
Journal of Marine Systems 76 (2009) 95–112

Contents lists available at ScienceDirect

Journal of Marine Systems

j ourna l homepage: www.e lsev ie r.com/ locate / jmarsys
Skill metrics for confronting global upper ocean ecosystem-biogeochemistry
models against field and remote sensing data

Scott C. Doney a,⁎, Ivan Lima a, J. Keith Moore b, Keith Lindsay c, Michael J. Behrenfeld d,
Toby K. Westberry d, Natalie Mahowald e, David M. Glover a, Taro Takahashi f

a Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
b Department of Earth System Science, University of California Irvine, Irvine CA 92697, USA
c Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
d Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
e Department of Earth and Atmospheric Sciences, Cornell University, Cornell NY 14850, USA
f Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
a r t i c l e i n f o
⁎ Corresponding author.
E-mail addresses: sdoney@whoi.edu (S.C. Doney),

(I. Lima), jkmoore@uci.edu (J.K. Moore), klindsay@uca
behrenfm@science.oregonstate.edu (M.J. Behrenfeld),
toby.westberry@science.oregonstate.edu (T.K. Westber
nmm63@cornell.edu (N. Mahowald), dglover@whoi.ed
taka@ldeo.columbia.edu (T. Takahashi).

0924-7963/$ – see front matter © 2008 Elsevier B.V.
doi:10.1016/j.jmarsys.2008.05.015
a b s t r a c t
Article history:
Received 1 November 2007
Received in revised form 8 March 2008
Accepted 2 May 2008
Available online 29 May 2008
We present a generalized framework for assessing the skill of global upper ocean ecosystem-
biogeochemical models against in-situ field data and satellite observations. We illustrate the
approach utilizing a multi-decade (1979–2004) hindcast experiment conducted with the
Community Climate System Model (CCSM-3) ocean carbon model. The CCSM-3 ocean carbon
model incorporates a multi-nutrient, multi-phytoplankton functional group ecosystemmodule
coupledwith a carbon, oxygen, nitrogen, phosphorus, silicon, and iron biogeochemistrymodule
embedded in a global, three-dimensional ocean general circulation model. The model is forced
with physical climate forcing from atmospheric reanalysis and satellite data products and time-
varying atmospheric dust deposition. Data-based skill metrics are used to evaluate the
simulated time-mean spatial patterns, seasonal cycle amplitude and phase, and subannual to
interannual variability. Evaluation data include: sea surface temperature and mixed layer
depth; satellite-derived surface ocean chlorophyll, primary productivity, phytoplankton growth
rate and carbon biomass; large-scale climatologies of surface nutrients, pCO2, and air–sea CO2

and O2 flux; and time-series data from the Joint Global Ocean Flux Study (JGOFS). Where the
data is sufficient, we construct quantitative skill metrics using: model–data residuals, time–
space correlation, root mean square error, and Taylor diagrams.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The last two decades witnessed a dramatic increase in the
volume of global ocean biogeochemical and ecological
observations due, in part, to coordinated international field
programs (e.g., Joint Global Ocean Flux Study JGOFS; World
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Ocean Circulation Experiment WOCE), satellite ocean color
sensors, and emerging and ongoing ocean observing systems
(e.g., Fasham et al., 2001; Doney and Hood, 2002; McClain
et al., 2004). Data availability combined with increasing
computational power stimulated a rapid growth in basin to
global upper ocean ecosystem-biogeochemistry models (e.g.,
Sarmiento et al., 1993; Six and Maier-Reimer, 1996; Oschlies
and Garcon, 1998; Doney, 1999; Gregg et al., 2003; Aumont
et al., 2003; Moore et al., 2004; Le Quéré et al., 2005; Doney
and Ducklow, 2006). Such models are now widely applied to
questions from seasonal and interannual climate variability
(e.g., Le Quéré et al., 2000; McKinley et al., 2004;Wetzel et al.,
2005; McKinley et al., 2006; Lovenduski et al., 2007; Le Quéré
et al., 2007) to anthropogenic climate change (e.g., Bopp et al.,
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2001; Boyd and Doney, 2002; Bopp et al. et al., 2003). Marine
ecosystem models are also growing in sophistication and
complexity, incorporating multiple limiting nutrients and
multiple planktonic functional groups at the lower trophic
levels (Denman, 2003; Hood et al., 2006; Follows et al., 2007).

Even with the wealth of new ocean data, the evaluation of
basin and global-scale marine ecosystem-biogeochemistry
models is challenging. Satellite data provide reasonably high
space–time resolution but only for the surface layer and for
only a handful of biological properties. Ship-based biological
and chemical data are invaluable but comparatively sparse,
with the construction of global annual mean climatologies
requiring the aggregation of data frommultiple years. Routine
underway sampling transects on research vessels and volun-
teer commercial ships are greatly improving data densities but
are mostly limited, to this point, to carbon dioxide system
variables (e.g., pCO2). Quantitative evaluation is further con-
founded by the fact that model variables in most ecosystem
models are highly aggregated, for example lumping all mi-
crozooplankton or mesozooplankton into two model com-
partments.Model variables can also lackdirect analogueswith
observed values, as in the case of the crucial higher trophic
level mortality closure terms that combine effects of mortality
and predation. Furthermore, even the best sampled locations
(e.g., JGOFS sites) often do not have enough data to constrain
model dynamics fully (e.g., Friedrichs et al., 2007). Despite
these issues, data-based verification of model skill is funda-
mental to advancing the science of marine ecological model-
ing. Quantitative skill assessment is integral to both themodel
development cycle and defining confidence estimates on
model forecasts. As such, most research groups have in place
some form of data-based assessment, though as discussed in
Stow et al. (this volume) these assessments are often partial
and qualitative.

Skill assessment requires significant up-front investment to
compile a wide range of field and remote sensing data into
appropriate data products (often, but not always gridded) prior
to the actual comparisonwithmodel results. The problem is not
one of simply data management, but rather requires a serious
level of data interpretation and analysis effort to combine ob-
servations fromdifferent researchers,measurement techniques
or even satellite platforms. Once created, the utility of such data
products is clear, as illustratedby thebroaduse by themodeling
community of data compilations such as the global surface
pCO2 data set and air–sea CO2 flux estimates of Takahashi et al.
(2002) and Takahashi et al. (2008, in press), the GLODAP data
products created from the WOCE/JGOFS (Key et al., 2004), and
the level 3 gridded satellite ocean color data from SeaWiFS and
MODIS. Standard data products and quantitative metrics of
model skill, even if imperfect, stimulate critical assessment of
model performance and speed model development.

Lessons for developing a systematic model–data skill as-
sessment can be drawn from the experience of similar efforts in
related fields. For example, the ocean biogeochemical commu-
nity has organized model–data skill assessments under the
Ocean Carbon Model Intercomparison Project (OCMIP). Within
OCMIP researchers compared about a dozen global ocean bio-
geochemical models against observations of ocean physics
(Doney et al., 2004), transient tracers including radiocarbon
(Matsumoto et al., 2004) and chlorofluorocarbons (Dutay et al.,
2002), and inorganic carbon, nutrients and oxygen (Orr et al.,
2005; Najjar et al., 2007). Matsumoto et al. (2004) argue that
most of the OCMIP simulations do not adequately match
(within error bars) the available ocean transient tracer data.
Estimates of less well-constrained model variables (e.g., future
ocean uptake of anthropogenic CO2) should therefore include
only the subset of “skillful” simulations or should be construc-
ted using a weighting function based on the transient tracer
model skill. A second lesson from OCMIP is that model skill
assessment is often best done as a partnership between re-
searchers with expertise in modeling and researchers involved
in field observations and remote sensing.

Here we argue for a similar generalized model–data frame-
work for characterizing the skill of global ocean ecosystem-
biogeochemical models against in-situ field data and satellite
observations.While all of themajor ocean ecosystemmodeling
groups currently assess model skill, the approaches are often
specific to their particularmodel, and the community lacks a set
of agreed upon, objective evaluationmetrics that can be used to
inter-compare skill across models. Our goal here is to stimulate
discussion and dialogue by proposing a prototype scheme that
will be open to the community. We realize that a fully com-
prehensive systemwill only emerge over time with input from
different user groups and that even with a generalized set of
skillmetrics therewill still remain aneed for unique verification
approaches for different model applications.

As an illustration, we presentmodel–data skill results from
a multi-decade (1979–2004) hindcast experiment conducted
with the Community Climate SystemModel (CCSM-3) coupled
ocean Biogeochemical Elemental Cycling model (BEC). The
BEC model consists of upper ocean ecological (Moore et al.,
2004) and full-depth biogeochemical (Doney et al., 2006)
modules embedded in a global 3-D Parallel Ocean Program
(POP) ocean general circulationmodel (Smith and Gent, 2004;
Collins et al., 2006). The model is forced with physical climate
forcing from atmospheric reanalysis and satellite data pro-
ducts (Doney et al., 2007) and time-varying dust deposition
(Mahowald et al., 2003). We focus the analysis on three
aspects of the simulation: time-mean spatial patterns, the
seasonal cycle, and subannual to interannual variability.
Evaluation data include satellite-derived surface ocean chlor-
ophyll and primary productivity (SeaWiFS and MODIS), large-
scale climatologies of surface nutrients and pCO2, and time-
series data from JGOFS and other field programs. Where the
data is sufficient, we construct quantitative skill scores (time–
space correlation and model and data rms variability) (Lima
and Doney, 2004).

2. Hindcast global ocean
ecosystem-biogeochemistry simulation

2.1. Ecosystem-biogeochemistry module

The CCSM-3 BECmodel is cast as a set of three-dimensional,
time-varying advection diffusion equations for a suite of tracers
C:
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The physical transport is partitioned into resolved advection
and parameterized eddy mixing terms; all of the ecological–
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Fig. 1. Schematic of the CCSM Biogeochemical-Ecosystem-Circulation (BEC) model showing the major dissolved inorganic, biological, and detrital tracers and the
flows among the tracers. Many of the biological and detrital tracers include multi-element sub-elements to separately track carbon, macronutrients, and iron.
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biogeochemical source/sink terms and surface and sediment
fluxes are grouped into the right hand side term RHSbio. The
marine ecosystem module (Fig. 1) builds on traditional
phytoplankton–zooplankton–detritus–nutrient food web
models (e.g., Doney et al., 1996; Fasham et al., 2001). The
module incorporates multi-nutrient limitation (N, P, Si, and Fe)
on phytoplankton growth and specific phytoplankton func-
tional groups (Moore et al., 2002, 2004).

There are fourteenmainmodel compartments: small pico/
nanoplankton, diatoms, and diazotrophs; zooplankton; sus-
pended and sinking particulate detritus; and dissolved nitrate,
ammonia, phosphorus, iron, silicate, oxygen, dissolved inor-
ganic carbon, and alkalinity. The pico/nanoplankton size class
is designed to replicate the rapid and highly efficent nutrient
recycling found in many subtropical, oligotrophic (low nu-
trient) environments. Diatomsmodel a larger, bloom-forming
size class. Phytoplankton growth rates are determined by
available light and nutrients using a modified form of the
Geider et al. (1998) dynamic growth model. Photoadaptation
is parameterized with dynamically adaptive chl/C ratios. The
diazotrophs fix all required nitrogen from N2 gas, and cal-
cification is parameterized as a fraction of the pico/nanoplank-
Table 1
Description of the evaluation data sets used in this study

Data set Variable name Temporal coverage

Sea surface temperature SST Monthly (1979–2004
Mixed layer depth MLD Monthly climatology
Air–sea ΔpCO2 (surface water pCO2) ΔpCO2 Monthly climatology
Air–sea CO2 flux (ΔpCO2 and winds) FCO2 Monthly climatology
Air–sea O2 flux (ocean inverse model) FO2 Annual and monthly
Surface oxygen O2 Monthly climatology
Surface nitrate NO3 Monthly climatology
Surface phosphate PO4 Monthly climatology
Surface silicic acid Si(OH)4 Monthly climatology
Surface chlorophyll SeaWiFS Chl Monthly (1998–pres
Vertically integrated primary production ∫PP Monthly (1998–pres
Phytoplankton growth rate (MODIS) µ Monthly (1998–pres
Phytoplankton carbon biomass (MODIS) PC Monthly (1998–pres
ton production as a function of temperature and nutrients
adapted for coccolithophores. Size-structure effects are in-
cluded by varying key zooplankton (e.g., partitioning of fecal
pellets between suspended and sinking detritus) depending
on the food source (Lima and Doney, 2004). Many of the biotic
and detrital compartments contain multiple elemental pools,
in addition to carbon, to track flows through the ecosystem.
The model has one adaptive zooplankton class that grazes on
phytoplankton and large detritus.

The biogeochemistry module (Doney et al., 2006) is based
on an expanded version of the Ocean Carbon Model Inter-
comparison Project (OCMIP) biotic model (Najjar et al., 2007).
The module includes full carbonate system thermodynamics
and air–sea CO2 and O2 fluxes. Gas transfer velocities are com-
puted from the 6-hourly NCEP winds (http://www.cdc.noaa.
gov/cdc/reanalysis/reanalysis.shtml) using the quadratic wind
speed relationship ofWanninkhof (1992). A dynamic iron cycle
is incorporated with atmospheric dust deposition, water
column scavenging and a continental sediment source (Moore
et al., 2006; see alsoMoore andBraucher, 2008 fordiscussionon
refinements of continental sediment source). Denitrification is
simulated in oxygen minimum zones following Moore and
Reference

) NOAA OI.v2 Reynolds et al. (2002)
Boyer-Montégut et al. (2004)

normalized to 2000 Takahashi et al. (2008, in press)
normalized to 2000 Takahashi et al. (2008, in press)
climatology Garcia and Keeling (2001) and Gruber et al. (2001)

Conkright et al. (2001)
Conkright et al. (2001)
Conkright et al. (2001)
Conkright et al. (2001)

ent) McClain et al., 2004
ent) SeaWiFS and Behrenfeld and Falkowski (1997)
ent) Behrenfeld et al. (2005) and Westberry et al. (2008)
ent) Behrenfeld et al. (2005) and Westberry et al. (2008)

http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml
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http://dx.doi.org/10.1029/2007GB003078
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Doney (2007), and subsurface particle remineralization is
parameterized incorporating the mineral ballast arguments of
Armstrong et al. (2002). The model equations are identical to
those reported for the 3-D implementation of Moore et al.
(2004) with two important modifications as documented in
more detail in Moore et al. (2006). First, water column
denitrification has been added to the model in order to close
the global nitrogen cycle. Second, a number of the parameters
associated with the model iron dynamics and scavenging
have been adjusted to improve the simulated dissolved iron
fields (see Table 1 of Moore et al., 2006) (Moore and Braucher,
2008).

2.2. Atmospheric dust deposition

Time-varying mineral aerosol deposition to the ocean is
simulated using a 3-D atmospheric chemical transport model
Fig. 2. Comparison of spatial distribution of observed and simulated annual mean, s
SeaWiFS satellite ocean color data (middle panel), and model minus data residual (
(Mahowald et al., 2003; Luo et al., 2003) based on National
Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) reanalysis (Kistler et al.,
2001). The dust source and deposition scheme is based on the
Dust Entrainment and Deposition (DEAD) scheme (Zender
et al., 2003), and the chemical transport model is theModel of
Atmospheric Transport and Chemistry (MATCH) (Rasch et al.,
1997), which has been developed specifically to be used with
reanalysis winds (Mahowald et al., 2003). The dust source
areas are defined as dry, poorly vegetated regions which have
easily erodible sources, using topographic lows as preferential
source areas (Ginoux et al., 2001). Dust is removed by wet
deposition during precipitation events, and by dry deposition
from gravitational settling and turbulent processes.

The ability of the dust model to correctly simulate the
annual mean, and seasonal cycle of dust has been compared
against in-situ and satellite observations elsewhere (Luo et al.,
urface chlorophyll (mg Chl m−3) with CCSM-3 BEC model results (top panel),
bottom panel).

http://dx.doi.org/10.1029/2006GB002762
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2003; Mahowald et al., 2003). For the in-situ concentration
data at the 10 stations where multiple years are available, the
model gets statistically significant correlations for the
seasonal cycle and interannual variability at 8 of 10 stations,
with the most difficulty and lowest correlations at stations in
the southern hemisphere (Table 1, Mahowald et al., 2003).
Comparisons of daily averaged concentrations obtain correla-
tion coefficients of 0.31 to 0.84 for the 7 stations with daily
averaged data. Correlation coefficients with available satellite
data (TOMS AAI and AVHRR optical depth) in regions where
dust is adequately sampled are above 0.60 (Fig. 2, Mahowald
et al., 2003). Much of the interannual variability in dust
concentrations downwind of the source regions is driven by
atmospheric transport (or transport/source correlations) and
not by source interannual variability (Tegen and Miller, 1998;
Mahowald et al., 2003).

2.3. Atmospheric forcing and ocean physical hindcasts

The POP is a z-level, hydrostatic, primitive equation model
integrated here with a resolution of 3.6° in longitude, 0.8° to
1.8° in latitude, and 25 vertical levels (Yeager et al., 2006).
Effects of mesoscale eddy transport are parameterized
according to Gent and McWilliams (1990). The Large et al.
(1994) K-Profile Parameterization is implemented in the
vertical to capture surface boundary-layer dynamics and
interior diapycnal mixing. The historical simulation (1979–
2004) is integrated with air–sea heat, freshwater, and mo-
mentum fluxes derived from a bulk flux forcing method that
combines 6-hourly atmospheric surface fields (temperature,
humidity, winds) from the NCEP reanalysis (Kistler et al.,
2001) with satellite and in-situ derived clouds, precipitation,
runoff and sea–ice fraction (Large and Yeager, 2004). Doney
et al. (2007) present a quantitative skill assessment of the
ocean physical solutions in terms of interannual variability of
temperature, sea surface height, and circulation.

Initial conditions for the nutrient and inorganic carbon
variables are prescribed from data-based climatologies (e.g.,
Key et al., 2004). The ecological–biogeochemical simulation
is spun-up for several hundred years, prior to initiating the
interannual varying forcing, using a repeat annual cycle of
physical forcing, dust deposition, and fixed pre-industrial at-
mospheric CO2 mole fraction (280 ppm). The full interannual
variability in physics and dust forcing is initiated in model
year 815 (equivalent to calander year 1979). In the pre-
industrial simulation atmospheric CO2 mole fraction remains
fixed at 280 ppm over the hindcast (1979–2004). In a com-
panion anthropogenic CO2 simulation, atmospheric CO2 starts
to evolve over time mid-way through the spin-up following
ice-core and historical CO2 observations from the 1700s
forward to 1979; in that simulation, atmospheric CO2 tracks
observed global mean temporal trends over the hindcast
(1979–2004).

The model ecosystem components converge to a repeat
annual cyclewithin a fewyears of spin-up. There remains a slow
drift in the subsurfacenutrient and inorganic carbonatefields in
the pre-industrial simulation. The global net air–sea CO2 uptake
flux is 0.150 PgC y−1 (mean areal flux 0.025mol C m−2 y−1), but
the change in thedrift over the 26 year integration (1979–2004)
is only −0.010 PgC y (mean −0.002 mol C m−2 y−1) and much
smaller than the simulated interannual variability.
In a companion anthropogenic CO2 simulation, atmo-
spheric CO2 evolves over time during the latter part of the
model spin-up following historical observations.

3. Evaluation data sets

Table 1 presents details on the specific field and remote
sensing data sets used for model evaluation in this study.
Information in the table includes each specific variable,
temporal resolution of the underlying data set, data source,
and reference(s). Most of the data sets are global in extent,
which limits us primarily to data climatologies (annual mean
and seasonal cycle) and satellite data products (annual mean,
seasonal cycle, and subannual to interannual variability). This
is not to argue that other data sets are not of value, a fact
that we illustrate using an example 1-D water column time-
series. Our emphasis here is mostly on surface water
properties.

The data sets are chosen to highlight key aspects of the
coupled BEC simulation with regards to physics, chemistry
and biology. Physical fields include sea surface temperature
(SST), which is important for biological growth and respira-
tion rates as well as air–sea gas exchange, and mixed layer
depth (MLD), which influences nutrient entrainment and
the average light field observed by the phytoplankton.
Biogeochemical fields include surface water dissolved inor-
ganic macronutrients (nitrate (NO3), silicate (SiO3), and phos-
phate (PO4)) and reflect a balance between physical nutrient
supply and net biological nutrient drawdown. We also
examine the simulated fields of dissolved gases oxygen (O2)
and the carbon dioxide partial pressure (pCO2), as well as air–
sea O2 and CO2 fluxes, which reflect physical transport, so-
lubility variations, net community production, and ocean–
atmosphere exchange. The global biological fields are derived
from satellite ocean color data and include chlorophyll (Chl)
and vertically integrated primary production (∫PP), which
are measures of phytoplankton pigment standing stock and
the photosynthesis that fuels the upper ocean food web. We
also examine a pair of relatively new remote sensing pro-
ducts, phytoplankton specific growth rate (μ) and phytoplank-
ton carbon concentration (PC,), as described in more detail
below.

The list of evaluation data sets is heavy on bottom-up
physical–chemical forcing data, biogeochemical tracers, and
phytoplankton responses, but light on many of the higher
trophic level dynamics and loss processes that are also
integral to the BEC solutions (Fig. 1). For example, we have
not yet incorporated measures of zooplankton biomass and
grazing rates because of a lack of comprehensive global data.
While some macrozooplankton biomass climatologies exist,
there is no similar treatment for microzooplankton that are
essential to verifying the behavior of our single aggregated
zooplankton compartment. For somewhat different reasons,
we do not include an explicit measure of export production.
While globally gridded export flux maps are available, their
construction from satellite data (e.g., Laws et al., 2000) in-
volves a considerable level of model or empirical assump-
tions; they are essentially derived products from derived
products, in this case primary production. Unlike most satel-
lite ocean color algorithms there is no direct link to radiances
nor extensive in-situ validation, and it is unclearwhether they
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serve as independent observational assessments or more
of a model–model comparison (Najjar et al., 2007). Recent
compilations of deep-sea sediment trap data offer another
approach for a point by point assessment of simulated export
production, but because only a small fraction of surface ex-
port reaches the deep ocean such analysis also folds in the
skill of the model subsurface remineralization parameteriza-
tion, which can have large uncertainties.

Some assessment variables require merging multiple ob-
servational data sets, which can add potential biases to
model–data assessments if particular care is not taken. For
example, air–sea CO2 flux maps (e.g., Takahashi et al., 2002)
are commonly created by joining air–sea ΔpCO2 data with
wind speed dependent gas transfer velocities. Observational
flux estimates thus scale directly, if non-linearly, with wind
speed, and the use of different wind speed products will result
in different observational flux estimates even for the same
underlying ΔpCO2 data. A good argument can be made for
adjusting the global mean transfer velocity to correct for dif-
ferences in the global mean wind speed from different wind
products (or the global mean wind speed squared in the case
of a quadratic wind speed formulation), but there will still be
seasonal and regional spatial flux differences introduced by
the different wind products.

For models the issues are somewhat more complicated
because wind speed products are used to force both physical
circulation and biogeochemistry. The model air–sea CO2

flux and ΔpCO2 are dynamically coupled in the model
solutions in that a change in flux will alter surface water
DIC and thus ΔpCO2. The use of a different wind speed
product between the observational estimate and as forcing for
the model could therefore introduce model–data differences
in both variables. Despite their interdependence, we include
here model skill metrics for both air–sea CO2 flux and ΔpCO2

because they are commonly presented observational fields
and reflect somewhat different weighting of different regions
and seasons within the model. Note, however, that the un-
certainties in more derived “observational” products, such as
air–sea CO2 flux, are larger than directly measured fields; in
the case of air–sea CO2 flux, this includes incorporating error
in wind speed based gas transfer relationships (Wanninkhof,
1992).

Traditionally, surface chlorophyll concentration has
been the primary satellite-derived ecosystem variable
related to biological ocean carbon cycling. From chlorophyll
concentration, a variety of models have been described for
estimating water column net primary production (see
reviews by Campbell et al., 2002; Carr et al., 2006). In
most cases the estimated primary production is propor-
tional to the satellite-derived chlorophyll multiplied by
spatially and temporally varying factors that may depend
upon estimates of surface light, nutrients, temperature,
mixed layer, etc. Similar to the arguments for including both
air–sea CO2 flux and ΔpCO2, we also include both satellite
chlorophyll and net primary production as evaluation data
sets because of their common usage, their different
weighting of the critical process of marine photosynthesis,
and the considerable independent effort going into the
validation of satellite productivity using 14C-based field
primary productivity data sets (Carr et al., 2006; Friedrichs
et al., this issue).
The satellite primary productivity algorithms depend
on empirical descriptions (generally temperature-depen-
dent) of phytoplankton assimilation efficiencies that may be
somewhat unreliable for detecting regional temporal
variability, particularly in response to factors such as aeolian
iron deposition. Recently, however, an alternative approach
to analyzing satellite ocean color data has been developed
that yields not only estimates of phytoplankton mixed la-
yer pigment concentrations but also new and independent
information on particulate scattering coefficients (Garver
and Siegel, 1997; Maritorena et al., 2002; Siegel et al., 2002).

With this additional information, it is now possible to
directly derive phytoplankton carbon biomass, chlorophyll-to-
carbon ratios, and phytoplankton growth rates from space
(Behrenfeld and Boss, 2003; Behrenfeld et al., 2005), and thus
more reliably detect and distinguish physiological- and bio-
mass-dependent responses to changing environmental condi-
tions. Importantly, these three phytoplankton characteristics
are directly comparable to ocean model variables. For the cur-
rent study, we employ a spectrally-resolved version of the
Carbon-based Production Model (CbPM) (Westberry et al.,
2008) that yields improved descriptions of vertical variability in
phytoplankton carbon, Chl:C and growth rates compared to
the original CbPM (Behrenfeld et al., 2005). Due to the
tight coupling between phytoplankton growth rates
and zooplankton grazing, physical/chemical perturbations to
mixed layer growth conditions can regularly occur without a
detectable signature in phytoplankton biomass. Environmental
changes are, however, invariably imprinted in physiological
characteristics of the phytoplankton assemblage.

4. Model–data skill metrics

The skill metric suite includes model–data comparisons of
fields of tracers (standing stocks) and biological flows or rates.
Monthly averages χ are computed from the model output to
match the common temporal resolution of observational cli-
matologies. The observations are interpolated to the hori-
zontal model grid for spatial fields and, where applicable,
averaged to monthly resolution. For each observed χO and
model predicted χP variable, we compute for each grid point a
long-term mean 〈χ〉, an annual mean χP , and a mean annual
cycle χa (e.g., average January, average February, etc.) for the
period of analysis 1979–2004. We define a series of anomalies
(Doney et al., 2007):

χV¼ Pχ − hχi
χ″ ¼ χ− hχi
χ4 ¼ χ−χa

ð2Þ

where χ′ are the annual mean anomalies, χ″ are the monthly
anomalies, and χ⁎ are themonthly deseasonalized anomalies.
Standard deviations (σ) are computed for each variable and
for the various anomalies, as needed.

We apply a standard suite of univariate model–data skill
metrics (e.g., Evans, 2003; Stow et al., this volume) including
the model–data correlation coefficient r, the root mean
square error εrms, and the average error or bias εbias. The
metrics are applied to different temporal and spatial domains,
depending upon the availability of observations and the

http://dx.doi.org/10.1029/2001GB001444
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question of interest. For example, metrics for a time-series at a
single grid point for the full monthly data over the full
analysis period of the hindcast simulations (1979–2004)
would be:

r χð Þ ¼ ∑ χO−hχOið Þ χP−hχPið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ χO−hχOið Þ2∑ χP−hχPið Þ2

q ¼ ∑ χ″Oð Þ χ″Pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ χ″Oð Þ2∑ χ″Pð Þ2

q ð3Þ

erms χð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
∑ χP−χOð Þ2

r
ð4Þ
N

ebias χð Þ ¼ 1
∑ χP−χOð Þ ¼ hχPi−hχOi ð5Þ
Fig. 3. Comparison of seasonal cycle of observed and simulated surface
chlorophyll (mg Chl m−3). Zonal averages of the seasonal anomalies to the
zonal mean are displayed (latitude versus month) for CCSM-3 BEC model
results (top panel), SeaWiFS satellite ocean color data (middle panel), and
model minus data residual (bottom panel).
N

where the summation ∑ is over N=312 months (26 years×
12months). For variables where only a seasonal climatology is
available, we define the corresponding metrics at the grid
point scale using the mean annual cycle r(χa), εrms(χa), and
εbias(χa) and n=12. Where appropriate, similar statistics are
computed on larger-spatial scales including zonal averages
across ocean basins (e.g., Atlantic), global zonal averages, and
global averages. Also, the simulated model fields are sub-
sampled in time to match the data sampling when observa-
tions exist for only a subset of the model hindcast.

For some variables, that have large dynamic ranges, we
may choose to analyze the log-transform of the data:

X ¼ log χð Þ ð6Þ

The log-transform tends to give more equal weight to all of the
data and not skew the statistics towards the largest data values.
The mean of the log-transformed variable 〈X〉, can be related to
the geometric mean of the untransformed variable 〈χ〉G:

hχiG ¼
ffiffiffiffiffiffiffiffiffiffiffi
∏
N

i
χi

N

s
¼ exp hXið Þ ð7Þ

The geometric bias:

eGbias χð Þ ¼ exp hXPi−hXOið Þ ð8Þ

gives a measure of the typical bias normalized by the value of
the variable, (χP−χO)/〈χO〉; εbias

G (χ)b1 occurs when the mo-
del tends on average to underestimate the observations and
εbias
G (χ)N1 when the model tends on average to overestimate.
The corresponding geometric root mean square error given by:

eGrms χð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

1
N
∑ XP−XOð Þ2

� �s
ð9Þ

reflects the size of the typical model–data error normalized
relative to the typical data value. A perfect model with no error
would give a εrms

G value of 1.0; a value of εrms
G of 2.0would reflect

a casewhere the typical error at any point is comparable in size
to the observed value. Note that for geometric averaging, the
errors are not symmetric about the mean in the geophysical
space. Geometric averaging is used for several of the bio-optical
data sets (chlorophyll, primary production, phytoplankton
biomass) that have approximate log-normal distributions
(Campbell, 1995).

We use Taylor diagrams (Taylor, 2001) to display simulta-
neously information onmodel–data skill for a suite of variables
from the ocean biological model (Lima and Doney, 2004). The
Taylor diagram combines global r, εrms, normalized by the
observed standard deviation, and the ratio of the predicted to



Fig. 4. Comparison of the spatial distribution of interannual variability of observed and simulated surface chlorophyll anomalies from the mean seasonal cycle (mg
Chl m−3). Top panel displays the temporal correlation coefficient of CCSM-3 BEC model results against the SeaWiFS satellite ocean color data. The middle and
bottom panels display the spatial map of the root mean square of the model and observed anomalies, respectively.
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observed standard deviation σP/σO into a single point in a two-
dimensional plot. The ratio of the standard deviations indicates
the relative amplitudeof the simulated andobservedvariations,
while the correlation coefficient indicates whether the fields
have similar patterns of variation, regardless of amplitude. The
normalized εrms reflects differences in the overall pattern of
variations. In the diagram, the radial distances from the origin
are proportional to the ratio of the standard deviations and the
azimuthal positions give the correlationbetween the twofields.
The point representing the observational reference field is
plotted along the abscissa and has coordinateσP/σO=1 and r=1.
The distance between the test and reference point is propor-
tional to the normalized εrms between the two fields. A perfect
match between model output and observations would plot at
the x=1.0 point on the x-axis; a point representing no relation-
ship between model and observations whatsoever would plot
on the y-axis.

Jolliff et al. (this issue) introduce a related diagnostic plot,
termed a “target diagram”, which displays each variable as a
point as a function of the bias εbias (y-axis) and the unbiased
rms error εrms

unbiased(χ) (y-axis):

eunbiasedrms χð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑ χP−χO−εbias χð Þð Þ2

r
ð10Þ

Both εbias and εrms
unbiased(χ) are normalized by dividing by the

standard deviation of the observations σO. Additionally, for
the target diagram the values of the normally positive definite
εrms
unbiased(χ) are treated as positive if σPNσO and negative for

http://dx.doi.org/doi:10.1016/j.jmarsys.2008.05.014


Fig. 5. Comparison of observed and CCSM-3 BEC model values for suite of surfaces variables. Zonal averages are displayed (latitude versus month) for data (dashed
lines) and model (solid line) for three basins Atlantic (blue), Indian (red), and Pacific (green).
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the opposite. The distance from the origin to a point on the
target diagram is the total normalized εrms.

5. Model–data skill assessment

5.1. Example diagnostic plots to ocean chlorophyll

Given that we are comparing 3-D time-varying model
results against observations for more than a dozen variables,
the number of potential diagnostic plots quickly expands
beyond the scope of a single journal paper. The solution used
here is to illustrate a standard set of diagnostic plots for a
specific example variable, in this case surface ocean chlor-
ophyll, and to make available the entire set of figures on a
CCSM BEC diagnostic webpage.

Figs. 2–5 display the results of a comparison of model
predicted surface ocean chlorophyll (mg Chl m−3) against
results from the SeaWiFS ocean color sensor (Sept. 1997–Dec.
2004). The spatial map of the bias in the long-termmean εbias
(〈Chl〉) (Fig. 2, bottom panel) exhibits large-scale, coherent
error patterns. The model surface chlorophyll tends to be too
high in the subtropical oligotrophic gyres (εbiasN0) and too
low in the subpolar gyres (εbiasb0). This error pattern may
reflect problems with the single adaptive zooplankton pool;
relative to primary production, grazing is too weak in pico-
plankton dominated subtropics and too strong in bloom



Fig. 6. Comparison of observed and CCSM-3 BEC model values for suite of
global surfaces variables using Taylor diagrams. Taylor diagrams display in
polar coordinates the model–data correlation coefficient (angle from x-axis)
and model standard deviation normalized to observational standard
deviation (radius). Diagrams are shown for annual mean spatial distributions
(top panel), seasonal anomalies (middle panel), and interannual variability of
anomalies from the mean seasonal cycle (bottom panel).
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environments. In particular, multiple zooplankton pools may
allow for a seasonal disconnect in grazing, and thus a stronger
bloom, in temperate and high latitudes.

Consistent with previous coarse-resolution global model
results, the simulated chlorophyll levels are also under-
estimated in shallow coastal regimes. The reasons for this
coastal bias are numerous but are likely dominated by
physical errors: vertical upwelling due to off-shore coastal
flow is poorly resolved at coarse scale and without careful
treatment of the wind stress curl; the model lacks tidal
mixing, an important mechanism for vertical mixing and
nutrient supply on continental shelves; the mesoscale eddy
parameterizations used in the global model are designed for
adiabatic ocean interiors and are not adequate for the highly
turbulent, and often topograqphically controlled lateral
mixing on shelves.
Fig. 7. Comparison of observed and CCSM-3 BEC model values for suite of
global surfaces variables using Target diagrams. Target diagrams simulta-
neously display information on normalized model–data biases and unbiased
rms differences (see text for more details). Diagrams are shown for the
seasonal climatology (top panel) and hindcast including seasonal dynamics
and interannual variability (bottom panel).



Table 2
Globally aggregated model–data skill metrics for the mean annual cycle in the CCSM BEC hindcast

Variable Obs. mean Obs. σO Model mean Model σP Bias εbias Bias (%) rms error εrms corr. coeff. r

SST (°C) 18.22 10.29 18.48 9.94 +0.25 +1.4 1.54 0.989
MLD (m) 58.0 37.8 62.3 48.7 +4.3 +7.5 39.2 0.616
pCO2 (μatm) 357.6 24.4 355.1 29.6 −2.48 −0.7 18.6 0.780
FCO2 (mol m−2 y−1) 0.424 1.65 0.396 1.80 −0.03 −6.6 1.53 0.611
FO2 (mol m−2 y−1) – 8.34 – 8.33 – – 5.86 0.753
surf. O2 (mmol m−3) 243.9 60.9 247.2 52.2 +3.3 +1.4 36.9 0.797
surf. NO3 (mmol m−3) 5.12 8.16 6.57 8.95 +1.45 +28.4 3.44 0.923
surf. PO4 (mmol m−3) 0.527 0.553 0.618 0.618 +0.09 +17.2 0.29 0.881
surf. Si(OH)4 (mmol m−3) 7.19 13.47 11.09 19.43 +3.91 +54.3 12.38 0.775
Chl (mg m−3) 0.285 0.656 0.190 0.173 −0.095 −33.3 0.646 0.185
∫PP (g C m−2 mon−1) 12.69 13.16 12.50 7.39 −0.19 −1.5 12.80 0.328
PC (mg C m−3) 16.00 15.63 16.27 16.28 +0.27 +1.7 20.27 0.194
μ (d−1) 0.55 0.33 0.53 0.48 −0.02 −4.2 0.55 0.116

Geometric statistics using log-transformed data; means converted to geophysical units
Chl (mg m−3) 0.160 – 0.149 – 0.933 – 1.54 0.338
∫PP (g C m−2 mon−1) 9.71 – 10.01 – 1.032 – 1.32 0.510
PC (mg C m−3) 13.28 – 12.83 – 0.966 – 1.27 0.335
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The long-term subtropical/subpolar bias reflects in part
the fact that the model does a relatively poor job capturing
the magnitude of the peak surface chlorophyll concentrations
during summer in the temperate northern hemisphere, as
illustrated in a plot of the model and observed zonal average
of the seasonal anomalies (Chla− 〈Chl〉) versus month (Fig. 3).
The phasing of the model northern hemisphere spring bloom
is approximately correct, but high chlorophyll levels are not
sustained over the summer in the simulation. The phasing of
the annual cycle in the southern hemisphere mid-latitudes
(40–60°S) matches the observations well, but in this case
overestimates the amplitude of the annual cycle, with chlo-
rophyll values too high in the southern hemisphere summer
and too low in the winter.

The hindcast exhibits substantial subannual to interannual
variability εrms(Chl⁎) beyond the variance introduced from the
mean annual cycle εrms(Chla). This is demonstrated in the
middle panel of Fig. 4, a spatial map of the root-mean-squared
variability in the deseasonalized anomalies in surface chlor-
ophyll. The model hindcast simulation exhibits considerable
interannual variability in the tropics, and temperate to subpolar
oceans. The temporal correlations between the model and
SeaWiFS chlorophyll data r(Chl⁎) (top panel, Fig. 4) are high in
thewestern and central Equatorial Pacific and in the subtropics.
However, themodel–data correlations tend to drop in themid-
to high-latitude regions, where correlations are often not sta-
tistically different from zero.
Table 3
Globally aggregated model–data skill metrics for the interannual variability
of the monthly deseasonalized anomalies in the CCSM BEC hindcast

Variable Obs. σO Model σP rms error εrms corr. coeff. r

SST (°C) 0.563 0.547 0.510 0.578
Chl (mg m−3) 0.266 0.099 0.281 0.032
∫PP (g C m−2 mon−1) 4.03 2.95 4.75 0.102
PC (mg C m−3) 7.31 8.69 11.25 0.018
μ (d−1) 0.20 0.37 0.42 0.010

Geometric statistics using log-transformed data
Chl (mg m−3) 0.126
∫PP (g C m−2 mon−1) 0.161
PC (mg C m−3) 0.033
5.2. Basin and global aggregated skill metrics

A corresponding set of model–data diagnostic plots can be
constructed for all variables of interest, butwehavealso found it
convenient to generate multi-variable synthesis plots and a
table assessing skill formore aggregated basin zonalmeans and
global averages/integrals. We include the zonal means because
the spatial patterns of the model–data bias or residuals is often
as or more interesting than the global average/integrated bias.

Fig. 5 illustrates this approach and compares the observed
and simulated annual mean zonal averages for a range of
variables. The bias, εbias(χ), in the zonal means is simply the
difference of the model and data curves. The CCSM BEC hind-
cast exhibits a number of large-scale biases,many ofwhich are
coherent across multiple variables. The simulation displays
excess surfacemacronutrients in the tropical Pacific, likely the
result of a combination of physical circulation errors and too
much iron scavenging. Interestingly, however, the model and
observed zonal average phytoplankton growth rates for the
tropical and subtropical Pacific are similar and model pro-
ductivity is actually higher that observed, suggesting that
errors may also arise from other aspects of the biological
cycling (e.g., export flux, subsurface remineralization).

As discussed above the model chlorophyll underestimated
the data inmid- to high latitudes. Note that in the zonal average
plots, the overall model bias in the northern hemisphere
subtropics is negative. The low simulated chlorophyll in the
coastal upwelling regions overwhelms the model positive bias
in the subtropics. Another region of marked bias in the model
simulations is the tropical Atlantic, where simulated phyto-
plankton biomass, specific growth rates and primary produc-
tion are low relative to the observations. This region in the
model is strongly P-limitation,whichmay reflect a combination
of model errors in circulation, export and subtropical nitrogen
fixation.

Global model skill is summarized in the Taylor (Fig. 6) and
target (Fig. 7) diagrams and Table 2. The global mean bias εbias
(χ) for most variables is relatively small (Fig. 7, top panel).
However, in agreement with Fig. 5, the spatial variation in the
long-term mean 〈χ〉 is not captured well in many of the
ecosystem variables (e.g., chlorophyll, primary production,



Fig. 8. Comparison of observed and simulated vertical profiles of chlorophyll (mg Chl m−3) for a specific time-series station. Left column displays seasonal average
climatology (depth versus month) and right column interannual variability for 1988–2004 (depth versus time) for CCSM-3 BEC model results (top panels), Hawaii
Ocean Time-Series data (middle panels), and model–data differences (bottom panels). A dashed line gives model and observed mixed layer depth.
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phytoplankton growth rate), which exhibit correlation coeffi-
cients r(χ)b0.4. The strongest correlations are for SST and
nutrients. The model–data correlations for the seasonal
anomalies (χa−〈χ〉) are for the most part between 0.3 and
0.7, and the model tends to overestimate the seasonal
amplitude of some variables (e.g., chlorophyll) while under-
estimating that of others (e.g., phosphate and silicate) (Fig. 6
middle panel). On a global basis, the model exhibits little skill
in capturing the interannual anomalies χa except for SST
(Table 3).

5.3. Comparison against local (Eulerian) time-series data sets

While powerful evaluation tools, global data sets also often
have associated limitations. The compilation of disjoint field data
sets from different time period and from different investigators
and/or methodologies introduces errors and blurs important
natural variability and climate change signals. Uncertainties arise
due to spatial/temporal interpolation and extrapolation involved
in creating complete global climatologies from sparse data.
Because of limitations in sampling the subsurface ocean and
dynamical rates from remote sensing and underway sampling,
global data sets illuminate only a portion of most ecosystem
models. Data-rich, local time-series sites provide a wealth of
complementary information on depth profiles, the annual mean
cycle, and interannual variability of physical and biogeochemical
variables. These observations, although limited in spatial infor-
mation, may be compared with global models to evaluate the
credibility of the simulations. Time-series data have a rich history
in marine ecosystem modeling as test-beds for model develop-
ment and validation (e.g., Doney et al., 1996; Evans, 1999; Moore
et al., 2002; Friedrichs et al., 2007).

An example time-series comparison of the CCSM BEC
hindcast simulation is presented in Fig. 8 for the Hawaii Ocean
Time-series (HOT) site (http://hahana.soest.hawaii.edu/hot/
hot_jgofs.html). Monthly average vertical 1-D profiles are
sub-sampled from the hindcast versus time at the nearest grid
point to the HOT Aloha station.

At the surface, the simulatedphasing of the seasonal cycle in
chlorophyll (Fig. 8) is approximately correctwith aminimum in
the summer and amaximum in thewinter, but themodel tends
to overestimate themean chlorophyll levels asnotedpreviously
for the subtropical North Pacific. The seasonal surface chlor-
ophyll cycle in the model mimics the seasonal cycle of mixed

http://hahana.soest.hawaii.edu/hot/hot_jgofs.html
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Fig. 9. Comparison of observed and CCSM-3 BEC model values for suite of
upper ocean variables (0–160m) for the Hawaii Ocean Time-Series (HOT) site
using Taylor diagrams. Taylor diagrams display in polar coordinates the
model–data correlation coefficient (angle from x-axis) and model standard
deviation normalized to observational standard deviation (radius). Diagrams
are shown for annual mean climatological spatial distributions (i.e., vertical
profile) (top panel), climatological seasonal anomalies (middle panel), and
interannual variability of anomalies from the mean seasonal cycle (bottom
panel).
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layer depth; during winter simulated mixed layer depth
deepens to 60–70 m, resulting in the entrainment of nutrients
that drives enhanced productivity. The strength of the simu-
latedwinter bloom is somewhat stronger than that observed in
the data, however, even though themaximumwinter observed
mixed layer depth in the observations are somewhat deeper
(and shifted later in the year).

The simulated magnitude of the deep chlorophyll max-
imum is slightly smaller and shallower (byabout 20m) than in
the observations. The observations also exhibit non-zero chlo-
rophyll levels well below 150 m in very low light conditions.
The deeper deep chlorophyll structure in the observations
results in a characteristic positive/negative dipole pattern in
the model–data difference plot. The deep chlorophyll max-
imum and subsurface chlorophyll penetration depth are
largely set by the initial slope of phytoplankton productivity-
irradiance curve. The model chlorophyll field can be shifted
downward by increasing the initial productivity–irradiance
slope (effectively reducing light limitation at low light) but at
the expense of replicating surface productivity. The solution,
explored in other models, involves incorporating distinct high
light and low light phytoplankton populations in the sub-
tropical gyre (Y. Spitz, per. comm.).

The coarse-resolution global model exhibits substantial in-
terannual variability in bothmixed layer depth and chlorophyll.
Chlorophyll and productivity gradually drift downward from
1988 to 1998 and then begin to increase following a deep
mixing event in the winter of 1989. The observed mixed layer
depthexperiencesmore variability than in themodel, reflecting
in part the aliasing of mesoscale eddies passing by the time-
series site (Doney, 1996). There is an indication of stronger
winter mixing in the observations in 1998–1999 followed by
higher near surface chlorophyll levels (but not for as an ex-
tended period as in the model.

Similar patterns of model skill (and misfit) are found for
aggregated skill metrics for a suite of variables displayed in
Taylor diagram format (Fig. 9) and in tabular form (Tables 4
and 5). The model–data correlation values r are greater than
0.95 with a normalized standard deviation near 1.0 for the
annual mean vertical profiles of temperature, oxygen, macro-
nutrients, and primary production; the corresponding chlor-
ophyll correlation is smaller (0.56) in large part because of the
shallower simulated deep chlorophyll maximum. The model–
data agreement for the seasonal cycle (monthly-time Taylor
diagram) is considerably weaker, with all of the model–data
correlations less than 0.3 and substantial underestimates in
the simulated strength of the seasonal cycle (σP/σOb0.5) for
primary production and macronutrients.

The model's interannual variability is much weaker than
that in the data, and the hindcast shows essentially no skill on
the observed interannual variability at the HOT site. In
contrast to much of the subtropics where model skill is rela-
tively high for interannual chlorophyll variability, the region
around Hawaii is a region of little skill. A similar analysis for
the Bermuda Atlantic Time-Series (BATS) (not shown) results
in some what higher but still low model–data correlations, r
(Chl)=0.131 and r(PP)=0.222. This highlights that care is need
in making local data comparisons with a global model, the
skill of which can vary significantly from region to region and
which is confounded by regional biases in physics and
unresolved high frequency variability in the observations.



Table 4
Aggregated model–data skill metrics for upper ocean variables (0–160 m) at the Hawaii Ocean Time-Series (HOT) site in the CCSM BEC hindcast

Variable Obs. mean Obs. σO Bias εbias Bias (%) rms error εrms σP/σO corr. coeff. r

SST (°C) 22.84 1.60 +0.02 +0.1% 0.66 1.25 0.958
Chl (mg m−3) 0.126 0.046 −0.035 −27.8% 0.071 1.48 0.266
PP (mg C m−3 d−1) 2.50 2.22 −0.83 −33.0% 0.93 0.76 0.923
O2 (mmol m−3) 213.1 4.6 −0.70 −0.3% 3.87 0.70 0.558
NO3 (mmol m−3) 0.73 0.72 +0.35 +48.4% 0.46 1.44 0.921
PO4 (mmol m−3) 0.130 0.053 +0.221 +170% 0.021 0.94 0.921
Si(OH)4 (mmol m−3) 2.21 0.88 −1.78 −81.5% 0.66 0.46 0.821
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One strategy around these difficultieswould be to combine
the 3-Dmodel assessment with a complementary assessment
of 1-D vertical simulations for targeted time-series stations,
so-called “regional test-beds”. Surface forcing can be adjusted
to give 1-D physical simulations that closely fit specific time-
series records (e.g., Doney, 1996), and 1-D ecosystem simula-
tions are more amenable to parameter opimization, data
assimilation, and cross-model intercomparison studies.

6. Discussion and future directions

A systematic and quantitative approach for assessing
model–data skill is an essential tool in model development,
evaluation, and data assimilation (Gregg et al., this volume),
and emerging global-scale field and satellite data sets provide
invaluable opportunities for testing upper ocean coupled
ecosystem-biogeochemistry-physical models. The example
suite of data sets and skill metrics presented here, while
certainly still incomplete, illustrates several general points
with regards to the CCSM-3 BEC model. First, overall the skill
metrics highlight the fact that the model solutions have a
number of deficiencies in replicating the observational data
sets. Second, the degree of model skill differs sharply among
variables. For example, simulated SST and some of the surface
nutrient fields exhibit consistently higher skill across most of
the metrics than the simulated ecological fields, chlorophyll,
primary production and the new remote sensing products
such as phytoplankton growth rate. Surface pCO2 and CO2 and
O2 air–sea fluxes are typically intermediate in skill between
the physical and ecological variables. Third, regional spatial
biases and seasonal cycle errors are often consistent across
multiple variables, pointing towards a common dynamical
problemwithin the coupledmodel. Fourth, model skill is time
and space scale dependent; the model solutions of the sea-
sonal cycle are more skillful than interannual variability. And
Table 5
Aggregated model–data skill metrics for the interannual variability of the
monthly deseasonalized anomalies at the Hawaii Ocean Time-Sereis (HOT
site in the CCSM BEC hindcast

Variable Obs.
σO

Model
σP

σP/
σO

rms error
εrms

corr. coeff
r

SST (°C) 0.83 0.36 0.43 0.83 0.209
Chl (mg m−3) 0.038 0.013 0.34 0.039 0.073
PP (mg C m−3 d−1) 1.16 0.47 0.41 1.25 0.004
O2 (mmol m−3) 5.20 3.31 0.64 6.03 0.049
NO3 (mmol m−3) 0.68 0.47 0.69 0.90 −0.207
PO4 (mmol m−3) 0.057 0.033 0.58 0.069 −0.097
Si(OH)4 (mmol m−3) 1.22 0.12 0.10 1.22 −0.042
)

.

fifth, it is challenging for a global model solution to replicate
observations from local time-series because there are many
subgridscale processes and representation issues that tend to
confound the comparison.

The emphasis here has been primarily on assessing model
skill in replicating ecological and biogeochemical metrics. But
the upper ocean system is coupled, and the success of the
biological and chemical simulations depends critically on a
high-quality underlying physical circulation model (Doney
et al., 2004, 2007). Physical model biases and errors thus
should be an integral component of ecological and biogeo-
chemical model–data assessment. Here we focused on two
physical properties, SST and mixed layer depth. Other
important facets of the circulation from a biological perspec-
tive include upwelling rates and near surface water column
structure (Doney, 1996). As an example of how physical biases
may influence ecosystem behavior, Fig. 10 displays the maxi-
mum winter mixed layer depth from the model and an ob-
servational estimate (Boyer-Montégut et al., 2004). The
CCSM-3 BEC has consistently deeper maximummixed depths
in the tropics and subtropics and shallower maximum mixed
depths in the northern hemisphere subpolar gyres and South-
ern Ocean. Themodel chlorophyll bias patterns (Fig. 2) may in
part reflect these physical errors. In the subtropics, simulated
winter chlorophyll is too high and summer levels are closer to
observations. One possible explanation is that the nutrient
supply from excessively deepmixing inwinter induces higher
simulated chlorophyll/C ratios. The too weak simulated mix-
ing in the subpolar gyres and Southern Ocean, in contrast,
limits the supply of nutrients to the surface (e.g., note the
negative nutrient bias around the Antarctic) and may allow
for a large overwintering zooplankton population, which can
then limit the magnitude of the spring bloom.

As a pilot study, we have restricted our large-scale analysis
here primarily to globally gridded synthesis data sets. But
there are a number of key variables for which data coverage is
still too poor to create global synthesis products butwhich one
would want to consider in a more comprehensive assess-
ments. Much of the same diagnostic machinery, however, can
rather straightforwardly be used on a collection of stations. For
example global maps and zonal mean plots can be generated
to examine spatial biases and seasonal and interannual
variability where data are plotted only for the grid points
where there are observations. The statistics for the summary
Taylor and target diagrams are independent of whether one is
using gridded or point data. Examples of additional, non-
gridded data sets thatwe plan to include in the future are deep
sediment traps (e.g., Gehlen et al., 2006), surface and subsur-
face iron concentrations (Moore and Braucher, 2008), and
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Fig. 10. Comparison of spatial distribution of observed and simulated maximumwinter mixed layer depth (m) with CCSM-3 BEC model results (top panel), Boyer-
Montégut et al. (2004) field data (middle panel), and model minus data residual (bottom panel).
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phytoplankton taxonomy derived from cell counts or pig-
ments (e.g., Gregg and Casey, 2007; http://polar.gsfc.nasa.gov/
research/oceanbiology/index.php). Particularly for the South-
ern Ocean, one can also use atmospheric O2 and CO2 data sets
to assess oceanmodel behavior, with of course the caveat that
the comparison will also incorporate errors in atmospheric
transport used to translate surface fluxes to atmospheric fields
(e.g., Naegler et al., 2007; Nevison et al., 2008a,b).

Other directions to pursue include pattern analysis and
multivariatemodel–data skill metrics that allow for an investiga-
tion of whether the model is correctly capturing the spatial or
temporal relationships among the data (Stow et al., this volume).
Small temporal and spatial phase shifts between the model
simulations andobservations can introduce large apparent biases
and seasonal to interannual variability errors. Lagged correlation
analysis can help identify phase errors. Empirical orthogonal
functions can beused to assess the similarity betweenmodel and
observed time–space variability patterns in the presence of
spatial and temporal phase error. Multivariate analyses (e.g.,
seasonal property–property phase diagrams; factor analysis;
binary–discriminatory receiver–operator methods) can be used
to identify regions or times when model dynamics diverge from
that seen in the observations. Themultivariate analyses of model
dynamics may be particular useful when the model–data skill
assessments are applied to fully coupled ocean–atmosphere
climatemodels (Doney et al., 2006; Schneider et al., 2008). Direct
comparisons to observations are more difficult in this case
because persistent physical biases in coupled models propagate
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into the ecological/biogeochemicalmean state and seasonal cycle
and because the coupled ocean–atmosphere models generate
their own internal climate variability and thus assessment of
simulated interannual to decadal variability can only be done
statistically, not directly.
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