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ABSTRACT

A buoyancy flux across the sea surface between the outcropping of isopycnals must be balanced by a subsurface
diapycnal buoyancy flux. If this flux were only advective, its derivative with respect to buoyancy would provide
a direct estimate of the buildup of volume between isopycnals or rate of water mass formation. A diapycnal
velocity, however, requires digpycnal mixing which also causes a diapycnal buoyancy flux, and it is shown that
there is no reason to expect a simple relationship between the advective and diffusive fluxes. For a surface layer
with vigorous vertical mixing and weak horizontal mixing, however, the diapycnal diffusive flux of buoyancy
is small, and the flow through the base of the mixed layer can be derived from the derivative of the surface
buoyancy flux with respect to buoyancy. These points are illustrated by examination of the Phillips similarity
solution for the convective circulation driven in a channel by a uniform surface buoyancy loss.

1. Introduction

An intriguing way of looking at water mass forma-
tion and ocean circulation was introduced by Walin
(1982) and pursued by Tziperman (1986) and Speer
(1993). Figure 1 is a schematic section of the ocean
showing two isopycnal surfaces, with buoyancy b and
b + b [where b = —g(p — po)/ po, With p, a reference
density], intersecting the sea surface. It is supposed
that the area of the sea surface between the outcropping
of these two isopycnals is 4S5 and that the spatially av-
eraged surface buoyancy loss over this area is B, per
unit area [given by By = —c;,'gaps'Q + gBspo ' (E
— P), where ¢, is the specific heat of water at constant
pressure, a = —p~'(9p/dT ), ; is the coefficient of ex-
pansion of water at fixed pressure p and salinity s, Q
is the net heat flux, 8 = p~'(8p/3s), 1, E is the evap-
oration rate, and P is the rainfall rate (Gill 1982)].
However, by the definition of an isopycnal, the density
of the fluid between these isopycnals cannot change,
so the surface buoyancy loss must be balanced within
the ocean by a convergence of the buoyancy flux across
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the two isopycnals. The problem need not be steady
with stationary isopycnals, though for the present we
assume that it is and return to the issue of time depen-
dence in section 2b.

Let A(b) represent the volume flux across the iso-
pycnal with buoyancy b between the sea surface and a
control surface C (Fig. 1). The outward volume flux
across C between b and b + db is then —(dA/db)db.
The advective buoyancy flux across b is Ab, and we
denote the diffusive buoyancy flux by

b
D= L—Kd-&dSb, (1.1)

where K, is the diapycnal eddy diffusivity and n a co-
ordinate normal to isopycnals (increasing in the direc-
tion of increasing b). The integral is over the isopycnal
surface in the region of interest, with dS), an area ele-
ment of that surface. (In the purely laminar case the
diapycnal diffusive flux is zero in view of the definition
of velocity as mass flux divided by density, but we as-
sume that 4 refers to a mean flow and that there are
unresolved motions that are parameterized with the
eddy diffusivity K,.)

Considering the control volume between the sea
surface and surface C, and between isopycnals b and
b + 6b, in the limit 66 ~ 0 (Fig. 1) the buoyancy
budget implies
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FI1G. 1. Schematic of the surface outcropping of isopycnals with
buoyancy b and b + 8b. The sea surface area between the two iso-
pycnals is 85, and the spatially averaged rate of surface buoyancy
loss there is Bo. The location of the bounding control surface C is
arbitrary.

ds dbD dA
—+—=-b—=0,
db db db
where a steady state is assumed and there is no con-
tribution from an expanding or contracting control
volume. Rearranging,

d
—JE(AI)) + By (1.2)

A = —By(dS/db) — dD/db . (1.3)
If we define F in terms of the surface forcing as
= —By(dS/db) , (1.4)

then the diapycnal volume flux 4 differs from F by a
term —dD/db.

The subduction across the surface C, or water mass
formation rate —dA/db, can be written as

—dA/db = —dF/db + d*D/db?>. (1.5)

The first term on the right-hand side is derivable from
surface properties and can be regarded as the formation
rate associated with air-sea interaction. It is associated
with a flow A4 across isopycnals, but this diapycnal ad-
vection can only occur in the presence of diapycnal
mixing; otherwise the isopycnal would just be advected.
This mixing then also contributes to the diapycnal
buoyancy flux, and —dF/db cannot be interpreted as
the mean outflow.

The contribution of both diapycnal advection and
mixing was recognized by Walin (1982) (who, inci-
dentally, examined the problem in terms of tempera-
ture rather than buoyancy), though he did not quantify
the balance between advection, mixing, and heating,
and his main application assumed that the diffusive
flux was negligible. Tziperman (1986) erroneously
stated that the only diapycnal mass flux is advective,
though he did recognize that diapycnal advection re-
quires mixing. Speer and Tziperman (1992) computed
Fand dF/db for the North Atlantic and also mentioned
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the role of interior mixing. The interpretation of the
functions F and dF/db in terms of interior flow and
mixing thus remains rather unclear; there appears to
be room for clarification of the problem and an inves-
tigation of the relative importance of advection and
mixing for particular choices of the control surface C.

The role of the diffusive flux is most obviously crucial
if the region being examined is large enough for the
isopycnal b to terminate everywhere at a solid boundary
or the sea surface, enclosing a bowl of lighter water
between it and the sea surface. In that case, as recog-
nized by Walin (1982), the volume flux across » must
be zero if the volume of the bowl above it is constant,
so that the diapycnal buoyancy flux required to balance
B, must be diffusive. In smaller regions, with exchanges
permitted across sills or open boundaries, the advective
flux does not cancel but determines the strength of the
exchange. There is also the likelihood in time-depen-
dent problems that the volume of water between two
isopycnals changes, particularly seasonally, so that at
any given time the surface buoyancy flux need not be
balanced by diapycnal mixing even for an isopycnal
below a closed bowl of fluid.

The purpose of this paper is to examine the rela-
tionship between advective and diffusive diapycnal
buoyancy fluxes. General formulas (section 2) for an
arbitrary choice of the control surface C will suggest
that there is no simple relationship, so that dF/d b with
F from (1.4) must not be interpreted in general as a
mean flow and does not, in fact, even give an upper
or lower bound for the net water mass formation rate.
It will be shown in section 2a, however, that if C is the
base of a mixed layer, within which the isopycnals are
nearly vertical, and if the mixing in this layer is only
in the vertical direction, then the second term on the
right-hand side of (1.5) is negligible and, at least for a
steady state, the outflow from the base of the mixed
layer is given by —dF/db. This is not surprising, but
seems not to have been explicitly discussed before, al-
though the connection between F and mixed layer flow
was noted by Speer (1993).

In section 3 we verify these general conclusions for
similarity solutions of Phillips’ (1966 ) Red Sea model,
a two-dimensional (x, z) channel of uniform depth
driven by a steady, uniform, surface buoyancy loss.
Particular solutions of this (section 4) show that, as
expected, there is generally no simple relationship be-
tween 4 and F, or dA/db (representing outflow as a
function of ) and dF/db, if C is a vertical control
surface at the open end of the channel. In special cir-
cumstances, however, the diffusive diapycnal flux may
be negligible, so that —dF/db does become a direct
and useful measure of water mass formation, and it is
also confirmed that this is true if C is taken to be the
base of a surface layer of strong mixing. These results
together with other aspects of the problem are reviewed
in section 5.
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2. Advection or diffusion?

The volume flux 4 may be written as

=f(u-n)dSb, (2.1)
b

where n is the unit normal to the isopycnal and, ig-
noring minor metric changes associated with an iso-
pycnal/diapycnal coordinate system, u satisfies the
buoyancy equation

b
u- Vb="‘(Kda )

for a steady state (we discuss time dependence later).
After substituting Vb = (db/dn)n, the advective buoy-
ancy flux may be written

- o3 (e (s e

The contributions Ab from (2.3) and D from (1.1)
show similar combinations of b, K; and n, but there
appears to be no reason to expect any simple relation-
ship between them. The contribution Ab from (2.3) is
also sensitive to the choice of the reference density po,
so it is appropriate instead to examine the divergence
of the buoyancy flux and compare the different terms
in (1.5).

From (2.3) we may write

ob
A= f b (Kd )dSb s

d f db
dD/db = | Ki% dSy

(2.2)

(2.4)
whereas
(2.5)

and we cannot take the derivative d/db inside the in-
tegral to operate solely on K,8b/0dn since the lateral
boundaries of the control volume, and particularly that
at the sea surface, are not orthogonal to isopycnals. [If
the lateral boundaries of the control volume were or-
thogonal to isopycnals, we could interchange the de-
rivative and integral in (2.5) to obtain 4 = —dD/db,
simply a derivation of (2.2)!]

There is no reason to expect a simple relatlonshlp
between A and dD/db in general, so that deriving A4,
or the more important dA/db, in terms of By(dS/d b)
does not seem possible without a knowledge of the
mixing. One could still regard the net interior formation
rate —dA/db as being made up of a known formation
rate

d as

db (B 0 db)
from air-sea interaction and a formation rate d>D/
db? from mixing, but the utility of calculating the
former would seem to be limited unless something def-
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inite can be said about the latter. This does turn out
to be possible if the control surface C is taken to be
the base of a surface layer with strong vertical, but not

-horizontal, mixing. And, of course, as emphasized ear-

lier, for a closed domain 4 = 0 so that the air-sea flux
must be balanced by diapycnal mixing.

a. Scale analysis for a mixed layer

We can compare the two terms on the right-hand
side of (1.3) for the situation where C is the base of a
surface mixing layer of thickness 4. If « denotes the
vertical eddy diffusivity in this layer, and we ignore
horizontal mixing, then the diapycnal buoyancy flux

is given by
ob
= —d
D f K % X,

where we take coordinates x horizontally and z verti-
cally in Fig. 1 and are considering the problem per unit
horizontal distance in the other horizontal direction.
The integral in (2.6) is over the horizontal distance
covered by the isopycnal of buoyancy b from the base
of the surface layer to the sea surface. It may be written

(2.6)

0
D=f x%s“dz, (2.7)
-n 0z

where s is the isopycnal slope dz/dx. The z integral is
for constant b rather than constant x. Given the surface
boundary condition xdb/dz = —Bg at z = 0, D is thus
of order s~'h By, where a typical value of s in the
surface layer is used. Hence, we can compare the mix-
ing term of ( 1.3) with the surface buoyancy flux term,
obtaining

| dD/db|

— 2.8
[ Bo(0x/9b), ] (2.8)

d
o' p (s™'hBy)|.

If # is the only quantity that varies with x, then the

ratio becomes
# [,
dx

and is small if| as is likely, the slope of the mixed layer
base is much less than that of isopycnals in the mixed
layer. Alternatively, the ratio is of order (h/L)s™,
where L is the horizontal scale of variation of By or s.

In the next section we shall compare 4 and F for a
particular circulation model, but first we consider the
extension of the results so far to the time-dependent
case.

b. Time dependence

The diapycnal velocity is now (u — U) - n, where U
is the motion of isopycnals relative to fixed coordinates
and thus satisfies

ob/ot+U-Vb=0, (2.9)
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or

db/dt + U-n(db/dn) = 0. (2.10)

The buoyancy equation is now

ob 0

—+u-Vb=—(Kdab), (2.11)

ot an\"?an

and again u- Vb = (u-n)(db/0n) so that subtracting
(2.10) from (2.11) we have a diapycnal flow

(W-U)n=2 (Kd%)/(fé), 2.12)
n on

exactly as for the steady problem.

The derivation of 4, and hence the outflow —(94/
db)éb from the control volume, depends upon assum-
ing no changes in the volume of the control volume.
Assuming, though, that changes in this volume also
count as water mass formation, ( 1.3) may still be used.
This issue need not arise if one averages over a seasonal
cycle, but evaluation of (1.3) would then require av-
eraging the terms on the right-hand side for each b. As
for the steady case, there is no reason to assume the
diffusion term on the right-hand side to be either neg-
ligible or to be simply related to the other terms. It is
not yet clear whether the result of section 2a can be
carried over easily to the time-dependent problem.

3. Application to the Phillips Red Sea model

The results of the preceding sections suggest that
there is no general relationship between the diapycnal
advection 4(b) alone and the quantity F = —By(dS/
db) unless the control surface C is at the base of a
surface layer with strong mixing. To illustrate this, and
to check for particular situations in which 4 and F
might be simply related, it seems worthwhile to evaluate
both 4 and F for a model for which the solutions are
known.

Here we consider the circulation in the vertical plane
(0<x<L,0 < z< h)of a narrow sea of length L
driven by a constant and spatially uniform surface
buoyancy loss rate By and separated from the exterior
ocean by a sill of depth 2. With the Boussinesq ap-
proximation and retaining only vertical mixing, the
governing equations are (Phillips 1966)

w22 an
L2 S(M)
—pl—o%= b (3.3)
o 60
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where the buoyancy b = —g(p — po)/ po is referenced
to the density po of the assumed stagnant reservoir at
z < 0, the perturbation pressure p' is referenced to the
pressure in a fluid at rest with density po, and we have
assumed a hydrostatic balance in the vertical (as ap-
propriate for A < L).

Phillips argues that a solution independent of L is
given by the similarity forms

b = (Box)**h™" g(n) (3.5)

u=(Box)'*f(m), (3.6)

where 5 = z/h. The exponents of x are chosen to satisfy
the buoyancy integral

h
f ubdz = —Box

(1]

(3.7)

and to give the same x dependence of the advective
and buoyancy torque terms in the vorticity equation

8 (o, ou\_ 0 au) ab

az\ ox 9z) 98z®\ dz) dx’
We introduce a streamfunction Y(7) such that f = dy//
dn, and may then write the vertical velocity as

(3.8)

w=—3 B x M hy, (3.9)
showing an integrable singularity at x = 0.

For the diffusive and viscous terms in (3.1) and (3.8)
to have the same x dependence as the other terms, we
require the eddy coefficients to be of the form

K=

(Bo/x*)'°h*K(n),

0]

(Bo/x*)'*h*N(n), (3.10)

y:l
3

also increasing toward the head of the sea. The buoy-
ancy and velocity equations then become the nonlinear
coupled ordinary differential equations

2y'g — yg' = (Kg') (3.11)
W2 —wW" =W -2g, (3.12)

where the prime denotes d/dn. These may be solved
numerically by decomposition into the six first-order
differential equations

Vi=q (3.13)
& =al/lK (3.14)
gy = qs/N (3.15)
4> = 2¢:8 — ¥4:/K (3.16)
45 =4qa+ qi —yas/N (3.17)

qs = 2g, (3.18)
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where (3.13), (3.14), (3.15), (3.17) define four new
functions ¢, g2, g3, g4, respectively.

Two boundary conditions at the top (» = 1) and
bottom (n = 0) are

v=0 at (3.19)

and zero stress at the top and bottom gives two more
as

7=0,1,

(3.20)

The surface buoyancy flux condition —« dbh/9z = By
at z = h becomes

=0 at n=0,1.

(3.21)

Only one more boundary condition is allowable,
though for the problem as posed we would like to have
both b =0 at z = 0 so that g(0) = 0, and zero buoyancy
flux Kg’' = 0 at n = 0 so that the flow is driven only at
the surface. We can achieve this by choosing K(0)
= 0 without an extra condition on g'(0). In fact, if
we assume that both ¢ and g are proportional to 7 as
n — 0, then (3.11) can only be in balance as > 0
if Kg' oc n?%, which implies that K has to be proportional
to 2. Also, allowing N to tend to 0 as n = 0 would
make the problem degenerate, so for the moment we
keep N finite. Subject to these constraints we may solve
for Y(n) and g(7) for arbitrary K(n) and N(7).

The water mass transformation function F(5) may
- be written

G=-3 at p=1.

F(b) = — Bo(9x/3b)= (3.22)
_ 3B\ gy
- 2(1;0) (BL)' s, (3:23)

whereas, with the control surface C taken as the vertical
line at x = L, the actual advective flow across an iso-
pycnal with buoyancy & is

h Zp :
A(b) = f u(L,z)dz = —f u(L,z)dz, (3.24)
zp 0
where z, is the depth of the isopycnal at x = L. From
(3.6) and the definition of ¢, :
A(b) = —(BoL)'*hins),
where N = Zb/h . (325)
The ratio of actual advection to water mass transfor-
mation is

2
A/F =~
! 3

_2
3

which does not have any general interpretation, al-
though we note that the constraint (3.7) becomes

b\~1/2
(b_o) g(1)¥(ms)

1 1/2
(%—)) g(¥m),  (3.26)
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+ X+ dx

b+ 8b

OCEANOGRAPHY

£
X

FiG. 2. The control surface C is chosen to be at the base of the
surface layer, defined by the depth at which the isopycnals are vertical.

.’
[ @vramgan--1. @an)

A key function of interest is the ratio of the net out-
flow rate —dA/db to the known function —dF/db.
This ratio is given by

% E _ﬂ ﬂ -‘-ig_l 3/2,1/2
(db)/(db)_z.(d,,)(dn) [g(1)]¥2g'72,

(3.28)

with g and the derivatives of ¥ and g evaluated at »
= Nb-

We can also contrast the maximum inflow with the
maximum transformation rate, which is that for b, (al-
though there are subsurface values of the buoyancy
greater than by due to hydrostatic instability of the up-
per part of the water column). This ratio is given by

Ames/ Frx =3 8(¥imax - (3.29)

An upper bound for this ratio is obtained by noting
that (0) = (1) = 0 and assuming that y has just one
maximum. Then the constraint (3.27) gives

WVmax

J; (&above — gbelow)d‘p =1, (3.30)
where gapove and gueow refer to values of g above and
below the level where Y = Ypa,. Given that gyeiow 1S
positive and gupove in a well-mixed surface layer does
not greatly exceed the surface value g(1), we have an
approximate lower bound of 1 for g(1)y¥ma« and hence
Amax = % Frax. This lower bound for A, shows that
the total inflow cannot be much smaller than the total
transformation, though it can be greater if strong in-
terior mixing exists, effectively reducing the vertical
density contrast.

One final parameter of interest in the solutions is
the Richardson number. As shown by Phillips (1966),
it is independent of horizontal position and is given as
a function of depth by Ri = (dg/dn)(d*/dn*) 2.

Flux out of the surface layer

So far we have taken the control surface C to be the
vertical line at x = L. Following the discussion of sec-
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FIG. 3. Solution of the Phillips (1966) problem for K = 25* and N = 2. The first three panels
in the top row show the profiles for the similarity functions describing the eddy diffusivity, stream-
function, and buoyancy; the fourth panel shows the Richardson number of the flow. We also
show the streamlines (solid) and isopycnals (dashed) for the solution in X, z space. The isopycnals
are for six equally spaced values of b in the range from O to by, and the streamlines similarly for
¥ between 0 and Y., The first two panels in the bottom row show, as functions of the scaled
buoyancy b/b,, the ratios A/F of diapycnal advection 4 to the sea surface transformation function
F = —By(dS/dB) and of the actual water mass formation rate dA4/dB to dF/dB (both for a vertical
control surface at x = L). The final panel shows the function R(n) from (3.31), which gives both
ratios for a control surface C chosen to be horizontal at depth 7.

tion 2, we also consider the consequences of taking C
to be horizontal, particularly at the base of any surface
layer with strong mixing. In this case, 4() is the dia-
pycnal volume flux in the surface layer, and the outflow
—dA/db from the surface layer across the level 7 is
—wdx/db. Using (3.9) and (3.5), and with dF/db
from (3.22), we obtain the ratio of interest

_dd/db _2
R = 2r/a6 = 3

Wn)g(1)*2g(m)~12, (3.31)

which may be evaluated for any 7, but particularly for
1 = n,, corresponding to the base of a surface layer of
strong mixing in which case the isopycnals are steep
in the slightly unstable mixed layer and we may define
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Fi1G. 4. As in Fig. 3 but with K given by (4.1) and N = 2.

7. as the depth at which the isopycnals become vertical
(Fig. 2). For any 7 the same ratio R(#) also gives the
value of 4/FsinceA = F=0forb=0.

4. Particular solutions

The system of equations (3.13)-(3.18) is solved
for the six functions ¥, g, 41, 42, g3, 4a as an ordinary
two-point boundary value problem. We do this by
iterating with the Newton-Raphson method, which
implements a fourth-order Runge-Kutta scheme
(Press et al. 1986). As shown earlier, K(n) oc 12 close
to the bottom. We thus solve the problem first with
K = cn? for all 4, where c is an arbitrary constant. For
convenience we also take the viscosity function N to

be constant independent of 5. Figure 3 shows the so-
lution for ¢ = 2 and N = 2. The profiles, and the
corresponding circulation and isopycnals for the sim-
ilarity solution, show that, as expected, water enters
the basin near the surface, loses buoyancy, and leaves
the basin at depth. Due to the surface buoyancy loss,
there is a hydrostatically unstable layer below the sur-
face, and flow with Ri < 1/4 persists in a thin layer
below this. We also show A/ Fand (dA4/db)/(dF/db)
as functions of b; these confirm that there is no simple
relationship between 4 and F. The ratio Amax/ Fmax
from (3.29) is 1.95. The function R(7) from (3.31) is
close to 1 at the base of the layer of steep isopycnals,
as expected from the argument of section 2a, with a
value of 0.99 at the level, 3,,, = 0.83, where dg/dn =0
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and the vertical buoyancy gradient changes from un-
stable above to stable below. For the chosen profile of
eddy diffusivity, however, sufficient mixing occurs
below 7,, to make R(7) there significantly different
from 1.

We next modify the eddy diffusivity profile to

K(n) = nZ[g(Ko + )

+ % (Ko — K,) tanh(n — H)/¢| (4.1)

in order to represent a near-surface layer of strong
mixing K, and much weaker mixing K; close to the
bottom. The transition layer between the two regions
occurs at 7 = H and has thickness e. The results for
this profile with Ky = 2, K, = 0.3, ¢ = 0.1, H = 0.7,
and N = 2 are shown in Fig. 4. The flow is qualitatively
as in the earlier example, but with a reasonable match
of strong mixing for negative and small positive values
of the Richardson number, and weak mixing for Ri
> 1/4. For this case Amax/ Fmax = 1.22, and again there
is no simple relationship between the diapycnal ad-
vection A and the water mass transformation rate F.
The changes from the first case illustrate the sensitivity
to the diffusivity profile, but we note that, with the
mixing largely confined to a surface layer, the ratio 4/
F is closer to 1 than for the previous case with more
mixing at depth. Indeed R(#) from (3.31) now achieves
a value of 0.98 at 7,, = 0.71, where dg/dn = 0, and
stays close to 1 until close to the bottom where mixing
occurs over a sufficiently large area to cause significant
flow across isopycnals. This all suggests that it would
be worthwhile to examine the solution for the situation
in which the deep mixing is zero.

A well-mixed layer above a perfect fluid

We consider the case of a well-mixed layer above a
perfect fluid. We assume that the top layer, with
streamfunction ¥, and buoyancy function g,, extends
from n = H to n = 1 and has large vertical eddy dif-
fusivity and viscosity functions K and N, whereas the
lower layer from n = 0 to n = H, with ¥, and g, has
K=N=0.

The boundary conditions are

Yv1=¢7=0, Kgh=-3 at n=1 (4.2)

and
Yo=g=0 at (4.3)

As N = 0, zero stress at = 0 is satisfied with-
out a requirement for ¢ 5 = 0. The problem thus ap-
pears to be degenerate, with a single infinity of
possible solutions. The matching conditions at 7
= H are

7=0.

'll/l = ¢29 81 = &2, ‘P’l = t//l29

Kg'=Ny1=0, M =¥;. (44)
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For sufficiently large N, (3.12) may be approximated
by M7 = 0. Hence, to satisfy ¢; = ¢{ =0 aty = 1,

¥i=a(l—1)+0[(1—n) (4.5)

in which the fifth matching condition at = H shows
that the second term is negligible. Neglecting the second
term on the left-hand side of the buoyancy equation
(3.11), as will be justified shortly, we have

Kgi=2¢1& (4.6)

with solution
&1 = az cos[(2a,/K)""*(n — H)] 4.7)

in order to satisfy g = 0 at y = 1. In addition to large
N, the neglect of Yg' in (3.11) requires (a;/K)'/2(1
— H) < 1, which we assume is satisfied. The surface
boundary condition Kg' = —3 at n = H then implies

2aia;(1 —H)=3. (4.8)

We thus have a slablike mixed layer moving with uni-
form speed and with a density approximately indepen-
dent of 7.

In the lower layer, the buoyancy equation (3.11)
with K = 0 implies g, oc ¢3, so that buoyancy is con-
served on streamlines. Matching to surface layer values
implies

g=a(/¥n)?, (4.9)

where Yy = a,(1 — H) is ¢, (H). Now from (4.9) and
(4.7), Wnp) = Yu(g/g(1))"?, so from (3.26) 4 = F
for all b, and hence dA4/db = dF/db also. Moreover,
for this case the function R(n) from (3.31) increases
from O at the surface to 1 at the base of the mixed layer
and stays equal to 1 for all other values of 7.

40

351

251

M, 201

FIG. 5. The exact (solid) and asymptotic (dashed) relationships
between the scaled streamfunction Yy at the base of a well-mixed
layer and the reference level 7 in the solution for inviscid adiabatic
flow beneath the mixed layer.
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HG. 6. As in Fig. 3 but for the model of a well-mixed layer above a perfect fluid. [The bottom
row of panels is omitted since in this case 4 = F and so also d4/db = dF/db. R(n) simply increases
from O at the sea surface to 1 at the base of the mixed layer, then stays equal to 1 below this.]

The analytical solution to the problem thus
shows the physically plausible picture of water
entering the system and having its buoyancy
changed by surface buoyancy loss and vigorous
vertical mixing before emerging from the mixed
layer and leaving the system adiabatically. The re-
sult 4 = F depends on the neglect of horizontal
mixing in the mixed layer as well as on strong ver-
tical mixing.

The vorticity equation (3.12) in the lower layer be-
comes

hence affecting the small higher-order terms in
Y¥;. In the absence of viscosity in the lower
layer, we only have ¢ = 0 at n = 0, and hence
only three boundary conditions for the four un-
knowns a3, a4, n9, and Yy. The problem has thus
become ‘degenerate, with solutions existing for any
choice of Y.

In fact, solutions only exist for ¢ > 0 and then
imply 5o > 0. The relationship between 7 and Y is
shown in Fig. 5 for H = (.7, together with the formula
no = 3.76y '} that is asymptotically valid then for large
1o using asymptotic formulas for the Airy functions.
Figure 6 shows the solution for ¢y = 0.89 and with
K = 100 in the surface mixed layer. In this case 4./
Frnax = 1.43. Physically unrealistic static instability
(g’ < 0) without mixing occurs below the mixed layer
as water is expelled from it with negative x momen-
tum and continues toward the head of the sea before
buoyancy torques turn it around. This is a weakness
of the present model with the assumption that all
mixing takes place in a vigorous surface layer above
a fixed level with no mixing below it, but pre-
sumably need not occur in a three-dimensional sit-

Yo¥s — YaYs = 2g =2a 'y} (4.10)
or, using (4.9),
(V5/¥2) = Y7, (4.11)
leading to Airy’s equation
Vi =3¢y (n — no)¥2 (4.12)
with solutions
Yo = @ A3V Y5 (n — mo)]
+ a4Bi[3'3¢H (n — m0)]. (4.13) uation.

Matching conditions at the interface at 7
= H require continuity of ¢ and ¢’ and of ex-
pressions involving higher derivatives of ¢ and

5. Discussion

Analysis of the buoyancy equations and the solutions
of a particular model have shown that there is no direct
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general connection between water mass transforma-
tion, due to a surface buoyancy flux, and the production
of a particular water mass. However, the model does
confirm what is clearly a general result, that the water
mass formation rate can be determined from the sur-
face buoyancy flux if horizontal mixing is ignored and
if the vertical mixing is strong in a surface layer, with
very nearly vertical isopycnals, and zero in the ocean
interior below the surface layer. In this case the dia-
pycnal advection A is given by the function F, defined
by F = —By(dS/db), which can be calculated from
the surface buoyancy flux B, and the sea surface area
43S between surface outcroppings of isopycnals with
buoyancy b and b + 6b, and the water mass formation
rate —dA/db is given by —dF/db. In all the cases
examined, the outflow from the base of the surface
layer is given to a good approximation by —dF/db,
with F from (1.4).

This is probably still correct for the time-dependent
problem of a deepening mixed layer above a perfect
ocean interior (though more analysis is required).
Hence the wintertime formation rate of, for example,
18° water, may be calculable from dF/db. It is not
clear that the same interpretation is true during spring-
time shallowing of the mixed layer. In fact, for isopyc-
nals that terminate everywhere at the free surface and
enclose a bowl of fluid, the annual average of the ad-
vection 4 must be zero, so that the water mass trans-
formation rate F must be balanced by mixing below
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the sea surface. It is possible that this balance is achieved
by horizontal (and hence diapycnal ) mixing in the sur-
face layer, or perhaps is associated with seasonal
changes in mixed layer depth. These effects require
further theoretical investigation and application to the
ocean and may show that the surface buoyancy flux
does not require diapycnal mixing in the ocean interior
below the base of the winter mixed layer.
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