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[1] As a step toward an increased understanding of climate change over West Africa,
in this paper we analyze the relationship between rainfall changes and monsoon dynamics
in high‐resolution regional climate model experiments performed using the Regional
Climate Model (RegCM3). Multidecadal simulations are carried out for present‐day and
future climate conditions under increased greenhouse gas forcing driven by the global
climate model European Center/Hamburg 5 (ECHAM5). Compared to the present day, the
future scenario simulation produces drier conditions over the Sahel and wetter conditions
over orographic areas. The Sahel drying is accompanied by a weaker monsoon flow, a
southward migration and strengthening of the African Easterly Jet, a weakening of the
Tropical Easterly Jet, a decrease of the deep core of ascent between the jets, and reduced
African Easterly Wave activity. These circulation changes are characteristics of dry periods
over the Sahel and are similar to the conditions found in the late twentieth century
observed drought over the region. Changes in extreme events suggest that the drier
conditions over the Sahel are associated with more frequent occurrences of drought
periods. The projected drought over the Sahel is thus physically consistent with changes in
the monsoon circulation and the extreme indices (maximum dry spell length and 5 day
precipitation).
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1. Introduction

[2] Since the late 1960s, West Africa has experienced
multidecadal episodes of below normal rainfall, prompting
numerous investigations of the possible causes [Lamb and
Peppler, 1992; Nicholson, 2000; Dai et al., 2004; Lu and
Delworth, 2005]. West African rainfall variability has been
linked to such factors as ocean sea surface temperature
anomalies [Giannini et al., 2003; Hoerling et al., 2006],
continental surface conditions [Semazzi and Sun, 1997;Wang
and Eltahir, 2000], or atmospheric circulation anomalies
[Nicholson and Grist, 2001; Jenkins et al., 2005; Nicholson,
2008]. In addition to the present‐day variability, climate
change resulting from anthropogenic emissions of green-

house gases (GHGs) will likely impact human societies and
natural ecosystems over West Africa [Christensen et al.,
2007]. Therefore, understanding the physical mechanisms
underlying projections of future change over the region is
of critical importance.
[3] To date, Atmospheric‐Ocean Global Coupled Models

(AOGCMs) have been used to simulate and analyze climate
change over West Africa [Kamga et al., 2005; Biasutti and
Giannini, 2006; Hoerling et al., 2006]. However, owing to
their relatively coarse spatial resolution (order of a few hun-
dred kilometers), these models are often not suitable for
simulating detailed regional weather and climate patterns
[Giorgi and Mearns, 1999; Jenkins et al., 2002; Sylla et al.,
2009a]. Regional Climate Models (RCMs) can be used to
dynamically downscale AOGCM future scenarios down to
scales closer to those required for impact and adaptation
studies [Giorgi and Mearns, 1999]. While numerous RCM‐
based climate change scenarios have been carried for the
midlatitudes [e.g., Giorgi et al., 1994; Mearns et al., 1995;
Leung et al., 2004;McGregor and Walsh, 1994; Christensen
et al., 1998;Déqué et al., 2005, 2007], few RCM studies have
investigated the West African region [Paeth and Thamm,
2007].
[4] In addition, the spread of AR4‐GCMs overWest Africa

is quite large, and the response of precipitation to anthro-
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pogenic climate change is uncertain [Cook and Vizy, 2006;
Christensen et al., 2007; Joly et al., 2007; Biasutti et al.,
2008]. Therefore the construction of climate change sce-
narios for West Africa needs to be approached by using
ensembles of RCM simulations driven by different AOGCMs.
However, before using an RCM in this ensemble context, it is
important to assess the physical consistency of the processes
relating changes in precipitation and monsoon dynamics
when RCMs are driven by AOGCM fields.
[5] Toward this goal, in this paper we examine multi-

decadal experiments of late 21st century (2081–2100) changes
in West Africa temperature, precipitation, and monsoon
dynamics under the midrange IPCC A1B GHG emission
scenario [Nakicenovic et al., 2000] as simulated by a nested
RCM. The focus of the analysis is on the consistency of
precipitation changes over the Sahel with changes in relevant
monsoon circulation features and extremes as simulated by the
Regional ClimateModel (RegCM3). This assessment provides
information necessary to evaluate the applicability of the
RegCMmodeling system for climate change projections over
West Africa. We therefore stress that this is a process study
and not a study aimed at providing scenarios over the region
for application to impact and adaptation work.

2. Model and Experiment

[6] The model used in this study is the latest version of the
International Centre for Theoretical Physics (ICTP) Regional
Climate Model, RegCM3 [Giorgi et al., 1993a, 1993b; Pal
et al., 2007]. The model domain, calibration, and configu-
ration are the same as those used by Sylla et al. [2009a],
whose selection was based on an analysis of the model per-
formance. The reader is thus refereed to the work of Sylla
et al. [2009a] for a detailed description of the model’s
characteristics.
[7] Initial and lateral boundary conditions for the present‐

day and future scenario simulations are provided by the Max
Planck Institute for Meteorology GCM, European Center/

Hamburg 5 (ECHAM5) [Roeckner et al., 2003]. ECHAM5
is coupled to the MPIOM ocean model [Jungclaus et al.,
2006], which also provides 6‐hourly data of present and
future sea surface temperature. These are interpolated onto
the RegCM grid and used in the corresponding simulations.
[8] RegCM3 is integrated over a West Africa domain (e.g.,

see Figure 1) for a reference present‐day period (1981–2000)
and a future period (A1B scenario: 2081–2100) at 40 km
horizontal grid spacing with 18 vertical levels. Note that the
A1B scenario lies toward the middle of the IPCC emission
scenario range, with CO2 concentrations of ∼650 ppm by
2100. We examine changes between the late 20th and
21st century by differencing the RegCM3 simulations of the
two time periods (A1B minus reference). As mentioned, the
focus of our analysis is on the consistency of RegCM3 pro-
jected precipitation changes over the Sahel with changes in
key features of the monsoon circulation and how these
changes and interconnections compare with those found
during the Sahelian drought of the late twentieth century. As a
measure of hydroclimatic drought, we consider two quanti-
ties: the maximum dry spell length and the maximum 5‐day
precipitation, which have been used as hydroclimatic indi-
cators by Christensen and Christensen [2003], Pal et al.
[2004], and Gao et al. [2006].

3. Results and Discussion

[9] For the peak monsoon period (June–August), RegCM3
displays warming (A1B‐reference) of 2–6 K over the region
(Figure 1a). The smallest temperature increases are found
over the orographic zones of Guinea, Cameroun Mountains,
and Jos Plateau. Larger warming occurs north of the Gulf of
Guinea, with a maximum over the Sahara desert. The tem-
perature changes are significant at the 99% level of confi-
dence. Projected rainfall shows significant changes over
orographic areas, with an increase of 10% in the Guinea
Highlands and up to 30% around the Cameroun Mountains
and Jos Plateau (Figure 1b). Outside the orographic regions,

Figure 1. Average summer differences (A1B minus reference) for (a) temperature (in degrees Celsius)
and (b) precipitation (percent of present‐day values). All temperature changes are significant at 99% of
confidence level, and all precipitation changes are significant at 90%. Areas shaded in gray in Figure 1b
are where precipitation changes are significant at 99% of confidence level. Areas where precipitation is less
than 0.5 mm/d have been masked out.
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RegCM3 indicates drier conditions in the last two decades
of the 21st century. The drying is large, over the Sahel, with
up to 60% precipitation decrease statistically significant at
the 99% of confidence level (Figure 1b, shaded in gray). Note
that rainfall increases are found where the smallest warming
is located, indicating that the increase in surface evaporative
cooling and cloud cover tends to locally counterbalance the
greenhouse warming.
[10] Indeed, cloudiness is likely a key factor in modulating

the temperature and precipitation changes. Figure 2 presents
changes in total cloud cover (in percent of present‐day value)
between the late 21st century time period and the present day.
Total cloud cover is calculated from the individual layer’s
cloud amounts using the random overlap assumption. Cloud
cover is projected to decrease over the entire West Africa
region. The smallest changes (∼−1% up to −3%) are located
around the orographic regions of Guinea, Jos, and Cameroun,
where rainfall increases are predicted. Over the Sahel, changes
are up to −30% or −40%, consistently, with the drier condi-
tions and large warming (4–5 K) projected over the region.
The largest percentage cloud cover reduction is found over
the Sahara, where the highest warming occurs; however, the
large percentage change there is amplified by the very low
present‐day cloud amounts. The results of Figure 2 indicate
that cloud feedbacks are important in modulating the mag-
nitude of warming.
[11] The physical consistency of the precipitation reduc-

tion over the Sahel is diagnosed by investigating changes
(A1B minus reference) in key components of the monsoon
circulation: the monsoon flow, the convection (pressure
velocity), the African Easterly Jet (AEJ), the Tropical East-
erly Jet (TEJ), and the African Easterly Waves (AEWs).
These features significantly modulate convection and rainfall.
In fact, several observational studies have shown that most
precipitation events in West Africa are associated with fea-
tures that are rainfall‐generating systems embedded in the
AEWs and organized along the AEJ, with the strength of the
TEJ strongly contributing to the duration of their lifetime

[D’Amato and Lebel, 1998; Mohr and Thorncroft, 2006;
Diedhiou et al., 2001; Janicot, 1997]. In addition, the strength
and the northward extent of the large core of ascent lying
between the AEJ and TEJ significantly affect the rain belt
[Nicholson, 2008]. Furthermore, it has been shown that a
strongerAEJ transportsmoremoisture away fromWestAfrica,
leading to drier conditions over the continent [Paeth and
Thamm, 2007; Abiodun et al., 2008].
[12] Global climate models traditionally have had problems

in simulating the strength and location of these circulation
features over West Africa. An example illustrating this is
shown in Figure 3, which presents the vertical cross section
of present‐day, averaged summer zonal wind over the Sahel
as simulated by six GCMs in the CMIP3 archive [Meehl et al.,
2007]. Only CGCM3.1 (Figure 3a) and the UKMO‐HadCM3
(Figure 3f) are able to capture a proper vertical profile of the
Sahelian atmosphere during the summer season. They both
show the monsoon flow (around 4 m/s) in the lower levels,
the AEJ (around 10 m/s) in the midlevels, and the TEJ (up
to 12 m/s) in the upper levels. CSIRO‐MK3.5 (Figure 3b)
completely misses the monsoon flow and the TEJ but finds
a core of easterly wind around 700 hPa that resembles the
AEJ. The IPSL‐CM4 GCM (Figure 3c) shows a reasonable
monsoon flow, a strong AEJ, and a very weak TEJ. The
NCAR models, PCM (Figure 3d) and CCSM (Figure 3e),
do not capture well any of the relevant circulation features;
however, some widely spread easterly winds can be found
in the midlevels. This implies that the spread of the large‐
scale circulation simulated by different GCMs is quite large.
Therefore, in order to study the drought signature in the cir-
culation in climate change projections, the use of good
performing models in simulating theses features is critical. In
the work of Sylla et al. [2009a], it was indeed shown that
ECHAM5 produced a reasonable location of the large‐scale
circulation features during the summer season over West
Africa and that RegCM3 was actually able to improve the
simulation of these features provided by the global model.
[13] In the future climate simulation, RegCM3 projects a

slight increase in the ascent of air over the land‐sea border
between the Gulf of Guinea and the land areas (between
equator and 5°N) and over the southern Sahara from the lower
troposphere to midtroposphere (Figure 4a). At the lower
latitudes the increase is likely due to an increase in moist
convection as the relative humidity also increases at the same
latitudes and up to the same vertical level (Figure 4b). The
increase in rising motions over the southern Sahara is related
to increased dry convection in association with the summer
season thermal low. The most important feature in this
region is the deep core of ascent around 10°N, which highly
contributes to the location and intensity of the rain belt over
the Sahel [Nicholson, 2008]. The projections indicate a
reduction of its intensity at all levels of the troposphere.
Consequently, the relative humidity decreases, particularly in
the midlevels (∼850–200 hPa).
[14] During the late 21st century, the simulations show that

the low‐level (925 hPa) horizontal wind field weakens over
the West Africa coast and in the Gulf of Guinea (∼−0.5 m/s),
strengthens over the northern Sahel (0.5–1.5 m/s), and
weakens again in the Sahara (−0.5 to −2.0 m/s) (Figure 5).
This is related to the local temperature increases that may
cause variations in temperature gradients throughout the

Figure 2. Average summer differences (A1B minus refer-
ence) for cloud cover (percent of present‐day values). Changes
are significant at 99% of confidence level.
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domain. The weakening of the horizontal wind magnitude
along the West African coast indicates a reduction of the
monsoon fluxes that results in less moisture entering West
Africa from the Atlantic Ocean, thereby inhibiting rainfall.
[15] The zonal wind at the level of the AEJ decreases

slightly (up to 1 m/s) north of 16°N and increases south of

that latitude by up to 4 m/s around 6°N (Figure 6). This
implies a southward displacement and a strengthening of the
AEJ during the late 21st century period, which has been
observed during 20th century dry periods [Jenkins et al.,
2005]. Although the frequency and strength of ENSO events
could eventually vary from the 20th and 21st centuries and

Figure 3. Vertical cross section of present‐day (1981–2000) averaged summer zonal wind (in m/s) from
someAR4 globalmodels over the Sahel: (a) CGCM3.1, (b) CSIRO‐MK3.5, (c) IPSL‐CM4, (d) NCAR‐PCM,
(e) NCAR‐CCSM, and (f) UKMO‐HadCM3.
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could affect the position and strength of this jet [Janicot,
1997], GHG‐induced warming may impact changes of the
AEJ by setting a stronger temperature gradient between the
Sahara and the Gulf of Guinea [Cook, 1999; Thorncroft and
Blackburn, 1999]. In this regard, Figure 7 shows the merid-
ional cross section of temperature for the present‐day and
future periods as simulated by RegCM3. Although tempera-
tures are higher for all latitudes during the late 21st century
than during the present day, the warming is greater north of

15°N than it is south of it. This implies a strengthening of the
temperature gradient between the Sahara and the Gulf of
Guinea, which should impact the position and the strength of
theAEJ [Cook, 1999;Thorncroft and Blackburn, 1999; Steiner
et al., 2009].
[16] At 200 hPa, RegCM3 shows an overall decrease of

the zonal wind throughout the domain and, in particular,
between the equator and 10°N, the tracking region of the
TEJ over West Africa (Figure 8). This indicates a weakening

Figure 4. Cross section of average summer differences (A1B minus reference) for (a) Omega (10−3 Pa/s)
and (b) relative humidity (ratio in percent). All changes are significant at 90% of confidence level. Areas
shaded in gray are where changes are significant at 99% of confidence level.

Figure 5. Average summer differences (A1B minus refer-
ence) for the wind field at 925 hPa. Units are m/s, and shaded
areas are where changes are significant at 99% of confidence
level.

Figure 6. Average summer differences (A1B minus refer-
ence) for the zonal wind at 700 hPa. Units are m/s, and
shaded areas are where changes are significant at 99% of
confidence level.
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of the TEJ for the late 21st century period, again consistent
with 20th century dry periods [Jenkins et al., 2005].
[17] Figure 9 presents the difference of the variance of the

2–10 days band‐pass‐filtered 700 hPa meridional wind
between the future and the reference period. The primary
source of variance is associated with the passage of AEWs
during the summer season. The variance generally decreases
between 10°N and 20°N from eastern to westernWest Africa,
more markedly in the central Sahel. This suggests that the
AEWs’ activity in the main tracking region is weakened
during the late 21st century.
[18] In summary, overall, the drier conditions projected by

RegCM3 over the Sahel during the 21st century are accom-
panied by a weaker monsoon flow, a southward migration

and strengthening of the AEJ, a weakening of TEJ, a decrease
of the deep core of ascent between these jets, a decreases
of the relative humidity, and reduced AEWs’ activity. The
behavior of these features is characteristic of a dry period
over the Sahel, and their changes are similar to those observed
during the late twentieth century drought in the region. In fact,
Fontaine and Janicot [1992] and Nicholson and Grist [2001]
showed that during dry years the monsoon flow from the
Atlantic Ocean to the continent is reduced. Further, using
National Centers for Environmental Prediction (NCEP)
reanalysis and RegCM simulations, respectively, Nicholson
[2008] and Jenkins et al. [2005] demonstrated that during
the Sahelian drought the AEJ has a more equatorward
position, while the strength of the TEJ is weakened. Finally,
both Grist [2002] (using NCEP reanalysis) and Sylla et al.
[2009b] (using RegCM3 simulations) found that AEWs are
more active in wet years than they are in dry years. These
findings show that the precipitation signal projected by
RegCM3 is consistent with changes in the main features of
the monsoon circulation (i.e., monsoon flow, the ascent, the
AEJ, the TEJ, and the AEWs), which are, in turn, internally
consistent. Therefore, the projected changes in the monsoon
circulation are coherent with the late twentieth century ob-
servations during the Sahelian drought.
[19] Although the change in mean rainfall shows a general

decreasing trend over most of West Africa (except over
orographic regions), it does not indicate how the occurrence
of flood and drought conditions might change. On the one
hand, higher temperatures and reduced precipitation may
increase drying, leading to increased drought conditions. On
the other hand, the increased moisture holding capacity of
the atmosphere due to the warmer temperatures makes the
region more prone to flood events. As mentioned, as a mea-
sure of drought conditions, we here take the maximum dry
spell length. In general, the changes in maximum dry spell
length (Figure 10a) follow the changes in mean precipitation
(Figure 1b), suggesting an increase in persistence of drought
conditions. Not surprisingly, there is also a decrease in high‐
intensity precipitation (i.e., maximum 5 day precipitation)
(Figure 10b). Conversely, along the CamerounMountains and
Jos Plateau, where an increase in precipitation is projected,
there is a reduction in drought persistence and greater 5 day

Figure 7. Meridional cross section of summer temperature
(A1B and reference) averaged between 10°E and 10°W.
Units are degrees Celsius.

Figure 8. Average summer differences (A1B minus refer-
ence) for the zonal wind at 200 hPa. Units are m/s, and
shaded areas are where changes are significant at 99% of
confidence level.

Figure 9. Average summer differences (A1B minus refer-
ence) for the 2–10 days band‐pass‐filtered meridional wind
variance at 700 hPa. Units are m/s, and changes are signifi-
cant at 99% of confidence level.
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intensity precipitation, suggesting increased vulnerability to
flood in these regions (Figure 10b). Over the coasts of the
Guinea Highlands, both dry spell length and maximum 5 day
precipitation are enhanced, while mean precipitation slightly
increases. This implies a greater contribution of more fre-
quent, extreme precipitation events than of maximum dry
spell length changes.

4. Summary and Conclusion

[20] In our scenario, anthropogenic GHG‐induced global
warming leads to drier conditions over most of West Africa,
and especially over the Sahel. The changes in projected
rainfall are consistent with the changes in the main features of
the monsoon circulation. More specifically, the moisture‐
laden monsoon fluxes weaken, the AEJ undergoes a south-
ward migration and intensifies, the TEJ core speed decreases,
the AEWs’ activity lessens, and the deep core of ascent lying
between the AEJ and the TEJ weakens. These simulated
changes in the circulation are consistent with drier conditions
over the Sahel, as similar changes in the behavior of the AEJ,
the TEJ, the AEWs, and the ascent have been observed during
the dry period of the late twentieth century in the region.
[21] Our results also indicate significant changes in the

occurrence of dry spell length and 5 day precipitation inten-
sity over West Africa that are generally consistent with the
changes in mean precipitation. In regions of increased sim-
ulated drying, drought persistence (i.e., the maximum dry spell
length) increases, while the maximum 5 day precipitation
decreases. In the regions of complex topography where rain-
fall is projected to increase, drought persistence decreases,
and 5 day precipitation intensity increases. The main excep-
tion to this is along the coast of the Guinea Highlands, where
both flood and drought intensity are projected to increase.

[22] This work provides evidence that projected rainfall
changes from RegCM3 are consistent with changes in the
monsoon circulation. This provides robust indications toward
the use of the RegCM3 modeling system to simulate climate
change conditions over West Africa. As mentioned, because
of the large uncertainty in climate change projections over
West Africa [Christensen et al., 2007], a multimodel ensemble
approach where RCMs are driven by different GCMs needs
to be used in order to provide information that is useful for
impact and adaptation study. Toward this goal, we plan to
use the RegCMmodel for the production of a new generation
of climate change scenarios for the whole of Africa under the
Regional Climate Change Hyper‐Matrix Framework [Giorgi
et al., 2008] and the Coordinated Regional Climate Down-
scaling Experiment (CORDEX) [Giorgi et al., 2009].

[23] Acknowledgments. These simulations have been done at the
Abdus Salam International Centre for Theoretical Physics (Trieste, Italy)
under the West African Climate Change Fellowship. Therefore, the authors
would like to thank a Physics of Weather and Climate Group scientist, Fred
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