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First Paragraph

The emission and transport of aeolian dust is both influenced by—and influences—the
Earth’s climate. Dust emission is controlled by terrestrial processes and atmospheric
winds, the latter of which is also responsible for subsequent transport (1-3). Suspended
dust radiatively cools the surface and warms the atmosphere via direct and indirect
effects (3-5), in-turn altering regional winds and rainfall (6,7) and consequently the dust
cycle. Dust is an external source of nutrients to the oceans and remote terrestrial
ecosystems (8,9) and alters the global carbon cycle (10). Therefore, with respect to
simulations of the climate by models, biases in the dust cycle likely result in biases in
modeled energy and nutrient budgets and the hydrological cycle, yet the representation
of dust in state-of-the-art climate models has not been systematically evaluated. Here
we assess African dust in 23 state-of-the-art global climate models used in the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change. We find that all
models fail to reproduce basic aspects of the dust cycle. Models systematically
underestimate dust emission, transport and optical depth, and year-to-year changes in
these properties bear little resemblance to observations. These findings cast doubt on
the ability of these models to accurately simulate regional climate variability and future
change.



Main text

A major limitation in evaluating aeolian dust in climate models is the lack of high quality
and long-term measurements of dust. Satellite retrievals from which a dust
concentration can be derived extend back to approximately 1980, but these data have
uncertainties (11,12). Surface measurements of visibility can go back even further, but
these are not purely indicative of dust aerosol, nor are they always homogeneous in
time (13). High temporal resolution proxy records of atmospheric dust are also a source
of estimates of historical concentrations, but to-date these data are few (12). Despite
these shortcomings of existing mineral aerosol observations, there are a few robust data
sets against which models can be evaluated. Among these we focus on observations
indicating dust emission and transport from northern Africa, the world’s largest dust
source (14). We first examine the long-term mean dust aerosol concentration west of
northern Africa over which dust is predominantly exported, 10°-20°N and 20°-30°W. We
specify this region since it includes the island nation of Cape Verde for which a long
proxy record of dust exists (12). However, expanding this region eastward or northward
has no substantive effect on the results presented here.

We compare the distributions of the annual mean dust mass path (DMP; g m2), which is
the vertically integrated mass of atmospheric dust per unit area, from the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change (CMIP5) models
(Table S1) against satellite retrievals of DMP from the Advanced Very High Resolution
Radiometer (AVHRR) (15, 16) for 1982-2004 and the Moderate Resolution Imaging
Spectroradiometer (MODIS) (17,18) Terra instrument for 2000-2013. The ensemble
mean DMP is calculated from the CMIP5 20" Century historical simulations for which
this output is available (Table S1). Satellite retrieved DMP is calculated from retrievals of
aerosol optical depth (t) and via measurements of the ratio of DMP to the portion of the
optical depth that is due to dust (7;) (Table 1) following Kaufman et al. (19) (see
Methods).

The multi-model ensemble highlights a median DMP of 0.24 g m™, with model medians
spanning 0.05 to 0.46 g m™ (Fig 1a). In contrast, the median DMPs from the AVHRR and
MODIS retrievals is 0.75 and 0.82 g m?, respectively, which is a factor of three larger
than the multi-model median. Compared against individual models the satellite
retrieved DMP is larger by a factor of two (CCSM) to 12 (MIROC4h). In addition, most
CMIP5 models underestimate the width of the interquartile range, which is not
surprising given the low bias in the mean state. However, we note that some models
exhibit a very small range in DMP (e.g., the IPSL models) because there is no year-to-
year change in the modeled dust emission (i.e., emission is prescribed), and thus
changes in DMP are due to variations in advection and deposition only.

To elucidate the source of the low bias in modeled dust mass path, we calculated the
long-term mean total dust emission from northern Africa (Tg) (Fig 1b), for the models
for which emission data is available (Table S1). DMP over the tropical North Atlantic is
directly proportional to the total northern African dust emission, where the slope of the
linear regression is 1.64+0.85 x 10 g m™ per Tg (Fig 1a, red line) (the uncertainty



represents the 95% confidence interval on the slope of the fit). Thus, the biases in Figure
1a are likely related to processes affecting emission, and less to modeled transport and
deposition. If we estimate the total emission from northern Africa based on the linear fit
between models’ emission and mass path, but using the average mass path values from
the satellites (Fig 1a), northern African dust emission is approximately 4500 Tg per year
(Fig 1b, inset), a factor of three greater than the multi-model mean emission from
CMIPS (Fig 1a).

As observations of total northern African emission are not available there is no way to
evaluate the accuracy of the model output or the satellite-based estimates. Thus, while
the range of model values seen here is consistent with other analysis of model output
(20,21), there is no a priori reason to reject the satellite estimates as being biased high.
Kok (22) found that the size distribution of dust at emission was biased towards small
particles causing larger optical depth per unit mass (t) and speculated that the resulting
dust mass emitted is underestimated by a factor of two to eight. This may be an artifact
of tuning the models to t observations, and we find a very good agreement in the mean
T between the model ensemble of 0.38 and the satellite retrievals of 0.34 (Table 1).

However, T is the sum of the contributions from different aerosol species broadly
categorized as marine (t,,4), anthropogenic (t,,) and dust (t;). MODIS retrievals of fine
mode T (17), nominally PM1.0, enable the separation of the MODIS and AVHRR t into
these three components (12, 19). Several of the CMIP5 models also output fine mode
(Table S1), and thus we are able to use the same methodology in Ref. 19 to separate the
models’ Tinto these components (see Methods). The comparison of modeled and
satellite retrieved 7; shows less agreement than that for 7; the mean satellite retrieved
T4 is 0.30 and the multi model mean 7, is 0.22 (Table 1). Eight CMIP5 models have a
lower T4 (minimum of 0.09) that the satellites, one model has a higher 74 (0.35), and
two models have mean 7,4 that is not statistically different from MODIS. For the three
models in which 7, is greater or equal to the satellite retrieved 74 (both MIROC models
and the CSIRO-Mk3), the total DMP bias (Fig 1a) can be prescribed to the size
distribution of the emitted dust being too skewed towards small particles as proposed in
Ref. 19. In the majority of models with smaller 7; than the satellite retrievals, the DMP
bias can be related to both the emitted size distribution and an underestimation of the
total amount of dust emitted from northern Africa (which may be due to insufficient
mass emitted per dust emission event, or a lack of sufficient events), where the
percentage of the error due to the skewed size distribution is

100% x min{l, Td,MODEL/Td’MODIS}, and the percentage of the error that is due to an
insufficient total flux is 100% minus this value. From these calculations, and averaged
across all models, 66% of the bias in DMP (Fig 1a) is due to a bias in the emitted size
distribution (“Size bias” in Table 1), and 34% of the bias in DMP is due to an
underestimation of total northern African emission (“Flux bias” in Table 1).

The low biases in emission (Fig 1b) likely result from a number of factors, ranging from
soil moisture content to vegetation cover to near surface wind speed distributions. In an
attempt to elucidate the causes of the model biases in emission and thus DMP we



examined the spatial structure of surface emission across northern Africa in comparison
to a satellite-derived map of emission frequency (Fig S1). Although the analysis did not
provide any obvious clues for the causes of the biases, the level of disagreement
between the models, and to observations, was stark, suggesting that the biases in
emission likely result for a variety of reasons that are not necessarily consistent among
the models.

We also examined the time evolution of DMP from CMIP5 models to evaluate the
interannual variability. Here we use a hybrid satellite-paleo record of annual mean 74
corresponding to a location adjacent to the Cape Verde islands (15°N & 23°W) that
spans 1955-2009 (12; Fig 2a), and compute mass path in a manner identical to that for
the AVHRR data in Figure 1a (12). One major feature of the observational time series is
the increase of T4 over the tropical North Atlantic from the 1950s through the early
1980s, and then a subsequent decline of emission and 7, through the 2000s (Fig 2a),
which is documented in satellite and in-situ data sets (10,12,23,24). Although the cause
of these trends is still debatable, there is consensus that they are either directly or
indirectly caused by the simultaneous changes in summertime Sahelian rainfall, and in
particular the severe drought of the 1980s (10,24,25).

We regressed a time series of observed June—September averaged Sahelian rainfall
rates (26) onto the proxy record of DMP to quantify this dependency for 1960-2004.The
observed coefficient of the regression is -0.06+0.04 g m™ per mm day™, which is
statistically different from zero at the 95% significance level (Fig 2b). Using the models’
rainfall rates and DMP for the same years (Fig 2b), only the MIROC-ESM-CHEM has a
negative regression coefficient statistically different from zero at the 95% level (Fig 2b).
Consistent with our findings, a recent study found that a subset of the models evaluated
here exhibited a negative correlation between DMP over the tropical North Atlantic and
the phase of the modeled AMO in 20" Century historical forcing runs, although the
change was not determined to be statistically significant (28).

We also compared annual mean DMP from observations (AVHRR) to model output for
the AMIP simulations for the years 1982-2006 via a Taylor diagram (29) (Fig 2c). The
two striking features are that (1) none of the models (B-L in Fig 2c) exhibit a statistically
significant positive correlation to the data (A in Fig 2c), with multi-model mean and
median correlation coefficients smaller than zero, and that (2) the root-mean-squared
biases are similar in magnitude to the observational data’s standard deviation. Similar
results are found with the proxy DMP data and model output for the historical forcing
runs for 1960-2004 (Fig S2).

Based on the results presented here CMIP5 models are unable to capture any of the
salient features of northern African dust emission and transport. As such, there is no
reason to assume that the projections of dust aerosol for the 21** Century emissions
have any validity. Despite highlighting deficiencies in the representation of the
multitude of land and atmospheric processes that govern dust emission, these results
also cast doubt on the representation of other features of coupled Earth system that are
affected by aeolian dust, including regional land and ocean surface temperatures,



precipitation processes, and terrestrial and oceanic biogeochemistry. It is likely that the
representation of dust in climate models can be improved by increasing observations of
processes affecting dust emission in the remote dryland regions where most dust
storms occur.



Methods

Estimating DMP from satellites

MODIS retrieved and CMIP5 output total aerosol optical depth and fine mode optical
depth were converted to 7,4 via Ref 19. AVHRR retrievals of total aerosol optical depth
were converted to 7,4 via Ref 12, which is an application of the Ref. 19 methodology to
this instrument. We note that for the CMIP5 models the fine mode fractions for
anthropogenic, mineral and marine aerosols were nearly identical to the values
reported in Ref 19. For the satellites, 7, data was converted to DMP via the ratio of 2.7 g
m2 per unit T4 (Table 1), which is based on the average of observations of this ratio (19).
Two models (CCSM and CESM) only report T4 and not DMP, therefore we calculated the
ratio of 7; to DMP for this model using the CESM total aerosol mass fields in an over-
water area where the aerosol loading is dominated by dust (2.2 g m™ per unit T4; Table
1). However, the inclusion of marine aerosols in the total aerosol mass field means that
the value of 2.2 is an upper bound on the actual ratio for the model, and that the 7,4
estimates for CCSM and CESM are likely to be biased high.
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Figure Legends

Figure 1a. Long-term mean dust emission and mass path from satellite retrievals and
CMIP5 models. Shown (1a) are box-and-whisker plots of the long-term annual mean
dust mass path over the region 10°-20°N and 20°-30°W. Medians (red lines),
interquartile range (blue boxes), the interquartile value +/- 1.25 times the interquartile
range (black “whiskers”) and outliers (red crosses) are calculated from annual mean dust
mass path values over the period 1982-2004 (2000—-2013 for the MODIS-Terra data).
The model-averaged median mass path is 0.26 g m™ (red line), which is a factor of three
smaller than the satellite-derived dust mass path medians of 0.75 g m™ (AVHRR) and
0.82 g m™ (MODIS). Also shown (1b) is a scatterplot of annual mean DMP averaged over
10°-20°N and 20°-30°W (ordinate) and mean annual total dust emission from northern
Africa (abscissa), for CMIP5 models (main plot) and the AVHRR and MODIS (inset),
where error bars indicate the + 1o range of these data. Among the CMIP5 models the
correlation coefficient of DMP and emission is 0.86 (p-value < 0.01) and the linear least
square best fit line is y = xx1.6e~* + 0.05 (red line), where the slope of the fit is
statistically different from zero (p-value < 0.01). Annual mean dust emission values for
the satellite data are estimated via this best-fit line.

Figure 2. Annual variability of modeled and observed dust. Plotted in 3a are the proxy
and AVHRR annual mean time series of t; averaged over 10°-20°N and 20°-30°W.
Plotted in 3b are the coefficients (filled circles) and their 95% certainty levels (bars) from
the regression of AVHRR and modeled DMP onto observed (for the AHVRR only) and
modeled June—September Sahelian rainfall (10°-20°N and 15°W-20°E), calculated with
data from 1960-2004. In 3c is a Taylor diagram for annual mean DMP for 1960-2004
and averaged over 10°-20°N and 20°-30°W. The red circle marked “A” represents the
proxy record of DMP (3c), and the other markers are CMIP5 models (see Table S1 for
legend). The abscissa and dotted black semi-circles represent the time series’ standard
deviation, the dashed green semi-circles are the root mean squared differences
between the models and the proxy record, and the radial blue dot-dashed lines are the
correlation coefficients of the model time series and the proxy record.

13



Tables

T T4  Size bias (%) Low Flux bias (%) DMP/t4
AVHRR 0.38 0.29 - - 2.7
MODIS 0.38 0.30 - - 2.7
CSIRO-Mk3 0.40 0.33 100 0 1.3
GFDL-CM3 0.33 0.13 45 55 1.5
GFDL-ESM2G 0.32 0.22 73 27 1.6
GFDL-ESM2M 0.32 0.22 74 26 1.6
IPSL-CM5A-LR 0.30 0.17 55 45 1.4
IPSL-CM5A-MR 0.31 0.17 56 44 1.4
IPSL-CM5B-LR 0.30 0.16 54 46 1.4
MIROC-ESM-CHEM 0.48 0.35 100 0 1.3
MIROC-ESM 0.48 0.35 100 0 1.3
MRI-CGCM3 0.25 0.09 31 69 3.4
MRI-ESM1 0.26 0.10 33 67 2.7
Multi-model 0.34 0.22 66 34 1.7

Table 1. Satellite and model long-term mean optical depth statistics. Shown in the 2"

and 3" columns are the long-term mean t and 7 for AVHRR (1982-2005) and MODIS
(2001-2012), and CMIP5 models (1982—-2005) for which fine model optical depth data
was available. Here the model mean optical depths that are greater than or less than

that from both satellites are shaded red and blue, respectively, at the 95% significance
level. The 4™ and 5" columns are estimates of the percentage of the DMP biases (Fig 1a)
that are due to biases in the size distributions of the emitted dust and the biases in the
total flux of dust emitted from northern Africa. The last column is the observational (for
AVHRR and MODIS) and model estimated ratio of DMP to 1.
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Figure 1a. Long-term mean dust emission and mass path from satellite retrievals and
CMIP5 models. Shown (1a) are box-and-whisker plots of the long-term annual mean
dust mass path over the region 10°-20°N and 20°-30°W. Medians (red lines),
interquartile range (blue boxes), the interquartile value +/- 1.25 times the interquartile
range (black “whiskers”) and outliers (red crosses) are calculated from annual mean dust
mass path values over the period 1982-2004 (2000—-2013 for the MODIS-Terra data).
The model-averaged median mass path is 0.26 g m™ (red line), which is a factor of three
smaller than the satellite-derived dust mass path medians of 0.75 g m (AVHRR) and
0.82¢g m (MODIS). Also shown (1b) is a scatterplot of annual mean DMP averaged over
10°-20°N and 20°-30°W (ordinate) and mean annual total dust emission from northern
Africa (abscissa), for CMIP5 models (main plot) and the AVHRR and MODIS (inset),
where error bars indicate the + 1o range of these data. Among the CMIP5 models the
correlation coefficient of DMP and emission is 0.86 (p-value < 0.01) and the linear least
square best fit line is y = xx1.6e~* + 0.05 (red line), where the slope of the fit is
statistically different from zero (p-value < 0.01). Annual mean dust emission values for
the satellite data are estimated via this best-fit line.
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Figure 2. Annual variability of modeled and observed dust. Plotted in 3a are the proxy
and AVHRR annual mean time series of t; averaged over 10°-20°N and 20°-30°W.
Plotted in 3b are the coefficients (filled circles) and their 95% certainty levels (bars) from
the regression of AVHRR and modeled DMP onto observed (for the AHVRR only) and
modeled June—September Sahelian rainfall (10°-20°N and 15°W-20°E), calculated with
data from 1960-2004. In 3c is a Taylor diagram for annual mean DMP for 1960-2004
and averaged over 10°-20°N and 20°-30°W. The red circle marked “A” represents the
proxy record of DMP (3c), and the other markers are CMIP5 models (see Table S1 for
legend). The abscissa and dotted black semi-circles represent the time series’ standard
deviation, the dashed green semi-circles are the root mean squared differences
between the models and the proxy record, and the radial blue dot-dashed lines are the
correlation coefficients of the model time series and the proxy record.
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Supplementary Text

Comparison of Dust emission source regions

While there are no observation-based maps of dust emission (units of g m’ per unit
time), there does exist a satellite-based climatology of emission frequency covering
northern Africa (30,31). Analysis of the output from a dust model that simulates
emission over northern Africa (32,33) suggests that emission magnitude (mass) is
directly proportional to the event frequency; regions with frequent dust storms also
emit larger dust amounts. As such, we compare maps of the long-term mean dust
emission from those CMIP5 models for which these data are available, with a satellite-
based dust event frequency map (Fig S1). In order to focus on the spatial pattern of
northern African dust emission, and to facilitate the comparison of emission (models)
and frequency (observations), all data are normalized by the maximum value of
emission (or frequency) such that the range of the data plotted on each map is zero to
one.

With respect to dust emission, the models can be grouped into two categories, those
with near uniform emission across most of northern Africa (CanESM, CSIRO, GFDL,
MIROC, NorESM) and those where emission is dominated by a smaller number of highly
active locations (ACCESS, HadGEM, MRI). The latter of these two groups is more
consistent with the emission frequency from satellites (Fig S1). However, even among
these three models showing a smaller number of highly active sources, the physical
location of those sources is not consistent with the observations. The only point of
agreement between most models and the satellite observations is the Bodélé
depression as one of the most active dust sources (34). We note that the satellite-based
emission frequency may underestimate the number of dust events in the Saharan Heat
Low (10°-20°N & 10°W-10°E) and within Western Sahara and coastal Mauritania (35).
However, these possible biases do not explain the wide disparity in the spatial pattern
of emission between the CMIP5 models and the observations.

20" Century historical forcing Taylor Diagram

One feature of the Taylor diagram in Figure S2, which is constructed from the output of
the 20" Century historical forcing runs and the proxy dust time series in Figure 2a, are
the low correlation coefficients between the observational data (A) and the models (B—
W; legend in Table S1), where more than half of the models have negative correlations
with the observations; the median correlation coefficient is -0.04 (Fig S2). Although
three of the models exhibit statistically significant and positive correlation coefficients,
ACCESS, Cam4 and MRI-CGCMS3, the r? values for these models are very low (0.09, 0.09
and 0.11, respectively). We note that only one ensemble member of the DMP data was
available for six of the 23 models used (Table S1), and that inclusion of more ensemble
members in the analysis could, in theory, improve the results of the comparison to the
observational data in Figure S2.
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Table S1

Centers Model name DMP/Fig S3 Fine Emis_szio_rl AMIP DMP
Key (kg/m2) AOD (kgm™s™) Fig 2c Key
Commonwealth Scientific and
Industrial Research Organisation
(CSIRO) Bureau of Meteorology ACCESS1-0 A i X A
(BOM; Australia)
National Center for Atmospheric
Research (NCAR; United States) CCSM B i i B
Canadian Centre for Climate
Modelling and CanESM2 C - X C
Analysis (CCCma; Canada)
National Science Foundation (NSF)—
Department of CESM D - - D
Energy (DOE)-NCAR (United States)
CSIRO—Queensland Climate Change
Centre of Excellence (QCCE; CSIRO-Mk3-6-0 E X X E
Australia)
National Oceanic and Atmospheric GFDL-CM3 F X X -
Administration GFDL-ESM2G G X - -
(NOAA)/Geophysical Fluid Dynamics
Laboratory (GFDL; United States) GFDL-ESM2M H X i i
National Aeronautics and Space GISS-E2-H ] - - -
Administration
(NAS‘A)—Goddard Institute for Space GISS-E2-R J i i i
Studies
(GISS; United States)
Met Office Hadley Centre (MOHC; HadGEM2-A - - - F
United HadGEM2-CC K - X -
Kingdom) HadGEM2-ES L - X -
L’Institut Pierre-Simon Laplace IPSL-CMSA-LR m X i G
(IPSL; France) IPSL-CM5A-MR N X - H
IPSL-CM5B-LR 0] X - |
MIROC4h P - X -
Model for Interdisciplinary Research  MIROC5 Q - X J
on Climate MIROC-ESM- R X X i
(MIROC; Japan) CHEM
MIROC-ESM ) X X -
Meteorological Research Institute MRI-CGCM3 T X X K
(MRI; Japan) MRI-ESM1 ] X X -
Norwegian Climate Centre (NCC; NorESM1-ME \Y - X -
Norway) NorESM1-M w - X L

Table S1. Description of CMIP5 model data used in this study. Listed by column, from
left to right, are the model centers, the model names, letter corresponding to the
model’s location in Figure S2 (where bold indicates if ensemble means were available

for the historical forcing experiment), if fine mode T output was available for the

historical forcing experiment (indicated by an X), if emission output was available for the
historical forcing runs, and letter corresponding to the model’s location in Figure 2c (for

the AMIP experiments).
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Figure S1
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Figure S1. Modeled surface dust emission and comparison to satellite data. Shown are
maps of the normalized (divided by the maximum value) surface dust emission from
eight models. Regions plotted white are not active while those in red are the most
active. Also shown (bottom right) is the normalize dust frequency map derived from the
MSG-SEVIRI instrument.
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Figure S2
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Figure S2. Taylor Diagram of dust mass path over Cape Verde. Shown is a Taylor
diagram for annual mean DMP over the Cape Verde islands for the time period 1960—
2005 (Fig 2a). The red circle marked “A” represents the proxy record of dust, and the
other markers are CMIP5 models (see Table S2 for legend). The abscissa and dotted
black semi-circles represent the time series’ standard deviation, normalized such that
the proxy record has a standard deviation of unity. The dashed green semi-circles are
the root mean squared differences between the models and the proxy record, and the
radial blue dot-dashed lines are the correlation coefficients of the model time series and
the proxy record.
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