

ROSENSTIEL SCHOO

1. Introduction:

- . Global Drifter Program (GDP) drifters currently provide the most accurate observations of near-surface ocean velocities globally. Using data from 15-m drogued GDP drifters, Lumpkin and Johnson (2013) [1] produced a global near-surface velocity climatology using a new binning method that simultaneously models spatial and temporal variations.
- 2. To obtain statistically significant estimates homogeneously distributed throughout the oceans, [1] selected observations within relatively large bins [ellipses with areas of $A = \pi (2^{\circ})^2$], with the potential to smooth horizontal velocity gradients at scales smaller than the bin size.
- 3. Aiming to refine the drifter-derived climatology, this work [2] updates the methods of Lumpkin and Johnson (2013) by (a) incorporating data from undrogued drifters to the analysis, and (b) introducing a new estimation method designed to further reduce the smoothing of spatial gradients inherent in data binning methods.

2. Decomposition method:

- Previous studies modeled horizontal gradients within bins using 2-D functions, $U(x, y, t) = \langle U \rangle + \widehat{U}(x, y) + U'(x, y, t)$.
- Considering that time-mean ocean velocities are highly anisotropic, this work models $\widehat{U}(x, y)$ using 1-D functions, $\widehat{U}(\widehat{x})$.
- \hat{x} coordinates are found via the rotation of the Cartesian coordinate system, being defined at the angle that minimizes fitting error of the 1-D curve:

• Within a bin with N observations, $U_p(\hat{x}, t), p = 1, 2, 3, ..., N$:

$$U_{p}(\hat{x},t) = \sum_{i=0}^{n} [a_{i}(\hat{x})]^{i} + \sum_{j=1}^{m} \left[b_{j} \sin\left(\frac{\theta t}{j}\right) + c_{j} \cos\left(\frac{\theta t}{j}\right) \right] + U_{p}'(\hat{x},t)$$
Mean spatial structure: Seasonal fluctuations:

Seasonal fluctuations Harmonical expansion with θ = 1 year

• In matrix form: U = Az + U';

1-D, nth degree polynomial

• Gauss-Markov Estimation (GME) solution for z is [1]:

$$z = \mathbf{R}_{\mathbf{z}} A^T (A\mathbf{R}_{\mathbf{z}} A^T + \mathbf{R}_{\mathbf{n}})^{-1} U$$
, where

- R_z : variance-covariance matrix of the coefficients in z,
- R_n : variance-covariance matrix of the eddy residuals, given by:

$$R_n = \sigma^2 \cos\left(\frac{\pi t}{2T_d}\right) \exp\left[-\left(\frac{\pi t}{2\sqrt{2T_d}}\right)\right]$$
, where

- T_d : decorrelation time scale.
- Variance-covariance matrix of the standard errors (ε_{SE}) of *z*:

 $P_{z} = R_{z} - R_{z}A^{T}(AR_{z}A^{T} + R_{n})^{-1}AR_{z}$

• Errors are propagated to modeled velocities via $P_n = AP_z A^T$

An improved near-surface velocity climatology for the global ocean from drifter observations

Rick Lumpkin¹, Lucas C. Laurindo², and Arthur J. Mariano²

¹NOAA/AOML, ²RSMAS/Univ. Miami

3. Method tuning and error analysis:

- Method is evaluated using Eulerian and pseudo-Eulerian statistics of a "toy" dataset, consisting of altimeter-derived geostrophic velocities (GV) subsampled at the GDP drifter locations, and the full GV fields.
- Absolute errors (ε_A) are defined as the magnitude of the difference between Eulerian and pseudo-Eulerian statistics.
- Sensitivity tests resulted in n = 4, m = 2, $T_d = 6.33$ days, and a $\frac{1}{4}^{\circ} \times \frac{1}{4}^{\circ}$ mapping resolution.
- 1° radius bins are chosen to balance smoothing and *N*.
- **Top:** ε_A of pseudo-Eulerian mean velocities obtained via **bin**averaging, 2-D GME [1], and 1-D **GME**, as a function of the reference Eulerian values, for 1° radius bins.
- **Right:** ε_A map for (a) mean and (c) seasonal velocity estimates. (b) and (d) are diagrams of the RMS ε_A calculated as a function of EKE^{1/2} and $N^{1/2}$ for each component
- Absolute errors (ε_A) scale as a function of $(\sigma/N)^{1/2}$, however are about $2 \times$ larger than the standard errors (ε_{SE}) predicted by theory.

4. Correction of the slip bias of undrogued drifters:

- Pseudo-Eulerian mean speed maps for the Gulf of Mexico and the western North Atlantic from GDP drifter data.
- The right panel shows core speeds for the Florida Current and Gulf Stream up to 50% larger, and includes a better resolved Antilles Current, recirculation cells, and circulation patterns in the basin's interior.

• Left: New pseudo-Eulerian mean zonal velocities for the Pacific Ocean, revealing numerous zonally-elongated general direction of the large-scale circulation. Unlike in previous studies, the streamlines are calculated using unsmoothed mean velocity estimates.

6. Conclusions:

- 1) The proposed decomposition method reproduces pseudo-Eulerian mean velocities, their monthly variations, and formal error estimates better than other methods;
- 2) Standard errors underestimate the actual errors by about a factor of two;
- 3) The correction of drifter slip bias produces similar mean and variances for the drogued and undrogued drifter velocity datasets, allowing for a large increase in data density;
- 4) The new version of the climatology better resolves features such as the cross-stream structure of western boundary currents, recirculation cells, and zonally-elongated mid-ocean striations.

Left: calculated as described in Lumpkin and Johnson (2013) [1]. Right: obtained using the updated procedure [2].

striation patterns. **Right:** mean velocity magnitude (speed) overlaid with curly vectors (streamlines), to indicate the

7. References:

- [1] Lumpkin, R. and G. C. Johnson, 2013:. Global ocean surface velocities from drifters: mean, variance, ENSO response, and seasonal cycle. J. Geophys. Res., 118, 2992-3006.
- [2] Laurindo, L., A. Mariano, and R. Lumpkin, 2017: An improved near-surface velocity climatology for the global ocean from drifter observations. Deep-Sea Res., accepted April 2017.
- [3] Niiler, P. P., A. S. Sybrandy, B. Kenong, P. M. Poulain, and D. Bitterman, 1995:. Measurements of the water-following capability of holey-sock and tristar drifters. Deep-Sea Res. **42** (11/12), 1961–1964.
- [4] Pazan, S. E. and P. P. Niiler, 2001:. Recovery of near-surface velocity from undrogued drifters. J. Atmos. Oceanic Tech., 18, 476-489.