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1. Global Drifter Program (GDP) drifters currently provide the most
accurate observations of near-surface ocean velocities globally. Using
data from 15-m drogued GDP drifters, Lumpkin and Johnson (2013)
[1] produced a global near-surface velocity climatology using a new
binning method that simultaneously models spatial and temporal
variations.

2. To obtain statistically significant estimates homogeneously distributed
throughout the oceans, [1] selected observations within relatively large
bins [ellipses with areas of A = m(2°)#], with the potential to smooth
horizontal velocity gradients at scales smaller than the bin size.

3. Aiming to refine the drifter-derived climatology, this work [2] updates
the methods of Lumpkin and Johnson (2013) by (a) incorporating data
from undrogued drifters to the analysis, and (b) introducing a new
estimation method designed to further reduce the smoothing of spatial
gradients inherent in data binning methods.

2. Decomposition method:

 Previous studies modeled horizontal gradients within bins using 2-D
functions,U (x, v, t) =(U) + U(x,y) + U'(x,y,1).

 Considering that time-mean ocean velocities are highly anisotropic, this work
models U(x, y) using 1-D functions, U(%).

X coordinates are found via the rotation of the Cartesian coordinate system,
being defined at the angle that minimizes fitting error of the 1-D curve:
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Mean spatial structure: Seasonal fluctuations:
1-D, nth degree polynomial Harmonical expansion with 8 =1 year

In matrix form; U = Az + U":

Gauss-Markov Estimation (GME) solution for z is [1]:

z = R,A"(AR,A" + R,)"1U, where:

R, variance-covariance matrix of the coefficients in z,

- R, variance-covariance matrix of the eddy residuals, given by:

— 2 it (Tt
R, = 0“cos (ZTd) exp[ (Zm)l, where

T,: decorrelation time scale.

 \ariance-covariance matrix of the standard errors (&gz) of z:
P, =R, —R,AT(AR,A" + R,)1AR,

« Errors are propagated to modeled velocities via P, = AP,A"
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* Top: ¢4 of pseudo-Eulerian mean
velocities obtained via bin-
averaging, 2-D GME [1], and 1-D
GME, as a function of the
reference Eulerian values, for 1°
radius bins.

* Right: ¢4, map for (a) mean and (c)
seasonal velocity estimates. (b)
and (d) are diagrams of the RMS
g, calculated as a function of
EKEY2 and N2 for each
component.

« Absolute errors (¢4) scale as a
function of (6 /N)Y2, however are
about 2x larger than the standard
errors (egg) predicted by theory.

Reference speed (m/s)

Method is evaluated using Eulerian and pseudo-Eulerian
statistics of a “toy” dataset, consisting of altimeter-derived
geostrophic velocities (GV) subsampled at the GDP drifter

locations, and the full GV fields.

Absolute errors (g4) are defined as the magnitude of the

1. Infroduction: 3. Method funing and error analysis:

difference between Eulerian and pseudo-Eulerian

statistics.

Sensitivity tests resulted inn =4, m=2, T, = 6.33 days,

and a ¥4° x ¥4° mapping resolution.

1° radius bins are chosen to balance smoothing and N.
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 Slip is modeled as a simple
downwind motion:
US=axU,

where U,: 10-m winds from the
ECMWF ERA-Interim reanalysis

 For drogued drifters [3]:
g = 7 X 10_4
 For undrogued [4]:
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1 » Top: large-scale patterns of «,, suggests
| ageophysical forcing mechanism:
- Response to a spatially-varying surface

1 » The slip correction takes into account the
spatial variations of «,, by interpolating
the obtained values to drifter locations.

| » Left: correction produces zonally-

1 averaged pseudo-Eulerian mean
velocities for drogued and undrogued
data that are statistically similar across
most latitudes, and reduces differences
between their zonally-averaged

1 » Remaining differences are largely caused
by factors unrelated to the slip bias, e.g.
method errors, biased sampling, and
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5. New Global Drifter Program climatological fields:

Version 2.08 (Lumpkin and Johnson 2013)

Version 3.0
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unsmoothed mean velocity estimates.

 Pseudo-Eulerian mean speed maps for the Gulf of Mexico and the western North Atlantic from GDP drifter data.
Left: calculated as described in Lumpkin and Johnson (2013) [1]. Right: obtained using the updated procedure [2].

 The right panel shows core speeds for the Florida Current and Gulf Stream up to 50% larger, and includes a better
resolved Antilles Current, recirculation cells, and circulation patterns in the basin’s interior.
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 Left: New pseudo-Eulerian mean zonal velocities for the Pacific Ocean, revealing numerous zonally-elongated
striation patterns. Right: mean velocity magnitude (speed) overlaid with curly vectors (streamlines), to indicate the
general direction of the large-scale circulation. Unlike in previous studies, the streamlines are calculated using
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1) The proposed decomposition method reproduces pseudo-Eulerian
mean velocities, their monthly variations, and formal error
estimates better than other methods;

2) Standard errors underestimate the actual errors by about a factor
of two;

3) The correction of drifter slip bias produces similar mean and
variances for the drogued and undrogued drifter velocity datasets,
allowing for a large increase in data density;

4) The new version of the climatology better resolves features such
as the cross-stream structure of western boundary currents,
recirculation cells, and zonally-elongated mid-ocean striations.
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