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Abstract

Singular spectrum analysis (SSA) provides a robust method of separating an arbitrary signal from
“white” (independent, identically distributed) noise. In the presence of “coloured” noise, or any
autocorrelated process, high-variance components of the noise can confuse the singular value
decomposition, thereby obscuring genuine signals which are, in principle, detectable. A
generalization of SSA is presented which yields both an optimal filter to discriminate against an
arbitrary coloured noise and an objective method of quantifying uncertainty in signal
reconstruction. The algorithm is applied to a simple synthetic signal-separation problem and used
to resolve a degeneracy in the SSA of interannual and interdecadal variability of the Earth’s global
mean temperature.



Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is widely used to
extract qualitative dynamics from noise-contaminated
data Broomhead € King, 1986; Fraedrich, 1986; Vautard
& Ghil, 1989; Vautard et al., 1992. The technique may
be visualized as sliding a window of width M down a
series d of length IV and determining the orthogonal
patterns which best capture the variance in the views
of the series thus obtained. These “empirical orthogonal
functions” (EOFs) are eigenvectors of the M x M lag-
covariance matrix Cp:

1 kmax

1
(Cp);; = . i Drj = 3 > dipkordjro,
max max k=1
(1)

where' kmax = N — M + 1 and D is the “augmented”
dataset, Dy; = djyr—1. For a stationary process,
€ ((Cp)ij) is the process covariance at lag |i — j|.

If d consists of the sum of two ergodic, linearly in-
dependent processes (called, for convenience, “signal”
and “noise”) with sample lag-covariance matrices Cg
and Cg then,

E(Cp) =&(Cs) + E(Cr). (2)

If the noise is “white” (£(Cg) = Cy = 0?I) and £(Cs)
is non-diagonal, then the eigenvectors of £(Cp) are the
eigenvectors of £(Cg) with each eigenvalue increased
by o2. The high-ranked EOFs of Cp (those with the
largest eigenvalues) provide a consistent estimate of the
high-ranked EOFs of Cg: they converge to these “signal
EOFs” as N — oco. A projection onto the x highest-
ranked data EOFs provides an optimal linear filter for
this noise: the signal-to-noise variance ratio is maxi-
mized in the filtered augmented dataset

D" = DEpLWEL (3)

where Ep contains the data EOFs arranged columnwise
in order of decreasing eigenvalue and L™ is diagonal
with L\ =1if i < &, and L) = 0 otherwise.

If the noise is anything other than white (if Cn #
02I) then none of these optimality properties hold.
High-ranked EOFs of Cp need have nothing to do with
the EOFs of Cg. In particular, sine-cosine EOF pairs,
which for reasons given in Vautard € Ghil, 1989, are
frequently used to identify modulated oscillations, may
occur in the absence of any genuine oscillatory signal

1We use the summation convention of ref. Broomhead & King,
1986, for reasons explained in Allen, 1992; Allen € Smith, 1996

Allen € Smith, 1996; Allen & Robertson, 1996. A vari-
ety of signal selection criteria Vautard et al., 1992; Det-
tinger et al., 1995 have been proposed for SSA based on
the expected properties of Cg and Cg in the pure-signal
and pure-noise limits. Because the eigenbasis of the sum
of two matrices does not, in general, share eigenvectors
with either of the two consituent matrices, these crite-
ria cannot be justified; the appearence of an EOF-pair
“corresponding” to an oscillation may depend as much
on luck and a judicious choice of the window width as
it depends on the signal.

Consider a “signal” which consists of stochastically-
triggered sinusoidal bursts, with unit initial amplitude,
period 5.5 units and decay-time 30 units, contaminated
with unit variance first-order autoregressive — AR(1) —
noise: the test series shown in figure 1 of ref. Allen
& Smith, 1996. Conventional SSA of this series with
M = 30 gives only one sinusoidal EOF with a period
equal to the oscillation (number 8 in figure 5 of ref. Allen
& Smith, 1996). The other EOF required for an optimal
filter for this signal is scrambled with lower-frequency
components of the noise: EOFs 7 and 9 (shown in figure
1 below) are almost equal, so the decomposition is un-
derdetermined to rotations within the subspace which
they define. Both contain power at the signal frequency,
so neither provides a consistent estimate of the domi-
nant signal EOFs. How can this degeneracy be lifted?

Selected EOFs from conventional SSA of test series
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Figure 1. Selected EOFs with high-ranked eigenvalues from
conventional SSA of test series. EOFs 1 and 2 form a relatively
pure sine-cosine pair, but are not associated with any signal, in-
dicating the danger of using the properties of EOF's to identify
oscillations. EOFs 8 and 9 contain most of the signal variance,
but EOF 7 is close to degenerate with both of them, corrupting
EOF 9.



Generalizing SSA to deal with coloured noise

Since the eigenvectors of Cp are consistent estima-
tors of the eigenvectors of Cg if and only if the noise is
white, we introduce a “pre-whitening” transformation,
as in generalized regression or canonical (co)-variance
analysis Mardia et al., 1979, and recently applied to
spatial EOFs by Thacker Thacker, 1996; Thacker &
Lewandowicz, 1996. The expected data variance to
noise variance ratio (loosely termed the “signal-to-noise
ratio”) in the state-space-direction defined by the vector
eis v

p= ﬁ (4)
el'Cye
Given the noise covariance, Cp, is positive-definite,
with eigenvalues forming the diagonal elements of Ay
and eigenvectors Ep, we define a coordinate transfor-
mation

e = Ay?Eke, e=EyAyte. (5)

In these transformed coordinates, the noise has equal
variance in all directions, so
T

e C'pe’

p= T
e €

< (6)

where C'p and C'g are the transformed covariance ma-
trices, defined thus:

C' = Ay*ELCENAR?. (7)

The vector e which maximizes p in equation (6) is
simply the eigenvector of C'p with the largest eigen-
value. By virtue of the coordinate transformation,
E(C'p) = £(C's) + 1, so the eigenvectors of C'p are
consistent estimators of the eigenvectors of C'g, in the
sense defined above. Equating the e’ with the the eigen-
vectors of C'p (the columns of E'p, arranged in or-
der of decreasing eigenvalue) thus provides an optimal
and consistent set of signal-to-noise maximizing vectors,
with signal-to-noise ratios given by the eigenvalues

A'p =ELCpEp. (8)

Figure 2 shows the eigenspectrum of C'p for the test
series. The first two eigenvalues contain more variance
than expected in pure AR(1) noise, lying above the
99.5th percentiles of the distribution of power in these
state-space directions expected from an AR(1) process.
Note that the noise has the same expected variance in
all directions in these transformed coordinates, and we
have neglected the selection effect (compression of vari-
ance into high-ranked EOFs) — see ref. Allen & Smith,
1996 for details.

Test series on signal—to—noise maximising basis
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Figure 2. Eigenspectrum of C'p. Squares (diamonds) show
signal-to-noise ratio in the test series on signal-to-noise maxi-
mizing EOFs, Ep, which are predominantly symmetric (anti-
symmetric) about the mid-point of the window. Bold symbols
indicate EOFs whose maximum correlation with a pure sinusoid is
> 0.85. Vertical bars show expected distribution of noise variance
in these eigendirections: a surrogate ensemble size of 0 indicates
the x? parametric distribution has been used (see text).

To facilitate interpretation, we transform back to our
original coordinates:

EDEENA]_V%EID. (9)

Figure 3 shows Ep for the test series, each renormalised
for clarity. Note how the two higest-ranked EOFs are
now reasonably “clean” sinusoids: their maximum cor-
relations with a pure sinusoid are 0.96 and 0.93, while
the corresponding values for the closest pair in figure 1
(EOFs 8 and 9) are 0.98 and 0.56.

The columns of Ep (the desired signal-to-noise max-
imizing patterns) are orthonormal in the metric de-
fined by Cu, rather than orthonormal in the conven-
tional sense Thacker, 1996; Stephenson, 1997, that is
EDEE = C]_\,1 and EECNED = I. We refer to these
vectors as “signal-to-noise maximizing EOFs”, although
“noise” here represents any process we wish to discrimi-
nate against. The diagonal elements in the projection of
a covariance matrix onto these S/N maximizing EOFs,
Ap= EEC DE D, represent signal-to-noise variance ra-
tios. These are proportional to the absolute variance if
and only if the noise is white. Thus standard EOF's are a
special case of S/N maximizing EOFs when Cy = o°1.

The crucial property of S/N maximizing EOFs is
that their expected orientation is independent of the
noise variance, provided Cp correctly reflects noise au-
tocorrelation. They thus provide a consistent estimate



Signal—to—noise maximising EOFs of test series
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Figure 3. Signal-to-noise maximizing EOFs of test series.
EOFs 1 and 2 contain the 5.5-unit period signal and EOFs 3 and
4 now contain the first harmonic, which was almost completely
obscured in conventional SSA.

of the patterns which we would obtain by analysing the
same signal in the absence of any noise, and an optimal
linear filter for the reconstruction of that signal in the
presence of noise with this correlation structure.

To confirm that S/N maximizing EOF's consistently
provide an improved estimate of the true signal EOFs,
we generate an ensemble of realisations of the test pro-
cess by retaining the first 12,000 200-point segments in
which at least one oscillatory burst occurs.? We then
apply both conventional and S/N maximizing SSA to
each segment and correlate the resulting EOFs with the
two dominant EOFs of the underlying noise-free pro-
cess. In each case, we select the two EOFs which are
best correlated with these signal EOFs and record their
rank in the eigen-decomposition.

Figure 4, left panel, shows that the EOFs from con-
ventional SSA which correlate most closely with the
pure-signal EOFs typically occur between 5 and 10 in
the eigenvalue rank-order, and that their average corre-
lation with the signal EOF's ranges between 0.6 and 1.0,
with the most probable correlation being ~0.8. The fact
that EOF's occur relatively low in the rank-order means
that some additional test will be required to identify
them, and even if they are correctly identified, a rela-
tively low correlation with the signal EOFs means that
they will not provide an effective filter for separating
signal from noise. In contrast, figure 4, right panel,
shows that the S/N maximizing EOFs which correlate

2In a stochastic process, there is a chance that no burst will
occur in a 200-point segment. Since the influence of bursts from
previous segments is small, we would not expect any algorithm
to distinguish most burst-free segments from pure noise.

best with the pure-signal EOFs are almost invariably
ranked at the top of the eigen-decomposition and in
the majority of cases the mean correlation with the sig-
nal EOFs is close to 1.0. With this revised approach to
SSA, the chance of obtaining an effective filter for sep-
arating signal from noise in the highest-ranked EOF's is
significantly enhanced.

Figure 4. Histogram showing how S/N maximizing SSA (right
panel) outperforms conventional SSA (left panel) in identifying
patterns which correspond to the true “signal” EOFs. In each
member of an ensemble of 12,000 segments containing damped
sinusoidal oscillations, the two EOFs which correlated best with
the pure signal EOFs were selected. Bars show the distribution
of average rank (z-axis) and average correlation with the pure-
signal EOFs (y-axis) of these EOF pairs. An perfect algorithm
would show a single non-zero peak in the far corner of the plane,
corresponding to a mean rank of 1-2 and a mean correlation of
0.95-1.0. S/N maximizing SSA clearly comes much closer to this
ideal result.

Figure 4 shows that the uncertainty in the orienta-
tion of the two highest-ranked S/N maximizing EOF's
is low (they almost always point in approximately the
right direction), although the uncertainty in the noise
variance in individual state-space directions (indicated
by the vertical bars in figure 2) is relatively high. A
number of authors (e.g. Ghil & Mo, 1991) have inter-
preted similar “error bars” as indicating the uncertainty
in the eigendecomposition itself. This is incorrect: the
correct treatment of uncertainty in the orientation of
the individual EOFs must be based on the fact that Cp
conforms to a Wishart distribution, details of which we
will consider elsewhere.

When the properties of the noise are unknown, the
“correct” specification of Cn remains a problem. Sev-
eral observations are relevant here. First, unlike con-
ventional EOF's, the expected orientation of S/N maxi-



mizing EOFs is independent of the total noise variance
which can therefore be grossly in error without affect-
ing the procedure. Second, for high signal-to-noise pat-
terns, errors in the noise autocorrelation structure do
not have a significant effect on the orientation of the
highest-ranked S/N maximizing EOFs, due to the non-
linearity of the eigendecomposition procedure: in this
example, we can increase and decrease the character-
istic decorrelation time of the noise by a factor of two
without affecting the shape of highest-ranked S/N max-
imizing EOFs. Significance estimates are, of course, af-
fected, so standard SSA supplemented by a significance
test is a poor substitute for S/N maximizing SSA if the
noise properties are in doubt. Third, the specification of
Cx may be an integral part of the problem to be solved.
For example, if we are looking for patterns in an obser-
vational dataset which are inconsistent with “natural
climate variability” as simulated by a climate model,
then Cy may be computed directly from a control run
of the model following the procedure of optimal finger-
printing Hasselmann, 1993. Finally, it may be possible
to frame the detection problem in terms of identifying
and characterising a change in the dynamics of the sys-
tem Smith et al., 1991; Frih & Allen, 1997. This is a
well-established approach to fault detection and diag-
nosis in mechanical systems — see Zhang et al., 1994,
and references therein. In this case, Cy is estimated
from the historical “normal” system behaviour.

Since the eigendecomposition in equation (8) ranks
eigenvectors by signal-to-noise rather than by variance,
problems of degeneracy between EOFs corresponding
to the “signal” and high-variance, low-frequency com-
ponents of the noise do not arise. Different signals with
equal signal-to-noise ratios may, however, be degener-
ate. While such degeneracies are unimportant in con-
structing an optimal filter, they complicate signal sep-
aration. If the noise is red, however, then components
which have the same signal-to-noise ratio are likely to
have different variances, resolving any degeneracies. We
construct the filtered transformed covariance matrix

c'Y =B A pLWET (10)

with L™ defined as above to extract the & highest
signal-to-noise components; back-transform to obtain
a rank-x covariance matrix, which we re-diagonalize:

Cc = EnAn:C'YANIEL (11)
= EBY AR (12)

This represents a variance-maximizing rotation, since

the k elements of Eg) with non-zero eigenvalues span

the subspace defined by the x highest-ranked S/N max-
imizing EOFs, with the variance in each given by the
corresponding eigenvalue (diagonal element of AS:';)).
These rotated S/N maximizing EOFs are orthonormal
in the conventional Euclidean metric. This two-stage
procedure is reminiscent of rotated principal component
analysis (RPCA — Richman, 1986), except that filter-
ing is performed on the basis of signal-to-noise, rather
than on the basis of variance. RPCA will break down
if too many EOFs need to be retained in order to in-
clude important, but low-variance, components O’Lenic
& Livesey, 1988. The procedure outlined here identifies
these components directly and has the additional ad-
vantage of consistency: the expected orientation of the
ES:';) is independent of the noise variance. This is not
the case in RPCA.

Quantifying uncertainty in signal-reconstruction

The basic assumption underlying SSA is that each
row of the augmented dataset D (each “view through
the window”) can be well described by the linear sum
of a small number (k < M) of patterns, denoted by
the columns of E(”), each modulated by a timeseries of
coefficients (“principal components”, or PCs), denoted
by the columns of P

D = PWEMT 4 noise. (13)

Given the noise covariance, Cp, the best linear unbi-
ased (BLUE) estimators for the elements of P are
given by the generalized linear regression formulae Mar-
dia et al., 1979:

f,(ﬁ)

-1
=DC,'E" (E(“)TC;E(“)) . (19
The timeseries of coefficients obtained in this way are
called generalized PCs Thacker, 1996.

The estimators f’(ﬁ) are BLUE irrespective of the

normalisation or orthogonality of the E(”), allowing a
complete separation between the procedure for deriv-
ing the E™ and the estimation of the elements of P(*).
Equation (14) may be used for a signal-reconstruction
based on standard EOF's or the S/N maximizing EOF's
described here, the only condition being that no two
EOFs are collinear. If S/N maximizing EOFs are used,
equation (13) yields generalized PCs identical to those
proposed by Thacker, 1996. We believe there is a gain
in simplicity in separating the EOF-estimation step and
the PC-reconstruction step, particularly given prior in-
formation to constrain the EOFs, but in the absence



of such information the two approaches are essentially
equivalent.

In the long series limit (N > M), the variance (un-
certainty) in the PCs is given by

£ ((f)('i) — P, (B - P(K))ikz) -

EWTCHE®W : 15
( N )k1k2 ( )
With a short series, equation (15) will be biased due
to sampling uncertainty in E™. This bias can be re-

duced by using independent data to estimate E™ and

f’(m), but even a moderately biased error-estimate re-

mains useful, since the band-pass filtering effect of SSA
can give deceptively regular and physical-looking PCs
even in the absence of any signal. Since the PCs are a
form of weighted moving average of the original data se-
ries, erroneous excursions will, by construction, persist
over a timescale defined by the window width M. An
objective measure of uncertainty in PCs is therefore es-
sential, particularly if they are to be used for empirical
prediction Vautard et al., 1992; Plaut et al., 1995.

Because the columns of E*) need not be mutually
orthogonal, equations (14) and (15) also provide a natu-
ral method of estimating PCs and associated uncertain-
ties in the presence of data gaps. A further application
would be to employ the S/N maximizing EOFs to form
a natural set of bases of increasing dimension, each con-
sisting of the k highest signal-to-noise components, from
which to construct nonlinear inverses to linear filters, as
in Broomhead et al., 1996, and in other nonlinear noise-
reduction algorithms.

Resolving degeneracies in the analysis of climate
timeseries

In the exchange which originally focussed attention
on the naive application of SSA to signal detection
in climate research, it was observed Elsner € Tsonis,
1991 that the EOF-pair advanced as evidence for an
interdecadal oscillation in global temperatures Ghil €
Vautard, 1991 was unstable to minor changes in the
length of the series analysed (or, indeed, to the sum-
mation convention used in Cp). The problem was one
of degeneracy Allen et al., 1992b: the power spectral
density at interdecadal periods is close to that in the
low-frequency (~5-year) component of the El Nifio /
Southern Oscillation (ENSO) signal. Thus the eigen-
decomposition is underdetermined to a rotation, mak-
ing results extremely unstable. Such degeneracies have
nothing to do with the existence of deterministic low-
frequency components in the generating process. Sta-

tistical tests show that the interdecadal component of
global temperatures is not distinguishable from AR(1)
noise, while the El Niflo/Southern Oscillation (ENSO)
signal is only significant at around the 90% level Allen
& Smith, 1994.

The analysis of the 1901-90 global temperature record
Tsonis & Elsner, 1992; Allen et al., 1992a also pro-
vides an interesting example of how standard SSA
can fail to distinguish a genuine, albeit weak, signal
(ENSO) from high-variance, low-frequency noise (the
interdecadal component): this shortcoming is corrected
through the application of the technique presented in
this paper. Figure 5 shows conventional SSA of 1901-
90 global temperatures Folland et al., 1992. At 5-year
periods, only one eigenvalue (number four in the rank-
order) appears above the 97.5t" percentile of the y?2
AR(1) noise distributions (unlike figure 2, these distri-
butions are not identical, since the expected red-noise
variance in a particular EOF depends on the dominant
frequencies associated with that EOF). The other mem-
ber of the pair is scrambled with the interdecadal com-
ponent of the noise, so no sine-cosine EOF pair is ob-
served at either frequency. The eight highest-ranked
EOFs are shown in figure 6.
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Figure 5. Conventional SSA of 1901-90 global temperature
record, with noise distributions computed for an AR(1) process
after EOFs 1 and 2 (corresponding to the trend) have been elimi-
nated from the noise-parameter-estimation. Note how EOFs 3-5
and 6-8 form two, almost completely degenerate, triplets. The
noise distribution bars indicate EOF 4 as significant (with as-
sociated period 5 years), but the other member of the pair is
scrambled with a low-frequency component of the noise.

The noise in figure 5 was estimated by eliminating
the trend (EOFs 1 and 2 from conventional SSA, which
are significant against red noise) and fitting the AR pa-
rameters to the lag-0 and lag-1 covariances of the re-



EOFs of 1901-90 temperatures, standard SSA
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Figure 6. EOFs 1 to 8 from conventional SSA of 1901-90
global temperature record. EOFs 3-8 all contain power at 5-year
and (much less obviously) interdecadal periods, but because they
are scrambled due to degeneracy, only EOF 4 is anything like a
pure sinusoid.

mainder Allen € Smith, 1996. We now use this noise
model to compute S/N maximizing EOFs as described
above. Because we are obliged to estimate the noise
model from the data, the possibility remains that it
may be incorrectly specified. We cannot, however, re-
ject the hypothesis of a trend-plus-AR(1)-noise for this
data, so the procedure is internally consistent. In con-
trast, we can reject the hypothesis that the residuals
are white noise at a very high confidence level. The use
of standard SSA, which assumes white noise, in such an
analysis is therefore incoherent.

Ratios of data variance to expected noise variance
on the S/N maximizing basis Ep (eigenvalues A'p of
C'p) are shown in figure 7. Five ratios appear above
the 97.5'" percentiles of the noise distribution, but we
know that some (if not all) of these excursions may
be due to artificial compression of variance into high-
ranked EOFs. A more conservative test, based on the
EOQOFs of the null-hypothesis Allen € Smith, 1996, still
indicates that S/N maximising EOFs 1-4 are significant
at the 97.5% level.

The first four S/N maximizing EOFs are plotted in
the upper two panels of figure 8. They are clearly domi-
nated by the secular trend and the 5-year ENSO signal,
but we also note that there is some cross-contamination
between them since, ranked on the basis of signal-to-
noise rather than variance, these two components are
close to degenerate with each other. EOF-2 in particu-
lar contains power at 5-year timescales. To separate out
the two components, we apply a variance-maximizing
rotation as given by equations (10) to (12) with x = 4.
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Figure 7. Eigenspectrum of C'p for the global temperature
series, plotted against signal-to-noise in the corresponding S/N-
maximizing EOF. Vertical bars show the 2.5t and 97.5th per-
centiles of the distribution of power expected from the noise com-
ponent of a trend-plus-AR(1)-noise null-hypothesis.

The rotated EOFs are shown in the lower two panels
of figure 8: a much clearer signal-separation has been
achieved. The problem of degeneracy between the 5-
year component of ENSO and the interdecadal compo-
nent of the noise is completely resolved. S/N maximis-
ing SSA has no trouble distinguishing between them be-
cause the signal-to-noise ratio is very different at these
two frequencies.

S/N maximising EOFs, before and after rotation

0.5 TTEGF T 0.5 TECF 3
B EOF 2 7 B EOF 4

WL LA
UV

0.0

eigenvector
eigenvector

-0.5 -0.5
0 5 10 15 20 25 30 0 5 10 15 20 25 30
lag lag
0.5 TEGF T 0.5 TTEGF3
EOF 2 TEOF 4

\AAAAA
TEIRRTRE:

o] 5 10 15 20 25 30 0 5 10 15 20 25 30
lag lag

0.0

0.

=)

eigenvector
eigenvector

Figure 8. Highest-ranked 4 S/N maximizing EOFs, before
g
(upper panels) and after (lower) a variance-maximizing rotation

separates the 5-year ENSO signal from the trend.

Since the interdecadal component is indistinguish-
able from noise, empirical prediction of interdecadal
temperature variations Vautard et al., 1992; Plaut et al.,
1995 cannot be justified. Even if we had a priori rea-
son to believe in a deterministic interdecadal oscillation,



application of (15) reveals that the phase of this compo-
nent cannot be determined from the data at any point
in the 136-year global temperature series (or over any
but the earliest years of the 335-year Central England
Temperature series Parker et al., 1991). It is therefore
unrealistic to attempt SSA-based decadal prediction of
these data, since such forecasts depend entirely on the
estimated phase near the current end of the series.

Summary

We have presented a simple generalization of SSA, al-
lowing a self-consistent treatment of problems involving
autocorrelated noise by determining patterns (EOFs)
which maximize signal-to-noise rather than maximizing
variance. Our approach resolves ambiguities which arise
due to degeneracies between high-frequency signals and
low-frequency components of the noise. It may, how-
ever, introduce degeneracies between different signals
with similar signal-to-noise ratios. These are resolved in
a two-stage procedure, filtering first by signal-to-noise,
then by variance. Noting that an SSA-based reconstruc-
tion from a limited number of EOFs can appear decep-
tively “physical” even in the absence of any signal, we
have also proposed a method of quantifying uncertainty
in such reconstructions. This is essential if SSA is to be
used for empirical prediction.
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