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Processes included in earth system models amplify the impact of climate variability on phytoplankton biomass and, therefore, on
upper trophic levels. Models predict much larger relative interannual variability in large phytoplankton biomass than in total phyto-
plankton biomass, supporting the goal of better constraining size-structured primary production and biomass from remote sensing.
The largest modelled variability in annually averaged large phytoplankton biomass is associated with changes in the areal extent of
relatively productive regions. Near the equator, changes in the areal extent of the high-productivity zone are driven by large-scale
shifts in nutrient fields, as well as by changes in currents. Along the poleward edge of the Subtropical Gyres, changes in physical
mixing dominate. Finally, models indicate that high-latitude interannual variability in large phytoplankton biomass is greatest
during spring. Mechanisms for producing such variability differ across biomes with internal ocean processes, such as convection com-
plicating efforts to link ecosystem variability to climate modes defined using sea surface temperature alone. In salinity-stratified sub-
polar regions, changes in bloom timing driven by salinity can produce correlations between low surface temperatures and high
productivity, supporting the potential importance of using coupled atmosphere–ocean reanalyses, rather than simple forced
ocean reanalyses, for attributing past ecosystem shifts.
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Introduction
As earth system models are developed for projecting biogeochem-
ical changes under global warming, a natural question that arises is
whether they will be useful for projecting changes in fisheries pro-
duction, particularly those driven by bottom-up changes in the
productivity or species composition associated with phytoplank-
ton. One potential test is whether such models can simulate inter-
annual variability. Variability in the stocks of a number of species
has been reported on interannual to decadal scales and linked to
climate modes, such as the Pacific Decadal Oscillation and
North Atlantic Oscillation. For example, basin-scale modes in
the Pacific have been linked to variability in species, such as
salmon in the Pacific Northwest (Mantua et al., 1997), walleye
pollock in the Bering Sea (Hunt et al., 2008), Japanese eel in the
Kuroshio region (Sugimoto et al., 2001; Kimura and Tsukamoto,
2006), and sardine and anchovy in the Peru Current (Chavez
et al., 2003).

Physical climate models might be able to address proposed
mechanisms for interannual changes in stocks, such as tempera-
ture impacts on spawning times and locations (Genner et al.,
2004), changes in the frequency of warm events, such as those
associated with coral bleaching (Glynn and de Weerdt, 1991),
changes in the frequency of cold events associated with winter
mortality (Hare et al., 2010), or changes in the advective pathways
for larval transport (Sugimoto et al., 2001; Kimura and

Tsukamoto, 2006). Although not deprecating the potential impor-
tance of such direct physical forcing for individual species, this
paper focuses on simulations of primary productivity provided
by a new generation of earth system models. For many years, fish-
eries oceanographers have recognized that the details of primary
production, such as the timing of blooms (Hjort, 1914; Cushing,
1990) or differences in phytoplankton community structure
(Ryther, 1969), could explain variations in ecosystems over time
and space. We examine whether the large-scale earth system
models used for projecting climate change represent these
aspects of the primary productivity signal that both observations
and theory suggest should vary significantly from year to year.
Additionally, we investigate which models can tell us about the
magnitude of such variability and about the physical processes
underlying it. We demonstrate that the current generation of
earth system models does simulate drivers of interannual ecosys-
tem variability beyond annually averaged changes in biomass.
These drivers include changes in the areal extent of productive
regions, changes in the timing of blooms, and changes in the con-
centration of large phytoplankton.

Variability in the abundance of large phytoplankton is
especially important, because grazing on these organisms has
long been thought to represent the key pathway by which energy
is transferred to higher trophic levels, resulting in the classic state-
ment that “all fish is diatoms” (Bigelow, 1926). In upwelling
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regions rich in macronutrients, larger phytoplankton dominate
and recycling of nutrient is inefficient (Dugdale and Goering,
1967). In weakly productive Subtropical Gyres, where macronutri-
ents are at low levels, small picoplankton have been recorded to
account for most of the primary productivity (Platt et al., 1983)
and recycling of nutrients is high. This results in less variation in
total biomass across biomes than would be expected from the
differences in nutrient supply, as well as less spatial variability in
small phytoplankton biomass than large phytoplankton biomass.
Agawin et al. (2000) noted that large plankton biomass concen-
trations vary over 5–6 orders of magnitude in mesocosm exper-
iments, whereas small plankton biomass concentrations vary
over �2 orders of magnitude. Kostadinov et al. (2009) found
greater spatial variation in large particle concentrations than
small particle concentrations, and Uitz et al. (2010) found
greater temporal variability in remotely sensed primary pro-
ductivity associated with large phytoplankton than that associated
with small phytoplankton. The idea that such differences in the
size structure of primary producers, translated up the foodweb,
are responsible for differences in fisheries production between eco-
systems goes back at least to Ryther (1969). However, because in
situ time-series of size-fractionated productivity and biomass do
not exist for most of the regions displaying large relative variabil-
ity, it is worth examining whether models could be used to charac-
terize the variability of large phytoplankton on global scales.

The current generation of ocean biogeochemical and earth
system models combine information about physical forcing,
chemical cycling, phytoplankton physiology, and ecological struc-
ture to simulate the response of lower trophic levels to climate
variability and change (Six and Meier-Reimer, 1996; Moore
et al., 2002; Aita et al., 2003, 2007; Aumont and Bopp, 2006;
Galbraith et al., 2010; Kishi et al., 2010). Built around ocean circu-
lation models that use the conservation of heat, mass, salt, and
momentum to solve for a physical circulation consistent with
surface forcing, such models can be forced by datasets based on
atmospheric reanalysis products (Griffies et al., 2009) to produce
retrospective estimates of biological activity. Alternatively, they
can be embedded in fully coupled ocean–atmosphere circulation
models to estimate how ocean ecosystems might change in
future because of changes in greenhouse gases (Steinacher et al.,
2010).

This paper examines which such models can tell us about the
potential for linking variability in primary productivity quantitat-
ively and mechanistically to climate variability and change. We
first describe how the Tracers of Ocean Productivity with
Allometric Zooplankton (TOPAZ) model (Dunne et al., 2010)
used in the National Oceanographic and Atmospheric
Administration’s (NOAA) Geophysical Fluid Dynamics
Laboratory’s (GFDL) Earth System Model 2.1 (ESM2.1) represents
key ideas about phytoplankton size structure and describes two
physical circulation models where it has been implemented. We
then present output from these simulations, quantifying the dom-
inance of large phytoplankton variability over much of the ocean,
further highlighting the importance of changes in areal extent of
biomes and considering the impact of interannual variability in
bloom timing. Next, we expand on the mechanisms by which tro-
pical variability on interannual time-scales changes the areal extent
of the oligotrophic tropical gyres. We move on to address the
mechanisms driving interannual variability in spring productivity
in four North Pacific regions. We conclude the paper by examining
the implications of our results on the characterization of fisheries

observationally and for developing new retrospective modelling
analyses.

The models
Size structure in the GFDL ecosystem models
We begin by describing the ecosystem model used in one ESM,
GFDL’s TOPAZ code. A preliminary description of the TOPAZ
biogeochemical model is presented in Dunne et al. (2010). We
therefore focus on how the model represents the response of phy-
toplankton biomass to varying environmental conditions and how
this response differs between large and small phytoplankton.

Like other biogeochemical models of intermediate complexity,
TOPAZ divides the phytoplankton community into a small
number of functional groups that react differently to light and
nutrient limitation. The growth rate of a given class of phytoplank-
ton is given by

m = PC
max

1 + z
ekT min(LimN, LimP, LimFe) × LimIrr, (1)

where PC
max is a maximum carbon assimilation rate (s21), z the cost

of biosynthesis (set to 0.1), k the Eppley temperature coefficient
(0.063 K21), T the temperature (K), and LimN,P,Fe,Irr refer to the
limitation terms for nitrogen, phosphorus, iron, and light, respect-
ively. Phytoplankton are then limited by the temperature, whatever
nutrient is most limiting, and by light. Nitrogen limitation is given
by

LimN = max
NO3

KNO3
+ NO3(1 + NH4/KNH4

) ,
NH4

KNH4
+ NH4

( )
,

(2)

following Frost and Franzen (1992), with NO3 and NH4 referring to
the ambient nitrate concentrations, so that nitrate limitation
becomes less important in the presence of ammonia. The physio-
logical nutrient limitation terms LimP,Fe are determined from the
actual N:P and Fe:P cellular quotas, which change through a com-
plicated process described in detail in Dunne et al. (2010), based on
the theoretical work of Klausmeier et al. (2004). Because these terms
turn out to be of minor importance in the regions presented below,
Dunne et al. (2010) should be consulted for a complete description
of how they work; this will not be discussed further here.

Light limitation is parametrized as

LimIrr = 1 − exp −au
I

PC
N

( )
. (3)

In this equation, a is the initial slope of the chlorophyll a (Chl)
specific photosynthesis–light response curve [units of
mol C (mol Chl J m22)21]; therefore, it governs how rapidly photo-
synthesis (relative to chlorophyll) increases at low light levels assum-
ing constant chlorophyll. u is the chlorophyll to carbon ratio [Chl : C;
mol Chl (mol C)21], I the incoming solar radiation in (W m22), and
PC

N = PC
maxekT min(LimN, LimP, LimFe) the nutrient-limited carbon

assimilation rate (s21). In a modified version of the formulation pro-
posed by Geider et al. (1997), we then let

u = umin min(LimN, LimP, LimFe)

+ umax − umin

1 + a(umax − umin)I/2PC
N

, (4)
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so that as nutrients increase (or light decreases), the Chl:C level ratio
increases to match the increased need for light-harvesting efficiency.
This means that variations in chlorophyll concentration can be
driven by variations in the available light (e.g. because of changing
insolation or mixed-layer depth), which will not necessarily reflect
changes in biomass. In contrast to the version of the code used in
Sarmiento et al. (2010), we do not let umax depend on iron limitation.
As discussed in Galbraith et al. (2010), the primary impact of neglect-
ing such dependence is seen in the North Atlantic, where high levels
of iron allow an earlier spring bloom and faster drawdown of surface
nutrients.

The concentration of phytoplankton is determined by a balance
between the growth rate and the grazing rate. The representation
of grazing in TOPAZ is based on the work of Dunne et al.
(2005), where the equation governing a given class of phytoplank-
ton biomass is

∂P

∂t
= mPP − l

P

P∗

( )a

P, (5)

where P is the concentration of some class of phytoplankton, mP

the growth rate, l the grazing rate, P∗ the scale concentration
for grazing, and a the grazing parameter (a ¼ 1 for classic logistic
growth). TOPAZ uses the Dunne et al. (2005) values of P∗ ¼
1.9 mmol C m23 and l ¼ 0.19 eKT/86 400 s. If growth and
grazing are approximately in balance, then

P ≈ mP

l

( )1/a

P∗. (6)

Hence, different groups of plankton might differ in how they are
controlled by nutrients or by how tightly they are controlled by
grazing.

TOPAZ distinguishes between three functional groups.
(1) Small plankton: Meant to represent nanoplankton, such as

Synechococcus and Prochlorococcus. This class of phytoplankton has
relatively low half-saturation coefficients for iron (5 nM),
ammonia (0.2 mM), phosphorus (0.2 mM), and nitrate
(2.0 mM). PC

max is set to 2.0 × 1025 s21. The grazing exponent a
is set to 1, following Dunne et al. (2005). This class of phytoplank-
ton is therefore weakly limited by nutrients, but strongly limited by
grazing.

(2) Large plankton: Meant to represent green algae, diatoms,
and other large phytoplankton. This class of plankton has half-
saturation constants for nutrient uptake three times that of small
phytoplankton. Additionally, they have the ability to store iron
internally. The grazing exponent for large phytoplankton a ¼ 1/3,
following Section 5.1 of Dunne et al., (2005; this value is also
used in Galbraith et al., 2010). Therefore, although the large plank-
ton require much higher levels of nutrient to realize their
maximum growth rate, their concentration actually increases as
the cube of that growth rate, because they are less tightly limited
by grazing. The fraction of large phytoplankton taken to be
diatoms is given by

Fdiat =
SiO4

KSi + SiO4
, (7)

with Ksi¼ 3 mmol m23, so that silicate limitation results in redu-
cing the diatom fraction.

(3) Diazotrophs: Meant to represent organisms that fix nitro-
gen from N2, such as Trichodesmium. These organisms require
four times as much iron as small phytoplankton and have a
maximum growth rate of 40% that of small phytoplankton. The
grazing exponent is the same as for large phytoplankton.
However, although diazotrophs play a critical role in maintaining
the nitrogen inventory of the ocean, they represent a relatively
small fraction of biomass in our simulations and their dynamics
will therefore be ignored for the remainder of this paper.

Then, considering only the scaling between large (Lg) and small
(Sm) phytoplankton, we can find two separate regimes. When
nutrients or light are extremely limiting (e.g. when
NH4 ≪ KSm

NH4
, K

Lg
NH4

), an increase in the limiting nutrient
results in the same relative change in the growth rate for small
and large phytoplankton. However, because of the different
grazing laws, this will result in a proportional increase in the con-
centration of small phytoplankton PSm/ NH4, but a much larger
relative increase in the concentration of large phytoplankton
PLg / P3

Sm /NH3
4. When the concentration of the most limiting

nutrient is higher than the half-saturation constant for the small
phytoplankton Ksm

NH4
, NH4, relative changes in the growth rate

are bigger for large phytoplankton than for small phytoplankton,
so that the ratio of large to small phytoplankton follows an even
higher power law. We therefore generally expect to find more
variability in large phytoplankton concentration than in small
phytoplankton concentration.

Ocean-ice model
The ocean-ice model used in these simulations is the ocean-ice
component of the GFDL CM2.1 global coupled climate model
(Delworth et al., 2006). The model is configured with 50 vertical
layers with thicknesses ranging from 10 m over the top 200 m to
a maximum thickness of 250 m at 5500-m depth. The meridional
resolution is 18, whereas the zonal resolution varies between 18 in
mid-latitudes and 1/38 at the equator. North of 658, a tripolar grid
is employed to avoid singularity at the north pole. Up-to-date
parametrizations of mixed-layer dynamics, isopycnal mixing,
advection by subgridscale eddies, bottom topography, bottom
flows, and lateral viscosity are included (Griffies et al., 2005;
Gnanadesikan et al., 2006). Both the dynamics and thermodyn-
amics of five thickness classes of sea ice are simulated.

Surface forcing is set using the Coordinated Ocean-ice
Reference Experiment (CORE) protocol (Griffies et al., 2009),
where the inputs for calculating surface fluxes are taken from an
atmospheric reanalysis dataset adjusted to agree better with in
situ measurements. Sensible and latent heat fluxes are then calcu-
lated using bulk formulae. These simulations are referred to as the
CORE runs. In CORE runs, freshwater forcing is given by a com-
bination of applied precipitation, evaporation computed using
bulk fluxes, and a correction diagnosed to restore surface salinities
in the top 10 m to climatological monthly values over 60 d. Hence,
the fluxes forcing the CORE runs could be thought of as “best
guess” observationally based estimates. Such a prescription omits
important feedbacks whereby the atmosphere ensures that rainfall
and evaporation are consistent with each other, although the
restoring correction is a crude representation of these feedbacks.
Without it, many models fail to maintain a robust Atlantic
Meridional Overturning circulation (see section 16 of Griffies
et al., 2009, for further discussion). However, the presence of a
restoring correction damps long-period variability in salinity,
with implications for biogeochemical cycles. The resulting
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difficulty in simulating long-term salinity variability forms an
important part of our motivation for examining coupled climate
models.

The CORE models are initialized from the World Ocean Atlas
database with respect to temperature, salinity, nitrate, phosphate,
and silicate. Seven cycles of the 46 years of observed forcing are
then applied, comprising a run of 322 years. Although this is insuf-
ficient to spin up the deep ocean carbon cycle, surface nutrients,
biomass, and productivity come to near-equilibrium rapidly. For
example, the average relative change in surface large phytoplank-
ton concentration is less than 3% between the final two cycles
and the average total biomass changes by 0–0.8% over depths
ranging from 100 m to the surface.

Coupled climate model
In coupled climate models, the incoming solar radiation, atmos-
pheric greenhouse gases, aerosols, and some aspects of the land
surface are fixed, but the air–sea fluxes of heat and momentum
are then allowed to evolve freely. Hence, the surface fluxes could
deviate from the best observationally based fluxes, but they do
so in a consistent way (a cool bias will cause a decrease in evapor-
ation, which then results in decreased precipitation). Such models
can simulate the mean climate, its forced response to changes in
the radiation balance, and its intrinsic variability, but will not
simulate the response of climate in any given year. Therefore,
the coupled models should be used to match statistical relation-
ships between biological features and physical forcing, not to
simulate individual years or decades.

The model used for these runs is the GFDL’s ESM2.1. The phys-
ical core of this model is the CM2.1 global coupled climate model
described in Delworth et al. (2006), with the baseline ocean

solution described in Gnanadesikan et al. (2006). CM2.1 has an
atmospheric physical climate that compares well with other
global climate models (Reichler and Kim, 2008), an ocean circula-
tion in the Southern Ocean that is quite realistic (Russell et al.,
2006), and a relatively realistic El Niño–Southern Oscillation
(van Oldenborgh et al., 2005; Wittenberg et al., 2006). Ocean
temperature and salinity in ESM2.1 are initialized from the
CM2.1 1860 control run after 2000 years of run. Ocean nutrients
in ESM2.1 are initialized from the World Ocean Atlas, then run
with interactive chlorophyll and an interactive land biosphere,
but with radiative gases at 1860 levels for another 1600 years.
Output is then taken from the last century of this simulation.
Variability seen in the coupled model, therefore, should reflect
the background level of unforced, internal variability in the
climate system.

Results
Model evaluation
Differences between the models are summarized in Figure 1, and a
statistical comparison of the temperature, salinity, phosphate,
nitrate, and the natural log of surface chlorophyll to observations
is presented in Table 1. Zonally averaged errors in sea surface
temperature (SST; black solid line, Figure 1a) reveal a strong
warm bias in the Southern Ocean resulting from an excess of
summer shortwave radiation and a cold bias elsewhere in
ESM2.1. The low-latitude cold bias probably contributes to
lower evaporation rates and a fresh bias (red solid line,
Figure 1a). The CORE model tends to be biased cold (dashed
black line, Figure 1a) and slightly salty (dashed red line,
Figure 1a), illustrating the limits of the restoring correction in

Figure 1. Evaluation of the physical circulation in the ESM2.1 (thick solid lines) and CORE (thick dashed lines). (a) Zonally and annually
averaged surface temperature biases. (b) February (black) and August (red) mixed-layer depths zonally averaged over all basins. Averaged
mixed-layer depth from de Boyer Montegut et al. (2007) is illustrated with the thin line and symbols. (c) Zonally averaged profiles of salinity at
408N in the North Atlantic (black), 408N in the North Pacific (red), and 308S across the entire Southern Ocean (blue). (d) Overturning stream
function at 408N in the North Atlantic (black), 408N in the North Pacific (red), and 308S in the Southern Ocean (blue).
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actually fixing surface salinities to observations. The RMS temp-
erature error of 1.438C is only slightly larger than the 1.288C
seen in the 1990 control run of the CM2.1 coupled climate
model by Gnanadesikan et al. (2006), and is essentially identical
with CM2.1 without interactive biology when it is run for 1600
years. The changes in ocean shortwave absorption and land
hydrology induced by including prognostic biology do not signifi-
cantly alter the earlier published solution. The three-dimensional
temperature and salinity fields match the data slightly better
than the Max Planck Institute (MPI), National Center for
Atmospheric Research (NCAR), and Institut Pierre et Simon
Laplace (IPSL) models reported in Schneider et al. (2008).

The annual cycle of zonally averaged mixed-layer depth
(Figure 1b) demonstrates that the models capture the range of
mixed-layer depth in mid-latitudes, but tend to have deeper
mixed layers in winter high latitudes (particularly in the North
Atlantic and the Southern Ocean) than observed. Summer
mixed layers are close to observational values in the northern
hemisphere, but tend to be too shallow in the Southern Ocean
in both models.

Examining profiles of salinity at a number of locations
(Figure 1c), we find that both models capture the contrast
between the salty North Atlantic (black lines) and the fresh
North Pacific (red lines), with the Southern Ocean lying in
between the two. ESM2.1 also predicts distinct salinity minima
at about the right depth in the North Pacific and Southern
Ocean, though both locations are too salty. The CORE model in
contrast (dashed lines) fails to reproduce these salinity minima
seen in both the North Pacific and Southern Ocean, suggesting
an overly weak formation of mode and intermediate waters, but
a flushing of the deep ocean with cold, fresh bottom water, consist-
ent with overly high mixed-layer depths in the Southern Ocean.

Differences in the circulation of Antarctic Bottom Water are
reflected in the overturning stream function at 308S (blue lines,
Figure 1d). AABW export is extremely weak in ESM2.1 (as it is
in all the CM2.1 series), but reaches 11.2 Sv in the CORE runs,
with �4.3 Sv in the Atlantic basin. This circulation fails to
upwell in the North Pacific in either the CORE or ESM2.1 simu-
lations (red lines, Figure 1d), though the ESM2.1 model does indi-
cate an overturning cell above 1000 m consistent with the
formation of the North Pacific Intermediate Water salinity
minimum. Both models demonstrate a significant North
Atlantic overturning, with ESM2.1 predicting a somewhat deeper
maximum of 23.5 Sv, whereas the CORE simulation gives 16.9 Sv.

The best-characterized biogeochemical fields with which the
models can be compared are the spatial distribution of macronutri-
ents. As indicated by the thick black dashed line in Figure 2a, the

CORE ocean-ice model captures the large-scale distribution of
surface phosphate and nitrate, with higher values along the
equator, higher values in the northern Subpolar Gyres, and the
highest values in the Southern Ocean. The model also captures the
tendency towards nitrate limitation that allows for unutilized phos-
phate in the Subtropical Gyres, where nitrate essentially declines to
zero (red lines). Correlations with observed surface nutrients
exceed 0.95. The main error visible in Figure 2a is the underestimate
of surface phosphate in the northern oceans, which is notably worse
in ESM2.1 than in the CORE model. Profiles of nutrients in the
North Pacific (red lines, Figure 2b) demonstrate that the phosphate
deficit penetrates to much greater depths, possibly reflecting the lack
of deep upwelling seen in Figure 1d. The CORE model has a much
reduced bias in phosphate concentration in the North Pacific, poss-
ibly because of the lack of deep upwelling is balanced by a lack of
lateral export (reflected in the lack of 1000 m salinity minimum in
Figure 1c) and possibly because it has only been run for one-fifth
the time as ESM2.1. The three-dimensional correlation of phosphate
with observations in ESM2.1 (0.84) is comparable with the 0.82–
0.86 reported by Schneider et al. (2008) for the NCAR, MPIM,
and IPSL models. The three-dimensional correlation with nitrate
is lower than for phosphate and nitrate is biased low globally. This
is because the oxygen minimum zones become too intense in this
model, resulting in overly intense denitrification. Because surface
nutrients are relatively realistic, however, we suspect that the
overly high rates of denitrification are being compensated by exces-
sive nitrogen fixation.

Additional constraints on the model can be gleaned by compar-
ing with products inferred from satellite remote sensing. The zonal
integral of chlorophyll (Figure 2c), which is very similar between
the ocean-only and coupled models, tends to underestimate the
total chlorophyll inventory in part because of a failure to
capture very high values in upwelling zones. The chlorophyll
signal indicates that low simulated surface nutrients in high north-
ern latitudes are not because of an excess of productivity,
suggesting that insufficient nutrient supply might be responsible.
Both the CORE and ESM2.1 simulations capture approximately
half of the observed spatial variance in the log of annually averaged
chlorophyll with an underestimate of �8% globally (Table 1).
Zonal-mean primary productivity is essentially identical with
that estimated from SeaWiFS chlorophyll using the Carr (2002)
algorithm (Figure 2d) in both the ocean-only and coupled
models. However, given that the differences between the models
and observational estimates are considerably smaller than that
between individual observational estimates (Gnanadesikan et al.,
2004) and less than the uncertainty in chlorophyll retrievals, the
agreement might be fortuitous.

Table 1. Statistical measures of model performance compared with observations for surface and entire water column.

Field CORE ESM2.1

SST 0.998, 0.989, 0.84, 20.50 0.99, 0.92, 1.43, 20.08
SSS 0.98, 1.01, 0.38, 0.18 0.88, 1.04, 0.85, 20.15
Surface PO4 (808S–708N) 0.96, 0.97, 0.18, 0.033 0.91, 0.96, 0.24, 20.037
Surface NO3 (808S– 708N) 0.97, 0.99, 2.32, 20.26 0.94, 0.86, 3.18, 20.73
ln(Chl) (708S– 708N) 0.73, 1.11, 0.29, 20.08 0.72, 0.83, 0.25, 20.09
Temperature (three-dimensional) 0.99, 1.02, 0.82, 0.31 0.98, 0.96, 1.21, 0.84
Salinity (three-dimensional) 0.94, 1.10, 0.18, 20.001 0.92, 1.13, 0.20, 20.001
PO4 (three-dimensional) 0.93, 1.05, 0.23, 0.00 0.84, 1.13, 0.39, 0.00
NO3 (three-dimensional) 0.83, 1.05, 5.7, 22.0 0.76, 0.89, 7.7, 24.7

Correlations are displayed emboldened, relative standard deviation (model/observed) in regular type, RMS error in italics, and mean bias underlined.
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Size structure and the disproportionate variability
of large phytoplankton
We begin by examining the relative interannual variability of a
number of fields, using the coefficient of variation (s.d./mean) of
the annually smoothed field as a metric. For the first 7 years of
the SeaWiFS mission, the coefficients of variation in chlorophyll
(Figure 3a) and productivity (Figure 3b) are ,0.1 over most of
the global ocean. Assuming purely sinusoidal variation, a coeffi-
cient of variation of 0.1 would imply variation from 0.86 to 1.14
times the mean value. The largest relative variability is observed
not in the centre of the high-chlorophyll equatorial upwelling or
Subpolar Gyres, but instead along the edges. A similar observation
was made by Martinez et al. (2009) when examining interdecadal
variability of chlorophyll while comparing SeaWiFS and CZCS
satellite products. Comparing the short SeaWiFS time-series with
the last 46-year cycle of the CORE-forced runs, we find a similar
concentration of interannual variability along the edges of the
equatorial cold tongue and at the edges of the Subtropical Gyres.
The coefficient of variation for modelled productivity is generally
smaller than for modelled chlorophyll, though the spatial patterns
of the log of the variation are correlated with a coefficient of 0.76.
As indicated by the regression coefficient in the lower right of
Figure 3d, a 10% change in model chlorophyll would only be
expected to produce a 5.2% change in productivity. A similar
power-law dependence is found in algorithms for estimating
primary productivity from satellite-estimated chlorophyll
(compare Figure 3a and b), because higher chlorophyll results in
higher light-harvesting capacity, but also less penetration of solar
radiation.

As might be expected from Equation (6), the models predict
very different variability for the biomass of large and small

phytoplankton. Over most of the ocean, the coefficient of variation
in small phytoplankton biomass (Figure 3e) is less than 10%,
much smaller than for total chlorophyll. The pattern of chloro-
phyll variability is correlated with the changes in small biomass,
with a correlation coefficient of 0.58 in the CORE run. However,
a 10% change in chlorophyll only results in a 1.8% change in
small plankton biomass. In contrast, the coefficient of variation
for large plankton biomass (Figure 3f) is comparable with (and
along the equatorial cold tongue much larger than) the coefficient
of variation in chlorophyll. Therefore, the bulk of the variability in
productivity is in the large phytoplankton, not the small, although
small plankton make up the majority of the global phytoplankton
biomass. The coupled model (not presented) exhibits similar pat-
terns of variability as the CORE-forced simulation, with much
more variability in large phytoplankton, similar correlation and
regression coefficients between chlorophyll and other fields, and
the largest-amplitude variability at the edge of the Subtropical
Gyres and coastal upwelling regions.

Comparing the zonal average of the coefficient of variation in
large phytoplankton biomass on interannual time-scales
(Figure 4a) further emphasizes the difference between small and
large phytoplankton. The standard deviation of the total
biomass (thin lines) is on average less than 10% of the mean
over almost the entire ocean in both the ocean-only and coupled
models. In contrast, for large biomass (thick lines) over the
tropics, a relative standard deviation of 35% is seen in both
models. Interannual variability in the diatom biomass (symbols,
Figure 4) largely tracks that of large phytoplankton biomass in
the CORE runs (this variable was not saved for the ESM2.1 runs).

Variability in the annual productivity is not, however, the only
possible way that biogeochemical variability can project into

Figure 2. Evaluation of model fidelity. (a) Annual mean surface phosphate (black) and nitrate/16 (red) from data (WOA01, Conkright et al.,
2002, symbols), ESM2.1 (solid lines) and CORE (dashed lines). (b) Zonally averaged phosphate over the top 1500 m. Symbols are data, black
lines an average within the North Atlantic, red lines an average within the North Pacific, and blue lines an average across the Southern Ocean.
(c) Zonally integrated chlorophyll from the SeaWiFS satellite (black) compared with surface chlorophyll from the models. (d) Primary
productivity compared with that estimated from the SeaWiFS satellite using the algorithm of Carr (2002).
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interannual changes in ecosystems. The “match–mismatch”
hypothesis of Cushing (1990) builds on the classic work of Hjort
(1914), suggesting that changes in the timing of spring bloom
are more important than that in the magnitude of productivity.
Analysing interannual variability in productivity month by
month, with a particular focus on the spring bloom, we find
that the models predict more variability in spring. During April,
the coefficients of variation in total plankton biomass, diatom
biomass, and large plankton biomass all increase in high northern
latitudes. The largest change is seen for large plankton biomass
between 60 and 808N (dashed lines), where the coefficient of vari-
ation increases from 0.10–0.12 in the annual mean to �0.5 during
April in the CORE model and 0.75–0.80 during April in ESM2.1.
In contrast, the coefficient of variation increases from �0.3 in the
annual mean to �0.4 for April alone for large phytoplankton in
the tropics, a much smaller increase. Relative variability remains
reasonably low in April throughout the southern hemisphere.
Roughly the opposite geographic pattern is seen in the austral
spring (October, Figure 4d), with the average coefficient of vari-
ation in large biomass reaching 0.7 at some latitudes in the
southern hemisphere. Again, we note that the CORE model
tends to have less variability than ESM2.1 at high latitudes and a
little more variability in the tropics. July (Figure 4c) looks more
like the interannual variability, with a tropical peak and lower

values in the high latitudes. The actual values for July are higher,
because the mean coefficient from 308S to 308N is 0.35 in
ESM2.1 during July vs. 0.24 in the annually smoothed version,
but this is a much smaller increase than that observed in spring
at high latitudes. As discussed below, changes in the timing of pro-
ductivity during the year are most important at high latitudes,
whereas in low latitudes interannual changes in the annual mean
productivity are much more important.

As illustrated in Figure 5, the basic spatial pattern of interannual
variability in spring large phytoplankton biomass in ESM2.1
resembles that observed for chlorophyll, but with a much greater
range. As with the SeaWiFS annual data, regions of high variability
are observed at the boundary between the Subtropical Gyre and the
high-nutrient equatorial zone, but also in mode-water formation
regions where deep mixed layers are found along the boundary of
the Subtropical and Subpolar Gyres. High variability is also
found in convective regions within the Subpolar Weddell Sea,
Bering Sea, and North Atlantic. The difference between the left-
and the right-hand columns of Figure 5 reinforces the result
from Figures 3 and 4 that chlorophyll or total biomass alone can
give an inaccurate picture of the interannual variability within an
ecosystem.

Therefore, the three key results of this section are that large
plankton and diatoms vary more than small plankton, that large

Figure 3. Coefficients of variability (standard deviation of 12-month running smoothed/mean) for quantities estimated from satellite and
computed in a CORE-forced (Griffies et al., 2009) ocean-ice model. Contours are at values of 0, 0.05, 0.1 to 1 by 0.1, and 1.5. Correlations and
regressions between the natural log of chlorophyll and the natural log of the relevant quantity are illustrated to give a sense of power-law
relationships for the model output. (a) Surface chlorophyll, SeaWiFS. (b) Primary productivity from SeaWiFS using the Carr (2002) algorithm.
(c) Modelled surface chlorophyll. (d) Modelled productivity (total grazing 0–100 m). (e) Modelled small phytoplankton biomass (0–100 m).
(f) Modelled large phytoplankton biomass (0–100 m).
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relative variability is found on the edges of highly productive
regions, and that relative variability during the spring bloom is
larger than variability over the entire year. The following section
expands upon the second of these results, looking at the boundary

between the equatorial upwelling and the Subtropical Gyre, indi-
cating that the changes in concentration are associated with that
in the areal extent of the oligotrophic gyre and considering the
physical forcing driving such changes. The section “Variability in

Figure 4. Zonally averaged coefficient of variation in phytoplankton biomass (standard deviation/mean) as a function of space and time.
Dashed lines are for years 401–500 of ESM2.1, solid for the CORE-forced run. Thin lines are for total phytoplankton biomass, thick lines are for
large phytoplankton biomass alone, and symbols are for diatom biomass. (a) Variability of 12-month smoothed biomass. (b) Same as (a) but
only for April. (c) Same as (a) but only for July. (d) Same as (a) but only for October.

Figure 5. Interannual variability in spring/autumn for ESM2.1. All plots display standard deviation over mean. (a) Surface chlorophyll, April;
(b) large phytoplankton biomass, April; (c) surface chlorophyll, October; and (d) large phytoplankton biomass, October.
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large phytoplankton biomass in the North Pacific during boreal
spring” examines mechanisms behind spring variation in large
phytoplankton concentrations in four regions: the Subtropical
Gyre off Hawaii, the Kuroshio extension, the Sea of Okhotsk,
and the western Bering Sea. Because interannual variability in
diatoms largely tracks these variations in the CORE-forced runs
in these regions, we expect the results to be qualitatively applicable
to diatoms as well.

Interannual changes in biome area: the case
of the equatorial upwelling zone
We begin with the equatorial Pacific where interannual variabil-
ity is high and breaking down this variation month by month
yields less of an increase (Figure 4) than at high latitudes.
The variability in this region is relatively consistent between
the CORE and ESM2.1 runs. Both models simulate the largest
variability around the edge of the high-nutrient cold tongue,
a picture similar to that displayed in Figure 3a and in the
work of Martinez et al. (2009). If we define the boundary
between the equatorial upwelling biome and oligotrophic
gyre/subtropical biome either using the Chl ¼ 0.07 mg m23

isoline (following Polovina et al., 2008) or the NO3 ¼

0.02 mmol m23 line (Figure 6a) between 208S and 208N, we
note that the CORE model indicates the gyres expanding and
contracting with decadal and interannual frequencies.
Although nitrate is only one of the sources of nitrogen for
the off-equatorial regions in this model, it is used as an indi-
cator of upwelled nutrient. The changes in the oligotrophic
gyre area can be regressed onto changes in chlorophyll
(shading, Figure 6b), revealing that a larger oligotrophic

gyre area is associated with lower chlorophyll concentrations
at the edge of the high-nutrient waters. Regressing the gyre
area against windstresses (arrows, Figure 6b) demonstrates that
larger oligotrophic gyre areas are associated with anomalous
westerlies along the gyre margins. The correlation between
equatorial winds and the tropical oligotrophic gyre area over
this period is 0.77, whereas off-equator, the correlations
approach 0.85.

We examined the mechanistic connection between winds, cur-
rents, and the area of the subtropical biome by looking at the mass
balance of nitrogen in the CORE runs in three areas outlined by
the boxes in Figure 6b. Changes in nitrate import that explain a
large fraction of changes in the vertical particle export flux can
be identified as important causative agents for export flux variabil-
ity. Which fluxes are the most important end up being slightly
different for the regions on and off the equator. Along the
equator (1758E–1608W 38S–38N), the anomalous advection of
nitrate from below and from the east together (dashed/red line,
Figure 7a) correlate well with the particle export anomaly at
100 m (solid/black line, Figure 7a). However, this correlation is
not simply because of the direct response of wind-driven currents
acting on the background nutrient field. The flux resulting from
changes in currents alone (dotted/blue line, Figure 7a) has a strik-
ingly lower correlation with the particle export (0.36 vs. 0.9) and a
lower amplitude of variability. In the northern centre of action
(165–1408W 5–158N), the dominant control of the particle
export is from advection of nutrient into the region from the
south (compare solid/black and dashed/red lines, Figure 7b).
Here too, however, changes in the velocity alone account for
only a small part of the variability, implying that changes in the

Figure 6. Changes in the oligotrophic gyre area in the central Pacific (208N–208S, following definition of Polovina et al., 2008). (a) Changes in
the oligotrophic gyre area in the CORE-forced model defined using chlorophyll (solid) and the corresponding area of low nutrients (dashed).
(b) Changes in surface chlorophyll (shading) and on windstress (arrows) corresponding to a 1 s.d. change in the gyre area. Contours indicate
mean surface nitrate.

1038 A. Gnanadesikan et al.

 by guest on N
ovem

ber 3, 2012
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://icesjms.oxfordjournals.org/


nutrient concentrations of the inflow are dominant. The domi-
nance both of north–south advection and of changes in nutrient
concentrations in explaining such changes in advective flux is
also found in the region from 140 to 1008W and 8 to 158S
(Figure 7c). This region covers the southern centre of action in
Figure 6b (although the dotted blue and solid black lines do not
appear well correlated, they in fact match up extremely well

until the 1980s). In all three regions, the changes in export rep-
resent changes in the regional extent of the highly productive,
nutrient-rich waters, not just local changes in productivity. This
implies that predicting the change in the biome area involves
more than just predicting changes in the amplitude of ENSO;
the changes in the background field of nutrients must also be
understood.

Variability in large phytoplankton biomass
in the North Pacific during boreal spring
Identification of different regimes
Turning to variability associated with the spring bloom, we note
that the relationship between local SST and biological cycling
during April reveals a complicated pattern in the North Pacific
(Figure 8a and b). The correlation patterns of chlorophyll and
large plankton biomass with SST (shading) reveals a rough con-
sistency, with a tongue of high variability negatively correlated
with SST extending from the centre of the Subtropical Gyre to
the northeast off the Pacific coast of Canada, weak positive corre-
lation in the northwest Pacific, stronger positive correlation in the
Sea of Okhotsk, and a region of strong negative correlation in the
western Bering Sea off Kamchatka. However, the coefficients of
variation in chlorophyll and large phytoplankton biomass (con-
tours) are only of similar magnitude in the first of these regions.
In the region from 150 to 1608E and 36 to 408N (in the
Kuroshio extension), the coefficient of variation in chlorophyll is
0.35, as opposed to 0.98 for large phytoplankton biomass;
similar differences are found in the Sea of Okhotsk and western
Bering Sea. In all four regions (but particularly those outside the
Subtropical Gyre), the coefficient of variation in large biomass
during April is larger than during either March, May, or the
entire period from March to May. In the Kuroshio extension,
for example, the coefficient of variation for large phytoplankton
biomass during the entire March–May period is only 0.24,
approximately one-fourth that of the April period alone. Such
differences are consistent with the interannual variability in
April biomass being primarily driven by variability in bloom
timing, rather than reflecting interannual changes in the magni-
tude of seasonal productivity. As discussed in the following sec-
tions, the physical mechanisms underlying this variability differ
in each of the regimes denoted by the green boxes in Figure 8.

The drivers of variation in large phytoplankton biomass during
April are analysed by correlating this variability with SST, SSS, the

Figure 7. Time-series of anomalous export of particulate organic
nitrogen (black lines), advective fluxes of nitrate (dashed), and
advective fluxes because of changes in velocity alone (dotted) for the
three centres of action in Figure 6. (a) 1758E–1608W 38S–38N, (b)
160–1408W 5–158N, and (c) 140–1008W 15–88S.

Figure 8. Relationship of variability in local SST with variability in (a) chlorophyll and (b) large phytoplankton biomass during April in the
North Pacific. Colours indicate correlation coefficients, contours the coefficient of variability as in Figure 5.
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salinity difference between the surface and 150 m, windspeed,
averaged photosynthetically active radiation in the mixed layer,
the natural log of the mixed-layer depth, nitrate, and dissolved
iron concentrations (Figure 9) for each of the boxes in Figure 8.
Correlations with April conditions (right-hand set of bars in
each panel in Figure 9) are illustrated to isolate the mechanisms
driving the interannual changes in biomass, whereas correlations
with January conditions (left-hand set of bars in each panel) are
displayed to isolate whether the environmental controls are poten-
tially predictable from oceanic conditions earlier in the year.

The Subtropical Gyre
In the Subtropical Gyres, downwelling and high vertical gradients
in temperature combine to create regions with low surface nutri-
ents. Although sometimes referred to as biological deserts, these
regions do support some pelagic fisheries. In such
nutrient-limited, low-latitude regimes, one would expect surface
cooling to result in more mixing, greater nutrient supply, and
hence higher productivity. The mixed-layer depth would therefore
be expected to be correlated positively with biomass and chloro-
phyll in tropical and subtropical regions. Follows and Dutkewicz
(2002) compared a model forced in a similar manner to ours
with SeaWiFS chlorophyll in the subtropics. The modelled
mixed-layer depth was correlated positively with observed

chlorophyll, supporting the idea that the increased chlorophyll
was associated with increased vertical supply of nutrients.

Examining the subtropical North Pacific near Hawaii, from 170
to 1608W and 26 to 308N, we find a basic consistency with the
classic picture (Figure 9a). During April, large phytoplankton
biomass is best correlated with high levels of nitrate and inversely
correlated with SST. However, the deep mixed layers during April
are apparently not necessary for high biomass during the same
month. Instead, high phytoplankton biomass during April is
(weakly) associated with shallower mixed layers, higher light,
and weaker winds. A correlation between April biomass and
deeper mixed layers (associated with higher winds and cooler
SSTs) only appears when the previous January is considered.
That the correlation between April large biomass and January
mixed-layer depth is smaller in magnitude than the anticorrelation
with temperature also suggests that some of the variability in
nutrient might result from southward advection of colder,
fresher northern waters and not just to deeper local mixing. The
negative correlation with iron indicates that iron cannot be the
dominant limiting nutrient, but is instead drawn down more by
high levels of biological activity. Because we model nutrient limit-
ation using Liebig’s law of the minimum [Equations (1) and (4)],
iron limitation in this version of our model only has an impact
when it is less limiting that nitrogen, which only occurs in the

Figure 9. Large phytoplankton biomass during April correlated with other fields during 2 months (January and April) in the four different
dynamic regimes in the North Pacific denoted by the green boxes in Figure 8. From left to right, each set of bars shows: SST, sea surface
temperature; SSS, sea surface salinity; Sstrat, salinity difference between 0 and 150 m; Wind, magnitude of surface winds; Light, averaged
photosynthetically active radiation in mixed layer; log(MLD), logarithm of mixed layer depth; NO3, nitrate concentration; Fed, dissolved iron
concentration. (a) Subtropical Gyre, 170–1608W 26–308N. Dominant correlation is with nitrate both at zero lag and with a 3-month lead. (b)
The Kuroshio extension region, 150–1608E 36–408N. Note strong correlation with light, anticorrelation with wind, and mixed-layer depth at
zero lag. (c) Sea of Okhotsk. Note high correlation at zero lag with mixed-layer light and temperature, but low correlation with sea ice. (d)
Western Bering Sea. Note strong anticorrelation with mixed-layer depth and positive correlation with light at zero lag.
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Southern Ocean, in the Peru upwelling, and the Pacific cold
tongue.

The Kuroshio extension: a mode-water formation region
Farther north, we find a region that has a strong seasonal cycle in
mixed-layer depth at the edge of the Subtropical Gyre. Deeper
winter mixing means that spring light limitation can be extreme
in this region, which is associated with formation of key mode
waters. Nutrients in the Kuroshio extension are more abundant
than in the Subtropical Gyre, though at lower levels than in the
Subpolar Gyre, with the result that chlorophyll levels are somewhat
lower than in the Subpolar Gyre. Sarmiento et al. (2004) defined
this region as a combination of the subtropical seasonal stratified
biome and Subpolar Gyre biome, whereas Polovina et al. (2011)
include it in the temperate biome. As demonstrated in
Figures 8b and 9b, the large interannual variability in April large
phytoplankton biomass in this region is only weakly correlated
with temperature, but is very strongly anticorrelated with
mixed-layer depth and positively correlated with mixed-layer
light availability. Light limitation, rather than nutrient limitation,
plays a dominant role here, so that the spring bloom coincides
with the shallowing of the mixed layer. Note that there is no nutri-
ent limitation during April, despite the annual mean nutrient con-
centrations being somewhat low in this area (Figure 2a), so that
such (unrealistic) limitation kicks in later during summer.
Shallow mixed layers can result from low winds (hence the anti-
correlation with wind). They can also be associated with either
local warming or from the advection of fresher, colder waters
from the north, hence the weak correlation with SST. In contrast
to the centre of the Subtropical Gyre, this region displays relatively
little correlation with conditions in January, suggesting that it will
be challenging to predict.

The Sea of Okhotsk: a marginal ice zone biome
A third region outlined in Figure 8 is the Sea of Okhotsk, which is
ice-covered during winter and, as such, was classified by Sarmiento
et al. (2004) as part of the marginal ice zone biome. Interannual
variability of large phytoplankton biomass in this region is
strongly correlated with temperature and light availability, but
only weakly anticorrelated with the mixed-layer depth
(Figure 9c). The correlation between April large phytoplankton
biomass and sea-ice concentration (not presented) is 20.72, com-
parable with the 0.86 correlation with mixed-layer light. This is
consistent with variability in the timing of ice breakup being
important for allowing relief of light limitation and drawdown
of surface nutrient and with higher SSTs being associated with
this breakup.

The correlation between mixed-layer light and chlorophyll in
this region (0.50, not presented) is much lower than the correlation
between mixed-layer light and both large and small phytoplankton
biomass (0.86). The correlation is lower because the phytoplankton
in the TOPAZ model adapt to light availability, reducing their
chlorophyll to carbon ratio as more light becomes available
[Equation (4)]. As a result, the chlorophyll:carbon ratio in the
Sea of Okhotsk during April is strongly anticorrelated with
mixed-layer light (20.63), reducing the amplitude of chlorophyll
variability and demonstrating again why it is necessary to be cau-
tious in extrapolating from satellite chlorophyll to ecosystem state.

The Western Bering Sea: a salinity-stratified subpolar
biome
A final region of interest is found in the western Bering Sea, where
there is large interannual variability in large phytoplankton
biomass, but an anticorrelation with temperature. As illustrated
in Figure 9d, this region is also light-limited and large phytoplank-
ton biomass is strongly anticorrelated with mixed-layer depth. The
anticorrelation with temperature (implying that cold temperatures
are correlated with shallow mixed layers) is in contrast to the
Kuroshio extension and the Sea of Okhotsk and implies that sal-
inity rather than temperature is the dominant mechanism estab-
lishing mixed-layer stratification in this region. This dynamic
regime is also found in many other parts of the model ocean,
including the southern Labrador Sea, central Norwegian Sea,
and Weddell Sea.

The mechanisms by which such salinity anomalies develop are
potentially complicated. Gargett (1997) looked at salmon stocks in
the North Pacific and argued that the key variable for explaining
coastal stability was Alaskan streamflow, which freshened coastal
regions and was tied to the changes in low pressure associated
with the PDO. However, other analyses we have done using the
CM2.1 model suggest that the dominant driver of salinity variabil-
ity is not the supply of freshwater, but rather the upwelling of
saline deep water from below, because of local changes in the
windstress curl in our modelled Bering Sea. Galbraith et al. (in
press) look at similar salinity anomalies in a coarse-resolution
coupled model in the Southern Ocean and find that the source
of the anomalies is a combination of precipitation anomalies
and entrainment of more-saline deep waters.

Discussion and conclusions
The coupled physical–biogeochemical models used to assess
climate-change impacts on ocean ecosystems offer insights into
how changing prey availability for fisheries could be linked to
climate. We review these insights below and consider the potential
implications for predicting and diagnosing marine ecosystem
variability.

The importance of size structure
The first major message of this paper is that one should not expect
a straightforward scaling between primary productivity or chloro-
phyll and the biomass of the large phytoplankton that are con-
sidered most important for fisheries. Over much of the ocean,
large plankton apparently respond disproportionately to changes
in environmental conditions, driven by differential uptake of
nutrients and a size-dependent grazing parametrization
(Figures 2d, 3–5, and 8). Because photoadaptation causes the
Chl:C ratio to decline as more light becomes available, light-
limited regions display much less variability in chlorophyll than
in large plankton biomass. This suggests that to track prey avail-
ability, fisheries oceanographers should look to satellite estimates
of phytoplankton carbon biomass (such as that proposed by
Behrenfeld et al., 2005), as well as those that separate out phyto-
plankton into different size classes (Kostadinov et al., 2009;
Mouw and Yoder, 2010). Algorithms for isolating the diatom com-
ponent (e.g. Alvain et al., 2008) might be important as well.
Although diatoms are well correlated with large phytoplankton
biomass in one of our runs, there are some differences in detail
regarding the location of maximum variability. Moreover, our
parametrization of diatom fraction is crude. Although these
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products remain preliminary, the fisheries oceanography commu-
nity should consider using them, especially where results from
chlorophyll or primary productivity seem to contradict inferences
made from looking at fisheries data. Additionally, when examining
simulations from earth system models, fisheries oceanographers
should request size structured biomass, which is often simulated
by such models, and not be content with modelled chlorophyll
or primary productivity.

The potential importance of timing
The second key message of this paper is that models reveal greater
variation in the interannual variability of phytoplankton biomass
associated with the spring bloom than in the interannual variabil-
ity in annually averaged phytoplankton biomass. For high-latitude
regions when large phytoplankton are considered in isolation the
difference can approach an order of magnitude, supporting the
Hjort–Cushing “match–mismatch” hypothesis. Larger variability
in bloom timing relative to interannually integrated production
has been observed in individual ecosystems (Henson and
Thomas, 2007; Hunt et al., 2008), but this study breaks new
ground in examining the global distribution of the coefficient of
variation in large phytoplankton biomass during spring.
Variability in bloom timing has potentially important implications
for fisheries oceanographers using models such as Ecopath that
often either use annual integrated primary productivity
(Guénette et al., 2006) or diagnose this quantity from lower
trophic level biomass (Piroddi et al., 2010). Our results suggest
that such models should probably consider bloom timing if they
are to estimate the range of climate-forced ecosystem variability
properly.

Bloom timing might be particularly important for understand-
ing different climate responses between “capital breeders” that
build up a large stock of resources before breeding and “income
breeders” that match food and breeding (Jonsson, 1997). For
example, Boulcott and Wright (2008) argue that variability in
the timing of blooms in the North Sea has a particularly strong
impact on the regional distribution of sandeels. Insofar as
income breeders average over the entire seasonal cycle, by contrast,
they might be less vulnerable to such variability, as noted by
Martin and Wiebe (2004) for Arctic and alpine birds and for
Japanese anchovy as opposed to Japanese sardine (A. Takasuka,
National Research Institute for Fisheries Science, Yokohama,
Japan, pers. comm.). Understanding such trade-offs could be a
fruitful area of collaboration between biogeochemical modellers
and fisheries oceanographers.

Changes in tropical biome extent: implications
for predictability
Both observations and models (Figures 3, 5) exhibit larger relative
variability on the edges rather than in the centres of highly pro-
ductive regions. This could be important, because many organisms
have planktonic larval stages and many of the highly productive
regions (in particular coastal and equatorial upwelling zones) are
divergent. Larvae spawned in such regions might therefore be
carried out of them on time-scales of a few weeks and whether
they can return might depend more on the food they find on
the edges of the unproductive gyres than in the centre of the
upwelling regions. We suggest additional investigations to verify
whether larval survival within these edge regions is important
for certain species. Additionally, the edges of high-productivity
regions might be more favourable for visual predators, such as

tuna, which could trade-off the requirement for relatively clear
water to detect and catch prey with higher prey densities in
more turbid waters (Kirby et al., 2000).

Variations at the edges of the gyres have been linked to climate
change by Polovina et al. (2008), who observed an increase in the
area of the oligotrophic gyres during the SeaWiFS era. However,
when Henson et al. (2010) compared historical trends in gyre
area with several CORE-forced ocean biogeochemistry models
(including the one used here), they found generally good agree-
ment between modelled and observed gyre size (0.88 for the
SeaWiFS era), but also found that the variability during the
SeaWiFS era was much smaller than that required to detect an
anthropogenic signal. Given the deficiencies of an Eulerian
interpretation of ocean biome variability on short time-scales
(Figure 7), as well as earlier results indicating that there are
changes in the large-scale ventilation structure of the ocean
under global warming (Gnanadesikan et al., 2007), it will be essen-
tial not to depend on physical models alone to predict the behav-
iour of these biome boundaries.

Challenges in modelling high-latitude variability
We have demonstrated that interannual variation in the monthly
distribution of productivity might be much larger than the inter-
annual variation in annual mean productivity (Figure 4), and that
at high latitudes, salinity can play an important role in explaining
this variability (Figure 9). Variability in salinity presents a chal-
lenge to retrospective analyses of ecosystem variability. As demon-
strated in Figure 4, the high-latitude variation in spring
production is higher in ESM2.1 coupled climate models than in
the CORE ocean-only reanalysis model. The main reason for
this is that ocean-only models run with “observed” precipitation
must be also run with a flux correction by which salinities are
restored to their climatological values. Without such restoration,
a chain of feedbacks may be triggered at high latitudes whereby
cooling in convective regions results in precipitation exceeding
evaporation, resulting in a build-up of freshwater at the surface,
suppression of convection, and further cooling. In reality, a drop
in surface temperatures would also be expected to result in a
decrease in precipitation, but this feedback is absent in
CORE-forced runs. However, restoration damps the interannual
variability in salinity, especially when such variability is associated
with large-scale advection of surface anomalies. The challenge then
is for the climate community to develop methods of reanalysis that
can properly simulate the variability in winds and heating without
damping out hydrological feedbacks. Coupled reanalyses (Zhang
et al., 2007), where the atmospheric winds are nudged towards
observed values, might provide such a consistent solution, but eco-
system models have yet to be included in such reanalyses. In the
interim, fisheries oceanographers using CORE-forced runs
should evaluate carefully whether observed salinity variability is
properly captured.
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