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Abstract-A new depth-time equation for Sippican and Tsurumi-Seiki (TSK) T-7, T-6 and T-4 
type expendable bathythermographs (XBTs) is presented based on the results of an internationally 
co-ordinated set of controlled XBT and conductivity-temperature-depth (CTD) comparison 
experiments. The experiments were geographically distributed over as many different oceanic 
water masses as possible to assess the possible influence that variations in the density and viscosity 
of the water column may have on the XBT fall rate. A newly developed temperature-error-free 
method is applied to the data set to obtain the depth-difference information between the CTD and 
the uncorrected XBT data. The accuracies in depth were found in general to be outside of the 
manufacturers’ specified accuracies. The mean depth error for the T-7 type of probe was found to 
be about +25 m at 750 m, whereas the manufacturers’ depth-accuracy specification at 750 m is only 
+I5 m. Since the T-4/T-6 and the T-7 data sets were found not to be statistically different at the 
95% confidence level, a unique new Sippican-TSK T-4/T-6/T-7 depth-time equation is deter- 
mined: Z,,, = 6.691 t - 0.00225 t’. Yet, even with a mean depth perfectly corrected, the individual 
scatter of the probes is shown to be largely outside the manufacturers’ specifications. No 
discernible effect of the water mass characteristics of the onboard equipment or of the type of 
manufacturer, was generally found on the fall rate of the probes. Finally an approximate linear 
correction formula is given for correcting depths recorded using the manufacturers’ original dcpth- 
time equation: Z, = 1.0336 z. But, until an international mechanism is established to implement 
the general use of the new equation, it is of the utmost importance not to use the new reference 
equation when archiving or exchanging XBT data. The mixing of data in the data archives must be 
absolutely avoided. 

INTRODUCTION 

In recent times expendable oceanographic probes, in particular expendable bathythermo- 
graphs (XBTs) launched from ships-of-opportunity, have been a significant component of 
many large-scale oceanographic research programmes, such as the Tropical Ocean Global 
Atmosphere (TOGA) Programme and the World Ocean Circulation Experiment 
(WOCE). These probes will no doubt also be heavily relied upon in future operational 
oceanographic programmes such as the proposed Global Ocean Observing System 
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(GOOS), and there will be a growing need to utilize these instruments to the limits of their 
accuracies. 

The depth of the XBT at any particular instant is not directly measured, but is inferred 
from an assumed fall rate of the probe. When conductivity-temperature-depth (CTD) 
and XBT measurements are conducted along an observational transect, a pseudo- 
undulation of the isotherms appears in the vertical temperature cross-section. This is due 
to the depth error in the XBT data, and its existence has already been pointed out by 
several authors (e.g. Flier1 and Robinson, 1977; Seaver and Kuleshov, 1982; Heinmiller et 
al., 1983). Several investigators have since estimated revised depth-time (fall rate) 
equations for the XBT using a number of different techniques (McDowell, 1977; 
Heinmiller et al., 1983; Green, 1984; Hanawa and Yoritaka, 1987; Henin, 1989; Gould, 
1990; Singer, 1990; Sy and Ulrich, 1990; Hanawa and Yoshikawa, 1991; Hallock and 
Teague, 1992; Hanawa and Yasuda, 1992). In addition, Green (1984) provides a detailed 
description of the hydrodynamics of XBTs. 

The Integrated Global Ocean Service System (IGOSS) Task Team on Quality Control 
for Automated Systems (TT/QCAS) initiated an international effort to conduct further 
XBT/CTD comparison tests under controlled experimental conditions, in order to 
develop accurate new equations for universal use. The probes evaluated were the 
commonly used Sippican and Tsurumi-Seiki (TSK) T-7 (760 m), T-6 (460 m) and T-4 (460 
m) types of XBT, all of which use the same manufacturers’ depth-time equation. The co- 
investigators’ initial individual results can be found in a report of the Intergovernmental 
Oceanographic Commission (1992). The individual new depth-time equations were 
generally very similar. It was therefore decided to combine all data sets collected by the co- 
investigators, and to apply the best available depth-error estimation technique (a modifi- 
cation of the independently developed temperature-error-free method of Hanawa and 
Yasuda, 1992, and Rual, 1991). Full results of this study can be found in UNESCO (1994). 

The present paper focuses on the determination of a new unique reference depth-time 
equation for the Sippican and TSK T-4, T-6, T-7 XBT probes. The possible influences on 
the fall rate by different water masses, onboard recording equipment, and probe 
manufacturers are examined. The scatter of the fall rates is compared to the manufac- 
turers’ specifications. A depth correction formula is derived for correcting archived data. 
Finally a review is made of the results obtained by previous investigators, and their results 
are compared to the new depth-time equation. 

XBT/CTD COMPARISON EXPERIMENT 

Probe types and manufacturers 

The results presented in this paper apply to Sippican or TSK T-7 (760 m), T-6 and T-4 
(460 m) models of XBT probes, all of which use the same manufacturers’ depth-time 
equation. The nose cones of the T-4 and T-6 XBTs are manufactured heavier than those of 
the T-7 to match the T-7 in overall weight (more wire on the probe spool), in fall rate 
characteristics and hence in the depth-time equation. Since the only difference between 
the T-6 and T-4 types of XBT is the amount of wire on the ship spool so as to allow the T-4 
probe to be dropped from faster vessels, these two types of probes are not distinguished 
between for this study. XBTs made by TSK, manufactured under a Sippican licence, 
should be identical to the original Sippican probes. Some Sippican Deep Blues (760 m) 
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were also tested, but as their probes are identical to the probes of the T-7, they are not 
distinguished between for this study and hereafter will be considered as T-7. 

Locations and descriptions of the data sets 

Between 1985 and 1992, XBT/CTD comparison experiments were independently 
carried out by five institutions and by one manufacturer (see Table 1). For the present 
analysis, 161 T-7 XBT and 211 T-4/T-6 profiles, for a total of 372 profiles, were collected. 
In Fig. 1 are shown the locations where the XBTKTD comparison experiments were 
conducted. Temperature-salinity (T-S) relationships, extracted from climatological data 
(Levitus, 1982), are displayed in Fig. 2 for each region. A 100-m mark has been added to 
each curve to show the extent of the surface waters. The non-shaded T-S field represents 
the open-waters of the World Ocean at depths between 50 and 800 m and salinities 
between 30 and 39 psu. It shows that the comparison data used in the present study, 
distributed over various oceans and regions, cover various water masses (S = 34-37 psu, T 
= 5-30°C) so as to specifically assess the possible influence of the density and viscosity 
structures on the XBT fall rate (Seaver and Kuleshov, 1982). 

Experimental procedures 

All XBT data are evaluated relative to a field standard, the CTD profiler (Table 1). 
Generally, the CTD profilers were calibrated before and after each voyage of the research 
vessels involved, and the calibration results were applied to the CTD data before analysis. 
Therefore CTD data errors are at least an order of magnitude smaller than XBT data 
errors and, for this study, will be considered as negligible. A number of different digital 
XBT recorders were used to collect the XBT data (Table 1). Each XBT recorder 
underwent a calibration check before and after each voyage. No strip chart recorders were 
used for this experiment as this type of recorder is no longer very much in use and may 
include additional depth errors due to possible variations in the speed of the roller-chart 
mechanisms. A “side by side, XBT/CTD comparison” was the main improvement in the 
field procedures used in this study compared to most of the previous investigators’ studies. 
As far as possible, XBTs were dropped during the descent of the CTD so that, at least at 
some depth, the instruments were coincident in depth. This was in attempt to eliminate as 
much as possible depth differences due to temperature-field variations in time or space 
(e.g. internal waves). Generally, XBTs were dropped within l&15 min of the start of 
descent of the CTD, so as to coincide with the CTD within the thermochne. Previous 
investigators had not necessarily compared XBTs that were as close in time as possible (or 
indeed at precisely the same location) to the CTD. 

TEMPERATURE-ERROR-FREE METHOD TO CALCULATE AN XBT 
DEPTH-TIME EQUATION 

Provided that the onboard XBT equipment is working correctly, it is considered that 
there are two main error-sources in XBT data: (i) depth errors due to an inaccurate 
depth-time equation for the fall rate of the probes; (ii) temperature errors due to the 
scatter of thermistor responses and inaccuracies in the conversion of thermistor resistance 
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Fig. I. Locations where the XBT/CTD comparison experiments were conducted (see also 
Table 1). The dashed line at 5”s in the western Pacific shows the limit between the wep and swtp 

data sets. 

to temperature. In this study we will only examine the depth errors associated with 
inaccuracies in the fall rate equation. 

For a given type of probe, the depth-time equation provided by the XBT manufacturers 
is of the form 

Z”, = a,t - b,t” (1) 

where z, is the depth and t is the elapsed time in seconds starting when the probe hits the 
surface; a,,, and b, are positive constants. The linear coefficient is a function of the 
hydrodynamic characteristics of the probe in the water and the quadratic coefficient is a 
function of the change in mass of the probe (unreeling of the wire) and of the change with 
depth of the water characteristics (density and viscosity gradients; see Green, 1984). 

The method 

Hanawa and Yoritaka (1987) and Hanawa and Yoshikawa (1991) first developed a 
temperature-error-free method for determining errors in the depth-time equation. The 
essence of the method is that comparison to the field standard should be made not for the 
absolute temperature profiles but for the temperature gradient profiles. This is because 
temperature errors are directly related to depth errors, and bias-like temperature errors 
can be eliminated by using the temperature gradient information. The detection method 
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salinity 
30 0 32.0 34 0 36.0 38 0 

26.0 - 

Regional T/S diogram 

Fig. 2. Temperature-salinity (T-S) diagrams from the climatological data (Lcvitus, 1982). 
Curves l-9 represent the field areas of the comparison experiment (see Fig. 1 and Table 1). A 
100-m mark has been added to each curve. The shaded area limits the T-S field of the world’s 

open oceans down to 800 m. 

adopted for the depth error in the present analysis is an extension of this method. It was 
first independently developed by Hanawa and Yasuda (1992) and Rual (1991), and is 
further simplified and modified here for better accuracy. The detection procedures used in 
the present analysis for obtaining depth errors are as follows. 
Step 1, The l-m-interval data. The l-m-interval data are calculated using a linear 
interpolation scheme for both raw CTD and XBT temperature data. Here, the CTD 
pressure is converted into depth by using the approximate equation (2) of Hanawa and 
Yoritaka (1987), calculated for a u-t of 27.5: 

&d = 0.993 pc.d (2) 

where z,,~ is the CTD depth in metres and pctd is the CTD pressure in decibars. The XBT 
depths, z,, are calculated from the depth-time equation (1) provided by the XBT 
manufacturer. 
Step 2, Filtering. The raw XBT and CTD data inevitably contain vertically small-scale 
geophysical and instrumental noise (e.g. spikes). Therefore, before applying the actual 
detection procedures, two filters are applied to the raw data (Rual, 1989): (i) a non-linear 
Median filter known to eliminate completely the spikes in a signal, (ii) a low-pass linear 
cosine Hanning filter to smooth out the small-scale noise. In the present analysis, a seven- 
point Median filter without threshold logic is adopted. This filter can eliminate the spikes 
which consist of up to three data points (width of 2 m, see Sy, 1985, and Brock, 1986, for 
details). After application of the Median filter, a simple three-point Hanning filter, with 
weights of l/4, l/2, l/4, is applied nine times (equivalent to a more sophisticated 11-point 
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XBT-TG 
Profile 

I 

XBT-TG AREA m 

Fig. 3. Explanatory picture of the detection method adopted to determine the XBT depth error 
(adapted from Hanawa and Yasuda, 1992). See Step 4, in the text, for further details. 

Hanning filter applied once). As a result, small-scale undulations with wavelengths less 
than about 5 m are also eliminated with a minimum of transfer to longer wavelengths (see 
Blackman and Tukey, 1958 for details). 
Step 3, Calculation of temperature gradienr. Temperature gradients (TG hereafter) are 
calculated every metre from both filtered CTD and XBT data. 
Step 4, Detection of actual depth. Reference XBT depths are defined at fixed XBT-depth 
intervals (i.e. at fixed elapsed times from the surface). For each of these reference 
XBT depths a fixed length depth-window defines a segment on the XBT temperature 
gradient (XBT-TG) profile. A corresponding depth-window, initially centred on the 
same depth, is shifted up and down along the CTD-TG profile until the area between 
the CTD and XBT segments of the temperature gradient profiles is minimized (see 
Fig. 3). The central depth of the shifted CTD segment, which gives the minimum value of 
this area, can be regarded as the actual depth of the reference XBT central point. The 
depth-shift of the CTD segment is the corresponding depth-correction. Therefore the 
elapsed time of the reference XBT central point can then be paired with its actual 
CTD depth to provide the corrected XBT depth-time data necessary for the calculation of 
the fall rate equation in the next step. In the present analysis, the depth-window is 50 m 
wide, and its shifting range is from 30 m above the central depth to 50 m below it, by 1 m 
steps. The estimates of the XBT depth are made at 25 m intervals from 100 m to the 
maximum depth (zM). At less than 100 m, the temperature gradient is often constant 
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or rapidly varying with internal waves leading to too many errors in the estimation. Thus 
nM, the maximum possible number of depth-time pairs (or of depth differences) calcu- 
lated for a given profile, is 

nM = 1 + (.+, - 100)/25 (3) 

This procedure can be automated, but a visual quality control of the depth-difference 
profiles is required in order to eliminate non-coherent depth-differences due to problems 
in the temperature profiles themselves. 
Step 5, Estimation of individual depth-time equations. After the visual elimination of the 
non-coherent depth differences and of their corresponding depth-time pair, the individual 
ai, bi coefficients for each profile are then determined by the method of least squares from 
the remaining corrected depth-time pairs: 

zi = ait - bit2 (4) 

In the present analysis, coefficients calculated for profiles with less than 2/3 of +, 
(equation (3)) have been eliminated. This elimination of the ai and bi calculated from an 
inadequate number of depth-time pairs is necessary to ensure the accuracy of the 
individual coefficients by providing a sufficient depth range, especially important for the b 
coefficient which characterizes the curvature of the profile. 
Step 6, Estimation of the new depth-time equation. Using the coefficients a; and bi from the 
profiles with a sufficient number of “good” depth-time pairs, the mean coefficients, A and 
B, are calculated: 

Z = At - Bt2 where A = mean (aJ and B = mean (bi). (5) 

Remarks on the present method. In Hanawa and Yoritaka (1987) and Hanawa and 
Yoshikawa (1991), temperature gradient extreme have been chosen as markers to detect 
depth differences. In that case, it is relatively difficult to evenly distribute the data points 
from the surface to the bottom of the profile. This is because the existence of the extrema 
completely depends on the characteristic shapes of the temperature profiles. On the other 
hand, the present method can be applied to any temperature profile irrespective of the 
existence of extrema, and the data points are evenly distributed over the whole depth 
range. The only restriction is that the temperature gradient must not be constant but has to 
change, at least slightly, within the search range of Step 4, in order to allow determination 
of a depth-shift minimizing the area between the XBT and CTD temperature gradient 
profiles. 

In Hanawa and Yasuda (1992), after the depth-error detection in Step 4, there was an 
additional step to recalculate the XBT time matching a given true XBT depth. In addition. 
three more steps and an iteration were necessary after the calculation of the tentative 
revised equation before the determination of the jinal equation. The main difference 
between their method and our method is that their revised equations were calculated by a 
least square fit to the whole set of depth-time pairs calculated from all the profiles. They 
did not take into account the fact that all the depth-time pairs of a given profile are related 
by a relationship expressed by a depth-time equation specific to the profile (or by the 
coefficients ai and bi). 

Another advantage of the present method is the easy addition of new data sets to a 
previous estimate of the mean A and B coefficients. Since the coefficients of equation (5) 
are the mean of all the individual coefficients, to add a new data set is simply to calculate 
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the mean coefficients of the new data set (Steps 1 to 5) and to take the weighted mean of the 
two estimates. Thus this newly adopted method is simpler and more accurate than the 
previous method. It is more automatic, and demands only visual inspection of the depth- 
difference profiles to flag the depth-time pairs (Step 4). However, the new method does 
also occasionally fail to detect depth differences when the vertical temperature gradient is 
constant in a section of the profile larger than the search window, or when the XBT 
temperature profile has features not matched by the CTD profile. 

Depth-error distribution on the plane of the a and b coefjkients 

The a-b plane: maximum depth-error isolines. As shown in Hanawa and Yasuda (1992)) it 
is possible to determine for a given depth range (depending upon the probe type) the 
maximum absolute depth difference between a reference depth-time equation (coef- 
ficients A and B) and any other depth-time equation (coefficients a and b). As fully 
described in Appendix 1 of UNESCO (1994), this maximum absolute depth error is not 
always located at the same depth (Fig. 4a), and therefore a maximum relative depth error 
may be a better representation. However, this relative error may reach a maximum at the 
surface where the absolute depth error is zero. The best representation may therefore be 
the maximum absolute depth error expressed as a relative depth-error (i.e. divided by its 
depth). 

Isolines for any of these depth errors can be calculated and plotted on the plane of all the 
a and b coefficients (called hereafter the a-b plane). The construction and calculation of 
such plots is given in UNESCO (1994). An example of a T-7 a-b plane, with a maximum 
depth of 800 m, is shown in Fig. 4b. Tsolines are given as a percentage of the depth at which 
is located the maximum absolute error. In order to show the difference between the 
maximum absolute depth error and the same error relative to its depth, t8 m isolines (1% 
at 800 m) are also given. The five depth error curves in Fig. 4a correspond to the ab points 
(Fig. 4b, 1 to 5) lying on the horizontal line passing through the Sippican ab point (5). As 
seen in Fig. 4a, depending upon the a-b coefficients, the maximum depth-error is positive 
or negative, and is located either at the maximum depth of the profile or at the depth where 
the vertical gradient of the error is zero. This leads to two types of “iso-error” curves (see 
Fig. 4b) and the loci of the transitions between these two types of errors are two straight 
lines: (i) the “transfer” line (T in Fig. 4b) where the vertical gradient of the error is null at 
the maximum depth (Fig. 4: curve 4 and ab point 4); (ii) the “discontinuity” line (D) where 
the error (2) at the maximum depth (800 m), expressed as a percentage, is equal, but of 
opposite sign, to the “zero-gradient” error (here at 277 m), also expressed as a percentage 
(2). These two lines divide the u-b plane into four sectors. In the upper-left and lower-right 
sectors the depth of the maximum error is the maximum depth of the profiles (1 and S), 
whilst in the two other sectors this depth is variable within a certain depth range (2,3 and 4. 
with depth respectively of 800/277 m, 400 m and 800 m). More remarkable in these last 
sectors is the consistency of the depth along any line issued from the reference AB point 
(dotted lines from 800 to 300 m every 100 m). The only zero-error point on the a-b plane is 
the reference AB point. Along the “discontinuity” line the variation of the depth error is at 
a minimum due to the depth-error curve (2) occurring more or less symmetrical about the 
zero-error axis. The isolines define a central area, elongated along the “discontinuity” line, 
where the maximum depth error is small even when the a and b coefficients are largely 
different from those of the reference equation. Therefore, if the coefficients of individual 
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profiles or individual data subsets are distributed within this depth-error region, the error 
may be within the instrumental noise and a unique depth-time equation can be computed. 

Therefore, by using the a-b plane, one can (i) see at a glance whether or not an ab point 
is within the manufacturer’s specification, (ii) determine its maximum depth error, (iii) 
depending upon the sector, determine the error type and the depth of the maximum error. 

Statistics on the a-bplane. Generally, the individual ab points, calculated in Step 5, can be 
considered as samples of two correlated quasi-normal variables (see again Appendix 1 of 
UNESCO, 1994). Any treatise on bi-variate statistics shows that the confidence interval of 
such a bi-variate normal distribution is represented by an ellipse centred on the mean AB 
point, and its equation is a function of the correlation coefficient r between a and b and of 
the standard deviations of each variable. The probability for an individual ab point to be in 
the area enclosed by an ellipse of n standard deviations is less than for a single normal 
variable, and one must refer to tables of the cumulative bi-variate normal density function 
(such as Abramowitz and Stegun, 1972) to calculate it. However, if n and rare high enough 
(n 2 2 and r > 0.5), the confidence levels are close to those of a single normal variable. 
Hereafter these ellipses will be called the “individual” statistical ellipses (see Figs 6 and 7). 

The statistical distribution and the confidence interval of the mean AB point can 
moreover be represented by a “mean” statistical ellipse (using the standard error of the 
mean). It has the same confidence level as the original ellipse, and its axes have the same 
directions as the axes of the corresponding original ellipse, but they are divided by the 
square-root of the number of points used to calculate that mean. The “mean” ellipse is in 
fact the probable area where the actual mean lies, so it can be considered as the actual 
“size” of the calculated mean (Fig. 6). 

QUALITY CONTROL OF THE DATA 

Mechanical application of the detection procedures described in the previous subsection 
will be adequate only for ideal XBT/CTD comparison data. Actual XBT data sometimes 
include imperfections due to problems such as bowing and wire stretching (see Bailey et 
af., 1989, 1994; Sy, 1991). In addition, temperature profiles themselves are sometimes 
inappropriate for comparison, for instance, regions where the temperature gradients are 
constant over a wide depth range. Therefore, an inspection of the comparison data for 
imperfections is required. In this subsection, examples will be shown to demonstrate the 
effect of such problems on the procedures. 

Figure 5 shows three typical examples of XBTKTD comparisons: 07A16, C7B08 and 
T7A03. Generally, the temperature gradient profiles of the CTD and XBT correspond 
well to each other, for example 07A16. On the other hand, C7B08 is an example obviously 
affected by a bias-like temperature error, but the temperature gradient profiles of the XBT 
and CTD nevertheless correspond well to each other. The XBT depth-error profile of 
07A16 is seen to be monotonically increasing from -2 m at 100 m to -22 m at 750 m, 

Fig. 4. Depth errors of T-7 depth-time equations compared to the new reference equation (7) for T-4, T-6 and 
T-7 XBTs; (a) different types of error curves; (b) T-7 (800 m) a-b plane with maximum absolute depth-error 
isolines expressed in metres (dash-dotted lines), or in percent of their depth (full lines). Transfer (T) and 
discontinuity(D) dashed lines and iso-depth lines (dotted) are indicated. The 1 to 5 ab points along the horizontal 

line correspond to the 1 to 5 curves of (a). 



New depth-time equation for XBT 1433 

0 
Absolute Depth-Error for T7 XBT (8OOm) 

-300 .. 

depth error (meters) 

A-B plane for T41T6 and T7 XBTs (800m) 

0 I 2 3 4 5 

coef. b x10-J 

(6) 



1434 K. Hanawa et al. 
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Fig. 5. Typical examples of comparison data: 07A 16, C7BO8 and T7AO3. (a) CTD (thin line) 
and XBT (thick line) temperature profiles, (b) profile of the tempcraturc difference (XBT minus 
CTD), (c) CTD and XBT temperature gradient profiles (XBTs are offset by -0.2”C/m). and (d) 
detected XBT depth errors. The depth errors marked by stars are considered non-coherent and 

consequently eliminated from the data set. 
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Fig. 6. Statistical ellipses on the a-b plane: individual two standard deviation ellipses (2s T4,h and 
2S T,), and one-, two- and three-standard-error-of-the-mean ellipses (TJh and T,) for the global 

T-4/T-6 and for the global T-7 data sets (see Table 1). 

whilst C7B08 is almost monotonically increasing from - 1 m at 100 m to -22 m at 700 m. 
This example shows that, as already mentioned, this method can reasonably detect the 
depth difference even for XBT data having bias-like temperature errors. On the other 
hand, T7A03 not only includes a bias-like temperature error, but is probably also 
influenced by wire stretching and/or wire insulation penetration type defects, most 
obvious around 600 m. Therefore, the XBT temperature gradient profile does not 
correspond well to that of the CTD data, especially below 350 m, and it largely deviates 
and scatters in the depth-error profile from 400 m downward. In this case, such non- 
coherent deviations in the depth-difference data (marked by stars in the figures) are 
manually discarded at the end of Step 4 before the estimation of the individual equation in 
Step 5. In addition to the examples shown in Fig. 5, the detection of the depth error 
sometimes failed when the surface mixed layer was deeper than 100 m (constant 
temperature gradient). In such a case, the depth-difference data are also manually 
discarded after a visual inspection of the depth-difference profile. Due to the overall 
coherence of the depth-error profile, it is in general not difficult to determine which depth- 
difference data should be discarded from, or included in the analysis. 

NEW REFERENCE DEPTH-TIME EQUATION FOR T-7, T-6 AND T-4 XBTS 

The depth-difference data were estimated for 211 T-4/T-6 and for 161 T-7 XBT profiles. 
After examination of the depth-difference profiles, five of the T-7 XBTs were completely 
discarded from the analysis due to a general mismatch between the CTD and XBT profiles 
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Fig. 7. (a) T-7 and (b) T-4/T-6 data sets presented on their respective a-b plane (800 m or 450 m 
maximum depth) of the new T-4/T-6/T-7 reference equation (7). The maximum absolute depth- 
error isolines are expressed in metres (dotted lines) or in percent of its depth (full lines), the central 
isoline is +2%. The statistical ellipses are the individual one-, two and three-standard-deviation 

ellipses (dashed) and the small two standard-error-of-the-mean ellipse (full). 
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as a result of XBT malfunctions. Out of the remaining profiles, only 160 T-4/T-6 and 125 
T-7 were considered as “good” profiles, following the “213 of nM” criterion (see Step 4 and 
Table 1). Using the above “good” profiles, the individual ai and bi coefficients (Step 5) 
were first calculated. The new mean depth-time equations (Step 6) were then calculated 
independently for the T-4/T-6 and for the T-7 data sets (see Table 1 and UNESCO, 1994, 
for details), even though the manufacturers used the same original depth-time equation 
for T-4, T-6 and T-7 XBTs: 

ZlIl = 6.472t - 0.00216tz (6) 

It is interesting to examine, on the same u-b plane, the two series of statistical ellipses for 
the T-4/T-6 and for the T-7 ab points respectively (Fig. 6). One can see that (i) the T-7 
individual two-standard-deviation ellipse is completely embedded in the corresponding T- 
4/T-6 ellipse; (ii) the T-7 mean ellipses intersect with the corresponding T-4/T-6 ellipses. 
Thus the T-7 and T-4/T-6 populations and their means are not significantly different from a 
statistical point of view and we can safely determine a new reference equation for the 
combined data set: 

Z 467 = 6.691 t - 0.00225 ? (7) 

The confidence intervals for the individual ai, bi and for the mean A, B coefficients, at a 
confidence level of 95%. are 

a467 = 6.691 k 0.354 b467 = 0.00225 k 0.00508 

A 467 = 6.691 + 0.021 B,, = 0.00225 + 0.00030 

The normalized standard deviations of the mean, oAIA and as/B are, respectively, equal 
to 0.16% and 6.7%. The quadratic term B is a corrective second order term and it is normal 
for it to be less accurately determined, especially when using shallow probes such as the T- 
4/T-6 probes. 

Even though the manufacturers’ rated depth is 760 m for the T-7 probe, the T-7 probe’s 
actual maximum depth is very often over 800 m, whilst the T-4/T-6 XBTs actual maximum 
depth is very close to the manufacturers’ rated depth of 460 m. Therefore 800 m and 450 m 
will be considered as the maximum depths of the T-7 and T-4/T-6 u-b planes. The 367 
individual ab points are presented in Fig. 7 on these AB,,, planes. The dashed ellipses are 
individual one-, two- and three-standard-deviation ellipses for the aibi points which, with a 
correlation coefficient of 0.83, correspond to confidence levels of 57% (and not 68% as for 
a single variable), 95% and 99.7% respectively. In Fig. 7a, the maximum depth errors for 
the individual T-7 probes and the individual one standard deviation ellipse for the ABdb7 
reference point are mostly within the +2% and rt 10 m isolines, although some are outside 
the +20 m isoline. On the T-4/T-6 a-b plane (Fig. 7b), the T-4/T-6 individual points are 
more scattered, although the maximum depth errors are still generally within the 2% and 
+lO m isolines, with several points just within the +-5% and +20 m isolines. The 
manufacturer’s equation ab, point is outside the main cloud of observed ab points in both 
Figs 7a and 7b, at over two individual standard deviations from the ABdG7 reference point, 
in a sector where the maximum depth error is -26 m and -3.24% at the depth of 800 m, or 
-15 m and -3.26% at 450 m. A small two-standard-error-of-the-mean ellipse has been 
included to show the “size” of the mean A BdG7 point. 

The T-7 and T-4/T-6 mean AB points (not shown) are within one standard error of the 
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Fig. 8. Mean regional two-standard-error-of-the-mean ellipses on a zoomed a-b plane (see Fig. I 
and Table 1 for the location of the regions). The full and the dashed ellipses arc, respectively. the 
T-7 and the T-4/T-6 mean regional ellipses. For clarity, in the medium group some ellipses arc 

referred to by their region number only. 

mean from the A B,,, reference point (see Table 1). The maximum absolute depth error 
between the ABd6, reference point and the T-7 A B point is -0.8 m or -0.1% at 800 m and 
for the T-4/T-6 AB point it is -0.2 m or -0.06% at 264 m. These results confirm that a 
single reference T-4/T-6/T-7 depth-time equation can replace, with very reasonable 
accuracy, the original manufacturers’ equation. 

INTER-COMPARISONS OF THE INDIVIDUAL DATA SETS 

Regional comparisons 

Figure 8 shows, on the a-b plane, the two-standard-error-of-the-mean ellipses (95%) of 
the mean AB points for each regional data set, These ellipses define three main significant 
groups whose domains do not intersect: (i) a slow fall rate group, which includes the T-7 
north-eastern Atlantic (nea), the T-4 Bahamas and the T-6 north-western Pacific (nwp) 
data sets; (ii) a high fall rate group which includes the T-7 and the T-4/T-6 north-western 
tropical Atlantic data sets (nwta); (iii) a medium fall rate group which includes all the other 
regional groups, except the T-7 Tasman data set. The ellipse for this data set, which has 
only six probes, is too wide to belong to one group. It is mainly a high fall rate data set, but 
it also covers part of the medium group. The three groups appear to show no overall 
regional homogeneity. The slow fall rate group ranges from tropical latitudes to high 
latitudes in the northern hemisphere. The medium fall rate group is mainly a tropical and 
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subtropical group, but includes the T-7 north-western Pacific data set which is a mid- 
latitude data set. The Tasman data set, which is also a mid-latitude data set, ranges from 
medium to high fall rates. The T-6 and T-7 north-western Pacific data sets are found in 
different groups, i.e. the slow and medium fall rate groups respectively. 

Although there were no opportunities to collect data in extreme oceanic conditions, the 
data presented in this study were collected in several different regions in order to examine 
the possible influence of different water masses on the fall rates of the probes. One of the 
parameters for understanding the dynamics of a moving body in water is viscosity (Seaver 
and Kuleshov, 1982). Viscosity is, to the first order, inversely proportional to the 
temperature; therefore the mean temperature over the water column may be used to 
represent the mean viscosity. Another parameter is the density, but in our case, the 
correlation is very high (-0.91) between the mean density and the mean temperature; 
therefore the results found for the mean viscosity are applicable to the mean density. 
Figure 9 presents the mean regional A and B coefficients as a function of this mean 
temperature calculated between the surface and the maximum depth reached by the probe 
type (800 m for T-7, 450 m for T-4/T-6). The expected influence, if any, should be a 
decrease in the speed of the probes (decrease of A mainly) with increasing viscosity. The 
only significantly different pairs of A coefficients are the north-western tropical Atlantic 
(nwtu), a medium viscosity data set, and the north-eastern Atlantic (nea), a high viscosity 
data set, for the T-7; and the same nwlu and the north-western Pacific (nwp) for the T-4/T-6 
probes. For these two pairs of data sets the theoretical linear change in the fall rate is very 
close to the observed change of 0.3 m/s for the T-7 and 0.22 m/s for the T-4/T-6. But if other 
pairs of data sets are considered, an inverse relationship can be found (i.e. nwp and nwtp 
for the T-7, or nwp and Bahamas for the T-4/T-6). This may be due to the variability of the 
probe shape, or weight, generating different turbulent drags. completely obscuring the 
viscosity influence. In fact, considering all the regional data sets, it is very difficult to find a 
global relationship, and most of the regional A and B coefficients are not significantly 
different at a 95% confidence level. 

Onhourd equipment comparisons 

The data sets in the medium fall rate group of Fig. 8 were collected by almost all of the 
different types of onboard XBT and CTD equipment used in the study (see Table 1). 
Therefore, no significant influence of the type of onboard system on the fall rate appears to 
exist. Moreover, in the north-western tropical Atlantic (nwtu), in the north-western 
Pacific (nwp) and in the south-eastern Indian Ocean (xi), respectively, comparisons were 
made using, in the same area, the same type of XBT but different onboard systems (see 
UNESCO, 1994). No significant differences were observed in the fall rates for the nwtu or 
for the nwp data sets, when the data were grouped by onboard equipment. The two- 
standard-error-of-the-mean ellipses are almost tangent for the sei case (not shown), but 
the two mean AB points are so close that the induced error is small (5 m at 800 m or 0.6%). 

Probe manufacturer comparisons 

Probes from two different manufacturers were used in this study. They should be 
identical as the TSK probes are made under licence from Sippican. The T-7 and the T-4/T- 
6 probes from each manufacturer are grouped together for comparison on the u-b plane in 
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Fig. 9. The mean A, B cocfticients and the two-standard-error-of-the-mean bars for the different 
regions of the XBT/CTD experiment are plotted against the mean temperature of the water 
between the surface and the maximum depth reached by the probe type (9a: 800 m for T-7,9b: 450 
m for T-4/T-6). See Fig. 1 for the location of the regions. The mean temperature has been 

computed from the Levitus (1982) T-S data of Fig. 2. 

Fig. 10. The standard-error-of-the-mean ellipses (95%) show that the two T-7 data sets are 
quasi-identical. They have very close mean AB points, and their variability is comparable: 
there are 42 TSK T-7 ab points and 83 Sippican ab points, so the axes of the mean ellipses 
should have a theoretical ratio of 2/3, which is the case. The Sippican T-4/T-6 probes are 
not significantly different from the T-7 probes, but there seems to be a problem with the 
TSK T-6 probes (17 probes). This problem cannot be a batch problem as the probes were 
launched during two different cruises, 3 years apart. It cannot be a regional problem, as 
most of the TSK T-7 probes were launched in the same area and sometimes during the 
same cruise with the same onboard equipment. There seems to be a real but small 
difference between the TSK T-6 XBTs and the other probes: -6 m, or -1.3%) maximum 
depth error with the reference AB,, point. 
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Fig. 10. Mean Sippican, and TSK, T-7 and T-4/T-6 AB points and their two-standard-error-of- 
the-mean ellipses on the a-b plane (same scales as Fig. 8, see Table 1 for detailed information). 

Discussion on the inter-comparisons 

Of the regional groups described above (Fig. 8), only the slow fall rate for TSK T-6 
(nwp) may be explained by a statistically significant manufacturing difference. The 
location of the Bahamas data set in the slow fall rate group cannot be explained by density 
or viscosity effects, as one would expect these effects to result in it being in the medium fall 
rate group. As it is a single experiment using the same type of probes and onboard 
equipment used to collect some of the other data sets, the more plausible explanation is 
probe batch variation. Similarly, the north-eastern Atlantic data set (nea) is a single 
experiment, so its slow fall rate may be due to probe batch variations or, since it is the only 
experiment to use a Sippican Mk-12 onboard unit, it may be due to an onboard equipment 
influence. But since the high density and viscosity in the area favour a slow fall rate, this 
may be a regional influence. The high fall rate and the large mean ellipse of the Tasman 
Sea single experiment, on the other hand, may be a batch problem plus the fact that the 
area of the experiment actually spans over subtropical and mid-latitude frontal regions. 
The high fall rate of the two T-7 and T-4/T-6 north-western tropical Atlantic (nwta) data 
sets cannot be explained by any influence. It is a multi-cruise, multi-onboard equipment, 
multi-institution, multi-probe experiment, and the density and viscosity in the area favour 
a medium fall rate. So, if this high fall rate is real, it is due to an influence of unknown origin. 

Therefore, only two differences between the data sets cannot be explained by batch 
variations: (i) the TSK T-6 probes’ systematic slower fall rate; (ii) the north-western 
tropical Atlantic data set’s high fall rate. However, these two differences have a very small 
influence on the overall combined data set, as the errors are symmetrical about the 
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reference ABJh7 p oint (about +6 m or &1.3% at 450 m) and the TSK T-6 data sets 
constitute a small number of the comparisons evaluated. In fact, if all the regional AB 
points are plotted on the global AB 4s,reference planes (Fig. 11 and Table l), most of these 
points are inside or along the A6 m maximum absolute depth-error isoline (or 1.3%), 
except the Tasman Sea (+10 m) and the north-eastern Atlantic (nea, -9 m). This is the 
maximum induced depth error if the regional depth time equations are replaced by the new 
reference depth time equation (7). It is well within the scatter of the individual probes 
(within the individual one-standard deviation ellipses of Fig. 7). 

Moreover, if some differences were found in the means, all these differences are of 
practically no importance compared to the individual, or batch-to-batch, scatter of the 
probes (Fig. 12). All the individual regional two-standard-deviation ellipses intersect to 
the extent that the slow and fast fall rate groups are hardly discernible. So, if any other 
influences do exist, they are embedded in the individual or batch-to-batch fall rate 
variations of the XBT probes. Unless the manufacturers are able to reduce that variability, 
further regional experimentation will not be of interest, except perhaps in extreme oceanic 
conditions of density and viscosity. 

OBSERVED VARIABILITY AND THE MANUFACTURERS’ 
SPECIFICATIONS 

In order to study the depth errors over the whole water column and not only the 
maximum depth error, one has to use the depth-error versus depth plane instead of the u-b 
plane. Figure 13a shows the distributions of the 5895 valid depth differences as a function 
of their CTD depth (as calculated in Step 4) for the combined T-4/T-6/T-7 data set. The 
elapsed times corresponding to the depth differences are identical for each profile, as the 
depth differences are determined every 25 “XBT metres” from the manufacturers’ depth- 
time equation (6) in Step 1. Therefore all the depth differences at a given elapsed time can 
be grouped together to determine the depth-difference statistics for that given time (XBT 
depth). The corresponding CTD actual depths vary, as they are equal to the XBT depth 
plus the depth correction. 

At each level the distribution of the depth differences are quasi-normal, and only a slight 
asymmetry in the scatter can be noted towards the high fall rate side of the distribution 
(high negative individual depth errors). The data are generally outside the manufacturers’ 
specifications, except close to the surface where the mean depth error is within +5 m down 
to a depth of 150 m. The mean depth errors range from -2.5 m at 100 m to -24.5 m at 775 
m. Only the very slow fall rates, outside -1 standard deviation (about 15% of the data), 
are within the specifications almost down to the maximum depth. The observed scatter is 
much larger than expected from the manufacturers’ specifications. 

When the new T-4/T-6/T-7 equation (7) is used instead of the original manufacturers’ 
equation (6) (Fig. 13b), the mean depth error is greatly reduced and is now within +1 m of 
the CTD depth. However, 17.5% of the individual depth errors are still outside the 
manufacturers’ specifications (1028 depth errors out of a total of 5895 depth errors). Only 
the one-standard-deviation confidence interval is entirely within those specifications, and 
one must reach the maximum depth for the two-standard-deviation curves to be close to 
the specifications. Between 100 m and 500 m, more than 10% of the depth errors are 
outside the specifications and up to 30% at 250 m (not shown). A linear approximation of 
the two and three-standard-deviation curves (dotted lines in Fig. 13b) gives 
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T4/r6,T7 XBT, Regional AB points (8oOm) 
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Fig. Il. Mean regional AB points on the new AB 4,h,7 reference planes of Fig. 7, but using the 
scales of Fig. 8. The reference AE point is marked by an *. 
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T4fT6 & T7 Individual data-sets, statistical ellipses 
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Fig. 12. Individual regional two-standard-deviation ellipses on the a-b plane (same scales as Fig. 
7, see Fig. 1 and Table I for the location of the regions). The full and the dashed ellipses are, 
respectively, the T-7 and the T-4/T-6 individual regional ellipses. For clarity, in the central group 

some ellipses are referred to by their region number only. 

*(6 m + 1.5% of the depth) for 2 std. dev. or 95.5% of the data (8) 
_+(9 m + 2.0% of the depth) for 3 std. dev. or 99.7% of the data (9) 

If the meaning of a specification is that the depths of all the probes should be within them, 
then the specifications provided by the manufacturers should be at least close to the three- 
standard-deviation confidence interval. They should be of the order of equation (9). It 
must be noted that the new specifications are not +n metres or +p%, but +(n metres plus 
p%). The shallow depth specifications therefore are much larger than they used to be: 
above +lO m at 100 m and around It15 m at 250 m instead of &5 m. Hallock and Teague 
(1992) found the same kind of probe-to-probe scatter after correction of the original data 
with their new equation: about f8 to 10 m in the depth range 10-100 m, and k 15 to 20 m in 
the range 450-650 m. 

The linearity of the standard deviation curves with depth is a good index of the reliability 
of the method used to calculate the depth errors. All over the depth range, the relative 

Fig. 13. Combined T-4/T-6/T-7 data set: depth errors and their statistics as a function of depth. (a) Using the 
manufacturers’ depth-time equation (6). Mean depth error (open circles) and the one-, two- and three-standard- 
deviation curves (respectively dotted, dash-dotted and full curves). The individual depth errors above two 
standard deviations are also added (dots). The manufacturers’ specifications (t5 m or +2% of the depth. 
whichever is the greater) are indicated as dotted lines. (b) Same figure, but using the new T-4/T-6/T-7 reference 
equation (7). Linear approximations of the two- and three-standard-deviation curves are indicated as dotted lines. 
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scatter of the probes remains constant, about 1.5% of the depth at a 95% confidence level. 
Therefore, if the general behaviour of the probes with depth remains similar from probe to 
probe, the reliability of the method remains constant whatever the depth, even when the 
vertical temperature gradients change only slightly. 

If, instead of the total 5895 depth-difference data set, we consider only the 5340 depth 
differences used to determine the mean Adb7 and B,,, coefficients of equation (7), the 
results are almost identical (not shown). Even the extreme data points (above three- 
standard deviations in Fig. 13) are not eliminated, as they are part of some of the “good” 
profiles. The mean depth error is still within * 1 m, and the standard deviations are very 
slightly different, but the conclusions remain the same. 

COMPARISON WITH OTHER AUTHORS’ DEPTH-TIME EQUATIONS 

Singer (1990) made a comprehensive review of the articles published prior to his own 
publication. Table 2 is a summary of the latest major experiments known to the present 
authors. All of the experiments were XBT/CTD comparison experiments, except Gould 
(1991), who compared the XBT depth when the probe hits the bottom to the depth of the 
bottom as measured by a precision echo-sounder. He also used Plessey T-7 probes which 
are not examined in our study, but which are supposed to behave the same way as the 
Sippican T-7 XBTs. The only other non-Sippican probe experiment was made by Yoshida 
et al. (1989) who used TSK T-7 probes. Most of the probes are T-7 XBTs, except Henin 
(1989) who used T-4 XBTs. Yoshida’s Japan Sea experiment was made down to a 
maximum depth of only 300 m, so his TSK T-7 XBT results are more comparable to those 
for T-4 XBTs. The shallow (O-325 m) linear correction from Heinmiller et al. (1983) can 
also be placed into the same group. The majority of the experiments were made at 
relatively low latitudes, although Sy and Ulrich (1990), Gould (1991) and Yoshida et al. 
(1989) made their measurements at higher latitudes in colder waters. No studies have been 
made in Arctic or Antarctic waters. The 1976-1978 Sargasso Sea experiments (McDowell, 
1977; Heinmiller et al., 1983) were made with strip-chart recorders. Green (1984) used the 
same data as Heinmiller et al. (1983), but added a hydrodynamic model to define his two- 
coefficient depth-time equation. The latest publications, Yoshida et al. (1989), Sy and 
Ulrich (1990), Gould (I 991), Hallock and Teague (1992), used temperature-error-free 
methods to calculate the depth errors. In the other publications, the authors tried to 
estimate the temperature error prior to the estimation of the depth error, and the result is 
accordingly less accurate. Another problem encountered in the earlier experiments is the 
non-exact simultaneity in time or space between the CTD and the XBT deployments. 
which allowed additional errors in the depth comparisons due to vertical displacement of 
features in the temperature field by internal waves and other high frequency space and 
time scale phenomena. 

Table 2 also shows the maximum depth differences between the previous authors’ 
equations and the new reference T-7/T-4/T-6 depth-time equation (7). The maximum 
depth differences for the T-7 experiments down to 800 m are from f13 m (1.6%) to - 15 m 
(-1.9%). For the T-4s, or T-4-like T-7 experiments, the maximum depth differences 
down to 450 m are from +7 m (1.6%) to -6 m (-1.4%) and -18 m (-4%) for 
Heinmiller’s 2s, the worst case, very close to the manufacturers’ equation. In Fig. 14, the 
previous authors’ results are presented on the u-b plane to show their relationship to one 
another and to the new ABd6, reference point. Most of the earlier authors simply 
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TW6,T7 XBT. Other Authors AB points 
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Fig. 14. Other authors’ results (see Table 2 column 1 for the identification numbers) on the a-6 
plane of the new reference equation (7): (i) the circles are the T-7 ab points; the crosses mark the 
T-4, or T-4-like (2s and 8) T-7 ab points. The 2s’, 2d’, 3’, and 7’ a6 points are from a recalculation 
of the three-coefficient equations into two-coefficient equations. (ii) The long-dashed and the full 
line maximum absolute depth-error isolines are the f2% isolines defined in Fig. 7, respectively, for 
the T-7 and T-4/T-6 a-b planes. The almost vertical short-dashed line is the [00, &B,] line is the 

locus of any linear correction of the manufacturers’ equation (6). 

calculated a linear correction coefficient to correct the manufacturers’ equation (6), so the 
representative ab point is on a linear curve [00, A,B,] linking the origin of the a-b plane to 
the manufacturers’ AB point. The Hallock and Teague (case 7) ab point and our AB,,, 
reference point, while differently determined, are nevertheless very close to the linear 
correction locus. The Yoshida (case 8) and Green (case 9) ab points have b coefficients far 
away from the linear correction curve. For the Yoshida case, this may be due to the special 
density structure of the Sea of Japan which has no temperature gradient below 300 m. The 
maximum depth for comparison in that study is therefore 300 m, and perhaps the quadratic 
coefficients can not be well defined due to the short depth range. For the Green case, which 
uses the same data as Heinmiller (2s and 2d), it could be caused by a problem in a 
parameter evaluation of his model. 

Several authors who used the linear fit for their correction also found at the surface an 
extrapolated offset between - 1 m and - 17 m (see Table 2). In order to be able to compare 
their two results with the others on the a-b plane, we fitted a three-coefficient equation (5) 
by the method of least squares to their 3-coefficient equation (z = at - b? + c), thus 
eliminating the constant term c. The additional error due to this approximation is small: 
between -1 m and +2.5 m in the depth range from 100 to 750 m. The corresponding 
revised coefficients are given in Table 2. The original coefficients without the constant 
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term are also presented in Fig. 14 for comparison. Apart from the deep linear fit of 
Heinmiller &al. (Table 2, case 2d, depth range: 326-750 m), which gives a constant term of 
- 17 m extrapolated to the surface, all the other offsets at the surface are in the range - 1 m 
to -4.5 m. Hallock and Teague (1992) and Singer (1990) discuss the issue of such offsets in 
more detail. Our results show no significant extrapolated offset near the surface (see Fig. 
13b). If the probes do behave differently close to the surface, we are unable to address the 
problem with our experiments and procedures as we did not define depth-difference 
information in the first 100 m. 

There seems to be no regional influence in the results from the previous authors. The 
identical 6 and 4 ab points are respectively in the cold North Atlantic and in the warm 
western tropical Pacific. The 1 and 5 ab points are also identical, but they are from the 
Sargasso Sea and from the Norwegian Trench respectively. Cases 3 and 7, which are very 
close, are from the western tropical Atlantic, but cases 1,2s, 2d and 9 are also from the 
same area. There is perhaps a strip-chart recorder influence since all the corresponding ab 
points (1,2s, 2d, 9) are in a slow rate group, but as they are also all from the Sargasso Sea 
this may be a regional effect. The other authors’ results are generally about twice as far 
away from the ABd6, reference point as our regional AB points (Fig. 11). This may be due 
to probe batch variability, to differences in the methods or in the equipment, to the non- 
simultaneity of the launches, or sometimes to a regional variation as may be the case for 
the Sea of Japan data from Yoshida et al. (1989). 

In conclusion, most of the earlier authors’ results fall within the +2% depth-error isoline 
around our A B 467 reference point. The exception is the Heinmiller etaE. (1983) result, but 
their data when re-interpreted by Green (1984) fall within the same envelope. Therefore 
our results do not contradict most of the previous results, but improve their accuracy and 
extend their applicability to a greater part of the world’s oceans. 

DEPTH-CORRECTION FORMULA FOR ARCHIVED XBT DATA 

In order to correct the depths of already archived XBT data, a correction formula, function 
only of the archived depth (z,,3, has been presented in UNESCO (1994). The correction curve 
for the probes considered in this paper is almost linear, thus only a linear correction 
approximation will be presented here. As the linear coefficients are a function of the 
maximum depth of the probe and of the type of maximum depth error considered, there are 
two sets of linear coefficients: one set for the 800 m maximum depth probe type (T-7), the 
other for the 450 m maximum depth probe type (T-4/T-6). Each set is formed of three 
coefficients, one for each type of maximum depth error: absolute, relative and absolute 
expressed as a relative depth error. 

For the global T-4/T-6/T-7 data set down to 800 m, the best linear coefficients (see 
UNESCO, 1994) are between 1.0336 to 1.0337 depending upon the depth error con- 
sidered, and between 1.0337 and 1.0338 down to 450 m. As the probe type is currently not 
recorded with the archived data, it is advantageous to choose only one global linear 
coefficient for the T-4/T-6 and the T-7 probes. In order to minimize the absolute depth 
error while keeping the relative depth error within reasonable bounds in the first hundreds 
of metres, the best linear approximation (2,) adopted for correcting the depth is 

2, = l.O336z, (10) 

The maximum errors induced by using this linear coefficient are less than -0.1 m at 800 
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m for the T-7 probes, and less than 0.05 m at 300 m for the T-4/T-6 probes. The relative 
depth error is less than ?0.03% for all depths. Thus the linear correction approximation is 
very accurate for these probes, but this may not be always true for other probe types and 
other manufacturers. 

CONCLUSIONS AND RECOMMENDATIONS 

Further evidence was found in this study that TSK and Sippican T-7, T-6 and T-4 XBT 
probes fall faster than the rate given by the manufacturers’ depth-time equation, and that 
the resulting depth errors are outside the manufacturers’ specifications. The T-4/T-6 and 
the T-7 data sets were found not to be statistically different at the 95% confidence level. 
Therefore a unique new reference T-4/T-6/T-7 fall rate equation was conclusively 
determined by a temperature-error-free method applied to a number of XBT/CTD 
comparison data sets which were collected in three oceans and under controlled con- 
ditions. Unfortunately, there were no opportunities to collect comparison data sets in 
polar regions or other extreme oceanic conditions. No significant regional, onboard 
equipment, or probe manufacturer influence on the fall rate was detected, except perhaps 
a regional influence in the north-eastern Atlantic, and a manufacturing difference in the 
TSK T-6 probes. Any influences, if they do exist, are masked by the individual variability 
of the probes, especially of the T-4/T-6 probes. This variability is well outside the 
manufacturers’ specifications. even when the mean depth error is corrected to less than 
?1 m by using the new T-4/T-6/T-7 reference depth-time equation. The main source of 
XBT depth variability seems to be the probe-to-probe or batch-to-batch variability of the 
probes’ characteristics. The reason for this variability is undetermined. A review of the 
results published by previous investigators, which are generally from a single geographical 
area, leads to the same conclusions but with a larger variability. 

It should be noted that the other types of Sippican-TSK probes, as well as probes 
produced by other manufacturers such as Sparton of Canada, will also need careful 
independent evaluation. It is important that each probe type (including different manufac- 
turers) be evaluated to avoid inconsistencies occurring in the depth accuracies of XBT data 
stored in the national and international data centres. Indeed, until an international 
mechanism is established to implement general use of a new equation for the T-7, T-6 and 
T-4 XBTs, and until the equation used for depth determination, the probe type, and the 
probe manufacturer can be distinguished in the data archives, it is strongly advised that for 
the present time all XBT data sent to the national or international data centres include 
depths calculated from the original manufacturer’s equation only. The existence of mixed 
data in the databases must be absolutely avoided. 
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