .  Low-level wind (u, u )  at time t = 60, for E = 0.1, v = 0.025,q = 8/9.  Upper-level wind is oppositely 
directed. (a) January with max speed = 0.20; (b) July with max = 0.29. The arrows at the top of the diagrams 

correspond to the maximum speed. 

precipitation regions. Maps of vertical velocity (not shown) are dominated by strong 
ascent where it is raining, with much weaker downward motion elsewhere. 

Obviously a simple model like the one described will not give a perfect simulation 
of observations, but the patterns are very much like real ones and this encourages the 
belief that ideas stemming from further analysis will be useful for understanding the real 
atmosphere. With the model it is easy, for example, to vary east-west contrasts in the 
forcing s.s.t. field to see at what point Walker cell characteristics start to become more 
pronounced than those of a Hadley cell. Analysis can be done to determine the effects 
of various parameters. The remainder of the paper will be devoted to such questions, 
beginning with the simplest case of zonally symmetric flow. 

4. EQUATIONS FOR STEADY FLOW 

In this section the basic equations are manipulated into forms more amenable to 
solution, for use in later sections. The reader interested in results can proceed to section 5 ,  
and refer back to this section as necessary. 

Neglecting the Laplacian terms that were included for time-stepping numerical 
stability, (2.21) and (2.23) reduce for steady flow to 

-fu = 8, - EU 

fu = 8, - EU 

(Yw = E ( 8 ,  - 8 )  

(4.1) 

(4 * 2) 

(4.3) 
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t 

-8.0 X 8.0 

Figure 6. Mid-level potential temperature perturbations 0 at time t = 60 (about 15 days), effectively a steady 
state, for the model with e = 0.1, v = 0425, q = 8/9. (a) January with min = 0.29, max = 0.86; (b) July with 

min = 0.15, max = 0.86. c.i. = max/5. 

where 

no precipitation 

with precipitation (4.4) 
= 1: - q 

represents the spatially-varying static stability. The moisture equation (2.24) gives 

9 - V * (uq)/E 

9 with precipitation. 

no precipitation 
(4.5) 

In view of the conditions that u = 0 at the northern and southern boundaries it is 
simplest to solve an equation for u alone. From (4.1)-(4.3) this is 

&vZu + pu,) - E ( E *  + f 2 ) u  = q-e, - ~ ~ 8 , .  (4.6) 
(Remember that f =  By with /3 = +, and that 8, is prescribed.) 
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Although (4.6) is linear in the regions with and without precipitation separately, it 
is nonlinear with regard to the position of these regions as expressed by a ( x ,  y) and must 
usually be solved by numerical means. Once u and a are known, u and 8 can be found 
easily by solving 

(YU,  - E ~ U  = -muxy - Eeu - f&v 

d, - E 2 8  = -afux - E 2 8 ,  - 
(4.7) 

(4.8) 
latitude by latitude. 

The curl of (4.1) and (4.2) gives 

-pu +fw = E ( U ,  - u y )  (4.9) 
which for vanishing Rayleigh friction reduces to the Sverdrup relation 

p v  = fw. (4.10) 

This relation implies that upward motion is accompanied by poleward low-level flow, 
and in section 7 this is shown to be a good approximation for the zonally varying 
component of flow. 

Some general statements can be made about the location of precipitation in this 
model. Within a wet region P = 4w > 0 and vertical motion is upward. At the boundary 
between wet and dry regions the stability parameter (Y is discontinuous, but w, 6 and 6, 
are continuous, so (4.3) requires w = 0 there. In summary, 

( Y =  1, w < o ,  e > e ,  in dry region 

w = 0, 8 = 8, at boundary of wet region 

a ! = 1 - 4 ,  W O ,  e <  8, in wet region. 

The constraint that there be zero net vertical motion requires w>O somewhere 
(except in the static w = 0 case), so in this steady model it must rain somewhere, but not 
everywhere. 

From (4.1)-(4.3) an equation for 8 alone can be obtained: 

( Y [ - E ( E *  + f 2)v28 + ( E ~  - f 2)pe, + 2~fpe,] = E ( E ~  + f 2)(e ,  - 8 ) .  (4.11) 

Hence Os > 8 where 8 has a local maximum, so it must rain at such a point. Physically 
this location is a low-level low pressure centre, associated with low-level convergence 
and rising motion. Further, we can deduce that the absolute maximum of 8, must lie 
inside a region of precipitation. For this model with 8, having the same pattern as s.s.t. 
it always rains over the position of maximum s.s.t. 

It is sometimes useful to define a ‘latent heating forcing temperature’ by 

~ W / E  = (8,  - e)q/(i - 9)  wet region 

0 dry region. 
eL = P/E = { (4.12) 

Then (4.3) can be re-expressed as 

w = E ( e ,  + eL - e l .  (4.13) 

Thus the solution to a model with rain and forcing 8, can be expressed as the superposition 
of linear dry models with forcing 6, and OL. Generally OL is not known in advance, but 
it can be parametrized to obtain approximate solutions. 
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5 .  ZONALLY SYMMETRIC STEADY SOLUTIONS: DRY CASE 

When no rain is allowed in the model and there is no east-west variation some useful 
simple solutions can be obtained. In this case the static stability parameter a =  1 
everywhere and the steady equation (4.6) for u reduces to 

uyy - ( f 2  + & 2 ) U  = -&Osy (5.1) 

u = f U / €  (5.2) 

w = -uy (5.3) 
8 = 8, + u y / & .  (5.4) 

where f = y/2. In terms of u other variables are 

Equation (5.1) can be easily solved numerically in any given case. The term E’ is usually 
small: certainly for E S 0.1 results with this term neglected are almost identical to those 
with E~ retained. Hence we shall use the approximate form 

uyy - f 2 u  = -&El SY (5.5) 
which has analytic solutions. With 8, - 1, the ordering of the dependent variables is 

U - - € ,  W - & ,  8-1, u - 1 .  

As an archetype of the behaviour to be expected, an analytic solution (described in 
appendix A) can be found when the surface temperature has the parabolic shape 

os = 1 - (y/b)2. (5.6) 
Profiles of u ,  u ,  w and I9 for the case b = 4 are shown in Fig. 7, along with streamlines 
and normal flow in a meridional section. There are low-level easterly jets north and south 
of the equator, with u vanishing at the equator as required by Eq. (5.2). Meridional flow 
is equatorward at low level, giving broad rising motion around the equator. 

Another useful case to consider is the response to forcing at one latitude only, i.e. 
for the heat source 

8s = 4 Y  - Yo). (5.7) 
(See appendix A for details.) 

Profiles of u,  u and I9 are given in Fig. 8 for yo = 0 and yo = 1. As we would expect, 
low-level meridional flow is toward the heat source, with a discontinuity at yo. Except 
for the case yo = 0 there is a corresponding discontinuity in the zonal flow, with westerlies 
between yo and the equator and easterlies elsewhere. The discontinuity in u is caused by 
the discontinuity in u ,  due to the balance of damping and Coriolis terms as described 
by Eq. (5.2). Temperature is positive and continuous everywhere, and w is negative 
everywhere except at y = yo where there is a positive spike such that there is zero net 
vertical velocity. (Circulation in a meridional plane can be seen in Fig. 11.18 of Gill 
(1982a) for a similar example.) Note that the strongest downward motion is adjacent to 
Yo. 

6. ZONALLY SYMMETRIC STEADY SOLUTIONS: MOIST CASE 

When precipitation is included the problem is more difficult because the boundary 
of the wet region is not known beforehand. From Eq. (4.6) the basic equation is 

auyy - ( & 2  + f 2 ) u  = --Easy (6.1) 
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Figure 7. The analytic response to the forcing temperature 8, = 1 - (y/4)’ for the steady zonally symmetric 
model with no latent heating. (a) Meridional profiles of 8,, mid-level potential temperature perturbation 8 and 
vertical velocity W / E ,  and low-level velocity components u and u/&. (b) y-z plane showing the zonal flow I( 
(south of the equator) and streamlines for the meridional flow (0, w )  north of the equator. These patterns are 

symmetric about the equator. Negative contours are dashed. 

where a(y) is given by (4.4). We restrict attention to moist stable cases so q < 1 and a 
is positive everywhere. Once u is known, u and w follow from (5.2) and (5.3), while (5.4) 
is modified to 

e = 0, + a U y / E .  (6.2) 
Boundary conditions are 

u = O  a t y = + b  (6.3a) 

and, because w = 0 at the boundary of the wet region, 

u y  = 0 at the precipitation boundary. (6.3b) 
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Figure 8. The analytic response to the forcing temperature OS = S ( y  - yo)  concentrated along the line y = yo ,  
for the steady zonally symmetric model with no latent heating. Meridional profiles of mid-level potential 
temperature perturbation 6 and low-level velocity components u and U / E  are shown for yo = 0 (solid) and 
yo  = 1 (dashed). Vertical velocity MI is related to 0 by W / E  = -0 for y # y o :  balance of upward and downward 

motion is provided by a spike in w at yo .  

(a )  Numerical results 
Equation (6.1) can be solved numerically as a boundary value problem. Solutions 

for the parabolic profile (5.6) are shown in Fig. 9 for 4 = 8/9, E = 0.1, and b = 4. 
Compared with the dry case in Fig. 7 we see that there is larger upward motion over a 
narrower region when latent heating is included. This effect becomes more pronounced 
as 4- 1 and moist static stability decreases. 

The quartic profile 

8, = 1 - (y/b)4 (6.4) 

was used to produce the results in Fig. 10, using the same parameters. The flatter shape 
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Figure 9. The response to the forcing temperature OS = 1 - ( ~ / 4 ) ~  for the steady zonally symmetric model 
with latent heating, for E = 0.1,4 = 8/9. Meridional profiles of 8,, mid-level potential temperature perturbation 
8 and vertical velocity W / E ,  and low-level horizontal velocity components u and VIE are shown. Precipitation 

P = 4w occurs where w > 0. 

of 8, around the equator in this case leads to a much wider wet region than for parabolic 
8,. Upward motion is weak however, and the net precipitation is nearly half that found 
for parabolic 8,. 

The net precipitation per unit zonal distance can be written as 

PTO* = f b  P d y  = r+ Bwdy = - 4 ( u +  - u - )  (6.5) 
Y -  

where subscripts + and - indicate values at the northern and southern edges of the 
rainband. (Low-level convergence into this region requires u+ < u - . )  Both PToT and the 
width y+ - y -  are plotted in Fig. 11 for the parabolic and quartic cases, along with the 
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Figure 10. As Fig. 9, but for the quartic forcing 0, = 1 - (~/4)~. 

estimates described below. As Q +  1, PToT increases to a limiting value and y+ - y -  
decreases toward zero. In the quartic case the decrease in width is gradual until Q is very 
close to 1: the numerical method was not adequate to capture the sudden decrease toward 
zero. 

(b)  Analytic estimates for parabolic 8, 
Some analytic progress can be made, and is described here for the parabolic forcing 

case as useful information about the parameter dependence of precipitation location and 
amount can thus be obtained. 

As described in section 4 precipitation must occur at the location yo of the maximum 
of 8,. As Q +  1 the wet region shrinks toward this point. Hence as a first estimate we 
suppose that it rains only at yo,  and solve the dry region equation (5.5) for y # yo with 
boundary conditions (6.3). The result (see appendix B) is equivalent to the linear 
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Total precipitation PToT per unit zonal distance, and the width y, - y- of the precipitation region, 
for various values of 4.  The solid lines are estimates and solid circles correspond to numerical solutions of the 

exact equations for forcing OS = 1 - (y/4)'. Open circles shown numerical solutions with 0, = 1 - ( ~ / 4 ) ~ .  

superposition of dry models with 0, and with a point source representing the latent 
heating. The precipitation estimate equation (B3) thus obtained is, for 6 = 4, 

PTO,  = 0 . 6 1 ~  (6.6) 
valid for q -  1. 

This estimate can be extended to small values of 1 - q by allowing the wet region 
to have finite width and matching an approximate solution in this region to the dry region, 
as described in appendix B. Figure 12 shows u+ as a function of the position y +  of the 
northern boundary of the wet r,egion using Eq. (B2): as y+ increases the magnitude of 
u+ (= -u - )  decreases. Hence the net precipitation must decrease from the limit (6.6) as 
4 decreases from 1 and the width of the wet region increases. 

Values of PToT and width y ,  - y -  for varying 9 are included in Fig. 11, showing 
good agreement with the corresponding numerical solutions. The analytic solution shows 
that net precipitation depends linearly on the damping parameter E ,  while the location 
of the wet region is independent of E .  For small 1 - q we have from (B6) an explicit 
expression for the dependence of precipitation location on q:  

(6.7) y +  = 1.94(1 - 4 ) ' / 3 .  

7 .  ZONALLY VARYING STEADY SOLUTIONS WITH NO LATENT HEATING 

In the absence of latent heating the model is linear, so zonally varying and zonally 
symmetric components can be determined separately. For small friction we show in this 
section that the dynamics of the zonal variations is quite different from that of the zonal 
average. 

A zonal average will be denoted by an overbar, and departures are indicated by 
primes. From Eq. (4.6) for u we find that U and u' are both O(E) when 0, is O(1). If 
terms O ( E ~ )  are neglected then (4.6) reduces to 

pu: = &f0& (7.la) 
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Figure 12. Meridional low-level velocity u+ at the northern edge y ,  of the precipitation region, for the zonally 
symmetric forcing 8, = 1 - (~/4)~. 

which on integrating with respect to x becomes 

pus = E f e g .  

u: = -u,; - E e l  

Similarly, (4.7) leads to 

= -24fe5 + 8 ; )  

(7.lb) 

so uf is O(E) ,  in contrast to U which is 0(1) as found in section 5 .  Equation (4.8) likewise 
gives 

8; = -fd = - 2 ~ f  28; (7.3) 

so 8’ is also O(E),  again contrasting with e which is O(1). Further, 8’ vanishes on the 
equator according to (7.3), so very little zonal variation in potential temperature is 
expected near the equator. 

From (4.3) we deduce to O(E) that 

W’ = E 8 g .  (7.4) 

Consistently, the Sverdrup relation 

pu’ = fw’ (7.5) 
is a good approximation for the zonally varying flow. 

The approximations (7.1)-(7s) could alternatively have been derived by neglecting 
Rayleigh friction EU and Newtonian cooling E 8  in the basic equations (4.1)-(4.3). In this 
limit (studied by Gill and Phlips (1986)) u‘ and w‘ are in phase with the forcing ei, 
whereas u f  and 8’ are out of phase with 8 ; .  These phases are such that upward motion 
is fed by zonal low-level inflow, as in a Walker cell. 

This ‘no friction/no cooling’ limit can be contrasted with the ‘large friction’ limit in 
which frictional and cooling terms dominate zonal variations when E %= zonal wave- 
number. In this ‘large friction’ limit each longitude behaves independently, and equations 
for u’ etc. take the same form as those for U etc. in section 5. Then 8’ is 0(1), and in 
phase with 8 ; .  Upward motion is now balanced by meridional low-level convergence, as 
in a Hadley cell. 
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For the forcing used in section 3, zonal variations have wavenumber k = n/8 which 
is larger than the largest value of E considered here, namely 0.1, so the ‘no friction/no 
cooling’ limit should be a reasonable approximation. However, we find that a better 
approximation is to neglect Rayleigh friction but not the Newtonian cooling. Then the 
approximate form of (4.6) is 

pu;  - E f z u r  = E f e k .  (7.6) 

Near the equator there is little difference from Eq. (7.la), but the factor f makes the 
Newtonian cooling increasingly important away from the equator. (Rayleigh friction 
terms are not affected in this way, so their continued omission is consistent.) 

For this ‘frictionless’ model equations (7.lb)-(7.4) are modified to 

(7.7) 

(7.8) 

(7.9) 
(7.10) 

The Sverdrup balance (7.5) still applies. 
To illustrate the effect of these various approximations we use the Pacific forcing 

(3.1) for January. Amplitude and phase lag (relative to 0;) of u ‘ ,  u ’ ,  W ‘  and 8’ are shown 
in Fig. 13 for the ‘frictionless’ and ‘no friction/no cooling’ estimates, along with the exact 
solution found by numerical methods. The forcing has the same phase at all latitudes. 
For the ‘frictionless’ case, the phase lag is *arctan(Ef2/pk) for v’, 8’ and w’, indepen- 
dent of the amplitude of the forcing. 

Generally, amplitudes obtained from the ‘frictionless’ model are larger than for the 
exact calculation, and ‘no friction/no cooling’ amplitudes are larger still, while meridional 
structure is broadly the same in each case. The ‘frictionless’ model estimates phase lags 
much better than the ‘no friction/no cooling’ model. The approximations are poorest for 
the phase lags of 8’ and u’ near the equator; however, these quantities also have low 
amplitude there so the error is not significant. Phases are such that there is Walker-type 
circulation with low-level zonal flow into, and meridional flow away from, a maximum 
of 8: near the equator, where there is upward motion. 

8. STEADY ZONALLY VARYING SOLUTIONS: PRECIPITATION ESTIMATES 

As in section 6 ,  some simple precipitation estimates for the zonally varying model 
can be obtained by considering 4- 1, because the wet region then shrinks to a small 
area around the known position (xo,  yo)  of the maximum value of the prescribed forcing 
&. Matching approximate solutions in the wet and dry regions is difficult when the 
unknown boundary varies in two dimensions, so here we use a method for which 8 is 
assumed constant (8, say) in the wet region. (The numerical results in section 3 suggest 
that this approximation is reasonable: more rigorous analysis is difficult .) The boundary 
of the wet region is then the line along which 8, = Oc,  and within this region the 
precipitation is, from (4.3), 

P = QW = 4(e, - &)/(I - 4). (8.1) 

In this way the problem of finding the precipitation is reduced to finding the single value 
0,. 
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Figure 13. The zonally varying components of the steady response to the 'January Pacific' forcing shown in 
Fig. 2(a), with no latent heating. Results are shown for the analytic no-friction/no-cooling (short dash curves) 
and no-friction models (long dash curves). together with numerical results with friction and cooling (solid 
curves). (a) Amplitude and phase of the mid-level vcrtical velocity w ' / E .  This is equal to 0: for the no-friction/ 
no-cooling case. (b) Amplitude and phase of the mid-level temperature perturbation el/&. (c) Amplitude and 
phase of the zonal low-level velocity u ' / E .  (d) Amplitude and phase of the meridional low-level velocity u ' / E ,  
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As described at the end of section 4 it is useful to regard the moist model as the 
superposition of two linear dry models with forcing temperatures 8, and 8, = P/E. Within 
the wet region we require 8 = 8, and a convenient condition to determine 8, from the 
dry solutions is 

(The position (xo,yo) is always inside the wet region.) 

varying components, which are O(E)  as in section 7, to reduce (8.2) to 
The problem is further simplified by neglecting contributions to 13 from the zonally 

8, = e(yo)  [due to e,] + ?(yo) [due toe,]. (8.3) 

Precipitation estimates using a point source for OL in the limit 4 + 1 and an elliptical 
wet region for small 1 - q are described in appendix C. As a particular example we 
consider the January Pacific forcing as defined in section 3, which has a maximum of 1 
on the equator in the western Pacific. From the dry model we obtain 

- 
@(yo) [due to e,] = 0.7 

(The zonally varying contribution was 8’(yo) = 0-02 so its omission is justified.) Evaluating 
the point source estimate, Eq. (C4), for total precipitation gives 

P,,, = 20& (8.4) 
valid for 4 + 1. The elliptical source estimate is Eq. (C9) with OC determined using (8.3). 
Estimates of PToT and wet region area are shown in Fig. 14 for E = 0.1 and varying q ,  
along with numerical results obtained by integrating the time-dependent equations to 
equilibrium. Agreement is reasonable for PTOT: the values differ most near 4 = 1 where 
the numerical finite-difference model has difficulty resolving small wet regions. The area 
values diverge as area increases for decreasing q ,  because the ellipticity assumption 
breaks down. The estimate (8.4) can be regarded as an easily calculated upper bound 
for net precipitation. 

9. THE EFFECT OF VARYING THE ZONAL FORCING GRADIENT 

When forcing is zonally symmetric there is a zonal band of precipitation fed by 
meridional low-level inflow, as in Hadley circulation. In this section we examine the 
effect of increasing the zonal variation in the forcing O,, to see at what point the zonal 
band of precipitation breaks and Walker-type circulation becomes evident. 

Forcing of the form 

BS = 8,(y)[l - ysin(m/8)] (9.1) 

is used, with 8, as defined in (3.2) for the west Pacific, for January (maximum on the 
equator) and July (maximum north of the equator). This choice is not meant to represent 
any actual physical situation, but merely to provide convenient examples. The parameter 
y controls the zonal contrast in 8,. In each case the time-dependent equations were 
integrated to a near-steady state at time t = 60 (as in section 3), using E = 0-1, v = 0, 
4 = 8/9. 

This section ends with a brief description of a related seasonal cycle experiment. 
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Figure 14. Total precipitation PToT and area of precipitation for models with E = 0.1 and various q ,  and 
'January Pacific' forcing. Solid lines are for numerical results from time-dependent integrations. The dashed 
lines are for estimates obtained using an elliptical precipitation region of finite width: PToT approaches a 

limiting value (solid circle) as q -  1. 

( a )  Maximum forcing on equator 
With y increasing from zero in steps of 0.01, the precipitation pattern switches from 

a continuous band to an elongated patch on reaching y = 0.06. Changes in the pattern 
up to this point and beyond are gradual: the wet region thins and the rainband breaks 
near x = 4, where 8, is weakest along the equator, and broadens near x = -4 where 8, 
is strongest. 

The forcing 8, for y = 0.06 is shown in Fig. 15, together with low-level wind 
components and the precipitation map. The mid-level vertical velocity pattern (not 
shown) is almost identical to the precipitation-low-level divergence at the equator first 
appears where and when the rainband breaks. Meridional low-level flow is everywhere 
equatorward, so any equatorial divergence must be associated with the zonal flow. Figure 
15(b) shows equatorial westerlies within the precipitation region and easterlies elsewhere, 
reflecting a balance of frictional and pressure gradient terms along the equator. The 
zonal flow also contributes significantly to the convergence in the precipitation region. 
The temperature field (not shown) looks like the forcing pattern in Fig. 15(a), but with 
markedly less zonal contrast. 

(b )  Maximum forcing off the equator 
In this case 8, is largest at y = 1-5, about 15"N. When y is again increased in steps 

of 0.01 there is a gradual change in the precipitation pattern, with the zonal band breaking 
at y = 0.20. 

Maps of 8,, u,  u and P for y = 0-20 are shown in Fig. 16. As before, the rainband 
breaks near x = 4 where 8, is relatively low. The map of meridional velocity shows quite 
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Figure 15. The response to the forcing 8, = 8,(y)[l - ysin(nx/8)] with 8, = 1 - (y/4)' and y = 0.06, using 
E = 0.1, q = 8/9. (a) The forcing temperature 8, with min = 0.11, max = 1.1, c.i. = max/5. (b) The low-level 
zonal velocity u at, time t = 60 (effectively steady) with min = -0.24, max = 0.09, c.i. = min/5. The zero 
contour is dash-dotted, and positive contours solid. (c) The low-level meridional velocity u at time f = 60, with 

min = -0-38, max = 0.38, c.i. = max/5. (d) Precipitation P at time t = 60 with max = 0.06, c.i. = max/5. 
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Figure 15. (Continued) 

strong cross-equatorial flow directed northward into and across the region of precipitation, 
with weaker southward flow to the north-west of the precipitation. This component again 
is weakly convergent at the break in the rainband. 

The zonal flow is westerly in a strip north of the equator, with maximum strength 
just to the west of the heaviest precipitation and minimum west of the break in the 
rainband. The zonal gradient is sufficient to provide the low-level divergence required 
at the break, and to boost convergence across the centre of the precipitation region. Just 
west of the break there is a 'doldrums' region of very light winds. 

Compared with the previous case we see that considerably larger zonal contrast in 
8, is required to break the rainband off the equator. Due to Coriolis effects the zonal 
temperature gradient is less efficient at driving a zonal wind gradient away from the 
equator. 

(c) A seasonal cycle experiment 
A simple seasonal cycle experiment was carried out by prescribing 

where eJAN and OJUL are the January and July forcing fields described in section 3, 
o = 2n/1440 corresponds to a dimensional period of about 360 days. The maximum 
zonal forcing gradient changes in amplitude and location with time, being largest and 
closest to the equator in the model January when t = 0. The changes are slow com- 
pared with the atmospheric equilibration time of about 15 days (for E = 0.1), and the 
response is found to be almost in equilibrium with 8, at all times following an initial 
spin-up period. Accordingly the precipitation pattern gradually changes between those 
shown in Fig. 3 for January and July. 

The equatorial zonal forcing contrast in January is 0.33, which is much larger than 
that found to break the rainband in section 9(a), so there is then a patch of precipitation 
located over the maximum in 8,, with accompanying Walker-type circulation. Likewise, 
the July forcing zonal contrast of 0.13 north of the equator is too weak to break the 
rainband and a zonal precipitation pattern appears. Intermediate patterns for March and 
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Y = 1.5, and y = 0.2 using E = 0.1, 4 = 8/9. (a) The forcing temperature Os with min = -0.025, max = 1.2, 
c.i. = max/5. (b) The low-level zonal velocity u at time t = 60 with min = -0.39, max = 0.5. (c) The meridional 
low-level velocity u at time t = 60 with min = -0.07, max = 0.14. (d) Precipitation P a t  time f = 60 with rnax = 

0.14. c.i. = max/5. 
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Figure 17. Precipitation patterns obtained using the seasonal cycle forcing 

e, = 4elAN[i + cos(nt/720)1+ 4elUL[i - cos(nt/720)1 
with e = 0.1, 4 = 8/9. 

(a) Time t = 240 (March), max = 0.10; (b) time f = 480 (May), max = 0.10. c.i. = max/5. 
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May can be seen in Fig. 17: after January the precipitation zone shifts north of the 
equator, developing a north-eastward extension which then elongates to form a zonal 
strip. The sequence reverses from July to January. 

10. CONCLUSION 

A simple model with dynamic moisture effects has been used to examine the response 
of the tropical atmosphere to various simple heating distributions. Forcing related to sea 
surface temperature is prescribed, but precipitation is determined by the interaction of 
the atmospheric circulation and the moisture field, so the model selects its own latent 
heat release pattern. In the steady model, precipitation always occurs at the location of 
the maximum prescribed heating: at such a point low-level flow is convergent and 
moisture levels are soon driven to saturation both by evaporation and by low-level 
advection. The consequent latent heat release then adds to the prescribed heating, 
initiating a ‘convergence feedback’ process. This process is limited by the influx of 
surrounding drier air and by friction and Newtonian cooling. 

With forcing based on idealized Pacific s.s.t., qualitatively correct precipitation 
patterns were obtained. In January, when s.s.t. is largest in the equatorial west Pacific, 
rainfall is concentrated in a patch overlying the s.s.t. maximum, whereas a continuous 
zonal band of rain appears in July when there is less zonal s.s.t. contrast and the maximum 
s.s.t. is north of the equator. For the January case circulation is Walker-like with zonal 
flow feeding the upward motion in the precipitation region, but in July the circulation is 
Hadley-like with meridional flow feeding the upward motion. 

The zonally symmetric version of the model with and without latent heating is 
sufficiently simple to allow analytic solution of some special cases. In particular, the effect 
of the saturation moisture level 4 on the amount and extent of precipitation was analysed. 
The area of rainfall is closely proportional to (1 - q)1/3,  so as 4 approaches the critical 
value of 1 from below (so moist static stability changes from stable to neutral) the 
precipitation band shrinks toward a point above the s.s.t. maximum, while upward 
motion increases correspondingly. (The limit is not reached in practice, as diffusive and 
nonlinear effects become important on small scales.) 

When zonal variations are included the problem is complicated by the two-dimen- 
sional boundary of the precipitation region, which must be determined. We estimate that 
the rainfall area is proportional to (1 - q)’/* for an elliptical pattern, and net precipitation 
is weakly dependent on q ,  in general agreement with numerical results. Whether the 
precipitation pattern is zonal or a patch depends on the size and position of the maximum 
zonal forcing variation. On the equator weak variation is sufficient to drive a Walker 
circulation, whereas stronger variation is required to break a zonal rainband further from 
the equator. 

With such a simple model one can think of a long list of alterations to improve the 
agreement with observations and to add to the physics. One aspect that was initially 
tested was to make q temperature dependent, as in Gill (1982b). This had only a small 
quantitative effect so for simplicity q was subsequently taken to be constant. Another 
effect tested was to allow evaporation to depend on wind speed: again the effect was 
small. The discontinuous nature of the precipitation-dependent static stability used here 
could be altered to a continuous form by allowing some precipitation to occur before 
saturation, and partitioning increasing q between P and qr. 

The model wind is purely baroclinic: a fixed barotropic component could be added, 
and one effect to be studied would be the flow required to shift precipitation away from 
the position of maximum prescribed heating. The simple vertical structure also means 
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that a proper understanding of the relation between the prescribed heating and s.s.t. is 
beyond the scope of this model, but this is certainly needed. Further investigations of 
this aspect using general circulation models of the atmosphere could be made. 

The effects of land distribution have been omitted. Any model covering the entire 
tropics will need some representation of the continents: some preliminary calculations 
have been made by simply setting evaporation to zero over ‘land’. 

Finally, to address the problem of tropical ocean-atmosphere interaction the under- 
lying s.s.t. should respond in some way to atmospheric winds. A correspondingly simple 
ocean model is being constructed for this purpose. 

APPENDIX A: STEADY ZONALLY SYMMETRIC DRY SOLUTIONS 

(a) Parabolic forcing 6, = 1 - ( ~ / b ) ~  
A particular solution of (5 .5)  with u --+ 0 as ly/ -+ x is 

u = -(8&/b?) qj(y). 

Here 

with 

This function 3 is well known in oceanography as the solution for a ‘Yoshida jet’, which 
is illustrated in Fig. 11.14 of Gill (1982a). Mathematically, qj/yl” is a Lommel function 
of order 1/4 and argument y2/4. 

If we impose the condition u = 0 at the channel walls at y = ?b then free solutions 
of (5 .5)  must be added. It is convenient to use the odd and even free solutions (Abra- 
mowitz and Stegun 1970, section 19) 

with A, as above, and 

Then the solution with u vanishing on the channel walls is 
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The solution to (5.5) with u = 0 at y = b is 

is a Wronskian whose value is independent of yo. The potential temperature is 

and vertical velocity is simply 

w = - - ~ 8  fory # y o .  

APPENDIX B :  APPROXIMATE SOLUTIONS FOR THE ZONALLY SYMMETRIC MOIST MODEL 

The parabolic forcing B, = 1 - ( y / b ) 2  is considered. Suppose the northern edge of 
the wet region is at y+: then the dry equation (5 .5)  can be solved in the region y +  s2 y s2 b 
with 

u(b )  = 0 

U y ( Y + )  = 0 (Bib) 

where F ( y )  and H ( y )  are as defined in appendix A. The value o+(y+) is plotted in 
Fig. 12 as a function of y + .  

(a)  Point source 
Suppose the wet region is infinitely thin, so y+ + 0. Then the expression (B2) is 

simply a linear superposition of the solutions in appendix A for the dry equations forced 
by parabolic 8, and by a point source. The precipitation provides an extra heating term 
as described at the end of section 4, with in this case known position and with magnitude 
determined by requiring 8 = 8, at y = 0. 

Equation (6.5) for PToT with 4- 1 leads to the precipitation estimate 

fTOT = - 2 E F y ( o ) / H y  (O)* (33) 

(b)  Wet region of finite width 
In the wet region centred on y = 0 we approximate (6.1) by 

(1 - @UYY = --EOsy. 
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(This is valid for small 1 - 4.) Integrating twice for parabolic 8, and using symmetry and 
(Blb) leads to 

(1 - 4 ) ~  = &y(y2 - 3 ~ : ) / 3 6 ~  (B5) 

for -y+ s y G y+.  

and PToT is given by (6.5). 

expression 

Matching (B2) and (B5) at y ,  gives an equation to solve for y,. Then u ,  is known 

For small y we can evaluate (B2) at y = 0 and substitute in (B5) to obtain the explicit 

y: = -3b2(1 - 4)Fy(0)/2Hy(0). (B6) 

APPENDIX c: PRECIPITATION ESTIMATES 

The zonal average of the forcing temperature BL = P / E  is 

where I is the length of the channel. The total precipitation is related to e, by 

(a)  Point source 
In the limit 4 + 1 we take the wet region to be a point source of latent heat located 

at (xo, yo)  and put 
- 

O L  = [S(Y - Y o >  (C2) 
where 

1 = PTOT/&l. 

From appendix A ,  
- 
@ ( Y o )  [due to&l = - i q - Y o ) H y ( Y o ) / w .  (C3)  

For a point source we must have Bc = B,(x,,yo) so the matching condition (8.3) leads to 

-&lW 
PTOT = Hy ( -Y 0 M y  (Y 0 1 { ~ s @ o , Y o )  - Z(Y0) [due to 3J (C4) 

where the term { } can be calculated using the linear zonally symmetric dry model. 

(b)  Distributed source 
To extend this estimate to small (1 - 4), suppose that near (xo,yo)  the prescribed 

forcing has the form 

(C5) Bs = 8s(~o,yo) - A*(x - x,)’ - B 2 ( y  - yo)’. 

Then the wet region where 8 , s  BC is elliptical in shape. Using (8.1) we obtain in the wet 
region 

B L  = [r2 - A2(x  - x , ) ~  - B 2 ( y  - ~ , ) ~ ] 4 / ( 1  - 4) (C6) 



1268 

where 
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Hence 

44 [r2 - B 2 ( y  - y o ) 2 ] 3 / 2  y -  < y < y +  

l o  otherwise 

where 

Y +  = Y o  + r l B  
y- .  = y o  - r/B. 

(We have assumed that the elliptical wet region closes within the periodic channel.) From 
(Cl) the net precipitation over the area nr2 /AB of the wet region is 

&7c4r4 
2(1 - 4 ) A B '  PTOT = 

As Q+ 1 the estimates (C9) and (C4) must agree, so r must be 0[(1 - 4)'14]. 
- The dry zonally symmetric equations can be solved with forcing 3, to obtain 
B ( y o )  [due to 3,*] as a function of Bc. Then tlc7 and hence r,  is determined by applying 
the matching condition (8.3). 
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