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Abstract

Hawaiian lee eddies are examined in WOCE drifter trajectories� ADCP measure�

ments� in�situ sea level records� satellite altimetry and AVHRR imagery� The mean

currents� temperature� and their variance in the Hawaiian region are mapped from the

surface drifter data and the historical hydrography� A regression analysis is used to

identify the Ekman component of the drifter speed�

It is shown that the islands have a profound e�ect on the downstream 
ow� the island

wake is composed of counter�rotating gyres over ��� km long� Eddy energy is greatly

magni�ed in this region� and the mean propagation paths of cyclonic and anticyclonic

eddies correspond to the vorticity of the gyres� These gyres are separated by a narrow

countercurrent� the Hawaiian Lee Countercurrent� The northern edge of the cyclonic

gyre is delineated by a westward current� which 
ows along the southwest shores of the

islands� This current has not previously been identi�ed� and is named the Hawaiian

Lee Current �HLC� in this study� Once passing Kaua�i� the HLC joins with the North

Hawaiian Ridge Current to form a westward jet extending to �����

Hawaiian lee eddies are generated at ������ day intervals� and can be clearly iden�

ti�ed in satellite altimetry� A generalized form of the Rankine vortex structure is de�

scribed� which allows for nonzero vorticity in the vortex shell� This model is used to

characterize the observed lee eddies� which range from quasigeostrophic to nonlinear

length and velocity scales� A synthesis of the drifter data� altimetry and AVHRR im�

agery provides a description of the eddies	 life cycle from birth to downstream propaga�

tion and spin�down� The maximum core vorticity of several newly�formed anticyclonic

eddies may have been limited by centrifugal instability� possible azimuthal mode � in�

stability leading to the production of a tripolar vortex is also noted for two cyclonic

vi



eddies� The eddies	 propagation speeds compare favorably to existing theory� with de�

viations possibly due to advection and eddy�eddy interaction� The spin�down of the

eddies is modeled by a simple entrainment model� Drifter observations suggest that

anticyclonic eddies may occasionally merge as they drift west�southwest from Hawai�i�

producing rapid jumps in their core vorticity and size�

Lagrangian statistics of individual drifters are calculated in several subregions� demon�

strating an increase of ������� times in di�usivity due to the lee eddies� The zonal

di�usivity is larger than the meridional di�usivity by an amount consistent with the

background shear of the mean currents�
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Chapter �

Introduction

The Hawaiian archipelago stretches over ���� km across the central North Paci�c

Ocean �Fig� ��� within the North Paci�c Subtropic Gyre� The major Hawaiian Islands

are on the southeast end of the archipelago� near the latitude at which the gyre�scale


ow turns westward to become the North Equatorial Current �NEC� �Fig� ��� Numerical

models suggest that the islands block this westward current at its northern extent� lead�

ing to the creation of a pseudo�western boundary current known as the North Hawaiian

Ridge Current �NHRC� �Qiu et al�� ������ Roden ������ presents an overview of several

processes which may arise from 
ow�topography interaction in the Hawaiian region�

Energetic eddies� both cyclonic and anticyclonic� are ubiquitous in the circulation

immediately leeward of the Hawaiian Islands� They may be responsible for the westward�

propagating oscillations seen in satellite altimetry and in�situ sea level measurements

�Mitchum� ������ Patzert ������ conducted the �rst extensive survey of these eddies�

He showed that their peak speeds of O�� m�s� can dominate the instantaneous currents

along the west coast of Hawai�i and through the �Alenuihaha Channel separating Hawai�i

and Maui� Using hydrographic surveys through several eddies� Patzert examined their

vertical and horizontal structure� and showed that they range in diameter from �� to

��� km and extend to depths of ��� to ��� m� By comparing the hydrography to direct

current measurements of several cyclonic eddies� Patzert demonstrated that they were

nearly geostrophic� He noted that centrifugal e�ects may play a signi�cant role in the

dynamics of the anticyclonic eddies� but he did not have direct current measurements

of the anticyclones to verify this hypothesis� When describing the generation� evolution

and propagation of eddies� Patzert faced a considerable challenge� the data available to

�



him were typically hydrographic transects or short�term deployments of radio�tracked

drifters� Thus� Patzert was forced to extrapolate a dynamical picture from what were

essentially snapshots� He concluded that the eddies have a formation time of approxi�

mately one week to one month� and that they drift westward at speeds of ��� to �� cm�s�

Hydrographic casts in the Hawaiian region have allowed mapping the gyre�scale

circulation �c�f� �Wyrtki� ����� and Fig� ��� However� these data do not reveal the

sub�gyre�scale impact of the Hawaiian Islands upon the circulation� how do the islands

modify the ambient impinging 
ow In addition to the local e�ects �most notably� the

lee eddies mentioned above�� are there signi�cant e�ects further downstream Due to

intense variability from lee eddies� long�term averaging is required to reveal the under�

lying mean currents west of the Hawaiian Islands� Before the advent of relatively cheap

satellite observations� this was typically done by repeated hydrographic transects such

as those of the Hawai�i�to�Tahiti Shuttle Experiment� During the Shuttle Experiment

of ���������� �� hydrographic sections �to ���� dbar� were made on �� cruises �Wyrtki

and Kilonsky� ������ Through most of the Hawaiian region� the transect ran along

�����W� thus providing a time series of zonal hydrographic currents in the wake of the

Hawaiian Islands� These currents� reported by Wyrtki and Kilonsky ������ and shown

in Fig� �� suggest that the island wake has a complex structure consisting of a series of

opposite�
owing bands� Wyrtki and Kilonsky brie
y noted the eastward 
ow at �����N�

associating it with the ubiquitous lee eddies� But what is the full two�dimensional struc�

ture of the island wake 

In the past� direct measurements of currents in the Hawaiian region have been mostly

limited to the immediate coastlines of the islands� Klaus Wyrtki led an intense data

gathering e�ort in the late ����s and early ����s� the resulting observations are pre�

sented in Wyrtki et al� ������ and Wyrtki et al� ������� The mean currents from their

�



study� and from more recent current meter deployments� are shown in Fig� �� As noted

by Patzert and Wyrtki ������� the observations suggest a mean clockwise 
ow around

each island� possibly due to the recti�cation of higher�frequency motion �Luther� ������

In recent years� the database of WOCE drifting buoys in the Hawaiian region has

grown dramatically� largely due to the deployment of �� drifters in or near the immedi�

ate lee of Hawai�i� Combined with shipboard ADCP measurements� satellite altimetry

and AVHRR imagery� the data present a unique opportunity to observe the full life

cycle of lee eddies� from birth and growth to propagation� interaction and spin�down�

In addition� the database of CTD�XBT casts to depths of ���� dbar has grown steadily�

Using ships of opportunity� the database of shallower XBT casts has been greatly in�

creased� The few ALACE drifters passing through the region o�er some hints regarding

the currents at the �level of no motion
 of most current maps derived from hydrography�

In addition� satellite scatterometer observations have provided two�dimensional maps

of the evolving wind stress �eld� which can be used to estimate the Ekman drift of the

WOCE surface drifters� In�situ measurements of the wind �eld around Hawai�i� such

as the Hawaiian Rainbands Project� allow the interaction of the trade winds with the

islands to be characterized�

The goal of this study was to examine� characterize and understand the eddies and

currents of the Hawaiian region in light of these data� The dissertation is organized in

six chapters� as outlined below�

In Chapter �� the data are presented� The design and operation of a standard

WOCE drifter are described� including a discussion of positioning errors when track�

ing the drifter via satellite� The kriging method� used to interpolate the drifter �xes to

�����day intervals� is described in an appendix� Maps of the mean drifter speeds are pre�

sented� revealing the structure of the island wake� two elongated� counter�rotating gyres

�



extending ���� km to the west of Hawai�i� Variance maps demonstrate the intensity of

the eddy �eld in the island lee� The historical hydrography database is described� in�

cluding a discussion of how density was estimated for the bathythermograph casts� The

mean dynamic height �eld and its variance are calculated� and a map of the geostrophic

currents is presented� The wind stress� satellite altimetry� in�situ sea level� sea surface

temperature imagery� shipboard ADCP� and climatological data are also discussed�

Chapter � is devoted to the structure and life cycle of Hawaiian lee eddies� Ac�

companying this chapter� an appendix presents several commonly�used models of the

radial structure of eddies� along with a generalized model developed for this study� The

chapter begins with a discussion of their lowest�order dynamical balance� including the

centrifugal e�ect noted by Patzert ������� As a result of this e�ect� anticyclones may

have considerably stronger currents than given by thermal wind calculations from hy�

drography� A discussion of centrifugal instability demonstrates the signi�cance of the

�half�inertial
 �Chew and Bushnell� ����� anticyclone� several of which are noted in this

study� A discussion of eddy generation follows� including a summary of Patzert	s ������

conclusions regarding the signi�cant mechanism leading to lee eddy generation� The

data collected since ���� continue to support his conclusion that the cyclones are wind�

forced� but oceanic shear instability o� Hawai�i	s South Point may be the dominant

mechanism generating the anticyclones� The drifter� altimetry� and SST imagery data

allow determination of the eddy generation frequency� strong eddies of both signs are

generated at a ����� day period� while smaller cyclones occasionally form as rapidly

as every �� days� By tracking eddies in the altimetry and drifter tracks� their propa�

gation characteristics are determined and compared to the theoretical calculations of

Cushman�Roisin et al� ������ and Chassignet and Cushman�Roisin ������� To lowest

order� the eddies propagate westward at the speed of long baroclinic Rossby waves� De�

�



viations from this speed can be attributed to nonlinear e�ects� advection by the NEC�

and eddy�eddy interaction� Several ADCP� drifter� altimetric� and SST imagery data of

eddies are presented� giving a dynamical view of the Hawaiian lee eddy �eld� The data

show that eddy decay can be modeled by entrainment� at a rate of � ��� � ��� kg�s�

This result provides an estimate of an eddy	s lifespan� the energy of the large anti�

cyclones described in this study has an e�folding time scale of � ��� days� The data

shows that anticyclones propagate west�southwest from the South Point of Hawai�i in

the form of a repeating vortex train� which crosses Johnston Atoll and contributes to

the ���day oscillations in sea level there� In addition� evidence is presented that the

anticyclones may merge as they drift westward� in a repeating sequence governing the

growth of the oceanic shear line de�ning the southern edge of the Hawaiian Island wake�

The characteristics of a merged vortex are derived� and the relevant conservations laws

for vortex merging are discussed� in an appendix�

In Chapter �� the mean currents are examined in the drifter and hydrographic data�

These data do not provide an identical picture of the currents in the Hawaiian re�

gion� and some sources of these discrepancies are discussed� A regression analysis is

used to identify the directly wind�driven subinertial motion of the drifters� The drifter

observations are used to calculate energy 
uxes between the mean and eddy �elds�

and individual currents are examined in the two data sets� The banded structure of

the island wake is demonstrated in both data sets� The counter�rotating� elongated

wake gyres are separated by a narrow countercurrent the Hawaiian Lee Countercurrent

�HLCC�� which reaches a peak eastward speed of nearly �� cm�s� Along the latitude

of the HLCC� kinetic energy is converted from the eddy to the mean �eld at a rate of

���W�m�� su�cient to spin up the HLCC from rest in ��� days� North of the HLCC�

a newly�discovered current is identi�ed which runs west�northwest along the leeward

�



coasts of the major Hawaiian Islands� This current is named the Hawaiian Lee Current

�HLC�� It has a mean speed of ��� cm�s� and is strongest when the HLCC is strongest�

suggesting a similar dynamical origin� The HLCC joins with the North Hawaiian Ridge

Current �NHRC� west of Kaua�i to form a strong� westward HLC�NHRC extension

running along ���N in the drifter data� The hydrography shows that dynamic height

peaks in two nearly zonal ridges� one south of the HLCC �this feature is known as the

North Equatorial Ridge� and one at ���N� related to the HLC�NHRC extension seen in

the drifter data�

Chapter � presents Lagrangian statistics calculated from the drifter trajectories� The

chapter begins with a summary of the classical Taylor	s Theorem for dispersion in a �eld

of homogeneous� random turbulent motion� then describes how the di�usive properties

of the lee eddies and the dominant space and time scales of variability are characterized

using the drifter data� These calculations are performed in rectangular subregions of the

Hawaiian area� showing that the lee eddies increase the e�ective eddy di�usivity by ����

��� times� The long�time meridional� and short�time zonal and meridional dispersion of

drifters are consistent with classical theory for homogeneous turbulence� The long�time

zonal dispersion is inconsistent with this theory� but �as shown in an appendix� can

be attributed to the meridional shear in the predominantly zonal mean currents� The

Lagrangian spectra� calculated from the drifter speeds� show that the peak eddy energy

is from � to �� days period� In the island lee� the anticyclonic component of the rotary

spectra has several discrete peaks which may be a result of vortex merging� Outside

of the eddy bands� the spectral slopes are close to ��� suggesting direct� o��resonant

wind forcing �Hasselmann� ������ The relationship between the length and time scales

of Hawaiian eddies is compared to previous studies� the eddies can be described by the

kinematic law of Price �in �McWilliams et al�� ������� which assumes a constant length

�



scale�

In Chapter �� the major conclusions of the study are summarized� Several questions

remain to be answered conclusively� such as� What is the relative signi�cance of the

eddy generating mechanisms Do anticyclones really merge as they drift westward from

Hawai�i The dissertation concludes by outlining possible approaches to address these

issues� for future researchers studying the physical oceanographic environment of the

Hawaiian Islands�

�



164 163 162 161 160 159 158 157 156 155 154
17

18

19

20

21

22

23

24

 

 

−6000 −5000 −4000 −3000 −2000 −1000

Kaua'i

O'ahu

Moloka'i
Maui

Lana'i
Kaho'olawe

Hawai'i

Ni'ihau Ka
ua
`i
 C
ha
nn
el

Ka
iw
i 
Ch
an
ne
l

`Al
enu

iha
ha 

  C
han

nel

Depth (m)

Keahole Pt.

South Pt.

Figure �� Map showing the major Hawaiian Islands and channels separating them�
Bathymetry is from Smith and Sandwell �������

�



180 175 170 165 160 155 150 145 140
10

15

20

25

30

 

 

10 cm/s

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

Figure �� Shading� dynamic height from the Levitus�� climatology� with the mean
removed� Arrows� zonal geostrophic currents from the mean Hawai�i�to�Tahiti Shuttle
Experiment hydrography �Wyrtki and Kilonsky� ������

�



159    158    157    156    155    
18

  

19

  

20

  

21

  

22

  

degrees West

de
gr

ee
s 

N
or

th

HAWAII

MAUI
LANAI

MOLOKAI

OAHU

Resulting Drift

cm/s

0 10 20

(51.5)

(32.7)

(25)

Figure �� Mean currents measured by moorings in the Hawaiian Island region� Dashed
lines are from Wyrtki et al� ������� solid lines are more recent measurements� including
some deep deployments of Aanderaa current meters �Lumpkin� ������

��



Chapter �

Data

The sources of data are presented� and the data are gridded to create maps of mean
currents� temperature� dynamic height� sea level anomaly and their variance�

��� Satellite�tracked drifting buoys

As part of the WOCE Surface Velocity Program �SVP� and the Pelagic Fisheries Re�

search Program� ��� satellite�tracked drifting buoys were deployed in or passed through

the Hawaiian region ��������N� ���������W �� The resulting data set spans ����� drifter

years�

A WOCE drifter is a �berglass surface 
oat containing a satellite �Argos� transmitter

attached to a holey�sock drogue of diameter � m and length ��� m� centered at �� m

depth �Sybrandy and Niiler� ������ Drifters are not perfect water�followers� in addition

to their inability to track vertical motion� they su�er from �slip�
 or horizontal motion

di�erent than the current averaged over the drogue	s extent� Slip is caused by direct

wind forcing� drag on the surface 
oat induced by wind�driven shear� and surface gravity

wave recti�cation �Niiler et al�� ����� Geyer� ������ Other factors� such as shear�induced

tilt and recti�cation of near�inertial waves �White� ������ may play a lesser role �although

these in
uences could become signi�cant with very long tethers �Geyer� ������� In

order to minimize surface wave recti�cation� the surface 
oat is spherical and decoupled

from the drogue by a neutrally�buoyant subsurface 
oat �Niiler et al�� ����� Niiler et

al�� ������ The surface 
oat has a submergence sensor� which can be used to identify

drifters which have lost their drogues� The evenly�spaced holes in the drogue reduce

vortex shedding� so that the drogue	s drag coe�cient does not abruptly change across a

critical Reynolds number �Nath� ������ To reduce wind�induced slip� the drogue	s drag

area �drag coe�cient times cross�sectional area� is roughly �� times that of all other

��



drifter components� the resulting downwind slip has been measured at approximately

������ m�s per m�s of wind speed for winds up to �� m�s �Niiler and Paduan� ������

Once deployed� a drifter	s position is inferred from the Doppler shift of its ��� MHz

transmission observed by NOAA Polar Orbiting Environmental Satellites �Niiler et al��

����� The position�deducing algorithm is described in the Argos User Manual �������

and can be summarized as follows� As the satellite approaches� passes� and recedes from

the latitude of a drifter� its ��� km�s speed Doppler�shifts the signal� The timing of the

swing from blue shift to red shift �but not exactly the latitude of zero Doppler shift�

see below� gives the drifter	s latitude� and the rapidness of the swing gives the o��track

distance �the closer the satellite pass is to the drifter� the more step�like the swing is��

The absolute motion of the drifter introduces an additional Doppler shift� at ���N� a

�xed point on the Earth	s surface travels westward at ��� m�s� Thus� if the drifter is

east of the satellite pass� an additional blue shift is added which reaches its maximum

as the satellite passes the latitude of the drifter� This Doppler shift diminishes as the

satellite moves o� the drifter	s latitude� with a rate of decay depending on the minimum

satellite�drifter distance �greater minimum distance equals slower decay�� The sign of

this shift is estimated using least�squares �tting and the previous history of the drifter�

and gives the o��track direction� As mentioned above� the drifter	s latitude is not given

by the satellite	s latitude when there is no Doppler shift� the shift from the drifter	s

motion must be included as an o�set� The largest positioning errors occur when a

track is close to a drifter� but not directly over it� In this case� the Doppler shift from

the absolute drifter motion is a relatively brief spike which can be di�cult to resolve�

possibly leading to a ���� error in the o�track direction �and a slight latitudinal error

due to the incorrect Doppler o�set��

Positioning errors in the Hawaiian region were estimated by analyzing �xes of a sta�
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tionary drifter� The drifter was allowed to transmit at Snug Harbor� O�ahu for �� days�

yielding ��� �xes �Fig� ��� The latitudinal �approximately alongtrack� component of the

positional �xes had a standard deviation of �������� degrees� This error was dominated

by two outliers� the largest of which was �������� degrees north of the median� For the

longitudinal component� the standard deviation was �������� degrees� dominated by

a single outlier �������� degrees east of the median� These rms errors �approximately

��� m zonally� ��� m meridionally� are larger than the ��� m� ��� m errors estimated

by Poulain and Niiler ������� perhaps because their shorter time series did not include

the dramatic but rare outliers seen in Fig� �� The mean position with standard error

bars is ��������N� ���������� ���������W� ���������� To test for systematic error�

the drifter	s position was measured with a hand�held GPS receiver� After �� minutes�

the GPS position stabilized at ��������N� ���������W� The discrepancy in latitude is

�� m� while the longitude discrepancy is ��� m� This error is signi�cant� and is due

to the single large outlier� This erroneous �x was probably an incorrect �guess
 of the

o�track direction for a pass along ��������W� Because the Doppler o�set was assumed

blue �when it should have been red� this �x is also the northernmost outlier� Of course�

the median �lter could be used on this data �the median position was ��������N �

���������� ���������W � ����������� but the mean statistics are more representative

of errors inherent in any single �x of a deployed drifter�

To eliminate the more egregious errors in the raw �xes� a two�step quality evaluation

scheme was used �Hansen and Poulain� ������ In this method� the velocity is calculated

via �nite di�erencing of the raw �xes� both forwards and backwards in time� A �x is


agged as �bad
 if it generates a velocity greater than four standard deviations from

the mean velocity in both the forward and backward pass� Two�way di�erencing is

used because one�way approaches may fail if a bad value comes immediately after a
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gap in data acquisition �Hansen and Poulain� ������ Fixes from drifters which had lost

their drogues �indicated by the submergence sensor�� grounded� or been picked up by

�shermen were also discarded�

Upon deployment� most drifters continuously transmitted for �� days� then switched

to a ��� duty cycle �transmitting for �� hours every �� hours� to conserve power�

While continuously transmitting� an average of ������ ���� �xes per day were provided

by service Argos� From day �� to day ��� after deployment� an average of ����� �

���� �xes per day were obtained �excluding the four drifters which did not switch to

a ��� duty cycle at day ���� Starting at about day ���� most drifters began losing

their positive buoyancy �Fig� ��� At day ���� half the drifters had sunk beneath the

ocean surface� Presumably� this loss of buoyancy was due to biofouling� Some drifters

continued transmitting much longer than the half�life of ��� days� although the number

of �xes per day for any particular drifter approached zero as time increased�

In order to create a homogeneously�spaced record of drifter positions� the raw posi�

tions �ranging from over � �xes per day to �� days between �xes� were interpolated to

�����day intervals� Gaps greater than �� days were not interpolated��

Interpolation was done via the kriging method �Appendix A�� Kriging assumes the

observations consist of a true signal with known autocorrelation� plus noise of known

variance� The variance from the grounded drifter characterized the noise� and the

fractional Brownian structure functions of Hansen and Poulain ������ gave the velocity

autocorrelation function� Velocity was estimated by �nite di�erencing these interpolated

positions�

To examine the e�ect of position �x errors on eddy kinetic energy estimates� the

quality evaluation and kriging algorithms were applied to the grounded drifter	s �xes�

�The three largest interpolated gaps were ����� ���� and ���� days long�
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The resulting time series had a variance of ��������� m��s� zonally� ��������� m��s�

meridionally� The zonal variance is very close to Poulain and Niiler	s ������ estimate

of ������ m��s� for interpolated �xes of grounded drifters� Because this variance is

approximately two orders of magnitude lower than the variance of deployed drifters� it

can be concluded that position �x errors do not signi�cantly contaminate observations

of EKE�

Fig� � shows the full set of interpolated positions in the Hawaiian Island region�

Coverage is densest immediately to the west of the island of Hawai�i� where �� drifters

were deployed between ���� and ����� The interpolated tracks in this area are pre�

dominantly cycloidal due to energetic lee eddies �Chapter ��� South of ���N� coverage

is sparser and the trajectories are considerably more zonal� In this region� variations

in the trajectories are not organized cycloids� but rather large�scale migrations from

purely zonal motion� East and north of the islands� the tracks are a mix of cycloids�

meanders� and relatively straight trajectories without any visually�obvious pattern�

Drifter coverage is far from homogeneous in time� The drifters were deployed in

batches� for example� �� were deployed south of Moloka�i and Maui during a four�day

cruise in September ����� Another eight were deployed during a ���day cruise in July�

August ���� in the immediate lee of Hawai�i� Fig� �� shows the density of data coverage

in subregions of the study region as a function of time� Data density increased sharply

in ��������� due to SVP deployments to the east� many of these drifters propagated

westward into the study region� In the subregion ������N� ����������W� data density

increased sharply in ���� due to the local deployments�

Interpolation at �����day intervals creates many more velocity measurements than

there are independent degrees of freedom� To estimate the number of independent

observations for means and their error bars� the following procedure was used� First�
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interpolated data were divided into ���day segments� The zonal and meridional com�

ponents of the current were decomposed into mean components and 
uctuations �u��

v�� about the means� The autocorrelation functions of u� and v� were calculated� giving

the decorrelation time scales �lag of the �rst zero crossing� of u� and v�� The ���day

segments were then resampled at the larger of the two decorrelation time scales� This

subsampled data will subsequently be referred to as the �independent
 drifter data�

Mean currents were mapped by dividing the region into �� �zonally� by �� �merid�

ionally� cells� All independent data within each cell were then averaged �Fig� ��� The

mean currents �Fig� �� show the westward North Equatorial Current �NEC� impinging

on the island of Hawai�i �Fig� ���� where it bifurcates into the North Hawaiian Ridge

Current �running along the northeast side of the ridge� and the main body of the North

Equatorial Current south of the islands� In the lee of the islands� an extensive wake ex�

tends westward for hundreds of kilometers� The wake is composed of counter�rotating�

elongated gyres separated by a narrow counter�current at �����N� These currents will

be discussed individually in Chapter ��

The variance of the currents is dramatically magni�ed in the island lee �Fig� ����

the highest value� ���� m��s�� is ��� times the mean variance in the region ��������W�

������N� This increase in EKE is associated with the energetic lee eddies� which are

discussed in Chapter �� The variance ellipses �Fig� ��� reveal a nearly isotropic EKE �eld

away from topography� with alongshore polarization close to the islands� Averaged over

the entire region� zonal variance is ���������������� m��s�� slightly but signi�cantly

greater than the mean meridional variance of ��������� � �� ���� m��s��

Because the data density is very high in the immediate lee of the islands� it is

possible to construct a relatively high�resolution current map in that region� Fig� ��

shows the mean drift speeds with standard error ellipses� revealing the eastward ends of
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the counter�rotating lee gyres� From these currents� the mean divergence and curl can

be calculated on a standard C�grid� These �elds are shown at the bottom of Fig� ���

The standard errors were calculated via bootstrapping� and cells with divergence or

curl signi�cantly di�erent from zero �to one standard error� are indicated by white

dots� The mean curl map shows the predominantly cyclonic�anticyclonic vorticity of

the northern�southern lee gyre�

Most of the WOCE drifters had temperature sensors at the base of the surface


oat� allowing them to transmit the in�situ SST at each satellite pass� These data were

linearly interpolated to the �����day grid of the velocity data� A total of ����� drifter�

years of temperature data were collected� Because this study is primarily concerned

with mesoscale 
uctuations in SST� the seasonal signal was identi�ed by performing a

least�squares �t of a sinusoid �with annual period� onto the interpolated temperature�

then removing it from the data �Fig� ���� The best �t had an amplitude of �����C and

peaked on day ��� �August ���� To test the assumption of spatial homogeneity in the

amplitude and phase of the seasonal SST signal� this analysis was repeated over six

rectangular subregions �constructed by evenly dividing the study region into � zonal

by � meridional cells�� The phase of the subregions was extremely consistent� with

maximum temperature falling at most �� days from the calculation performed over the

whole region� In the northern four subregions �north of �����N�� the amplitude was

consistent� varying from the overall mean by a maximum of ������C� The southern two

subregions had a considerably smaller seasonal signal� with amplitudes of �����C and

�����C� Thus� the assumption of spatial homogeneity is reasonable for most of the

region� but the resulting �corrected
 SST data are not ideal for a study of baroclinic


uxes in the core of the NEC �which is outside the scope of this study�� The spatially�

averaged temperature �Fig� ��� shows that the isotherms near the Hawaiian Ridge run
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approximately parallel to it� and that the mean temperature increases from ����C to

����C between the northern and southern extent of the study region� The SST variance

is very large �� � degrees squared� along the northwest edge of the study region� in the

vicinity of the Subtropical Front �c�f� �Cushman�Roisin� �������

��� Hydrography

Conductivity�temperature�depth �CTD�� expendable bathythermograph �XBT�� and

mechanical bathythermograph �MBT� casts were used to provide independent current

estimates in the Hawaiian region� Data were compiled from the January ���� NODC

archives �CD�ROM NODC����� the Global Temperature�Salinity Pilot Project archives�

and the World Ocean Atlas ����� The area has been densely sampled by bathythermo�

graphs �hereafter referred to as XBTs� but including the older MBT data�� with more

coarse CTD sampling �Fig� ����

����� Calculating density for bathythermograph casts

Because an XBT does not measure salinity� an appropriate salinity pro�le must be

simulated for each cast� To do this� the study region was divided into non�overlapping

����zonal� by ���meridional� cells� In each cell� the mean temperature�salinity �T�S�

curve was computed from CTD casts �Fig� ���� A salinity pro�le was then estimated for

each XBT cast from its temperature pro�le and the mean T�S curve in the appropriate

cell �Emery� ������

The mean T�S curves �Fig� ��� show the spatial distribution of water masses in

the Hawaiian region� North Paci�c Bottom Water �NPBW� is the coldest water in all

T�S curves �Tung et al�� ����� Johnson and Toole� ������ this water mass is a mixture

of North Atlantic Deep Water� Antarctic Bottom Water� and Antarctic Circumpolar

Water created in the southern oceans �Mantyla and Reid� ������ Overlying the NPBW
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is the fresher ����� PSU� North Paci�c Deep Water �NPDW�� which marks a bend in

many of the T�S diagrams at ���� C �Johnson and Toole� ������ In all cells south of

���N� and in the cell centered at ���N� ����W� modi�ed NPIW appears as a salinity

maximum ������ PSU� at ��� C� This extremely old water is believed to be produced by

mixing in the North Equatorial Current�Countercurrent region �Wyrtki� ������ Above

this� North Paci�c Intermediate Water �NPIW� creates a salinity minimum at ����� C�

reaching salinities as low as �� PSU� NPIW is generated in high�precipitation regions

of the northwest Paci�c �Reid� ������ and is most pronounced in the northern half of

the region� Along the northern edge of the study region� the saline Tropical Water

lies at the surface� Tropical Water is created in the subtropical front� where evapora�

tion considerably exceeds precipitation �Tsuchiya� ������ following the subtropical gyre

clockwise through the cells� Tropical Water is subducted under warmer� fresher surface

water south of the subtropical front�

����� The dynamic height �eld

For all casts� the speci�c volume anomaly was calculated using the UNESCO ������

equation of state� This was then integrated to obtain dynamic height relative to ��� dbar

and ���� dbar� Dynamic height was not calculated from casts with less than � mea�

surements between the surface and the reference depth� no data in the upper �� m�

or density not monotonically increasing with depth� Many XBT casts had maximum

depth between ��� and ��� m� thus� data coverage drops precipitously as the reference

level is deepened �Table �����

The mean dynamic height anomaly relative to ��� dbar is shown in Fig� �� The map

was calculated by averaging the dynamic height data in ���zonal� by ���meridional�

cells� spaced every �����zonally� and ���meridionally�� and removing the overall mean�

The corresponding number of data points per cell is shown in Fig� �� Geostrophic cur�
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Table ���� Number of dynamic height estimates as a function of reference level�
Reference level �dbar� Number of estimates

��� ������

��� ������
��� �����

���� �����

rents from the dynamic height gradients �superimposed in Fig� �� show the subtropical

gyre sweeping southeast along the island chain� turning southward at �� � ���N� and

westward south of ���N �Wyrtki� ������ An eastward countercurrent 
ows towards the

islands from the western edge of the map� tracing the northern edge of the ��� m high

North Equatorial Ridge which rises above the surrounding topography �Wyrtki� ������

With the high resolution of the XBT data set in this study� the North Equatorial Ridge

appears narrower than in smoothed� large�scale maps such as those of Wyrtki ������

and the Levitus�� climatology� It extends WSW from the immediate lee of the island

of Hawai�i�

There are a number of discrepancies between the currents seen by the drifters and

those inferred from the hydrography� ranging from the gyre�scale pattern to the strengths

of individual currents� Some sources of these di�erences are discussed in Chapter ��

Variance in dynamic height is largest west of the Hawaiian Islands �Fig� ���� A swath

of maximum variance coincides with the North Equatorial Ridge� extending from the

island of Hawai�i to ������N at ����� A secondary swath of high variance extends west of

the islands to ������N at ����� separated by the former high variance region by a ribbon

of relatively low variance extending along ���N from ���� to ����W �approximately the

western edge of the counter�current seen in the drifter data�� High variance is also found

at ������N� ��������W �a relatively well�sampled region� and northwest of the islands

�where the sampling is very sparse��
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��� Winds

The easterly trade winds dominate the large�scale atmospheric circulation in the Hawai�

ian region� A time series of this wind stress has been provided by the European Research

Satellite �ERS� since August ����� The AMI scatterometer aboard the ERS�� satel�

lite measured radar backscatter at ��� GHz �C�band� over a ��� km swath �CD�ROM

ERS���� The wind speed vector at �� m height is estimated from the backscatter using

an empirical model� Wind stress is calculated from wind speed using Smith	s ������

drag coe�cient model and an air density of ����� kg�m�� The estimates are averaged

on a ��� �� grid� in our study region� each grid has an average of ��� independent

estimates per week� These averages are then interpolated to one week intervals via

Kriging� with structure functions evaluated from the European Center for Medium�

Range Weather Forecasts �ECMWF� surface wind product� Compared to in�situ Trop�

ical Atmosphere�Ocean buoy measurements� ERS�� winds are slightly underestimated

at speeds greater than �� m�s� and have an rms error of ��� m�s� the means are not

signi�cantly di�erent at the ��! con�dence level �Graber et al�� ������

A time series of the spatially�averaged wind stress is shown in Fig� ��� Averaged

over time� the mean stress is ��x� �y�"������� ���� Pa� ����� � ���� Pa�� The trade

winds are steady from March to September� and tend to increase from mid�October to

early December� Marked weakening of the westward wind stress �a condition known as

�Kona winds
� occur most frequently in January and February� Many of the prominent

wind stress 
uctuations are re
ected in the zonal speed of drifters east of the islands

�Fig� ���� presumably due to the gyre�scale wind stress curl varying with the speed of

the trades�

The �� resolution of the ERS�� wind stress product is a signi�cant weakness when

examining mesoscale wind�driven motion� Because the major islands stand above the
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trade wind inversion layer� the winds are forced to 
ow around them� This creates

extensive wind shadows containing trapped atmospheric vortices in the island lees� and

concentrated wind jets between the islands �Patzert� ������ High�resolution snapshots

of wind at the island of Hawai�i were obtained by the NCAR aircraft Electra as part of

the Hawaiian Rainbands Project �HaRP� in July and August ���� �Smith and Grubisi#c�

������ a composite of these snapshots clearly reveals that interaction between the island

and the large�scale trades produces extremely �ne�scale features such as the shear lines

along the edges of the island	s wind shadow �Fig� ���� Unfortunately� while these features

may be critical in understanding the generation of lee eddies� they are almost completely

unresolved in the ERS�� data�

��� Altimetry

ERS�� and TOPEX satellite altimetry covering October ���� to October ���� were

compiled for a subset of the study region �������N� ��������W� in order to examine

the propagation of lee anticyclones� The European Space Agency ERS�� satellite had

a cross�track spacing of �� km and a repeat cycle of �� days� while the NASA�CNES

TOPEX�Poseidon satellite has a cross�track spacing of ��� km and a repeat cycle of

�� days� The noisier ERS�� data were corrected with the TOPEX data at their joint

crossover points� using the minimization technique of Traon et al� �������

The mean altimetry �Fig� ��� is in general too contaminated by errors in the geoid

to be useful for oceanographic purposes� However� the sea level anomaly �
uctuations

around the mean� can dramatically reveal mesoscale features such as the lee eddies of this

study� A map of the spatially�averaged SSH variance is shown in Fig� ��� it reveals a fan

of high variance following the path of the North Equatorial Ridge WSW from Hawai�i�

Another region of high variance lies along the northern edge of the map ����N�� from
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��������W� These features have been studied by Munch ������� who demonstrated that

they originate at Hawai�i and speculated that they are associated with lee eddies�

��� In�situ sea level

Johnston Atoll �������N� �������W� and Wake Island �������N� �������E� lie to the

west of the Hawaiian Islands� As shown in chapter �� lee eddies generated at Hawai�i

may frequently propagate across Johnston� and perhaps also in
uence sea level at Wake�

While an anticyclonic eddy passes� sea level should be raised� the passage of a cyclonic

eddy should lower sea level�

Hourly in�situ sea level from Johnston and Wake were obtained for the period � �

January ���� to �� March ������ There were no gaps in the Wake record� The Johnston

record had three gaps� the largest of which was ���� days long in October �����

The tidal signal was estimated by �tting sinusoids of the �� major tidal constituents

to the sea level records� The frequencies of these constituents were calculated using the

Doodson numbers presented in Godin ������� This tidal signal was then removed from

the records�

After removing the tides� gaps in the Johnston record were �lled by linear interpo�

lation�

��� Sea surface temperature

Advanced Very�High Resolution Radiometer �AVHRR� images were used to examine

sea surface temperature� These images were a valuable tool for examining cyclonic

eddies� which were often clearly visible due to the cold water upwelled in their cores�

Anticyclones� which press the thermocline down in their cores� were generally not visible

in the AVHRR data�

�Available from the University of Hawai�i Sea Level Center �http	

www�soest�hawaii�edu
UHSLC
��
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The resolution of the AVHRR images is ���� � ���� km� The radiometers which

collect these data are deployed aboard NOAA Polar�Orbiting Environmental Satellites�

They collect data in the visible� near infrared� and infrared spectrum

�http���edcwww�cr�usgs�gov�glis�hyper�guide�avhrr�� In ���� and ����� radiometers

were deployed aboard satellites NOAA��� and NOAA���� NOAA��� was launched in

December ����� and collected additional AVHRR images� Approximately ��� images

per day were collected over the Hawaiian region�

Due to errors in the satellite clock and horizon tracker� the satellite position can be

up to �� km o� �SeaSpace� ������ These errors are corrected by image navigation� a

process in which the image coastline is shifted to �t the known positions of the islands�

On average� approximately half the images could not be navigated �usually due to heavy

cloud cover� and were rejected for this study�

Sea surface temperature was calculated from radiometer observations in two infrared

bands using a NOAA�NESDIS algorithm� which uses the view angle of the satellite and

di�erences between the IR channels to correct for atmospheric water vapor attenuation

�Dousset and Flament� ������

��� Shipboard ADCP

Shipboard Acoustic Dopplar Current Pro�ler �ADCP� data were obtained from the

NODC�UH SAC Shipboard ADCP Global Database� Within this database� �� cruises

passed through the Hawaiian region� On several occasions� the ADCP transects provided

valuable cross�sections through lee eddies� revealing their currents to depths of ���� m�

��� Mixed�layer depth

Monthly mixed layer depth on a �����grid was obtained from the Levitus�� climatology

�http���ingrid�ldgo�columbia�edu�SOURCES�LEVITUS����
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Figure �� Raw �xes of a drifter grounded at Snug Harbor� O�ahu �shading� units�
number of �xes�� The drifter was stationary for �� days� ��� �xes were obtained� The
GPS position of the drifter is indicated by the dot�
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Figure �� Top� Mean number of �xes per day as a function of days since deployment

for �� drifters deployed in the Hawaiian Island region� Drifters have not been included
which lost their drogues� ran aground� or were taken by �shermen�
Bottom� Median submergence of the �� drifters as a function of time since deployment�
The half�life of the drifters is approximately ��� days�
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Figure �� Top� initial locations of drifters� Away from the edges� a point indicates
where a drifter was �rst �xed by satellite� Along or near the edge� a point shows where

a drifter entered the study region�
Bottom� spaghetti plot of the drifter tracks in the study region� interpolated to ����
days� The tracks have been broken into ���day segments and colored according to the

direction of mean drift �see legend at upper�right��
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Figure �� Density of drifter coverage in subregions of the Hawaiian region� showing num�
ber of drifter days �vertical axes� in each ���day period from July ���� to March ����
�horizontal axes�� The title of each subpanel gives the coordinates of the rectangular

subregion�
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Figure �� Top� Number of independent observations ��"��� observations� in each cell
for the drifter�derived mean currents�
Bottom� Number of XBT�CTD casts ��"��� casts� exceeding ��� dbar�
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Figure �� Top� Mean speed of drifters in the Hawaiian region� Arrows are not shown
where the current is not signi�cantly di�erent than zero or where less than �� obser�

vations fall in that cell� Meridionally� every arrow is independent� Zonally� every other
arrow is independent�
Bottom� Mean dynamic height anomaly �shaded� in m� relative to ��� dbar� Every other
cell is independent� Arrows show the geostrophic currents� estimated from four�point

�nite di�erencing�
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Figure ��� Closeup of the drifter�derived mean currents� Standard error ellipses are
shown around each arrow head� Every other arrow is independent�
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Figure ��� Top� variance u�� � v�� �m��s�� of the drifter�derived currents�
Bottom� variance of dynamic height relative to ��� dbar ����� m���
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Figure ��� Variance ellipses of drifter�derived currents�
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Figure ��� Top� mean drifter speeds with standard error ellipses� The speeds are
calculated on a ��� �zonally� by �� �meridionally� grid� overlapping such that every

other point is independent�
Bottom� mean divergence �left� and curl �right� divided by the Coriolis parameter f �
calculated from the mean currents�
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Figure ��� Top� interpolated in�situ SST measured by the drifters� as a function of the

fraction of the year� The solid line is a least�squares �t of a sinusoid of annual period�
Bottom� SST with the annual variation removed�
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Figure ��� Top� mean SST ��C� annual signal removed�� Every other point is calculated
from independent data�
Bottom� variance of SST ��C���

��



180 175 170 165 160 155 150 145 140
10

15

20

25

30
Hydrography

 

 

> 400 dbar

>1000 dbar

> 400 dbar

>1000 dbar

Bathythermographs CTDs

Figure ��� Locations of CTD �red� to at least ���� dbar� orange� to at least ��� dbar�
and bathythermograph �dark blue� to at least ���� dbar� light blue� to at least ��� dbar�
casts in the Hawaiian region�
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Figure ��� T�S pro�les in ��� �zonal� by �� �meridional� cells� Each pro�le shows salinity
�horizontal axis� vs� temperature �vertical axis� for individual CTD casts �dots�� The
corresponding mean T�S pro�le �solid line� was derived by a least�squares �t of an
eighth�order polynomial� The salinity axes run from ���� to ���� PSU� thin vertical

lines mark ���� PSU� The temperature axes run from � to ���C� thin horizontal lines
mark �� and ���C�
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Figure ��� Top� ERS�� wind stress averaged over the Hawaiian region� as a function
of time of year �solid� zonal stress� dashed� meridional stress�� Shading indicates the

standard error bars�
Middle� Time series of weekly wind stress averaged over the region �solid� zonal stress�
Dashed� meridional stress��
Bottom� Running ���day mean of the independent zonal speeds of drifters east of

����W and between ��� and ���N� with standard error bars�
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Figure ��� Wind at ����� m altitude observed by the NCAR aircraft Electra in the
Hawaiian Rain Band Project �HaRP�� Hawai�i	s wind shadow is approximately �������
km long� This image is a composite of �� 
ights over the period �� July to �� August�
����� the �ve 
ights which entered the island	s wake were on �� July� �� July� � August�

� August and �� August �Smith and Grubisi#c� ������
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Figure ��� Top� median sea surface height �m� from ERS�� and TOPEX altimetry�
Every other grid point is composed of independent data�
Bottom� variance of sea surface height �m��� In each grid� the data were lowpassed at

�� days and the annual signal was removed before calculating SSH variance�
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Chapter �

Eddies

The dynamics and life cycle of lee eddies are discussed� including generation� propaga�
tion� interaction� decay and merging� The propagation characteristics of the eddies are
examined� and related to the observed structure of the overall eddy �eld as seen in the
current and sea level observations�

From their birthplace in the lee of Hawai�i� intense cyclonic and anticyclonic eddies

dominate the circulation west of the islands �Patzert� ������ Individual eddies can be

over ��� km in radius� with maximum currents greater than � m�s� Their biological

impact can be signi�cant� in the core of young cyclonic eddies� nutrient�rich water

from beneath the mixed layer is upwelled into the euphotic zone� The plankton bloom

responding to this input can stand far above the background oligotrophic levels of

primary production� The rate of photosynthesis in a Hawaiian lee cyclone has been

measured at ��! higher than outside the eddy� with chlorophyll a concentrations ��!

higher �Allen et al�� ������ In addition� the eddies can entrain and transport �sh larvae

and other planktonic life over considerable distances �Lobel and Robinson� ������

Most of a lee eddy	s dynamic height gradient is contained in the upper ��� m

�Patzert� ������ They are born in the immediate lee of the islands� with the most

energetic ones originating west of Hawai�i� After �� month of spin�up� the eddies typ�

ically begin to drift westward� Individual eddies are tracked for nearly a year in this

study� and given the observed spin�down rate it seems quite likely that they live even

longer�

This chapter is organized in six sections� In the �rst two� the relevant dynamics of

lee eddies are discussed� including the balance of forces which determine their radial

structure �the cyclogeostrophic balance� and the role of instability in limiting their

maximum core rotation rate� Following these theoretical sections� the generation of
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Hawaiian lee eddies is reviewed in light of some recent observations� Next� a section is

devoted to the mean propagation characteristics of the lee eddies� from both empirical

and dynamical viewpoints� A descriptive section presents individual events in the data�

typically involving ADCP transects through eddies� deployments of drifters in the lee

eddy �eld� eddies tracked in altimetry� and�or AVHRR images of lee eddies� The �nal

two sections speculate on the dynamics underlying the more surprising observations and

summarize the major �ndings of this study�

��� The cyclogeostrophic balance

Several models have been proposed for the radial structure of reduced gravity eddies�

Three commonly�used structures are presented in Appendix B� along with a general�

ized structure �the �core�shell
 model� developed for this study� The ����layer reduced

gravity framework is used� in which the 
uid is assumed to be an active upper layer

�of density �� of undisturbed thickness H�� and an in�nitely deep lower layer �density

�� ����

An eddy in the upper layer extends vertically from the sea surface z " ��r� to a

depth of z " �H�� h�r�� If it is assumed to be steady and azimuthally�symmetric� the

radial component of the momentum equation relates � to the azimuthal speed v�

v�

r
� fv " g	r�� �����

where r is the radial distance from the vortex center and g is gravity� Since there are

no horizontal pressure gradients in the lower layer�

h "
g

g�
�� �����

where the reduced gravity g� is g�
g " ��
�� Because oceanic values of g� are typically

O�� � ����g� �Gill� ������ the surface de
ection in the eddy is small compared to the

��



displacement of the layer interface� Substituting ����� into ����� yields

v�

r
� fv " g�	rh� �����

This balance �Eq� ���� includes both the centrifugal term v�
r and the Coriolis term fv�

By de�nition� the centrifugal force in a small Rossby number vortex is much smaller

than the Coriolis force� Dropping v�
r from the momentum equation yields the geostrophic

balance� In a cyclone� the inwards�acting pressure gradient is balanced by an outwards�

acting Coriolis force� requiring counter�clockwise particle motion �northern hemisphere��

In an anticyclone� the direction of the forces are reversed� requiring the motion to be

clockwise� For very large Rossby number vortices� the Coriolis term is negligible and the

balance is cyclostrophic� This balance describes small� rapid vortices such as the 
ow

down a sink �far enough from the drain that vertical motion can be neglected�� The

outward centrifugal force is balanced by an inward pressure gradient force� The 
ow can

rotate in either direction� but the core pressure must be lower than its surroundings�

Because Hawaiian eddies have Rossby numbers of magnitude ��� to �� both terms on

the left�hand side of ����� can be signi�cant� the eddies are �cyclogeostrophic�
 Why is

this important In Patzert	s ������ examination of the lee eddy �eld� most of the eddies

were seen by their dynamic height gradients� there were few direct current measurements

available to him� and none of anticyclonic eddies� However� the centrifugal term in �����

biased the strengths of the eddies in the hydrography� making the anticyclonic eddies

appear weaker and the cyclonic eddies stronger� To demonstrate this� consider a solid�

body eddy �see Appendix B�� Equation �B��� gives the total change in upper layer

thickness divided by the eddy radius� which scales as the dynamic height gradient of

the eddy� This is plotted as a function of the Rossby number �
f in Fig� ��� For

comparison� h�r " ��
ro neglecting the centrifugal term is also shown� The two curves

are nearly identical in the geostrophic regime j�j
f � �� For increasingly fast cyclonic

��



�� � �� eddies� the magnitude of the pressure gradient is larger than if the eddy were

truly geostrophic� As an anticyclone increases in strength from � " � to � " �f � the

pressure gradient increases� though not as rapidly as if the eddy were geostrophic� A

maximum pressure gradient is reached at � " �f � This is the half�inertial 
ow described

by Chew and Bushnell ������� particles in the eddy orbit with a period of one pendulum

day� For anticyclones in the range ��f � � � �f � the pressure gradient diminishes as

the eddy	s rotational speed is increased� At � " ��f � the pressure gradient is exactly

zero� the �eddy
 has become a �eld of inertial oscillations� Past � " ��f � the eddy

becomes increasingly cyclostrophic� with a low�pressure core and clockwise rotation�

Suppose that one observes the pressure gradient h�r " ��
ro of a solid�body eddy�

then estimates a vorticity �g using the purely geostrophic relation� The ratio of the

calculated vorticity �g to the true vorticity �g is

�g
�

" � �
�

�f
� �����

The vorticity of a cyclone is smaller than estimated� because the pressure gradient

force must balance both the Coriolis and the centrifugal force� For a Rossby number �

cyclone� the true vorticity is ��� the calculated value �this same relationship applies to

the edge speed�� Conversely� the magnitude of vorticity in an anticyclone is larger than

calculated� because the Coriolis force is held in check by both the pressure gradient

and the centrifugal force� Rossby number �� anticyclones have twice the vorticity as

estimated from geostrophy� While these speci�c values do not extend to the more

complex eddy models presented in Appendix B� the e�ect of the centrifugal force is

identical�
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��� Centrifugal instability

If a 
uid parcel orbiting a cyclogeostrophic vortex is in�nitesmally perturbed� it will

experience a restoring force proportional to

F " 	r

�
vr �

�

�
fr�

��
�����

�Kloosterziel and van Heijst� ������ If F � � anywhere within the vortex� perturbations

will grow exponentially� and the vortex is �centrifugally unstable�
 Kloosterziel and

van Heijst examined the behavior of ����� with two models of the azimuthal speed� and

showed that at a relatively small critical Rossby number� anticyclonic eddies become

unstable close to their centers� At progressively larger Rossby numbers� the unstable

region rapidly moves outward and broadens� In contrast� cyclonic eddies are stable

for much larger Rossby numbers� at their critical Rossby number� the unstable region

appears in the region of anticyclonic vorticity surrounding the cyclonic core�

Kloosterziel and van Heijst	s results show that anticyclones are generally less stable

than cyclones� To understand the physical reason for this� consider a 
uid parcel orbiting

a cyclone� the outward centrifugal and Coriolis forces balance the inward pressure gra�

dient force� If the parcel is nudged slightly outward� it will conserve angular momentum

and thus lose some azimuthal speed� Both of the outward�acting forces consequently

diminish� unless the pressure gradient force drops quite rapidly over the distance of the

nudge� it will pull the parcel back towards the equilibrium position� On the other hand�

a parcel orbiting an anticyclone has an inward Coriolis force balanced by the outward

centrifugal and pressure gradient forces� As with the cyclone� an outward nudge results

in weaker centrifugal and Coriolis forces� However� because these forces oppose each

other in the anticyclone� the net e�ect of this change is more nearly cancelled� Unless

the pressure gradient force drops o� relatively rapidly over the distance of the nudge� it

��



will not be held in check and the parcel will begin accelerating outward�

Kloosterziel and van Heijst de�ned the Rossby number as the maximum azimuthal

speed of the vortex divided by f and the radius at which the maximum speed occurs�

This de�nition was unfortunate� because as a consequence the critical Rossby number

for anticyclones varied with the azimuthal velocity model�� If the Rossby number is

instead de�ned as the core vorticity � divided by f � the critical Rossby number for

anticyclones is �xed at ��� This can be demonstrated as follows� suppose that the

eddy	s azimuthal speed can be described by a smooth function of the form

v "
�

�
�r � 
rn� � �����

where 
 � � and n � �� In the range 
rn�� � �� this pro�le is an order n Taylor series

expansion of any smooth velocity pro�le with a solid�body core at small r� Substituting

����� into ����� gives

F " �� � f��r� � �

�
�n� ��
��� � f�rn��� �����

If the core vorticity is rewritten as � " ��� � ��f � this becomes

F " ��f�r� � �

�
�n� ��
�� � ���f�rn��� �����

Consider an anticyclone spun up from rest� The parameter � starts at ��� and steadily

approaches � as the Rossby number �
f approaches ��� Throughout the range �� �

� � �� both terms in ����� are positive� the eddy is stable� When the eddy reaches � " ��

Rossby number ��� the restoring force on perturbed parcels disappears and the eddy

becomes neutrally stable� Once � is in�nitesimally larger than zero �speci�cally� �
�n�

��� 
rn�� � ��� F is less than zero and the eddy is unstable� For increasing values of

�� the unstable region moves outward from the core� requiring explicit treatment of the

higher�order Tayler series terms�

�Kloosterziel and van Heijst found critical Rossby numbers of ����
 and ����� for the two models
they considered�

��



����� Stability of a solid�body eddy

For the solid�body vortex described by v " �r
�� the stability criterion ����� becomes

F " �f � ���r�� �����

Cyclones are always stable� As an anticyclone is spun up from rest� it becomes pro�

gressively less stable until � " �f � at which point it is neutrally stable� A more

rapidly�spinning solid�body anticyclone is again stable�

����� Stability of the core�shell model

For eddies described by �B���� the stability of the core is described above� At Rossby

number �� the core is neutrally stable� and gains stability if it spins faster� However� as

suggested by Kloosterziel and van Heijst ������ and by the stability of a smooth velocity

pro�le derived earlier� a region of instability will be born on the inner edge of the shell

as the Rossby number �� threshold is crossed�

In the shell�

f�

r
F "

��
�� a

�

f

�
r� � a

�

f
r�o

��
�� a

�

f

�
� ������

where a " r�i 
�r
�
o � r�i �� Evaluated at r " ri � 
 in the limit 
 � � �i�e� on the inner

edge of the shell�� this is

f�

r�i
F "

�
� �

�

f

��
�� a

�

f

�
� ������

������ is a downward�opening parabola intersecting with zero at � " �f and � " f
a�

Thus� for � � �f � the shell will always be unstable� Half�inertial eddies� such as the

ones found in this study and those described by Chew and Bushnell ������� have reached

their maximum sustainable rotation rate�

The � " f
a intersection indicates that cyclonic eddies become unstable if

�

f
�

�

j�oj � ������
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where �o is the anticyclonic vorticity of the outer shell� The more irrotational the outer

shell of a cyclone is� the stronger it can be without becoming unstable� This result

is consistent with the laboratory experiments of Kloosterziel and van Heijst �������

in which narrow�shelled cyclones were less stable than those with wide shells� In the

Rankine limit �o � �� centrifugal instability never limits the strength of a cyclone�

��� Eddy birth

The most energetic lee eddies are born in the immediate lee of the island of Hawai�i�

Sea level altimetry in this area shows alternating highs and lows with a mean period

of ��� days �Fig� ���� Combined with the drifter and�or AVHRR data� several of the

well�de�ned extrema have been identi�ed as eddies� their names appear in Fig� ��� and

will be individually discussed in the descriptive section of this chapter�

The alternating production of cyclones and anticyclones combine with their westward

propagation �to be discussed in the next section� to create a formation similar to the

K#arm#an vortex street �von K#arm#an� ������ K#arm#an streets are typically generated

when a background current 
ows around a �D cylindrical obstacle� At low Reynolds

numbers �Re � ��� the 
ow smoothly wraps around the obstacle �Reynolds numbers

quoted from Kundu �������� If the Reynolds number is increased to ����� the 
ow

separates from the obstacle� forming trapped counter�rotating vortices in its wake� the

atmospheric 
ow around Hawai�i is typically in this regime �Patzert� ������ In the

Reynolds number range ������ transition to vortex shedding begins� and for �� � Re �

���� alternating�signed vortices are generated and advected away by the background


ow� At higher Reynolds numbers� the K#arm#an street is visually �washed out
 by

smaller�scale turbulence� although the characteristic frequency of vortex generation still

dominates the wake	s spectrum� The similarity between the lee eddy �eld and the
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K#arm#an vortex street led McGary ������ to propose that the westward North Equatorial

Current 
ows around the island of Hawai�i� with a Reynolds number in the vortex

shedding regime� It is important� however� to note that the K#arm#an street formation

is signi�cant because it is stable to small perturbations� unlike other patterns such as

an in�nite train of dipoles �von K#arm#an� ������ Thus� if the generation mechanism�s�

produces cyclones to the north and anticyclones to the south� and any physical process

�not necessarily advection� causes the eddies to drift westward� they will tend to organize

themselves into a K#arm#an street�like pattern regardless of whether this analogy applies

to their generation�

����� Cyclones

Cyclonic lee eddies typically �rst appear ����� km west of Keahole Point� the western�

most point of the island of Hawai�i� Fig� �� show a representative sequence of AVHRR

images during the birth of a cyclone� On � May ����� Hawai�i	s warm pool lay undis�

turbed in the island	s lee� This pool is driven by diurnal surface heating in the absence

of wind�forced mixing �compare this �gure with Fig� ��� �Wenzel� ������ The cold core

of an eddy appeared o� Keahole Point on � May� at the northern edge of the island	s

wind shadow� The eddy began advecting the warm pool around it as it spun up� a day

later� the warm water was wrapped tightly around the eddy� On �� May� the eddy had

drifted westward and the warm pool had reformed� This sequence suggests a spin�up

time of �� days� consistent with Patzert	s ������ estimate of a week for all but the most

intense cyclones�

As mentioned earlier� altimetry in the island lee suggests a mean generation fre�

quency of ��� days� However� smaller cyclones are less likely to be seen in the altimetry�

and their signatures could be reduced by the concurrent presence of an anticyclone� At

least twice in the AVHRR data set� relatively small cyclones form within �� days of each
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other� There is a �� day peak in the spectrum of sea level anomaly �Fig� ���� which

may re
ect periods of rapid cyclone generation�

If lee cyclones are generated by a mean 
ow around Hawai�i� the 
ow must pass

westward through the �Alenuihaha Channel �see Fig� ��� However� there is little evidence

that this can account for the observed cyclones� For example� on �� April�� May �����

a cyclonic eddy was discovered �� km WNW of Keahole Point �Patzert� ������ The

hydrography suggested that the eddy was in the process of spinning up� Drifters were

deployed in the channel� but they did not signi�cantly drift westward� Patzert noted

that if the mean surface current through the channel is uo " �� cm�s� and that if all

the energy of this 
ow �with a depth structure similar to the eddy� goes into even the

smallest observed cyclones� the required spin�up time is over six months� larger cyclones

would require over ��� years to spin up� Because the energy 
ux through the channel is

proportional to u�o� this estimate is quite sensitive to the choice of through�channel 
ow�

Repeating Patzert	s calculations for a hypothetical � m�s current through the channel

�with all other parameters identical� gives a spin�up time estimate of �� and �� days

for small and large cyclones� respectively� Thus� if the cyclones are current�driven�

mesoscale variability east of the Hawaiian Ridge must drive �� m�s currents westward

through the channel for spans of up to a month at a time� at intervals of ��� days� As

discussed in Chapter �� there is no evidence of this in the data�

As an alternative to the vortex shedding hypothesis� Patzert ������ proposed that

the cyclones are directly wind�driven� The trade winds are funneled between Maui and

Hawai�i� creating a wind jet through the �Alenuihaha Channel� At the southern edge

of this jet� cyclonic shear could drive Ekman pumping which spins up the eddies� The

observed wind stress curl in Hawai�i	s lee could spin�up eddies in ����� days �Patzert�

������ A similar process is believed to generate eddies o� Mexico	s west coast� where the
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wind funnels through gaps in the coastal Sierra Madre del Sur mountains and blows over

the ocean in narrow� intense jets �Stumpf and Legeckis� ������ In numerical models� this

forcing spins up opposite�signed eddies on either side of the jet �McCreary et al�� ������

However� strong anticyclones are not observed to be generated west of Kaho	olawe� in

the anticyclonic edge of the wind jet through the �Alenuihaha Channel�� McCreary et al�

������ considered a jet with a half�Cosine cross�section� i�e� the jet smoothly tapered to

zero at its edges with a decay scale of ��� km� However� the jet through the �Alenuihaha

Channel has a total width of �� km� with edges of extremely strong vorticity created as

the jet separates from the islands� On its northern edge� shear instability �c�f� �Holton�

������ smears out the region of Ekman convergence� however� the more stable southern

edge retains its intense cyclonic vorticity for a considerable distance��

��� Anticyclones

Anticyclonic lee eddies typically form west of Hawai�i	s southernmost point� The drifter

and altimetric observations collected in this study suggest that they are generated ev�

ery ����� days �c�f� Fig� ���� although it is possible �as with the cyclones� that smaller

ones are generated more frequently� Because the thermocline is pushed downward in

anticyclones� they are not intrinsically visible in AVHRR images� They may be indi�

rectly revealed� however� by their advection of ambient temperature gradients� While

examining Hawai�i	s warm pool in SST images� Wenzel ������ noted that on two occa�

sions the southern edge of the pool became cusp�shaped� She hypothesized that this

was due to anticyclonic eddies� In this study� several more examples were found� as

shown in Fig� ��� they are concurrent with sea level anomaly peaks marking the ap�

�A small anticyclone may have been born here in August ����� as will be discussed in the descriptive
section of this chapter�

�This shear line can be seen by eye from a good vantage point on Hawai�i� and clearly appears in
visual�band satellite images of the island lee �Wenzel� ������
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pearance of anticyclones in Hawai�i	s lee� A particularly dramatic example is shown in

Fig� ��� where an anticyclonic swirl �which super�cially resembles a Kelvin�Helmholtz

roll� appears in the southern edge of the island	s lee� Eleven days later� the eddy is a

much larger feature in the SST image� discernible by the advection of warm water to

its north� This sequence �and also Fig� ���� suggests an anticyclonic generation time of

O���� �� days��

Fig� �� shows an ADCP transect past Hawai�i	s south point� made on �� August

���� �two days before the earliest image of Fig� ���� In addition to circulation from

the eddy� the transect shows a core of westward�
owing water just south of the island


ank� This persistent �Fig� ��� feature shall be called the NEC jet� after the westward�


owing NEC impinges on the island of Hawai�i� water south of the bifurcation point

is accelerated as it 
ows toward the south point of the island� Upon separation� the

intense anticyclonic shear is highly susceptible to shear instability �c�f� �Holton� �������

In laboratory experiments of a velocity discontinuity introduced in a 
uid� the unstable

shear line quickly organizes itself into a train of coherent vortices �c�f� �Brown and

Roshko� ������� If an analogous process is creating the anticyclones� Patzert	s ������

energy calculations can be applied to estimate the spin�up time of anticyclones� Using

a width of ��� km and assuming the jet is a homogeneous �� cm�s to a depth of ��� m�

the required spin�up times are �� to ��� days for weak to strong eddies� These values

are considerably larger than the observed generation time� however� it must be noted

that at least two times�� drifters passing south of Hawai�i accelerated to �� m�s� With

a speed of � m�s and the same length scales� the NEC jet can spin up anticyclones in

����� days�

As with the cyclonic eddies� the anticyclones may also be directly wind�forced� as

�see the sections on AC��a and AC��b in the descriptive section
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the wind shear along the southern edge of Hawai�i	s shadow could drive Ekman con�

vergence and downwelling� It is even possible that wind forcing and shear instability

work in concert to produce the anticyclones� But what is their relative signi�cance 

This question cannot be easily answered from a purely empirical approach� because the

large�scale wind and currents are highly correlated �see Fig� ���� their e�ects cannot

be di�erentiated with techniques such as multiple regression analysis� A dynamical ap�

proach is required� which hinges on the relative energy input from the two sources� If

�� cm�s is a representative strength of the NEC jet� Patzert	s energy arguments suggest

that the wind is more important� If the NEC jet has pulses of O�� m
s� every ���

days or so �the generation frequency of anticyclones� which last at least ��� days �the

spin�up time�� it may be the dominant mechanism forcing the anticyclones�

��� Propagation

Fig� �� shows the paths taken by individual cyclonic �blue� and anticyclonic �red� ed�

dies tracked by drifters� As they propagate westward� cyclones tend to drift northward

�Patzert� ������ while anticyclones drift southward� This process tends to sort the like�

signed eddies onto either side of their mean generation latitude� ������N� Averaged over

the passage of many eddies� a mean vorticity gradient is generated in the island lee� To

calculate this� the drifter trajectories were divided into independent ���day segments�

For each segment� the rotary spectra were calculated� These were integrated over the

subinertial frequencies to give the total counter�clockwise and clockwise subinertial vari�

ance �Fig� ���� The ratio of clockwise to total variance was then calculated� and scaled

from �� �purely clockwise� anticyclonic� to �� �purely counter�clockwise� cyclonic�� and

averaged on a �� �zonally� by �� �meridional� grid� overlapping by �� by �� �i�e� every

other grid point composed of independent data�� The resulting image �Fig� ��� is a map
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of mean vorticity in the Hawaiian region�� East of the islands� is no obvious pattern

to the distribution of vorticity� In the island lee� a clear pattern emerges� west of the

islands and north of �����N� the vorticity is predominantly cyclonic� South of this� a

predominantly anticyclonic swath aligns with the North Equatorial Ridge� This distri�

bution of vorticity coincides with the elongated� counter�rotating lee gyres seen in the

mean currents �Fig� ����

When the ERS���TOPEX altimetry is averaged in latitude bands� many of the

eddies observed in this study can be identi�ed with westward�moving high �anticyclones�

or low �cyclones� anomalies �Figs� ������� These westward�propagating anomalies were

noted by Mitchum ������� who suggested they accounted for the ���day oscillations in

Wake Island sea level �Figs� ��� ����

��	�� Observations of eddy propagation

How fast are lee eddies If the eddy positions shown in Fig� �� are interpolated on a

���day grid� �nite di�erencing gives the zonal and meridional speeds plotted in Fig� ���

The observed zonal speeds can be crudely described by a quadratic function in latitude�

the best �t in a least�squares sense is

u " ������ ����lat� � ����� ����lat� ����� ������

The observed meridional speed is roughly proportional to the zonal speed�

v � ������u ������

�� for an anticyclone� � for a cyclone�� Given the starting latitude of an eddy� integration

of ������ ����� predicts the mean eddy trajectory� These paths are shown in Fig� ���

�Strictly speaking� this is a map of mean drifter trajectory curvature rather than mean vorticity�
This distinction may not always be subtle� For example� in a steady zonal current with meridional
shear� a zonally�propagating drifter will have zero curvature� A meridional component to the drifter�s
velocity must be introduced for it to bend with the background vorticity�
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��	�� Linear theory� ��induced drift

In an elegant derivation by Cushman�Roisin et al� ������� it is shown that small Rossby

number eddies in an inviscid� reduced�gravity� rigid lid� ��� layer 
uid will propagate at

speed

d

dt
X " ��g

�

f�o

�
H�h�

h�

�

�
�

d

dt
Y " �� ������

where the center of mass of the eddy �X�Y � is de�ned by

X " hxhi � Y " hyhi � ������

the averaging operator � � � is

h�i "
R R

dx dy �R R
dx dy h

� ������

where � is the gradient of the Coriolis parameter f�y�� fo is the mean value of f � g� is

the reduced gravity� H� is the undisturbed thickness of the upper layer� and h�x� y� t� is

the perturbation of the layer interface due to the eddy� Equation ������ gives the zonal

speed of an eddy as a function of its structure� The following two examples illustrate

the range of speeds for relevant values of the physical parameters�

Lens�shaped eddies

In the geostrophic limit� the solid�body lens�shaped anticyclone described in Appendix B

has total thickness

h " ��
�
f
r�o � r�

�g�
� �r 	 ro�� ������

where � is the core vorticity �twice the rotation rate� and ro is the eddy radius� Substi�

tution into ������ gives

d

dt
X " ��

�
�
g�h���

f�o
������
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�Nof� ������ where h��� " �for
�
o
�g

� is the central depth of the eddy� For g� " ���� m�s��

� " ��� � ����� m�� s��� f " �� ���� s��� ho " ��� m� the zonal propagation speed

is a sluggish ��� cm�s�

Cylindrical� solid�body eddies

For cylindrical� solid�body eddies imbedded in an active upper layer of thickness H�

�see Appendix B�� ������ gives

d

dt
X " ��R�

d

�
� �

h���

�H�

�
������

�Cushman�Roisin et al�� ������ where Rd "
p
g�H�
fo is the Rossby deformation radius

and h��� is the de
ection of the layer interface at the eddy center �de�ned positive

for downward de
ection�� In the limit h��� � �� the eddy will propagate at the long

Rossby wave speed cR " ��R�
d� Because of the term containing h���� anticyclones drift

slightly faster than the Rossby wave speed and cyclones drift slightly slower� In the

Hawaiian region� a typical �rst baroclinic mode deformation radius is �� km �Emery et

al�� ������ Using this value� the long Rossby wave speed is shown in Fig� �� as a function

of latitude� North of ����N� ������ is a reasonable lowest�order dynamical description

of the observed zonal drift of eddies�� The �nal term in ������ can be rewritten as

g�
�f�oR
�
d� where � is the sea level displacement at the eddy	s center� Using �"����

��� m� fo " � � ���� s�� and Rd " �� km� an anticyclone will propagate ��������!

faster than the long Rossby wave speed�

�For similar examples in the literature� see Stumpf and Legeckis ���

� and Bernstein and White
���
��� In Stumpf and Legeckis� an anticyclone is tracked for �� days in SST images� during which
time it drifts westward at ����� times the long Rossby wave speed� In Bernstein and White� mesoscale
features in bathythermograph data from the central North Paci�c are shown to propagate at ����

times the long Rossby wave speed� or almost exactly the combined Rossby wave and mean current
speed�
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The core�shell eddy

In Appendix B� a model of an eddy	s azimuthal velocity structure is presented which

has a solid�body core to r " ri� surrounded by a shell of constant� opposite�signed

vorticity extending to r " ro� This velocity structure can be integrated to give the

interface displacement h� and substitution into ������ then gives the ��induced drift of

the eddy �Fig� ���� For �xed ri and h���
H�� the westward drift of the core�shell eddy

approaches cR as ro is increased� For ro " �ri� �"������� m� fo " � � ���� s�� and

Rd " �� km� an anticyclonic shell�core eddy will propagate ��������! faster than the

long Rossby wave speed�

Using a primitive equation ��layer isopycnal model� Chassignet and Cushman�Roisin

������ examined the e�ects of nonlinearities on the propagation of lens�shaped and

cylindrical eddies� They showed that the zonal propagation predicted by ������ is quite

accurate for small eddies �not signi�cantly greater in size than the Rossby radius� when

the lower layer depth H� is much greater than the upper layer depth H�� even when the

eddy had a Rossby number of O��
��� However� the �zero� meridional drift predicted

by the linear theory was no longer accurate� In the model� cylindrical eddies bled

energy into a Rossby wave wake in the upper layer� and interaction with this wake

caused cyclonic eddies to drift northward and anticyclonic ones to drift southward�

Chassignet and Cushman�Roisin modeled their cylindrical eddies with a Gaussian sea

level pro�le� and set the initial interface displacement h��� " ���H�� In the limit H� 


H�� their eddies drifted zonally at ���� cR �cyclones� and ���� cR �anticyclones��� The

eddies	 meridional drift was initially ������ ����cR �� for northward�drifting cyclones�

� for southward�drifting anticyclones�� As an eddy propagated westward� it became

�For comparison� core
shell eddies with h��� � ���H� will drift at these speeds if ro � �ri�
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progressively more linear as energy was lost into the Rossby wave wake� consequently�

the zonal drift of the eddy approached the long Rossby wave speed and the meridional

speed decayed to zero� The propagation paths of these eddies� shown in their Fig� ��

outline a parabola which is strikingly similar to the observed paths of Hawaiian lee

eddies� Chassignet and Cushman�Roisin showed that the lower layer did not a�ect

eddy propagation until the aspect ratio � " H�
H� was greater than � �
��� as � was

increased past this value� drag at the base of the eddy slowed its zonal propagation

and generated a Rossby wave wake in the lower layer �Flierl� ������ The steady balance

of �� Coriolis and drag force resulted in faster meridional propagation �Chassignet and

Cushman�Roisin� ������ For � � �
�� �a reasonable choice for Hawai�i�� this drag e�ect

had altered the speeds by ���! �resulting in a westward drift at cR for the anticyclones

in their model��

��	�� Other processes a
ecting eddy speed

South of �����N� the observed zonal speeds of anticyclones are up to �� cm�s ����!�

faster than the long Rossby wave speed� As shown earlier� this is well outside the theo�

retical drift for reasonable values of Hawaiian lee anticyclones� nonlinear e�ects reduce

the westward speed� and thus cannot account for this discrepancy� This suggests that

��drift alone cannot account for the observed speed of these eddies� The additional west�

ward speed is most likely due to advection by the North Equatorial Current� which the

anticyclones propagate into as they drift southward� At ���N� the discrepancy between

the empirical speed given by ������ and the long Rossby wave speed is ���� cm�s� As

shown in Chapter �� the NEC is approximately �� cm�s at this latitude� given the scat�

ter in the observed eddy speeds� the observations are not inconsistent with an advection

� ��drift model for their propagation�

In the immediate lee of the islands ���������N�� the observed zonal speeds of several
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anticyclones are as low as half the long Rossby wave speed� Nonlinear e�ects could

be invoked to explain this� but a more likely hypothesis �supported by observations

presented later in this chapter� is that the eddies in this region cannot be treated in

isolation� As mentioned earlier� the alternating production of cyclones and anticyclones

creates a K#arm#an street�like formation in the immediate lee of Hawai�i� In a K#arm#an

street� the mean impinging current advects the vortices downstream� interaction between

each vortex and its opposite�signed neighbors slow it to ���� times the speed of the

background current� Although lee eddies may initially propagate westward due to �

drift rather than advection� the interaction of eddy pairs�triplets could have a similar

slowing e�ect� Later� as their meridional propagation carries opposite�signed eddies

apart� this e�ect would become less pronounced�

Patzert ������ noted that between three cruises spaced �� month apart� a cyclonic

eddy traveled south for one month before returning to the more typical WNW prop�

agation� In this study� several more cyclones are shown to exhibit this behavior� It

is hypothesized that these anomalous trajectories are due to advection by nearby an�

ticyclonic eddies� In the most dramatic example� a strong anticyclone passes south of

a weaker cyclone� which then turns from a WNW to a SE heading� Such examples

suggest that the instantaneous eddy �eld can vary signi�cantly from the K#arm#an street

formation� perturbations from the K#arm#an street arise from natural variations in the

sizes of the eddies� and because the anticyclones propagate faster due to a more rapid

��drift and advection by the NEC�

��� Eddy observations� a descriptive view of the lee eddy �eld

In Chapters � and �� Eulerian and Lagrangian statistics give a time�averaged view of

currents in the region� However� a statistical picture alone fails to reveal the richly�
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complex details of the lee eddy �eld� When Patzert ������ synthesized shipboard hy�

drography� wind measurements� geomagnetic�electrokinetograph �GEK� current meter

�xes �Wyrtki et al�� ������ and radio�tracked drifters� he demonstrated both the inten�

sity and ubiquity of lee eddies� One of the great challenges of his work was to �connect

the dots�
 i�e� describe an energetic� evolving �eld from a series of what were essentially

snapshots�

In recent years� many additional snapshots of lee eddies have been provided by ship�

board ADCP and by in�situ sea level records at islands west of Hawai�i� In addition�

the plethora of satellite�collected data presents a unique opportunity to observe the

evolution� interaction� and decay of eddies� This section is a compilation of such snap�

shots� and �when possible�� short stories of the lives and times of Hawaiian lee eddies�

as seen by WOCE drifters� shipboard ADCP� in�situ sea level� satellite altimetry and

AVHRR imagery� As in Patzert ������� the azimuthal structure of the eddies will be

reconstructed from the drifter observations whenever possible� While Patzert presented

a picture of intense lee cyclones and relatively weak anticyclones� a distinctly di�erent

picture emerges from this work� a train of strong and interacting anticyclones radiates

WSW from the south point of Hawai�i� dominating the leeward circulation south of

������N and at times actively steering the lee cyclones� As in the pair of papers by

Davis �����a� ����b�� it is hoped that this descriptive section complements the statistics

presented elsewhere�

����� ��
� ADCP transect

On �� March ����� the R�V Moana Wave was traveling south along �����W� on its

way from Honolulu to the equator� From ���N to ���N� its shipboard ADCP measured

the velocity structure of a strong anticyclonic lee eddy at �����N� ������W �Fig� ����

The center of the eddy was estimated by dividing the region into a �� ����� square

��



grid� For each grid point� the ADCP currents at �� m were decomposed into azimuthal

and radial components� The point which gave the minimum fraction of total variance

in the radial components was de�ned as the center�

The azimuthal current vs� distance from eddy center is shown in the middle panel of

Fig� ��� Within ��� km� the magnitude of the azimuthal speed increases approximately

linearly with distance� this suggests that the eddy had a solid�body core extending to

� ��� km� with a vorticity of � ����� ���� s�� ������f � rotational period ���� days��

Maximum speeds at the edge of the core were ��� cm�s� Outside of this core� the

approaching and receding pro�les of azimuthal speed were not symmetric� To the south�

speed dropped o� nearly as �
r �irrotationally�� The North Equatorial Current may

have contaminated the observed speeds on this side of the eddy� however� To the

north� azimuthal speed dropped o� more rapidly� and could be described by a shell

of constant cyclonic vorticity ����f �nearly the same magnitude as the inferred core

vorticity� extending to ���� km�

At the bottom of Fig� ��� the azimuthal current is shown as a function of depth and

distance from the eddy center� The eddy had core speeds of �� cm�s which extended

to ��� m� The transport through this ADCP section is ���� Sv� This surpasses the

��� Sverdrups of the most energetic lee cyclones described by Patzert �������

����� Eddy AC��a

Anticyclone AC��a may have been born in December ����� when a ��� cm peak in sea

level anomaly occurred o� the south point of Hawai�i �Fig� ���� By � February �����

the eddy had drifted west to ����N� ����W�

On � February ����� a drifter approached the south point of Hawai�i from the east

�Fig� ���� As it passed the south point� it accelerated to over � m�s� completed a large

anticyclonic half�loop� and ran aground on the leeward coast of Hawai�i�
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While the �rst drifter was heading to shore� a second one passed the south point�

accelerating from ��� cm�s �mean speed between ���������W� to over �� cm�s� It

completed four anticyclonic orbits before leaving the eddy at �����N� ����W�

To estimate the radii and periods of the drifter orbits� the following procedure was

used� First� the eddy center was estimated on a � day grid from the position and

curvature of the drifter	s trajectory� The estimate of the eddy center trajectory was

then lowpassed at ��� days to reduce noise� The raw satellite �xes of the drifter were

then shifted to the frame of reference moving with the eddy center� For each complete

orbit� a least�squares �t of a circle was performed on the raw satellite �xes of the

drifter� This gave a correction to the eddy center location and the mean radius R of the

drifter	s orbit� In the moving frame of reference� the raw �xes were used to calculate

the meridional and zonal speed of the drifter around the eddy center� A least�squares

�t of the form

x� iy " Rei	�t��
 ������

gave the period T " ��
� of the orbit� and the mean azimuthal speed U was given by

U " ��R
T �

The �rst orbit of the drifter around AC��a had a radius of �� km and a period of

��� days� The second and third orbits had periods of ���� ��� days with radii of ���

�� km� These orbits may have been in a solid�body core of radius ��� km� vorticity

���� � ���� s�� �����f � rotational period ��� days�� although the sparse amount of

data precludes any de�nite conclusions �Fig� ����

����� Eddy AC��b

In November ����� a WOCE drifter was deployed o� the coast of northern California�

It traveled south for over ��� days� then in January ���� turned west and was carried

by the North Equatorial Current toward Hawai�i� From January to March� the drifter
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moved at a mean speed of ���� m�s� It reached the south point of Hawai�i on �� March�

and accelerated to ��� m�s as it passed within �� km of the island� It then became

entrained in anticyclone AC��b at �����N� ������W �Fig� ���� and continued to orbit

the eddy for nearly eleven months� It crossed the dateline in December ���� and left

the eddy near the end of February �����

AC��b formed ���� days after AC��a� the altimetry suggests that a third anticy�

clone may have formed between them �Fig� ���� As the drifter entered AC��b� it spiraled

inward from ��� km orbits to an extremely tight �� km orbit at the end of May� The

orbits had periods ranging from ��� to ��� days� with a mean of ��������� days� the

local pendulum day �twice the inertial period� was ���� days�

On ����� June� as the eddy crossed ������W� the drifter	s orbit increased to ��� km

in radius� with a period of ��� days� Over the next �� days� the orbits increased to

��� km radius� then decreased to a minimum of �� km on � August� then increased

again to �� km� Concurrently� the orbital period steadily increased from ��� days to

��� days�

On �� August� the drifter began an elliptical orbit of mean radius �� km� with a

nearly north�south semimajor axis of ��� km and a semiminor axis of ��� km� It

completed this orbit in ��� days� then made two more nearly circular orbits of radii ���

�� km� period ����� ���� days�

Throughout this time� the winds had been relatively steady trades �Fig� ���� Then�

in the last week of September� a marked trade wind reversal lasted into early October�

Approximately concurrent with this� the drifter jumped to a very large �� ��� km�

orbit of period ���� days� On �� October� as it was close to completing this large orbit�

the drifter suddenly began meandering in a generally SW direction for �� days� It then

slowed� meandered northward for another � days� then �on �� November� returned to
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smooth anticyclonic orbits�� The drifter completed two more orbits and began a third

before leaving the eddy near ���N� ����E around �� February ����� The �nal orbits

had radii of ������� km� with period of ����� days�

Fig� �� shows the ERS���TOPEX altimetry in the frame of reference moving with

AC��b� The altimetry has been divided into four time spans� corresponding to the ���

�� �� and ���day orbits of the drifter� For each span� the sea surface displacement of the

core�shell model �B��� was �t to the altimetry� To do this� the central height h�r " ��

was �xed� and the core vorticity � and radius ri were varied until the model sea level

curve matched the observed pro�le in a least�squares sense� The outer radius ro was

given by h�r " ��� � and ri� The best��t values of the core�shell model parameters are

presented in Table ���� because of the sparsity of data near the eddy center during ����

September� the estimates for this span are the least certain�

Table ���� Structure of AC��b from altimetry�

Dates ri �km� ro �km� � ����� s��� �
f � �
� �days�

�� Apr��� June ���� �� ��� ����� ����� ���
�� June��� Aug� ���� �� ��� ����� ����� ���

���� Sep� ���� ��� ��� ����� ����� ���� 

�� Sep� ������� Feb� ���� �� ��� ����� ����� ����

����� October ���� to September ���� deployments

From October ���� to September ����� a large number of drifters were deployed in

several clusters within the Hawaiian lee region� For brevity� these data �and concurrent

observations from the other data� are summarized here� and presented in detail �with

accompanying �gures� in Appendix C�

On �� August and � September ����� �� drifters were deployed from the R�V

�The orbital characteristics could not be determined during this meandering phase�
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Townsend Cromwell� which passed near a newly�born anticyclone �AC��c� close to

Hawai�i	s South Point� The eddy had a core rotational period of �� days� AC��c

could be followed in the altimetry as it propagated WSW from � September to � Oc�

tober ����� On � October� the Cromwell again passed through the eddy� and deployed

� drifters� The shipboard ADCP and drifter orbits showed that the core rotational

period of the eddy had approximately doubled since � September� The drifters also

circled a large ����� km diameter� cyclonic eddy �C��a� for a few orbits� then several

became entrained in AC��c and tracked it until late January ����� Drifter and alti�

metric observations of AC��c show that the eddy followed a very similar trajectory to

that of AC��b� In mid�October ����� a cyclonic eddy �C��b� formed in Hawai�i	s lee�

two drifters orbited the eddy from mid�December ���� to late February ����� In early

February� the eddy abruptly turned from WNW propagation to SE propagation� Al�

timetry and AVHRR imagery show that a very large anticyclone �AC��g� passed south

of C��b at about this time� suggesting that the anomalous propagation of C��b may

have been due to advection by the larger anticyclone�

On �� July�� August ����� the Cromwell sampled two cyclonic lee eddies with its

shipboard ADCP and deployed eight drifters in the island lee� One of the cyclones

�C��b� was a large ����� km diameter� eddy which had formed around � July and

subsequently propagated into the west coast of Hawai�i� perhaps due to advection by

a large anticyclone to its south� The eddy was pressed tightly against Hawai�i during

the cruise� creating currents of �� m�s along Hawai�i	s coast� AVHRR imagery suggests

that the cyclone may have become unstable and shed anticyclonic vorticity from its shell

into satellite vortices� creating a tripole vortex such as those described by van Heijst

et al� ������� The eddy entrained several drifters as it drifted westward� one of which

remained in the eddy for nearly ��� days� Other drifters encountered two anticyclones�
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which may have been interacting �rotating anticyclonically about their joint center of

mass and drawing together��

On ��� April ����� nine drifters were deployed in the island lee region� The drifters

revealed the presence of two lee cyclones and two anticyclones� An eddy dipole �com�

posed of a paired anticyclonic and cyclonic eddy� may have formed in May ����� which

subsequently propagated southward at � cm�s� An additional drifter was deployed o�

the west coast of Hawai�i in September ����� within the core of a newly�born anticyclone

with a rotational period of �� days�

��� Discussion

When Wyrtki ������ assembled a �� resolution map of dynamic height in the Paci�c

Ocean� he discovered the presence of a pronounced North Equatorial Ridge running

along ����N�� A comparison between Fig� � and Fig� �� shows that the mean propaga�

tion path of lee anticyclones coincides almost perfectly with the ridge� Because the ridge

is highly variable �Fig� ���� its sharpness is con�ned within the upper ��� dbar �Wyrtki�

����� �as are the eddies themselves �Patzert� ������� and lee anticyclones can lift sea level

����� cm� it is hereby proposed that the North Equatorial Ridge is the superposition of

the smooth� gyre�scale dynamic height �eld and the mean signature of lee anticyclones�

This hypothesis is consistent with all Wyrtki	s ������ dynamic height maps except his

Fig� � �May�June�� which shows a well�de�ned ridge extending to �����W� However�

the May�June XBT�CTD observations compiled for this study show only the broad

crest of the gyre�scale dynamic height �eld east of the islands���

�While this feature is also the crest of the gyre�scale dynamic topography� Wyrtki used the term
�ridge� to indicate that this crest was very sharply�de�ned� For example� he noted that ��n�o similar
feature seems to exist in the South Paci�c Ocean�� While later investigators �c�f� Kessler ������� have
used the phrase �North Equatorial Ridge� interchangeably with the crest of the North Equatorial
Subtropical Gyre spanning the entire Paci�c� its earlier usage is intended here�

�	Dynamic height climbs from ��� m to ���
 m between ���N and ���N� then drops to ��� m at
�����N� the overall average east of the islands� shown in Fig� ��� is quite similar� In contrast� dynamic
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����� Half�inertial lee eddies

Several young lee anticyclones �AC��a� AC��c� AC��c� had core vorticities close to the

local value of �f � i�e� core rotational periods close to one pendulum day� As shown in

the section on inertial instability� these �half�inertial
 �Chew and Bushnell� ����� eddies

have reached the limit on their vorticity set by centrifugal instability� If further energy

was being added to them while they were observed� it presumably cascades rapidly to

submesoscales by overturning at the eddies	 edge� Thus� these eddies may be associated

with signi�cant mixing immediately southwest of Hawai�i�

In two examples �AC��a and AC��b�� the data suggested that recently�formed lee

anticyclones had periods longer than the local pendulum day� Apparently� the upper

limit on the eddies	 strength is not always reached� or merging events �see below� can

occasionally happen quite rapidly after vortex formation�

����� Spin�down

From mid�June to mid�August� the drifter caught in anticyclone AC��b recorded what

appears to be spin�down of the eddy core �Fig� ���� The drifter	s orbits increased in

radius from �� km to �� km� then decreased to �� km� then increased again to �� km�

throughout this span� the orbital period steadily increased from ��� days to ���� days�

This behavior is consistent with the drifter being in the solid�body core of the eddy

�hence� the orbital period was independent of the radius� while the eddy	s core was

spinning down�

A similar spin�down may have been seen for anticyclone AC��c� If the orbital period

of drifters within �� km of the eddy center are plotted as a function of time �Fig� ����

their period increases from ���� days to ���� days from � October to � December�

height west of the islands climbs from ���� m to ���� m between ���
�N and �����N� then drops to
���� m at �����N �Fig� ����
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In Appendix D� a simple model is described which can be tuned to match these

observations� The model uses the core�shell eddy structure �B���� It assumes that mass

is entrained into the core of the eddy at a rate proportional to
p
A� where A is a viscosity

constant� As the mass is entrained� angular momentum is conserved� this causes the

eddy	s spin rate to decrease as a function of time� This model was applied to AC��b

by setting an initial inner radius ri " �� km� outer radius ro " ��� km�� and period of

��� days� The upper layer width was H� " ��� m� the reduced gravity g� " ������ m
s��

and the Coriolis parameter f " ���� � ���� s��� these values give a Rossby radius of

���� km� and are reasonable choices for the Hawaiian region �Qiu et al�� ������ For

A " ���� m�
s� the model closely matches the observations �Fig� ���� At the end of ��

model days� the core rotational period increases to � days� the core radius to ���� km�

and the shell radius to ����� km� The �nal mass of the eddy	s shell is ����� times its

initial value� while the core mass increases by ���� times� The model eddy	s energy is

shown as a function of time in Fig� ��� the �nal energy of the eddy is ���� times its

initial value� Energy is initially lost at a rate of ��W�m�� which drops to ����W�m� by

the end of the run� Because the eddy grows in size while it decays� an ever�increasing

fraction of its total energy is partitioned in potential energy as it ages �c�f� Gill �������

p� ����� As a result� while the eddy	s total energy monotonically decreases with time�

its potential energy increases through the �rst �� days of the model run� The angular

momentum of the eddy remains unchanged� due to the spin�down model	s assumptions�

The entrainment rate into the eddy	s core is ����� ���� ��� kg�s�

The same value of the di�usivity constant does a reasonable job of simulating

AC��c	s observed spin�down �using an initial core radius of �� km and all other values

identical�� However� throughout May ����� the drifter orbiting AC��b had a nearly

��the core spin�down is not sensitive to this choice in the limit ri�ro � �� The curve in Fig� �� is
only slightly higher for ro � ��� km� and virtually unchanged for ro � ��� km�
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constant period of �� days� With A " ���� m�
s� the entrainment model cannot sim�

ulate this� If the model eddy has an initial core period of � days� with inner and outer

radii of �� and ��� km� the spin�down model predicts that the period will increase to

��� days after �� days� It is possible that early in its life� AC��b was maintaining its

core vorticity by extracting energy from the shear between the NEC jet and Hawai�i	s

lee� The model eddy loses energy at a rate of ��� J�m� per day �����W�m��� This could

be balanced by a source term of the form

�� �u�v�� 	y hvi ������

�c�f� �Hansen and Paul� ������� The drifter observations from ����� to ����W �Figs� ���

��� show that the Reynolds shear stress hu�v�i in this region is ��������������� m�
s�

and the mean shear �from �� to ���N� is � �� ���� s��� These values give a mean to

eddy kinetic energy conversion rate of ����� � ������W�m�� suggesting that there is a

su�cient pool of energy to maintain the anticyclones	 half�inertial rotation until they

have drifted several degrees downstream or leave the shear layer�

����� Eddy merging

At the beginning of June ����� the drifter orbiting AC��b abruptly switched from

��� day� � km orbits to ��� day� �� km orbits� The simplest explanation for this be�

havior is that the drifter moved into the outer shell of the eddy� where azimuthal speed

diminishes with increasing distance� However� as noted in the previous section� the

orbital characteristics of the drifter from June to mid�August suggest that it was still

within the eddy	s solid�body core� Twice more� in late August and late September� the

drifter	s orbits abruptly increased in both their period and radius�

The altimetric observations of the eddy �Fig� ��� strongly suggest that the eddy	s

structure was not stagnant� As the eddy aged� its core grew larger and rotated more
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slowly� Qualitatively� this behavior is consistent with the entrainment model described

in the previous section� But how well does it quantitatively agree with the observed

orbital characteristics of the drifter 

To answer this question� a simulated eddy� described by the core�shell structure

�B���� was assumed to spin�down according to the entrainment model� The di�usivity

constant was chosen to be A " ���� m�
s� The model simulated ��� days of spin�down�

with an initial core radius of �� km and shell radius of ��� km� This was approximately

the size of AC��b in mid�May ����� so model day � was de�ned as ��� May�
 The initial

rotational period of the core ���� days� was chosen so that the model output matched

the observations for June to mid�August �see Fig� ����

Suppose a drifter was placed in the simulated eddy� and it moved toward and away

from the eddy center as in Fig� ��� The period of its orbits would then be set by the

model eddy	s evolving structure� To create this simulated drifter trajectory� the time

series of the �real� drifter	s orbital radius around AC��b was interpolated to a �����day

grid� This �xed the radial position R�t� of the model drifter in the eddy� The rate of

change of the drifter	s azimuthal position ��R�t�� t� was then given by the eddy	s speed

at radiusR� The simulated trajectory was integrated in �����day steps� then subsampled

at the times when ARGOS �xes were made on the real drifter� For each complete orbit

of the model drifter� a time series of the orbital period was given by the least�squares

technique described earlier�

Fig� �� shows the evolution of the model drifter	s orbits� compared to those of the

real drifter around AC��b� The model cannot capture the sudden jump from half�

inertial orbits to �����day orbits in early June� However� it does simulate the early

September transition to ���day orbits� because the drifter exits the solid�body core at

the beginning of this month� As the drifter moves to ���� km orbits in early October�
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its period jumps to �� days� approximately twice the observed period� This discrepancy

diminishes as the core expands outward due to entrainment� by early December� the

orbital period of the model drifter has dropped to ��� days�

Thus� while it may be fortuitous� the spin�down model can account for one of the

observed period jumps of the real drifter� However� no amount of tweaking will allow

the model to simulate an abrupt � to �����day jump in the core period� followed by a

much slower spin�down� This behavior is consistent� however� with eddy merging�

In the laboratory� an unstable shear layer grows by developing into a train of vortices

which� as they advect downstream� pair and merge into larger vortices �c�f� �Brown and

Roshko� ����� Winant and Browand� ������� These in turn pair and merge� and the

process continuously expands the width of the shear layer until the side walls of the

laboratory tank stabilize the vortices� In this paper� it has been hypothesized that

the NEC jet separates from Hawai�i	s south point� leading to the formation of a train

of half�inertial anticyclones� Unlike in the nonrotating tank experiments� the eddies

are stable as long as their core vorticity is lower in magnitude than f � However� they

may still spontaneously merge� as demonstrated in rotating tanks �Nof and Simon�

����� Gri�ths and Hop�nger� ������ oceanic observations �Cresswell� ����� Tokos et

al�� ������ and numerical experiments �Melander et al�� ����� Verron and Valcke� �����

Carton and Bertrand� ����� Valcke and Verron� ������ If two eddies merge� what are

the characteristics of the resulting eddy This question is addressed in Appendix E�

which uses simple conservation laws and the core�shell eddy structure� It is shown

that eddies can conserve mass and angular momentum when they merge� but in so

doing they will lose some fraction of their total energy� Physically� this is analogous

to the Rossby adjustment problem� in which the lost energy is due to radiation away

from the equilibrium solution �c�f� Gill ������� pp� ��������� Alternatively� eddies can
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conserve energy and angular momentum when they merge� but they will then lose mass�

the lost mass may be ejected in thin �laments which bear negligible energy or angular

momentum �Cushman�Roisin� ������ Both cases predict that if identical vortices merge�

the core period of the resulting eddy will be longer than that of the parent eddies�

In Fig� ��� the sea level anomaly of the eddy is shown in four spans� each separated

by one of the period jumps of the drifter� During the span when the drifter had ��day

orbits� altimetry suggests that this was the eddy	s core period� When the drifter had

��� to � day orbits� the altimetry suggests a mean core period of � days� During the

remaining two spans� the altimetry suggests a ����day rotational period of the core�

Thus� the �rst two period jumps of the drifter may have been associated with an increase

in the core vorticity of the eddy itself� As an alternative to a pure spin�down model� it

is proposed that the eddy merged twice with neighbors in the anticyclone train�

This hypothesis was tested in a similar manner to the spin�down simulation� The

model eddy was started with identical characteristics� but instead of spinning down� it

was assumed to merge with an identical eddy on � May and �� August� The merging

was assumed to occur instantaneously� As before� a simulated drifter was placed in the

eddy� giving a time series of orbital period which can be compared to the observations

Fig� �� shows the model output� If energy is conserved during a merging� the eddy	s

period increases by ���� times on � May� this is close to the observed jump� The

resulting eddy has ��! of the mass of its parents� The �� August merging causes the

period to increase by ���� times� and ��! of the mass is conserved� After early June� the

simulated orbital period of the drifter falls below the observed curve� and is half its value

at the end of the model run� In contrast� if mass is conserved in a merging� the period

almost exactly doubles on � May and �� August� The simulated periods are longer than

the observations throughout June� and fall below them in July through August� With
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the �� August period doubling� the simulated period jumps to the observed value� and

climbs with them to ��� days as the drifter leaves the eddy	s core in October�

Of course� without entrainment the merging model cannot simulate the decrease in

core vorticity observed from June to mid�August� The models can be easily combined�

by assuming mergings on � May and �� August� and allowing the eddy to spin�down via

entrainment between mergings� Because the observations show that the period remained

steady until after the �rst period jump� the model entrainment was not �switched on


until after � May�

The simulated curves for this combined model are shown in Fig� ��� When energy is

conserved in the merging model� the model prediction closely follows the observations

until October� when it fails to climb above �� days� The mass�conserved merging model

predicts periods higher than the observations until late in the run� These model runs

show that the observed � May and �� August period jumps are consistent with eddy

merging� particularly under the assumption that energy is conserved in the merging� In

all cases� the mass�conserving mergings predict too large a period jump� However� this

is largely a consequence of the assumption that the model eddy merges with an identical

eddy� Variations in the sizes of lee eddies could arise from 
uctuations in the trade winds

and�or the strength of the NEC impinging on Hawai�i� If two eddies having the same

core vorticity but di�erent sizes are merged� the resulting period jump will always be less

than for identical eddies��� In the model� variations in eddy size can easily be included�

for example� the model eddy can merge with an eddy � times its size� with the same core

vorticity� on � May and �� August� Of course� without direct observations of the eddies

adjacent to AC��b� � simply becomes a free parameter which can be arbitrarily tuned

to �t the model output to the observations� For example� Fig� �� shows the evolution

��This is most easily illustrated by considering the limit in which one eddy is vanishingly small
compared to the other	 after the merging� the characteristics of the larger eddy remain unchanged�

��



of the core radius and simulated orbital periods if the model eddy merges with an eddy

��� times its size on � May and �� August� mass is conserved in the mergings� and

entrainment proceeds exactly as in the previous models� The parameter � has added a

degree of freedom which allows the model to match the observations extremely closely�

Of course� this model run cannot demonstrate that mergings are occurring� but it does

suggest that the merging�plus�entrainment hypothesis is at least consistent with the

observations�

��� Conclusions

Patzert ������ showed that Hawaiian lee eddies have lifetimes in excess of � months� In

this study� this estimate can be extended to � months for cyclonic eddies� and over a year

for anticyclones� Perhaps the most surprising result from this study is the organized

train of extremely energetic anticyclonic eddies� generated at a mean period of ��� days

in Hawai�i	s lee and possibly merging as they drift WSW to the edge of the study

region� Indeed� one cannot help but wonder how far these eddies continue across the

Paci�c Ocean$�� The altimetric and drifter observations demonstrate that the eddies

grow larger and rotate more slowly as they propagate westward� presumably due to

entrainment and possibly vortex merging� This growth can help explain the location

of maximum dynamic height variance� west of the maximum drifter speed variance

�see Fig� ���� The ratio of potential to kinetic energy for a quasigeostrophic eddy is

proportional to the eddy	s size divided by the deformation radius �c�f� Gill ������� p� �����

Thus� the mean eddy potential energy �and associated dynamic height variations� may

initially increase as the eddy ages� as seen in the spin�down simulation �see Fig� ����

In addition� if there is downstream vortex merging� the potential energy can abruptly

��For the spin�down model run of AC��b� the energy of the model eddy has an e�folding time scale of
��� days� At a mean westward speed of �� cm
s� and starting at ����W� this suggests the eddies reach
����E�

��



increase along the eddies	 trajectory due to the increase in mean eddy size�

If the anticyclones are often produced with half�inertial cores� then tend to pair and

merge downstream� a quantization of their period could be expected� For example� the

mass�conserving model predicts that the period will roughly double with each �identical�

merging� This may explain the ADCP and drifter observations of AC��c� which suggest

that the core period of the eddy doubled between � September and � October� Evidence

for this quantization in the Lagrangian spectra of all drifters is presented in Chapter �

�see Fig� ���� The quantization is eroded by the gradual spin�down of the eddies and

by natural variations in their sizes� Also� some eddies �such as AC��a� appear to be

produced at lower initial core periods�

Mitchum ������ showed that energetic altimetric signals originate at Hawai�i� prop�

agate westward� and may account for the ���day oscillations in Wake Island sea level�

a peak in the same frequency band can be seen at Johnston Atoll as well �Fig� ����

Mitchum proposed that these oscillations were long Rossby waves radiated in the decay

of anticyclonic lee eddies �Flierl� ������ because they propagated near the long Rossby

wave speed and because Rossby waves with a ��� turning latitude have a period of

� ��� days �which could be Dopplar�shifted to �� days by background currents�� In

this study� several westward�propagating altimetric anomalies have been identi�ed as

lee eddies� drifters entrained within them clearly demonstrate cycloidal trajectories� as

opposed to the transverse motion of drifters in a Rossby wave packet �Price and Rossby�

������ These coherent vortices are observed to propagate at speeds close to the long

Rossby wave speed� As shown in Fig� ��� many of the peaks at Johnston Atoll can be

identi�ed as lee anticyclones� Thus� these observations suggest that the ���day peak in

the Johnston Atoll spectrum is directly due to the passage of lee eddies� rather than

an indirect process such as Rossby wave radiation� The ���day signals at Wake cannot

��



be as clearly related to the passage of lee eddies� Wake Island is well�o� the mean

WNW�WSW trajectories of the lee eddies �which should lower the Eulerian period of

their passage� and eddy decay should signi�cantly weaken their sea surface 
uctuations

by that longitude� Because the variance of the ���day signal at Wake is actually larger

than the signal at Johnston �see Fig� ���� an additional� and perhaps more signi�cant�

mechanism may be occurring there� such as local generation of mesoscale 
uctuations

from baroclinic instability in the Subtropical Countercurrent �Qiu� ������
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Figure ��� Sea level anomaly �SLA� in the immediate lee of Hawai�i�
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Figure ��� Longitude vs� time plots of sea level anomaly in �xed latitude bands� Dots
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Figure ��� Longitude vs� time plots of sea level anomaly in �xed latitude bands� Dots

indicate the paths of cyclonic �white� and anticyclonic �black� eddies followed by drifters�
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Figure ��� Orbital characteristics of a drifter in AC��a�
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Figure ��� Orbital characteristics of a drifter in AC��b�
Top� trajectory of drifter around eddy �solid lines�� with dots marking the location of

the drifter when it left the eddy� The dashed line is the path of the eddy center� with
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down simulation �Fig� ��� top�� Top� total energy� Middle� kinetic energy� Bottom�
potential energy�
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Figure ��� Modeling AC��b� Pt� I� entrainment only
Top� A simulated drifter trajectory in an eddy which starts at the approximate size of
AC��b and spins down according to the entrainment model �thin line�� The heavy line

is the trajectory of the real drifter�
Middle� Growth of the model eddy	s core radius �solid line� vs� estimates from altimetry
�stars�� Also shown are the radii of the drifter	s orbits �dots��

Bottom� Periods of the model drifter	s orbits �solid line with circles�� For comparison�

the real drifter	s orbital periods are shown �dots��
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Figure ��� Modeling AC��b� Pt� II� merging only
Top� A simulated drifter trajectory in an eddy which starts at the approximate size of
AC��b and merges twice with identical eddies� Both merging cases are shown �thin solid
line� mass conserved� dashed line� energy conserved�� The heavy line is the trajectory

of the real drifter�
Middle� Growth of the model eddy	s core radius �solid line� mass conserved� dashed
line� energy conserved� vs� estimates from altimetry �stars�� Dots show the radii of the

drifter	s orbits�
Bottom� Periods of the model drifter	s orbits �solid line with diamonds� mass conserved�
dashed line with circles� energy conserved�� For comparison� the real drifter	s orbital
periods are shown �dots�� ���
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Figure ��� Modeling AC��b� Pt� III� merging � entrainment
Top� Simulated drifter trajectory in an eddy which starts at the approximate size of
AC��b� merges twice with identical eddies� and spins down according to the entrainment
model� Both merging cases are shown �thin solid line� mass conserved� dashed line�

energy conserved�� The heavy line is the trajectory of the real drifter�
Middle� Growth of the model eddy	s core radius �solid line� mass conserved mergings�
dashed line� energy conserved� vs� estimates from altimetry �stars�� Dots show the radii

of the drifter	s orbits�
Bottom� Periods of the model drifter	s orbits �solid line with diamonds� mass conserved
mergings� dashed line with circles� energy conserved�� Dots show the real drifter	s orbital
periods� ���
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Figure ��� Modeling AC��b� Pt� IV� tuning the model�

Top� Simulated drifter trajectory in an eddy which starts at the approximate size of
AC��b� merges twice with smaller eddies� and spins down according to the entrainment
model �thin solid line�� The heavy line is the trajectory of the real drifter�
Middle� Growth of the model eddy	s core radius �solid line� vs� estimates from altimetry

�stars�� Dots show the radii of the drifter	s orbits�
Bottom� Periods of the model drifter	s orbits �solid line with diamonds�� Dots show the
real drifter	s orbital periods�
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Chapter �

Mean currents

The directly wind�forced motion of drifters is identi�ed� and the drifter motion is com�
pared to the mean dynamic height gradient in several regions� The complex structure
of the Hawaiian Island wake is seen in both data� Energy �uxes suggest that this mean
structure is at least partly driven by the lee eddies�

In a comparison between the trajectories of �� NORPAX�type drifters �most drogued

at �� m depth� and dynamic topography relative to ��� dbar� McNally et al� ������ found

drifter motion orthogonal to the geostrophic 
ow east of the Hawaiian Islands� and

���� opposed to it north of the islands� They demonstrated that the drifter trajectories

were generally aligned with isobars of sea level pressure� In the Hawaiian region� they

reasoned that an additional northward 
ow �opposing the southward component of

the geostrophic 
ow� was provided by Ekman drift� As noted by Niiler and Paduan

������� NORPAX drifters have an e�ective drag area ratio less than a �fth that of

WOCE drifters if the parachute drogue does not remain fully 
ooded� Studies of similar

drifters have found that the trajectories of drogued and undrogued drifters are not

signi�cantly di�erent �A� D� Kirwan et al�� ����� McNally and White� ������ suggesting

that downwind slip may dominate their motion�

In this chapter� this comparison is re�performed between the WOCE drifter speeds

and geostrophic currents derived from hydrography� Individual currents are compared

in these independent data� demonstrating the existence of the elongated gyres forming

the Hawaiian wake� The dynamics of these currents� including energy 
uxes between

the mean and eddy �eld� will be examined� Preliminary sections address two of the

major di�erences between the drifter and hydrographic currents �geostrophic currents

below the reference level� and wind�forced ageostrophic drift�� de�ne how the eddy and

mean �elds are separated in the data� and present the relevant energy equations�
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��� Deep geostrophic currents

In Fig� �� the dynamic height has been referenced to ��� dbar� This choice of reference

depth was motivated by the need for high�resolution data coverage �see Table �����

However� gyre�scale dynamic height gradients are signi�cant to ���� dbar in this region�

referenced to ���� dbar� the center of the subtropical gyre shifts northwestward� and

geostrophic 
ow at the islands is more nearly zonal �Wyrtki� ������ Between ��� dbar

and ���� dbar� the dynamic height reaches a minimum at ���N �Fig� ���� The associated

mean zonal current is O���� cm�s� from ��� to ���N� Sub�gyre�scale features such as

the North Equatorial Ridge do not appear in dynamic height at ��� dbar referenced

to ���� dbar �Wyrtki� ������ suggesting they are contained within the upper ��� dbar�

Dynamic height at ���� dbar relative to ���� dbar is nearly 
at in this region �the mean

slope is an order of magnitude less than in the �������� dbar map �Wyrtki� ������� and

thus does not signi�cantly contribute to the overall baroclinic geostrophic 
ow�

The abyssal baroclinic shear and depth�independent geostrophic currents are the

�nal �ingredients
 needed to estimate absolute geostrophic 
ow� Unfortunately� direct

current measurements at the ���� dbar reference level are relatively sparse in this re�

gion� From ���� to ����� nine Autonomous Lagrangian Circulation Explorer �ALACE�

drifting buoys passed through the Hawaiian region �Fig� ���� The buoys are designed to

be neutrally�buoyant at ���� m depth� and pop to the surface at one�month intervals

to transmit their position� Data coverage is too poor to construct a spatial map of the

currents at this depth� although the overall pattern of the trajectories suggests a nearly

zonal 
ow south of the islands� The mean speed of all ALACE buoys in the region is

�u� v� " ����� ��� cm
s� ���� ��� cm
s��

These observations suggest that the absolute geostrophic 
ow �dynamic height ref�

erenced to ���� dbar plus the absolute motion at that depth� is more zonal than the
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geostrophic 
ow referenced to ��� dbar� with westward speeds larger by approximately

� cm�s �at ���N� to ��� cm�s �from ��� to ���N�� Of course� without better maps

of the deep 
ow	s spatial variations� this is at best a crude estimate of the additional

geostrophic 
ow not seen in Fig� ��

��� Ekman drift

Drifters measure the instantaneous current at �� m depth� Thus� ageostrophic motion

which does not not disappear in a spatio�temporal average will a�ect the drifter�derived

mean current map� The most signi�cant 
ow of this nature is the directly wind�driven

Ekman drift�

At periods much longer than inertial� homogeneous winds drive the mixed layer

according to

ifUE "
�

�
	z�� �����

where UE " uE � ivE is the Ekman drift� and � " �x � i�y is the stress� For simplicity�

the stress � is often assumed to be a linear function of depth� decreasing from �s at the

surface �the wind stress� to � at the base of the mixed layer�

� " �s

�
z

hmix
� �

�
� �����

Substitution into ����� yields

U " �i�s
�fhmix� �����

The mixed layer moves as a depth�independent slab to the right �f � �� of the wind�

Using the Levitus�� monthly mixed layer depth �Fig� ��� and the ERS�� monthly surface

wind stress� the time�averaged Ekman 
ow given by ����� is shown in Fig� ��� Averaged

over space and time� the mixed layer depth is �� m� Using the mean wind stress of

��x� �y�"����������� Pa� ������ ���� Pa�� �"���� kg�m� and f " �� ���� s��� this
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gives a mean Ekman drift of

�uE� vE� � ����� cm
s� ��� cm
s��

The slab model provides a lower estimate on the Ekman drift� A more precise

estimate was derived by Niiler and Paduan ������� in a study of �� holey�sock drifters

deployed in the northeast Paci�c as part of the OCEAN STORMS experiment� They

removed a downwind slip of � � ���� m�s per m�s of wind from the drifter speeds�

then band�passed the speeds and ECMWF wind stress between � and �� days period

to minimize contamination by near�inertial and nonlocally�forced currents� They then

applied a regression model of the form

U " b�s� �����

By band�passing and relaxing the slab model assumptions� Niiler and Paduan hoped to

avoid the poor results of previous regression attempts �Brink et al�� ������ They found

jbj"���� m�s Pa� arg�b�"����explained ��! of the variance in U � Comparing ����� to

������ this regression coe�cient is equivalent to a complex mixing depth of magnitude

���� m� Niiler and Paduan called this the �apparent mixing depth�
 noting that it is

���� times the observed depth of the mixed layer in the region� This result suggests

that stress drops o� more rapidly than does the linear pro�le assumed in the slab model

�Niiler and Paduan� ������

In the Hawaiian region� this technique produces similar results� the regression model

����� was applied to �� nonoverlapping drifter tracks of ��� days lying entirely within

the Hawaiian region� The ERS�� wind stress was linearly interpolated to the drifter

positions� and the downwind slip �assumed identical to that of Niiler and Paduan �������

was removed� Due to the one�week ERS�� sampling� the data were lowpassed at �� days

period� Because eddy energy in this region peaks at Lagrangian periods smaller than ��
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days �see Chapter ��� the data were not highpassed at �� days as in the Niiler and Paduan

study� The regression gives jbj"���� m�s Pa� arg�b�"����� corresponding to an apparent

mixing depth of magnitude ���� m ����� times the mean Levitus mixed layer depth

in the Hawaiian region�� The magnitude of the regression coe�cients for individual

drifter segments does not show any obvious latitudinal dependence� suggesting that the

apparent mixing depth decreases from north to south� However� the scatter of regression

coe�cients is large� the real part of b is ����� � ����� m�s Pa� and the imaginary part

is ������ � ����� m�s Pa� Within these standard error bars� jbj lies between ���� and

���� m�s Pa and arg�b� is between ����and ����� Consistent with these large error

bars� the model explains only �! of the variance of all �� segments� Presumably the

combination of relatively weak winds and enhanced eddy energy in the Hawaiian region

reduces the skill of the regression far more seriously here than in the northeast Paci�c

�although Niiler and Paduan do not explicitly state error bars� they note that they �can

be expected to be large
 due to the geostrophic noise��

Using the ensemble�averaged b and the mean ERS�� wind stress� the mean Ekman

drift is shown in Fig� ��� Spatially averaged� the drift is �uE� vE� " ����� cm�s� ��� cm�s��

Combined with the downwind slip� this gives a directly wind�forced current of ����� cm�s�

��� cm�s�� Due to the large error bars on b� this can only be considered a rough estimate

of the drift� however� the consistency of these results with those of Niiler and Paduan

������ suggest that this is a better estimate than is provided by the slab model�

��� Calculating means and variances

To describe a �mean
 property in the drifter and hydrographic data� many observations

must be averaged over space and time� These calculations were performed in an area

of zonal width X and meridional width Y � chosen such that a particular feature of
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interest �such as the Hawaiian Lee Countercurrent� did not appreciably change across

X� All observations of property � within the area were sorted by latitude� For the

southernmost N observations of �� the mean h�i and 
uctuations �� were calculated in

the standard way� i�e�

h�i " �

N

NX
i
�

�i� �� " � � h�i � �����

The calculation was repeated on observations ��N�n to �N�n� ����N�n� to �N��n�

etc�� until the averaging window included the northernmost point in the area� thus giving

the meridional pro�le of h�i� Each time the zonal average was performed� the averaging

window contained the northernmost n points from the previous calculation� to produce

smooth pro�les of h�i� In the plots of the averaged quantities� points calculated from

fully�independent data will be marked��

For averages along the Hawaiian Ridge� an identical calculation was performed�

except the coordinate system was rotated so that the x�axis lay along the ridge �de�ned

positive to the ESE�� and the orthogonal y�axis pointed o��ridge �positive to the NNE��

Standard error bars were calculated with the bootstrap method� i�e� the original

population ofN points were resampled� with the possibility of repeating points� to create

hundreds of ensembles of N points� The means were calculated� and the standard error

de�ned as �� standard deviation of the bootstrapped means� These bootstrap error

bars tended to be visually indistinguishable from the typical de�nition of the standard

error �standard deviation divided by
p
N��

�A more standard method of calculating zonally� and temporally�averaged quantities is to take the
mean in bands of �xed meridional width� However� the data were inhomogeneously�distributed� the
method chosen for this study allowed the meridional resolution of the averaging operator to scale with
the data density� This was particularly useful for dynamic height near O�ahu� where sampling density
drops o� extremely rapidly with increasing distance�
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��� Energy 
uxes

In the spirit of Hansen and Paul ������� the drifter data can be used to estimate some

of the energy 
ux terms between the mean and eddy components of the 
ow� The

turbulent kinetic energy equation is derived from the governing equations under the

Boussinesq� hydrostatic� incompressible and Traditional approximations� and can be

expressed as

	t hEKEi " ��hui � r� hEKEi � h�u� � r�EKEi
��o hu� � �u� � r�i hui � hu� � rp�i � g h��u��i �

�����

�c�f� �Kundu� ������� where

EKE "
�

�
�ou

� � u� �����

and �o�z� is the background hydrostatic density� The turbulent potential energy equation

can be expressed as

	t hEPEi " �C�hui � r���
�
���
�� C

D
�u� � r����

��
E

�C h��u��i 	� h�i� g h��u��i �
�����

where

EPE "
�

�
C��� �����

and

C " � g

	���o � h�i� � �
g

	��o

�
�� 	� h�i

	��o

�
� ������

The index � is summed over only the horizontal components �� � due to the inclusion of

	� h�i� in C �Luther and Johnson� ������ The terms associated with pressure forces and

vertical motion in ����� and ����� cannot be observed by the drifters� Dropping these

terms and the zonal gradients 	x yields

	t hEKE �EPEi " �hv	yEKEi � C
D
v	y

�
��
��
E

��o
�
v��
�
	y hvi � �o hu�v�i 	y hui � C h��v�i	y h�i �

������
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Hansen and Paul ������ were able to estimate the �nal three terms in WOCE drifter

data collected in the equatorial Paci�c� Of these terms� the �rst two represent the

barotropic 
ux of kinetic energy between the mean and eddy �elds caused by the mean

eddy transport of momentum across a mean shear� The �nal term represents baroclinic

conversion of mean potential energy to the eddy �eld caused by the mean eddy transport

of density 
uctuations across a mean density gradient�

Estimating the baroclinic 
ux term with the drifter data requires making assump�

tions about the T�S relationship and the mean strati�cation of the upper ocean �Hansen

and Paul� ������ The WOCE drifters of this study measured in�situ temperature� but

not salinity� Thus� only the sign of the energy 
ux can be directly calculated �assum�

ing reasonable values of salinity�� Because it was desirable to at least estimate the

magnitude of this physically�important term� a mean T�S diagram was calculated by

plotting salinity vs� temperature of all CTD observations in the upper �� m� and �tting

a �fth�order polynomial to the T�S observations� This curve was used to estimate the

salinity of each drifter observation� Density was then calculated using the UNESCO

������ equation of state� This procedure can be expected to introduce some error by

neglecting variations of salinity for a given temperature� but a greater source of error is

the unknown value of C� Because the drifters provide no measure of the strati�cation�

this term must be estimated from regional averages of the buoyancy frequency� Emery et

al� ������ provide seasonal maps of N�z� for the Hawaiian Region� the curves typically

climb from a minimum of ������ s�� at ���� m depth to maxima of ������������ s��

at ������ m� For the purposes of this study� N " ���� s�� was chosen as a represen�

tative value of the upper�ocean strati�cation� giving C � ��� m��kg s�� While these

approximations introduce an unknown error in the magnitude of the baroclinic energy


ux� it is hoped that at least crude estimates are provided�
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Under the assumptions described above� the mean eddy kinetic and potential energy

and energy 
uxes between the mean and eddy �eld were calculated in zonally�averaged

bands within the Hawaiian region� Error bars for terms such as hu�v�i	y hui were cal�

culated by the following procedure� �rst� the observed variations in u�v� and u were

used to calculate the standard error for hu�v�i and hui� The term 	y hui was calculated

by �nite di�erencing� the calculation was performed ��� times� with the values of hui

perturbed by a normally�distributed random value with standard deviation equal to

the standard error in hui� The standard deviation in the ��� estimates of 	y hui then

gave the standard error of that term� Finally� the standard error in hu�v�i 	y hui was

estimated using the same Monte Carlo technique �i�e� carrying out the multiplication

��� times� with scatter set by the standard errors of the two terms��

��� Observations of the mean currents and eddy �eld

In Fig� �� �top�� the drifter�derived currents are shown after the downwind slip and

Ekman drift �from the regression analysis� see Section ���� have been removed� They

are superimposed on the high�resolution dynamic height anomaly referenced to ��� dbar

�Fig� ��� added to the map of dynamic height anomaly between ���� and ��� dbar

�Fig� ��� linearly interpolated to the same grid size� Immediately south of the islands�

and southwest to the edge of the study region� the mean drifter�observed currents lie

along isolines of dynamic height� The narrow Hawaiian Lee Countercurrent runs along

the northern edge of the North Equatorial Ridge from ���� to ����W� West of the

HLCC in the latitude band of the islands� the drifter�derived currents are orthogonal or

completely opposed to the geostrophic currents relative to ���� dbar�

At the bottom of Fig� ��� the di�erence between the adjusted �for Ekman drift and

slip� drifter speeds and the geostrophic currents �derived from �nite di�erencing the
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dynamic height �eld� are shown where they are signi�cantly di�erent from zero by at

least one standard error� East of ����W� the adjusted drifter speeds are more strongly

zonal by ������� cm�s� The ALACE data suggests that �� cm�s of this discrepancy is

due to motion at the ���� dbar level� leaving a residual of �� cm�s� West of Hawai�i� and

particularly in the latitude band ������N� the drifter speeds are signi�cantly stronger

than the geostrophic currents relative to ���� dbar� the mean adjusted drifter speed

west of ����W is more zonal by ��� � ��� cm�s� If it is assumed that the currents at

���� dbar are homogeneous� and this motion is accounted for� the remaining discrepancy

is �� cm�s� What is the source of this discrepancy The ���� dbar circulation may

possibly be more strongly westward north of ���N and west of ����W� a hypothesis

which denser ALACE sampling will address� Additionally� the data are non�concurrent�

the hydrography was collected relatively homogeneously over many decades� while much

of the drifter data were collected after bursts of deployments in late ���������� Thus�

interannual 
uctuations of currents may cause them to appear di�erently in the two data

sets� However� even in the relatively steady NEC south of ���N� the adjusted drifter

speeds are more strongly westward by ���� ��� cm�s� Accounting for the mean drift at

���� dbar� an underlying � ���� cm�s residual remains� Perhaps this residual is due

to drifter motion being more strongly in
uenced by wind slip and�or wave recti�cation

than anticipated from previous laboratory experiments and limited �eld tests �c�f� �Niiler

et al�� ����� Geyer� ������� Evaluating this possibility will require extended �eld tests

under heavy wind and swell conditions� while this task may be necessary to fully explain

the discrepancies between drifter and hydrographic observations� it extends beyond the

scope of this study� Having noted this caveat� individual currents in the Hawaiian region

will now be examined in the data�
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��	�� North Equatorial Current

The NEC is the westward�
owing branch of the North Paci�c Subtropical Gyre �north

of ����N� and the North Paci�c Tropical Gyre �from ������N��

East of the Hawaiian Islands

Upstream of the islands ���������W�� the mean zonal speed of the drifters is a nearly

linear function of latitude �Fig� ���� From �� to ���N� hui drops from �� cm�s to

rest� This gives a shear of ���� s��� ���������� times the local value of the Coriolis

parameter f � Eddy kinetic energy peaks between �� and ���N �Figs� ���� while the

Reynolds shear stress remains relatively low throughout the area� 
uctuating between

��� cm�
s�� In the presence of the meridional shear of hui� these observations indicate

a mean barotropic energy 
ux of O������W
m�� �Fig� ���� From �����N to �����N� the

mean density h�i increases from ������ to ������ kg�m�� for a mean density gradient

of ���� � ���� kg�m�� The eddy density advection hv���i works against this gradient�

reaching a minimum of ������ ����� ���� kg
m�s at ���N� This suggests a conversion

of mean to eddy potential energy at the rate of � ��W�m� at ������N�

Referenced to ��� dbar� dynamic height upstream of the islands reaches a maximum

at ����N �Fig� ���� North of ���N� the slope is approximately constant� yielding east�

ward geostrophic 
ow of ��� cm�s� South of ���N� dynamic height slopes parabolically�

the westward geostrophic current thus increases approximately linearly with decreasing

latitude� At ���N� the current is ��� cm�s� Referenced to ���� dbar �Fig� ���� the

NEC is stronger south of ���N� with a speed of �� cm�s at ���N�

From ��� to ���N� there is a ��� cm�s o�set between the zonal drifter speed and the

hydrographic zonal current referenced to ��� dbar �Fig� ���� Approximately ��� cm�s

of this is due to geostrophic shear from ��� to ���� dbar� and the regression analysis of
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Section ��� suggests that an additional �� cm�s is due to Ekman drift and downwind

slip� The remaining discrepancy� shown in Fig� ��� ranges from ��� to ��� cm�s� Under

the assumption that the gyre�scale 
ow is predominantly geostrophic� this discrepancy

must be due to the absolute motion at ���� dbar �earlier estimated at �� cm�s� and

the other potential sources of error noted earlier�

West of the Hawaiian Islands

After impinging on the island of Hawai�i� the NEC bifurcates� The southern branch

may occasionally accelerate to �� m�s as it passes the South Point of Hawai�i �see

Chapter ��� The mean drifter speed between ����� and ����W has a westward maximum

of �� cm�s at �����N �Fig� ���� which can still be seen �reduced to �� cm�s� from ����

����W �Fig� ����

Wyrtki and Kilonsky ������ presented the mean hydrography along the Hawai�i�

to�Tahiti Shuttle Experiment transect� ����W through most of the Hawaiian region�

They showed that the NEC extends from �� to ���N� and is split into two cores of

strengthened westward 
ow� The northern core is centered at ���N� with speeds greater

than �� cm�s extending to depths of ������� m� this core is the downstream signature

of the NEC jet seen in the drifter data and hydrography �c�f� Figs� ��� ��� ��� ���� It

weakens to the west� and cannot be seen past ����W �Figs� ��� ���� The southern core

described by Wyrtki and Kilonsky �and also by White and Hasunuma ������� is centered

at ���N� and has a maximum strength of �� cm�s extending to ��� m depth� There

is no evidence of this southern core in the drifter data� although a broad maximum at

������N reaches this strength �Fig� ���� It is clearly seen in the hydrography �Figs� ���

���� which suggests that the ���N core extends across the study region�

In their examination of hydrography at ����E� White and Hasunuma ������ found

an accelerated core of the NEC at ���N �in addition to the ���N core�� This feature
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does not appear to be connected to the �����N NEC jet discussed earlier� as the latter

feature does not extend past ����W�

��	�� North Hawaiian Ridge Current

After bifurcating at Hawai�i� the northern branch of the NEC follows the island ridge to

Kaua�i before turning westward �Fig� ��� This branch is known as the North Hawaiian

Ridge Current �NHRC� �White� ����� Firing� ������

The NHRC is a relatively weak current buried in a highly variable and energetic eddy

�eld� Hence� years of averaging are often required to detect it� relatively short�term

snapshots such as the hydrographic surveys in Sun et al� ������ and Bingham ������ are

overwhelmed by mesoscale variability �Price et al�� ������ The NHRC has been observed

in historical XBT data �White� ������ in long�term ADCP averages �Firing� ����� and

in WOCE drifter data �Qiu et al�� ����� Bingham� ������ In the drifter data� it has a

maximum mean speed of ��� cm�s �Fig� ���� Averaged over the full set of hydrographic

observations� the NHRC can be seen out to ������� km o� the island ridge �Fig� ����

The NHRC does not have a strong seasonal signal� but strongly 
uctuates at in�

traseasonal to interannual periods �Firing� ����� Firing et al�� ������ Bingham ������

noted strong intermittency of the NHRC in WOCE drifter data� He stated that ��t�he

average NHRC �in the drifter data� � � � is based on only a few months of data�
 referring

to the coherent alongridge motion of several drifters in late ����� From this� he con�

cluded that ��t�he drifter data showed that the current is not there most of the time�


However� in the overlapping data of this study� the current is signi�cant in ����������

���� and ���� �Fig� ���� although the late����� mean speed of ��� cm�s is the strongest

appearance of the NHRC in the data� Although the drifters sample the NHRC rather

coarsely� the resulting time series re
ects some of the variability seen in ADCP sections

between O�ahu and station ALOHA �Firing� ����� Firing et al�� ����� �Fig� ����
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Mysak and Magaard ������ o�ered the �rst dynamical explanation of the NHRC in

their development of Rossby wave re
ection o� a nonzonal boundary� They showed that

the interaction of incident long Rossby waves and re
ected short Rossby waves could

rectify into an along�boundary current u governed by

�u sin�� R	yu " 	�y
�
u�v�

�
� ������

where � is the gradient of the Coriolis parameter f � � is the counter�clockwise angle

from the along�ridge coordinate x to a line of constant latitude� and R is a damping

term� The observed Reynolds shear stress hu�v�i is shown in Fig� ��� unfortunately� the

driving term on the right�hand side of ������ depends on the curvature of this stress�

which cannot be resolved within the error bars of the drifter measurement �Bingham�

������

White and Walker ������ proposed that the NHRC is a pseudo�western boundary

current� which could be described by integrating the Sverdrup model between the North

American continent and the Hawaiian Ridge� This suggestion was developed by Qiu

et al�� who showed that Godfrey	s ������ island rule� predicts a transport similar to

that observed by Firing ������� This theory was extended in Firing et al� ������ to the

nonsteady case� demonstrating that many aspects of the intraseasonal to interannual

variability are consistent with large�scale extra�equatorial wind forcing� If the NHRC is

a pseudo�WBC� its lowest�order dynamics are geostrophic� The similarity between the

drifter�observed current and the dynamic height slope suggests this may indeed be the

case� although the current appears to be stronger and narrower in the hydrography�

Firing ������ showed that there was a rapid 
ux of mean to eddy kinetic energy in

the NHRC� suggesting a dissipation timescale of �� days� In the drifter data� the mean

�The NHRC is assumed to balance the Sverdrup transport in the ocean interior between Hawai�i and
North America with the net Ekman transport into this area�
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alongridge current hui goes from ����� m�s at �� km o� the ridge to rest at ��� km

o�ridge� yielding a gradient of 	y hui " ���� ���� s��� In the presence of the observed

Reynolds shear stress minimum of ����� � ���� � ���� m��s� at �� km o� the ridge�

the mean to eddy energy 
ux is � ���W�m� �but not signi�cantly di�erent than zero

to one standard error� Fig� ���� Using the peak speed of hui"���� m�s� this gives a

dissipation timescale of ��� days�

��	�� Currents in the Island Lee

West of the islands� the drifter�derived currents show elongated� counter�rotating gyres

extending from the immediate lee of Hawai�i �����W� to �����W� a distance of ap�

proximately ���� km� The southern� anticyclonic gyre follows the North Equatorial

Ridge and the mean path of anticyclonic eddies �see Fig� ���� the accelerated NEC jet

at ���N de�nes its southern edge� while the Hawaiian Lee Countercurrent at �����N de�

�nes its northern edge� North of this� the cyclonic gyre is centered on the mean path

of cyclonic eddies� Its northern edge is de�ned by a westward current which has not

previously been identi�ed� and shall herein be called the Hawaiian Lee current �HLC��

Hawaiian Lee Current

Latham ������ noted that several hydrographic surveys revealed westward 
ow south

of Kaua�i and the Kaua�i Channel� He found that� between � and ��� dbar� the mean

westward transport in this area was �� Sv� Rather than a current extending along

the island chain� Latham interpreted this 
ow as the northern edge of a cyclonic swirl

south of Kaua�i� However� the drifter data show that this current is continuous �in

a time�averaged sense� along the island chain� 
owing along the leeward coasts of the

major islands from Maui to Kaua�i �Fig� ���� A time series of drifters within the HLC

is shown in Fig� ��� and suggests that there may be signi�cant interannual 
uctuations
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in the strength of the current �although the patchiness of drifter sampling makes this

impossible to demonstrate conclusively��

In the drifter data averaged along the island ridge �Fig� ���� the HLC reaches a

maximum speed of �� cm�s at a distance of ��� km o�ridge� As the current 
ows

along the ridge� it appears to broaden and weaken� but retains a well�de�ned southwest

edge ���� km from the ridge� The HLC can be seen in the hydrography �albeit barely

signi�cantly� Fig� ��� with the dynamic height gradient yielding a current of maximum

strength ����� cm�s at a distance of ���� km from the ridge� Within the HLC� the

Reynolds shear stress is not signi�cantly di�erent from zero� it climbs to ������ �����

���� m�
s� at ��� km o�ridge� The mean alongridge current goes from rest at ��� km

o�ridge to ����� m�s at ��� km o�shore� giving 	y hui � �� � ���� s��� In the

presence of the shear stress� this suggests a mean to kinetic energy conversion at a

rate of � ��W�m� �Fig� ���� Past ��� km o�ridge� the Reynolds shear stress changes

sign� the energy 
ux in this region will be discussed in the section on the Hawaiian Lee

Countercurrent�

After the HLC 
ows around Kaua�i and Ni�ihau� it joins with the NHRC to form

a single� relatively narrow westward current running along ���N� This HLC�NHRC

extension persists to the edge of the study region �Fig� ���� The dynamic height map

�Fig� ��� suggests that the HLC�NHRC extension is ���� opposed to the gyre�scale 
ow�

and there is no evidence of the extension in the smoothed map� However� the zonally�

averaged dynamic height �eld reveals a persistent ridge along ���N �Figs� ��� ���� The

ridge is only � � degree in width� suggesting an extremely narrow ���� km� westward

jet along ��������N� This jet may be the signature of the HLC�NHRC extension in the

hydrography� it is not clear� however� why the extension appears considerably wider and

stronger in the drifter speeds� As mentioned earlier� the sporadic and relatively short�
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term drifter observations may not represent this current when averaged over interannual

time scales� Along the latitude of the HLC�NHRC extension� the drifter data do not

suggest signi�cant 
uxes between the eddy and mean �elds�

Hawaiian Lee Countercurrent

The eastward�
owing Hawaiian Lee Countercurrent extends along �����N from ���� to

����W �a distance of over ��� km�� with a peak eastward speed of �� cm�s �Fig� ���� It

is relatively narrow� the total width of eastward 
ow is ���� km� with the core �speeds

greater than � cm�s� less than ��� km across� In hydrography� it appears as a wider

�������N�� slightly weaker ����� cm�s max� eastward 
ow �Fig� ���� This study is the

�rst to show the HLCC in drifter data� Presumably� previous examinations of drifters

in the island lee did not contain enough trajectories to identify the countercurrent��

A time series of drifter speeds in the HLCC is shown in Fig� ��� The strengths of

the HLC and HLCC appear to be correlated� in years when the westward�
owing HLC

is strong� the eastward�
owing HLCC is also strong� This suggests a similar mechanism

is responsible for both currents� When Wyrtki and Kilonsky ������ noted the HLCC

in the mean Hawai�i�to�Tahiti Shuttle Experiment hydrography� they proposed it was

�related to the appearance of eddies behind the island of Hawaii and south of Oahu�


The drifter data are consistent with this hypothesis� the HLCC in Fig� �� is primarily

due to the rotary motion of drifters within lee eddies� To demonstrate this� the drifter

trajectories were divided into ���day segments� and the rotary spectra of each was

calculated� A segment was 
agged as �eddy�trapped
 if the subinertial variance of

one rotary component was ��� times �or more� greater than the other� The value ���

was chosen because larger values did not 
ag segments which were clearly orbiting

�For example� Roden ������ showed ��� tracks of drifters which traveled westward along the latitude
of the HLCC� He concluded that the discrepancy between this motion and the eastward �ow suggested
by hydrography was due to Ekman drift and the non�stationarity of the �ow�
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eddies for a few loops� The 
agged and un
agged segments are shown on the left�hand

side of Fig� ��� Visually� the un
agged tracks appear relatively straight or randomly�

meandering� They spanned ��! of the drifter�years of 
agged tracks in the area ����

����W� ������N� When the zonally�averaged zonal speed is calculated� the eastward

countercurrent is only present in the �eddy�trapped
 subset of data� the mean westward

speed of un
agged drifters reaches a minimum at ����N which is not signi�cantly

di�erent from zero� This suggests that there may be an additional process weakening

the westward 
ow at this latitude� similar to the mass�balancing countercurrent in White

and Walker	s ������ Sverdrup model�

If the lee eddy �eld consisted of randomly�placed cyclones and anticyclones� their

superposition would not create a countercurrent like the HLCC� However� as shown in

Chapter �� the con�guration of the lee eddy �eld in the longitude band of the HLCC is

far from random� Because of their divergent meridional drift� opposite�signed lee eddies

tend to be sorted on either side of �����N �see Fig� ���� Drifters around an eddy trace

cycloids� with the retrograde portion of each orbit falling near the latitude band of the

HLCC� This process can also be described in terms of the mean dynamic height �eld�

anticyclones tend to lift mean dynamic height south of �����N� while cyclones depress it

to the north� This process creates a mean dynamic height gradient along �����N� which

in geostrophic balance leads to the HLCC�

Averaged from ��� to ����W� themean density h�i increases from ������ at �����N to

������ kg�m� at �����N� The mean eddy advection of density hv���i works against this

gradient� reaching a minimum of ������ ���� � ���� kg�m�s at �����N� This suggests

a conversion of mean to eddy potential energy at the rate of � ��W�m� between ��

and ���N� dropping to half that value at the latitude of the HLCC �see Fig� ���� At

������N �the band of mean anticyclone passage�� hv���i is not signi�cantly di�erent
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from zero� In contrast to the PE 
ux� the data suggests that there is an eddy�to�mean

kinetic energy 
ux along the paths of the anticyclonic and cyclonic eddies� In the

anticyclone band� hui goes from ����� cm�s at �����N to ��� cm�s at �����N� giving

a mean gradient of 	y hui � ��� � ���� s��� The mean eddy meridional advection of

zonal momentum �i�e� Reynolds shear stress� works to reinforce this gradient� reaching

a maximum of ����� ����� ���� m��s� at �����N� The associated energy 
ux is nearly

���W�m� from the eddy to the mean �eld�� In the band of the cyclonic eddies� the mean

zonal speed drops from ��� cm�s at �����N to ����� cm�s at �����N� yielding a mean

gradient of 	y hui � ����� ���� s��� The Reynolds shear stress reaches a minimum of

������ ����� ���� m��ss at �����N� implying eddy�to�mean kinetic energy conversion

at a rate of � ���� �����W�m� �but not signi�cantly di�erent from zero� see Fig� ����

Further downstream ���������W�� the kinetic energy 
ux is considerably smaller due

to the reduced gradient of the mean zonal current �Fig� ���� From ���� to �����N�

the mean current increases from ����� to ���� cm�s� yielding a gradient of 	y hui �

��� � ���� s��� The Reynolds shear stress reaches a maximum of ���� � ���� � ����

m��ss at �����N �nearly the same as its value in the ��������W band�� giving an eddy

to mean kinetic energy 
ux of � ��W�m� �Fig� ����

In addition to being driven by the eddy �eld� there may be an underlying Sverdrup

component to the HLCC� White and Walker ������ calculated a �blocked
 Sverdrup 
ow

by integrating wind stress curl across the Paci�c� and adding a boundary current along

the Hawaiian Ridge which forced no normal 
ow through the ridge� From continuity�

they found two eastward�
owing bands west of the islands� which owed their existence

to the ridge	s blocking e�ect� however� the connection between these bands and the

�The total �kinetic plus potential� energy loss of AC��b and AC��c in the spin�down model of
Chapter � was � ��W
m�� Thus� this kinetic energy �ux seems excessive if these spin�down rates are
representative� The discrepancy may be due to baroclinic conversion of mean to eddy potential energy�
although this remains speculative as the observed �ux is not signi�cantly di�erent from zero�
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HLCC is tenuous� as they were at ���N and ���N� In the ����layer model of Qiu et al�

������ �which included Sverdrup dynamics� but did not capture the intensity of the lee

eddy �eld�� there was no lee countercurrent� The linearized Navy Layered Ocean Model

�NLOM� has a Sverdrup�driven countercurrent at the latitude of the HLCC �Leonardi�

������ The strength of this current is highly sensitive to the 
ow through the model	s

�Alenuihaha Channel� and disappears completely when the through�channel transport

exceeds �� Sv �H� Hurlburt� pers� comm��� The nonlinear NLOM includes a highly

energetic lee eddy �eld� which substantially alters the countercurrent and strengthens

it along ��������W �Leonardi� ������

Averaged between ����W and ����� the drifters have a mean westward speed of

�� cm�s at ������N �Fig� ���� while the dynamic height gradient suggests an eastward

current of �� cm�s in the same latitude band �which peak at over �� cm�s at ���N�

Fig� ���� The ��� cm�s discrepancy is roughly � cm�s larger than that of the upstream


ow at this latitude �Fig� ���� and �� cm�s larger than the discrepancy of the HLCC	s

strength in the ��������W band �Figs� ��� ���� The di�erence may be at least partially

due to increased westward shear beneath ��� dbar� but unfortunately the database of

deep XBT�CTD casts is extremely sparse in the area �there are only �� casts reaching

���� dbar in the rectangle ��������W� ������N��

Is the HLCC associated with �or identical to� the Subtropical Countercurrent It

is di�cult to give a de�nitive answer to this question� as the latter term has been in�

consistently used in the literature� Wyrtki ������ described the North Equatorial Ridge

as separating the westward NEC from the eastward Subtropical Countercurrent� sug�

gesting that the HLCC is a segment of the Subtropical Countercurrent� White and

Walker ������ de�ned the Subtropical Countercurrent as any eastward�
owing current

between ��� and ���N in the central North Paci�c� Their dynamic height map showed
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three narrow countercurrents at ���N� ���N and ���N� The HLCC coincides with their

���N band� but the relationship between the two is not clear� they showed the band

extending from the Philippines to the coast of Mexico� while this study �nds no evi�

dence of mean eastward 
ow to the east of Hawai�i at ���N� White and Hasunuma ������

showed that� in hydrographic data between ���� and ����E� the Subtropical Counter�

current consisted of two eastward�
owing bands at ������N and ���N� which shifted

northward as they ran eastward� This banded system of currents appears to be too

far north to be related to the HLCC� Cushman�Roisin ������ described the Subtropical

Countercurrent as the thermal wind manifestation of the Subtropical Front� which runs

across the Paci�c Ocean well north of the HLCC	s latitude �Cushman�Roisin	s Fig� �

shows the front running from ���N at ����E to ���N at ����W�� By this de�nition� the

HLCC and the Subtropical Countercurrent are separate features�

��	�� Flow through the channels separating the major islands

The major Hawaiian Islands are separated by deep channels of width ����� km �Fig� ���

As with most of the study region� the mean 
ow through these channels is weak� in�

stantaneous snapshots are often overwhelmed by tidal and mesoscale 
uctuations�

�Alenuihaha Channel

The �Alenuihaha Channel separates the islands of Hawai�i and Maui� It is a deep

��� km� channel of width �� km� Numerical models of the 
ow through this channel

are highly sensitive to the �ne�scale bathymetry� increasing the resolution from ���� to

����� greatly weakens the through�channel 
ow �Leonardi et al�� ������ The transport

through the channel has a strong e�ect on the strength of the NHRC and of the HLCC�

with the HLCC disappearing completely if the through�channel 
ow is intense �H� Hurl�

burt� pers� comm��� Quantifying the direction and magnitude of through�channel 
ow is
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also important in assessing its importance as an eddy�generating mechanism �Patzert�

������

Price et al� ������ presented several examples of cold intrusions extending WSW

from the �Alenuihaha Channel in AVHRR imagery� many similar images were found in

this study �c�f� Fig� ���� However� in many cases it is unclear whether this feature is

actually thermocline�deepmotion through the channel� or wind�drivenmixing delineated

by unmixed� diurnally�heated water in the islands	 wind shadows �see Fig� ���� A

notable exception can be seen in the composite AVHRR�drifter images for �� August��

September ���� �Fig� ����� which show a drifter passing into a cold plume of water

south of Maui� then traveling west at ��� cm�s� The drifter traced a narrow orbit

around Kaho�olawe over the next ��� days� suggesting that at least part of the plume

wrapped clockwise around this island�

Patzert ������ noted that dynamic height measurements on either side of the channel

suggest a �� cm�s current WSW through it� corresponding to a transport of �� Sv�

Dynamic height solely within the channel itself is quite consistent with this conclusion

�Fig� ���� Patzert also showed that the presence of a strong lee cyclone can drive

��� cm�s currents through the channel for several weeks before the eddy propagates

away from the mouth of the channel�

Not much drifter data have been collected in the �Alenuihaha Channel� In a short

��� hour� deployment of six parachute�drogued drifters in May ����� the currents were

found to be predominantly tidal� the low�frequency drift was virtually nil� despite con�

current dynamic topography indicating westward through�
ow �Wyrtki et al�� ������

Figure �� shows the passage of all WOCE drifters which neared or passed through the

�Alenuihaha Channel �including the one mentioned earlier�� The mean through�channel

speed of the drifters is not signi�cantly di�erent than zero� but the large number of
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drifters deployed east of the channel may be strongly biasing this result �i�e� more

drifters had the opportunity to drift ENE through the channel�� The overall pattern of

trajectories suggests WSW 
ow in NW half of the channel and NE 
ow near the island

of Hawai�i�

From mid����� to mid������ an electromagnetic �Seadata� current meter was de�

ployed o� the northern tip of Hawai�i� at a depth of �� m �Fig� ���� The currents

were predominantly semidiurnal� superimposed on a mean of ���� � ��� cm�s to the

northeast� Very close to the same location� Wyrtki al� ������ found a mean current of

���� cm�s to the NE on �� July��� August ����� and a mean current of ��� cm�s to the

NE on � August�� September ����� These relatively short�term measurements are not

inconsistent with the low�frequency variability of the current in Fig� ���

Patzert and Wyrtki ������ speculated that recti�cation of tidal waves may produce

a clockwise mean 
ow around Hawai�i� Luther ������ noted that this process may also

occur with island�trapped waves� In the Seadata record� peaks in the demodulated

semidiurnal amplitude are often concurrent with low�frequency peaks �Fig� ���� How�

ever� in early February ����� the largest peak in the low�frequency 
ow is unaccompanied

by signi�cant energy in the semidiurnal� diurnal or island�trapped wave bands� This

eastward pulse came less than one week after a reversal in the trade winds �Fig� ����

AVHRR images �Fig� ��� show that as the trades relaxed� warm water in Hawai�i	s lee

propagated around the northern point and down the NE coast in a narrow ���� km�

jet� It is not clear from this image what is driving the jet� it may have been due to

relaxation of the wind�driven pressure gradients in the channel� or may possibly be a

clockwise coastal squirt driven by an anticyclone�wall interaction �Nof� ����a�� The

latter explanation seems less likely� as the AVHRR imagery does not show anticyclonic

circulation of the SST gradients in the island	s lee� and the satellite altimetry does not
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suggest an anticyclone was formed near this time �although there was an extremely low

sea level anomaly the previous month� Fig� ����

In summary� ��� cm�s semidiurnal tidal 
uctuations dominate the instantaneous

currents of the �Alenuihaha Channel� Occasionally� excitation of island�trapped waves

around Hawai�i and the Maui group of islands �Maui� Moloka�i� Lana�i� Kaho�olawe�

create lower�frequency oscillations of magnitude ����� cm�s �Luther� ����� Lumpkin�

������ During steady trade wind conditions� the Ekman 
ow is NW� towards the SE

coast of Maui� This nearly linear coast spans �� km from the eastern tip of Maui to the

SW point of Kaho�olawe� approximately paralleling the trades� It thus acts as a barrier

to the Ekman 
ow� creating downward pumping and �during spin�up� a linearly growing

WSW coastal jet� A steady�state condition is reached when Ekman convergence against

the Maui coast is balanced by boundary�layer 
ow around either side of the island��

with a mean �� cm�s 
ow WSW through the channel� On the Hawai�i side� the less�

linear bathymetry may cause the Ekman�driven divergence to be more rapidly balanced

by northward 
ow around both sides of the island� Nevertheless� because the cross�

channel scale ��� km� is smaller than the internal Rossby radius ���� km �Emery et al��

������� the coastal jet extends across the channel� Superimposed on these channel�scale


uctuations� recti�cation of the tidal oscillations may create O��� cm
s�� low�frequency

clockwise 
ow around Maui and Hawai�i �Patzert and Wyrtki� ������ With the onset of

Kona winds� relaxation of the cross�channel dynamic height gradient may be associated

with a ��� cm�s� extremely narrow jet propagating clockwise around the northern tip

and northeast coast of Hawai�i�

�This may explain the divergent mean currents against the SE coast of Maui measured by Wyrtki
et al� ������� see Fig� ��
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Kaiwi and Kaua�i Channels

The Kaiwi Channel is the narrow ��� km�� relatively shallow ���� m maximum depth�

passage between Moloka�i and O�ahu� Using hydrographic surveys� parachute�drogued

drifters� and current meter records� Burks ������ showed that the subinertial 
ow

through the channel was �� cm�s to the NE during steady trade winds� In Kona

wind conditions� the low�frequency 
ow reversed direction and weakened in magnitude�

The Kaua�i Channel is the wide ��� km� and deep �� � km for most of its width�

channel separating Kaua�i from O�ahu� After passing O�ahu� the NHRC and HLC meet�


ow to Kaua�i� bifurcate and 
ow around Kaua�i and Ni�ihau� and �nally rejoin to

form a �� cm�s westward current along ���N �Fig� ���� Latham ������ demonstrated

this cross�channel mean 
ow in dynamic topography� current meter records� and the

trajectories of parachute�drogued drifters� In contrast with Burks	 ������ �ndings for

the Kaiwi Channel� Latham found that there was no correlation between local winds

and the low�frequency 
ow in the Kaua�i Channel�

��� Conclusions

The northern edge of the westward�
owing North Equatorial Current is e�ectively

blocked by the Hawaiian Ridge� The NEC bifurcates at ������N� the southern branch

is accelerated as it passes the South Point of Hawai�i� creating a core of relatively fast

westward 
ow at ��������N which extends to �����W� North of the bifurcation point�

the 
ow follows the Hawaiian Ridge to Kaua�i before turning westward� creating the

North Hawaiian Ridge Current� Very little 
ow appears to pass through the channels

separating the islands� including the �Alenuihaha Channel between Hawai�i and Maui�

To the west of the island chain� the blocking e�ect of the ridge creates a wake which

extends ���� km across the central Paci�c ocean� Within this region� instantaneous

���



snapshots of the currents are dominated by lee eddies� In relatively low�resolution nu�

merical models such as the ���� layer model of Qiu et al� ������ and early runs of the

Navy Layered Ocean Model �NLOM�� the island wake is a relatively structureless swath

of near�zero currents� With higher resolution allowing for the presence of less�damped

mesoscale 
uctuations� the NLOM shows a similar structure to that observed in this

study �Leonardi� ����� Leonardi et al�� ������ the wake consists of counter�rotating�

elongated gyres which owe their mean vorticity to the propagation paths of the cyclonic

and anticyclonic eddies� Along the northern edge of the wake� a strong �� �� cm�s�

and previously undocumented current� here called the Hawaiian Lee Current� runs along

the leeward coasts of the major Hawaiian Islands from Maui to Kaua�i� After passing

Kaua�i and Ni�ihau� the HLC joins with the NHRC to form a westward�
owing current

which extends to the edge of the study region�

The eddies� particularly the anticyclones� may initially draw energy from the mean

shear in the lee of Hawai�i� However� as they drift westward into the ��������W band�

they converge eastward momentum between ������Nto �����N� at a rate of � ���W�m�

This may be a primary factor driving the narrow Hawaiian Lee Countercurrent� this


ux can accelerate the current from rest to its observed maximum of � �� cm�s in

O��� days�� Farther to the north and south� baroclinic energy conversion returns po�

tential energy to the eddy �eld� and a relatively large gradient in the mean meridional

speed along ���N suggests relatively strong conversion of mean to eddy kinetic energy at

this latitude� As opposite�signed eddies continue to propagate westward� their divergent

meridional drift carries them progressively further apart� until west of � ����W they

no longer converge momentum along the band of the HLCC�

While the drifter and hydrographic data qualitatively agree on many features of the

Hawaiian 
ow �eld� they disagree on the magnitude of currents by ����� cm�s even

���



when the Ekman drift has been taken into account� While some of this discrepancy

is due to the absolute motion at ���� dbar and geostrophic shear between ��� and

���� dbar� spatial averaging in the NEC �where the ALACE data density is greatest�

suggests an underlying ��� cm�s residual remains� To address this� future studies will

need to draw upon more extensive �eld tests of the water following characteristics of

WOCE drifters and denser sampling by ALACE 
oats and deep hydrographic casts�
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Figure ��� Speeds of ALACE drifting buoys at a nominal depth of ���� m� Data
courtesy Russ E� Davis�
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Figure ��� Top� Ekman drift from slab model �linearly decreasing stress and constant
horizontal velocity in mixed layer�� The strong drift at low latitudes is caused by the

�
f dependence of UE �
Bottom� Ekman drift from the regression model �arrows�� Also shown is the down�
wind slip �short lines pointing SSW�� caused by wind�induced drag on the surface and

subsurface 
oat �Niiler and Paduan� ������
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Figure ��� Zonally�averaged drifter observations between ��� and ����W �see Fig� ����
At top is the variance of the zonal current �left�� meridional current �middle� and co�
variance between them �right�� At bottom is the variance of the temperature �left�� the
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Figure ��� Zonally�averaged drifter observations between ��� and ����W�
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Figure ��� Zonally�averaged drifter observations between ��� and ����W �see Fig� ����
At top is the variance of the zonal current �left�� meridional current �middle� and co�
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Figure ��� Zonally�averaged drifter observations along the Hawaiian Ridge �see Fig� ����
At top is the variance of the along�ridge current �left�� cross�ridge current �middle� and
covariance between them �right�� At bottom is the variance of the temperature �left��
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from independent data� Shading gives the standard error bars�

���



−10 0 10
−200

−100

0

100

200

300

−ρ
o
 <u’v’> ∂

y
<u>

µW/m3

°N

−150 −100 −50 0 50
−200

−100

0

100

200

300

−ρ
o
 <v’2> ∂

y
<v>

µW/m3
−10 0 10

−200

−100

0

100

200

300

−C <ρ’ v’> ∂
y
<ρ>

µW/m3

0 50 100
−200

−100

0

100

200

300
<EKE>

J/m3

°N

0 50 100
−200

−100

0

100

200

300
<EPE>

J/m3

°N

Figure ��� Top� mean eddy kinetic �left� and potential �right� energy along the Hawaiian
Ridge �see Fig� ����
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Figure ��� Dynamic height at the surface relative to ��� dbar� averaged along the
Hawaiian ridge�

Top� Points used for zonally�averaged curve�
Bottom� left� Median dynamic height� Every white circle is calculated from independent
data� Shading gives standard error bars�
Bottom� right� Geostrophic zonal current calculated from independent points of the

dynamic height curve�
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Figure ��� Top� Along�ridge speed of drifters within ��� km NE of the line in Fig� ���

Negative is to the WNW� Circles with standard error bars are the yearly averages� The
overall mean is ����� � ��� cm�s� with a standard deviation of ���� cm�s�
Bottom� Depth�averaged alongridge current from �� to ��� m depth measured by ship�
board ADCP� ����������N� �����W� Negative is to the WNW� Circles with standard

error bars are the yearly averages� The overall mean is ��������� cm�s� with a standard
deviation of ���� cm�s� Figure adapted from Firing et al� �������
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Figure ��� Right� Mean speed of drifters along the Hawaiian ridge� Blue dots are for
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error bars�
Left� top� Points averaged along�ridge for curve at right�
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Figure ��� Top� Along�ridge drifter speeds in the Hawaiian Lee Current �from ����� km
o�shore of the line in Fig� ���� The vertical axis has been compressed to focus on the

yearly averages �circles� with standard error bars��
Bottom� Zonal drifter speeds in the Hawaiian Lee Countercurrent �����������N� ����
����W�� The vertical axis has been shrunk to focus on the yearly averages �circles� with

standard error bars��
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Left� top� Points used for curve at right�

Left� bottom� Geostrophic through�channel current calculated from independent points
of the dynamic height curve�
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Figure ��� Three�day trajectories of drifters near the �Alenuihaha Channel� Dots in�
dicate the position at the end of three days� This is a composite of trajectories� and
not a snapshot at any one time� Four drifters passed through the channel� at speeds
of ���� cm�s� ���� cm�s� ����� cm�s and ����� cm�s �positive to the ENE�� The overall

through�channel 
ow is ����� ���� cm�s�
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Figure ��� Top� left� Location of an electromagnetic �Seadata� current meter� An arrow
indicates the direction of the mean current�
Top� right� ERS�� scatterometer weekly wind stress averaged over study region� Solid�
zonal stress� dashed� meridional stress�

Middle� upper� Time series of the current ��� north of east �through�channel�� lowpassed
at �� days� Gaps are due to instrument servicing� The dashed line is the mean�
Middle� lower� Complex demodulation of the through�channel current� Upper curve�

����� h� Lower curve� ����� h�
Bottom� Complex demodulation of the through�channel current at �� h �gravest island�
trapped wave eigenfrequency �Luther� ������� lowpassed to admit ����� h�
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Chapter �

Dispersion and eddy diffusivity

Lagrangian statistics are calculated for individual drifter trajectories� The dominant
length and time scales of variability and apparent eddy di
usivity are found for several
subregions� and the long�time dispersion is compared to classical theory�

As shown in Chapter �� drifter clusters are rapidly spread out by eddies in the lee of

the islands� Eddies are particularly adept at this� due to their intense currents� relatively

small length scales� and their ability to transport tracers over thousands of kilometers�

Quantifying this dispersive capacity is essential in order to anticipate the environmental

impacts of discharged pollutants and oil spills and understand observed nutrient and

plankton distributions �Bennett and Denman� ������

Lagrangian quantities describing drifter dispersion are derived using classical dis�

persion theory� However� this theory assumes stationary and homogeneous currents� a

drifting buoy travels through spatially inhomogeneous mean currents� in an eddy �eld

which changes in both space and time� Because of this� Freeland et al� ������ concluded

that even the short�time dispersion of SOFAR 
oats �neutrally buoyant at ����� m�

in the MODE region cannot be described by classical theory� Subsequent studies of

near�surface drifters �Colin de Verdiere� ����� Krauss and B%oning� ����� Paduan and

Niiler� ����� have not found this inconsistency for short�time dispersion�

In this chapter� drifter dispersion in the Hawaiian region is examined� The La�

grangian integral time and length scales and the apparent eddy di�usivity are calculated

in six subregions� The short� and long�time dispersion is compared to predictions made

by classical dispersion theory� thus testing its applicability to the Hawaiian region� Fi�

nally� the Lagrangian spectra are examined for signi�cant zonal�meridional and rotary

motion in the subregions�
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��� Classical theory� Taylor�s Theorem and eddy di�usivity

Consider a cloud of particles released into a 
uid at a single point� In the absence of any

macroscopic 
uid motion� the cloud slowly di�uses outward due to the Brownian dance

of the water molecules� Within a 
uid in motion� advection strongly a�ects this process�

The instantaneous current u�t� experienced by a particle can be divided into a mean

component uo �identical for all particles�� and a 
uctuating component u��t� �which

may vary from one particle to the next�� The mean current advects the cloud	s center

of mass along the trajectory xo " uot� advection by the random 
uctuations spreads

the cloud orders of magnitude more rapidly than via molecular di�usion �c�f� Tennekes

and Lumley ��������

The position of an individual particle in the cloud is x�t� " uot� x��t�� where

x� "

Z t

�
d� u����� �����

Dispersion is quanti�ed as
�
x��
�
� where the brackets denote an ensemble average over all

particles� Under the assumption that u� is ergodic� ����� can be used to derive Taylor	s

Theorem� D
x��
E
" �

D
u��
E Z t

�
d� �t� ��Ru��� �����

�Taylor� ������ where the autocorrelation function Ru is

Ru��� " lim
Tm��

�

hu��iTm
Z Tm

o
dt u��t�u��t� ��� �����

Because the autocorrelation function is the Fourier transform of the spectral density

E��� �Bendat and Piersol� ������ Taylor	s Theorem can be expressed as

D
x��
E
" �

Z
�

��

d�
Eu���

��
sin�

�
�t

�

�
�����

�Kamp#e de Feri&et� ������ If u� has a white�noise spectrum Eu��� " Eo� ����� shows that
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the rms displacement is proportional to
p
t� Dispersal at this rate is called a �random

walk�


The dispersive motion can be described by a characteristic time and space scale�

The time scale� de�ned as

Tu "

Z
�

�
d� Ru� �����

is known as the Lagrangian interal time scale� It can be combined with the rms speed

to derive the Lagrangian length scale Lu " urmsTu� Because the integral time scale Tu

is the scale over which Ru decays� it is a useful dividing line between the �short�time


and �long�time
 dispersion� If t� Tu� Ru � � and the dispersion is

D
x��
E
�
D
u��
E
t� �t� Tu�� �����

Initially� the rms particle displacement increases linearly with time with a slope equal

to the rms velocity� However� once t
 Tu� Ru � � and

D
x��
E
� �

D
u��
E
Tut �t
 Tu�� �����

The rms particle displacement slows from the inital growth �� t� to a random�walk

�� pt��

Batchelor ������ demonstrated that dispersion could be parameterized as an appar�

ent eddy di�usivity Kxx� de�ned by

Kxx "
�

�

d

dt

D
x��
E
� �����

Using ������ one �nds that the di�usivity approaches the asymptotic value

Kxx "
D
u��
E
Tu �����

for t
 Tu �again assuming that u� is stationary��
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��� Direct calculation of Lagrangian properties

In the Hawaiian region� the mean currents and the eddy kinetic energy �eld are quite

inhomogeneous �see Figs� �� ���� This challenges the basic assumptions of the classical

theory � � � how relevent are Lagrangian scales and eddy di�usivities calculated under the

assumptions of stationarity and homogeneity In an attempt to minimize these e�ects�

I divided the study region into six rectangular cells �shown in Fig� ���� Within each cell�

I proceed with the calculations as if the assumptions of classical theory were valid� In

the next section� I explicitly test Taylor	s Theorem by comparing the directly�observed

short� and long�time dispersion with the asymptotic limits ����� and ������

The integral time scales and di�usivities were calculated from ���day nonoverlapping

segments of the drifter tracks� grouped into the cells according to their center of mass�

Invariably� a direct estimate of the autocorrelation function R is contaminated by noise

and uncertainties in the mean current� This contamination is signi�cant at large lags�

where R should in theory approach zero� To minimize the e�ects of these errors on

the Lagrangian time scale calculation� it has become standard practice �c�f� �Freeland

et al�� ����� Krauss and B%oning� ����� Poulain and Niiler� ������ to integrate only to

the �rst zero crossing of R� Because some of the negative lobes in R may re
ect true

oscillatory motion �for example� the cycloidal trajectories of drifters trapped in eddies��

this procedure produces an upper estimate of the Lagrangian time scale�

For each segment within a cell� the ensemble�averaged mean speed was removed and

the autocorrelation functions for u� and v� were calculated� These functions were then

integrated to get the integral time scale� The mean zonal and meridional time scales are

shown in Fig� �� and listed in Table ���� The meridional scale is quite homogeneous�

especially in the northern four cells� In all cells� the meridional time scale is shorter

than the zonal scale� The outstanding feature of Fig� �� is the ��� days zonal time
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scale in the southern two cells� The asymmetry between the zonal and meridional time

scales suggests that meanders� rather than eddies� dominate the variability in this region

�Krauss and B%oning� ������ This interpretation is visually consistent with the raw drifter

tracks south of ����N�Fig� ���

Table ���� Lagrangian properties in each cell� calculated from independent ���day segments�
The data are grouped by the cell�s central longitude �horizontal axis� and latitude �verti�
cal axis�� Data are number of ���day segments within the cell� zonal	meridional time scale�
zonal	meridional rms velocity� and zonal	meridional eddy di
usivity

�������W �������W

�����N

��� segments

������� � ������� days
�������� � �������� cm�s

��������� � �������� m��s

��� segments

������� � ������� days
�������� � �������� cm�s
�������� � �������� m��s

�����N

��� segments
������� � ������� days

�������� � �������� cm�s
���������� � �������� m��s

��� segments
������� � ������� days

�������� � �������� cm�s
��������� � �������� m��s

�����N

�� segments
������� � ������� days

�������� � �������� cm�s

��������� � ��������� m��s

�� segments
������� � ������� days

�������� � �������� cm�s

��������� � �������� m��s

Apparent eddy di�usivities were calculated using ����� �Fig� �� and Table �����

Di�usivity ranges in value from �������� m��s in the eddy�rich island lee to �������

m��s in the southern cells� In the northern four cells� the zonal di�usivity is on average

��� times greater than the meridional di�usivity� Because the mean rms velocity is nearly

isotropic for these regions �urms
vrms " ������ this is primarily due to the anisotropy

in time scales�

Fig� �� shows the zonal and meridional scales and di�usivities as functions of the rms

speed� For comparison� data are included from Colin de Verdier ������ �eastern North

Atlantic� Turbillon region�� Krauss and B%oning ������ �central North Atlantic from

���N to ���N�� and Poulain and Niiler ������ �southern California Current System��
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With two exceptions �the ��� day zonal scales in the southern two cells�� the Hawaiian

time scales are similar to those of the previous studies� The zonal length scales suggest

that� for a given rms speed� Hawaiian eddies are slightly larger than their North Atlantic

counterparts but similar to those o� Mexico� Because the drifters tend to travel greater

distances in a given time� the Hawaiian di�usivities are generally larger than those of

Krauss and B%oning� they are close to �zonally�� or slightly less than �meridionally��

those of Poulain and Niiler�

��� Asymptotic behavior of the dispersion

Expression ����� gives an independent method of calculating the Lagrangian time scale

based on the long�time dispersion� To exploit this� the drifter tracks were divided

into ����day segments� with each track resampled every �� days �i�e� there was a ���

day overlap�� Within each cell� all segments were treated as if they originated from a

single point in space and time �Freeland et al�� ����� and were statistically independent

�Poulain and Niiler� ������ The rms displacements in each cell are shown in Figs� ��

and ��� Over the �rst day� ����� accurately describes the dispersion in all cells� By the

second day� the drifters �feel
 the decorrelation from their initial velocity �i�e� the lag

is a signi�cant fraction of the integral time scale� and the dispersion drops below the

short�time curve�

In order to compare the long�time rms displacement to ������ curves of the form

xrms " a
p
t� yrms " b

p
t have been least�squares �tted to the �nal �� days of displace�

ment in Fig� ��� The curves	 shape closely match the observed meridional spreading� on

average� the regression coe�cients b give Lagrangian time scales �! smaller than the

direct estimates of Tv� However� the zonal rms displacement increases approximately

linearly through day ���� The regression coe�cients a give time scales averaging ��!
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larger than those of Table ���� but are of dubious value given the linear� rather than

p
t� growth�

��� Lagrangian spectra

The spectra of drifter speed were calculated in order to examine the frequency distribu�

tion of mesoscale energy� For this analysis� the tracks were not subdivided into multiple

overlapping segments �i�e� each segment was composed of independent data�� The mean

and trend of each segment was removed� then a ��! cosine window was applied� before

taking the Fourier transform� The spectra of all segments in a cell were then averaged�

with bootstrapping used to get standard error bars�

Fig� �� shows the spectrum of zonal and meridional drifter speed in an energy�

preserving plot� Fig� �� shows the spectra parced into the cyclonic �i�e� counter�

clockwise� and anticyclonic �i�e� clockwise� rotary components� In the northern four

cells� the energy�containing band peaks at ���� days� The most dramatic spectra are

in the island lee cell� sharp spectral peaks occur at ������ �� and �� days period� The

rotary spectra show that the ����� day peak is almost entirely cyclonic� while the �

and �� day peaks are predominantly anticyclonic� The anticyclonic spectrum also has

barely signi�cant peaks at � and �� days �Fig� ���� This discretization of eddy energy

suggests that the motion is a resonant response to direct forcing� or that some process

or combination of processes is quantizing the mesoscale variability within the energetic

���� day band �such as �xed�frequency eddy generation and downstream vortex merg�

ing� see Chapter ��� To the northeast of the islands� anticyclonic energy is signi�cantly

greater than cyclonic energy throughout most of the eddy band� Within the south�

ern two cells� the spectra are considerably less energetic� with broad peaks from �� to

�� days period �consistent with the low rms velocities and increased time scales found
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here�� A relatively sharp peak at �� days is only found in the western cell� This peak is

probably due to anticyclonic lee eddies propagating southwestward into the northwest

corner of the cell� the peak only appears in the anticyclonic spectrum� and does not

appear if segments centered north of ���N are excluded from the average� The eastern

cell contains signi�cantly more cyclonic energy in the ������ day band� with a robust

peak of unknown origin at ���� days and a weaker one at ��� days�

The log�log plots of the spectra for the zonal�meridional �Fig� ��� and anticy�

clonic�cyclonic �Fig� ��� motion generally show a �� slope within the eddy�containing

band in the four northern cells� The slope is well�de�ned in the north� east and north�

east cells� it is masked by the sharp spectral peaks in the island lee� This slope has

been found in models of o��resonant oceanic motion driven by white�noise atmospheric

forcing �Hasselmann� ����� Frankignoul and M%uller� ����� and has been observed in

both Eulerian and Lagrangian spectra of surface currents �Colin de Verdiere� ����� �but

is not ubiquitous �Freeland et al�� ����� Krauss and B%oning� ������� In the southern two

cells� the slope lies somewhere between ���� and ��� it is di�cult to resolve precisely� due

to features such as the energy plateau from ��� days in the western cell� The source

of this energy is not obvious� low�mode equatorial waves might propagate within the

southern boundary of the cell� but empirical evidence suggests they should be inertial

or slightly superinertial �Eriksen� �������

��� Discussion

Within the main body of the NEC south of the islands� zonal dispersion of the La�

grangian drifters is dominated by low�frequency meanders� To the north� dispersion is

dominated by higher�frequency eddies� Due to the increased rms velocities of the lee

�Which may account for the enhanced anticyclonic �clockwise� energy at periods less than three days
in the southern cells of Fig� �� �M�uller and Siedler� ��
���
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eddy �eld� the apparent eddy di�usivity west of the islands is ������� times greater

than to the east� Eddy energy in this region is focused in relatively narrow spectral

peaks� Throughout the Hawaiian region� zonal dispersion is considerably greater than

meridional dispersion� This result is ubiquitous in open�ocean drifter studies� and has

been attributed to topographic e�ects �Rossby et al�� ����� Freeland et al�� ������ spatial

anisotropy of meanders �Colin de Verdiere� ����� Krauss and B%oning� ������ the ��e�ect

�Haidvogel and Ke�er� ������ and meridional shear in the mean zonal 
ow �Krauss and

B%oning� ����� �these mechanisms are not necessarily independent� for example� plane�

tary vorticity gradients greatly in
uence the aspect ratio of mean currents��

Is there a kinematic law independently relating the length and time scales of eddies

to their velocity variance This is currently an unresolved question� although two models

have been proposed� For SOFAR 
oats ���� m and ���� m depth� deployed in MODE

and LDE� J� F� Price �in �McWilliams et al�� ������ concluded that the Lagrangian

properties scaled as

Lu " Txurms� Kxx " u�rmsTx� Tx constant� ������

This parameterization also describes eddy scales in the Southern California Current Sys�

tem �Poulain and Niiler� ������ However� Krauss and B%oning ������ found the empirical

relationship

Tu " Lu
urms� Kxx " urmsLu� Lu constant ������

in their North Atlantic drifter study� and Brink et al� ������ demonstrated the same

relationship in the California Coastal Transition Zone �north of the Poulain and Niiler

study region� and closer to the coast�� For the Hawaiian data� Fig� �� shows the pre�

dicted eddy di�usivity vs� rms speed according to the two models� Model ���� does

a far better job explaining the observed meridional di�usivities� However� model ����

better explains the zonal di�usivities� The rms error of model ���� in explaining the
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zonal�meridional di�usivity is ����� ��� m��s� the error of model ���� is ����� ����

m��s� Thus� neither model is quantitatively superior� although it should be noted that

only model ���� is consistent with the combined di�usivities of this study and those of

Colain de Verdiere ������ and Poulain and Niiler �������

Taylor	s Theorem accurately describes the meridional dispersion of drifters for at

least the �rst ��� days� The initial zonal dispersion is also consistent with classical

theory� however� it is quite inconsistent at times much larger than the integral time

scale� Due to the asymmetry of meridional and zonal length scales of the mean currents�

the most likely cause of this is meridional shear in � u � �Krauss and B%oning� ������

Indeed� for times considerably greater than Tu� this shear can cause a linear increase in

xrms �see Appendix F��
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Figure ��� Top� Apparent zonal �left� and meridional �right� eddy di�usivities

���� m��s��
Middle� Lagrangian zonal �left� and meridional �right� time scales �days��
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Figure ��� Lagrangian properties as a function of rms speed �left� zonal� right� merid�
ional�� Dots are Hawaiian values �open dots for the two southern cells� closed dots for
the four northern cells�� For comparison� triangles give values from Krauss and B%oning
������� crosses from Colin de Verdiere ������� and solid lines from Poulain and Niiler
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Top� integral time scale �vertical� vs� rms speed �horizontal��
Middle� length scale �vertical� vs� rms speed �horizontal��

Bottom� apparent eddy di�usivity �vertical� vs� rms speed �horizontal�� The parabolic
dashed curve is u�rms

'Tu� where 'Tu is the mean integral time scale of the northern four
cells� The straight dashed line is urms

'Lu� where 'Lu is the mean integral length scale of
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Figure ��� Rms displacement of drifters in the six cells� Titles indicate the cell center
coordinates� In all cases� the upper curve is the zonal displacement and the lower curve
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days of displacement�

���



0 2 4 6 8 10
0

50

100

150
12.5N, 167.75W

days

rm
s 

di
sp

la
ce

m
en

t

0 2 4 6 8 10
0

50

100

150
12.5N, 143.25W

days

rm
s 

di
sp

la
ce

m
en

t

0 2 4 6 8 10
0

50

100

150
19.5N, 167.75W

days

rm
s 

di
sp

la
ce

m
en

t

0 2 4 6 8 10
0

50

100

150
19.5N, 143.25W

days

rm
s 

di
sp

la
ce

m
en

t

0 2 4 6 8 10
0

50

100

150
26.5N, 167.75W

days

rm
s 

di
sp

la
ce

m
en

t

0 2 4 6 8 10
0

50

100

150
26.5N, 143.25W

days

rm
s 

di
sp

la
ce

m
en

t
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behavior predicted by Taylor	s Theorem for homogeneous turbulence �top line zonal�
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Figure ��� Energy�preserving plots of the Lagrangian spectra of u �solid� and v �dashed�
in the six cells� The shading indicates the standard error bars�

���



 90  40  15  6 2.5  1 
0

0.005

0.01

0.015

0.02

0.025

days

m
2 /s

2

12.5N, 167.75W

 90  40  15  6 2.5  1 
0

0.005

0.01

0.015

0.02

0.025

days

m
2 /s

2

12.5N, 143.25W

 90  40  15  6 2.5  1 
0

0.005

0.01

0.015

0.02

0.025

days

m
2 /s

2

19.5N, 167.75W

 90  40  15  6 2.5  1 
0

0.005

0.01

0.015

0.02

0.025

days

m
2 /s

2

19.5N, 143.25W

 90  40  15  6 2.5  1 
0

0.005

0.01

0.015

0.02

0.025

days

m
2 /s

2
26.5N, 167.75W

 90  40  15  6 2.5  1 
0

0.005

0.01

0.015

0.02

0.025

days

m
2 /s

2

26.5N, 143.25W

Figure ��� Energy�preserving plots of the Lagrangian cyclonic �solid� and anticyclonc
�dashed� spectra in the six cells� The shading indicates the standard error bars�
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Figure ��� Log�log plots of the Lagrangian spectra of u �solid� and v �dashed� in the
six cells� The shading indicates the standard error bars�
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Figure ��� Log�log plots of the Lagrangian cyclonic �solid� and anticyclonic �dashed�
spectra in the six cells� The shading indicates the standard error bars�
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Chapter �

Discussion

The synthesis of drifter trajectories� ADCP measurements� in�situ sea level records�

satellite altimetry and AVHRR imagery reveals a fascinating� rich picture of the cir�

culation in the Hawaiian Island region� As portrayed in 
owchart form �Fig� ���� the

interaction of the island chain with the impinging gyre�scale oceanic and atmospheric

circulation creates much �ner�scale forcing �elds� leading in turn to the formation of lee

eddies� West of Keahole Point� Hawai�i� a cyclonic shear line separates the island	s wind

shadow from the trade wind jet funneled through the �Alenuihaha Channel� Along this

line� Ekman pumping driven by surface divergence creates lee cyclones at intervals of

�� days �for relatively small cyclones� to ����� days �for large ones�� The northern ex�

tent of the westward�
owing North Equatorial Current �NEC� impinges upon Hawai�i�

where it bifurcates into two branches� the North Hawaiian Ridge Current �NHRC��

which 
ows along the northeast side of the archipelago to Kaua�i� and the NEC jet�

which 
ows along the southeast coast of Hawai�i� separates from Hawai�i	s South Point�

and rejoins the main body of the NEC� Upon separation� this jet forms a strong anti�

cyclonic shear layer in the ocean� instabilities in this layer may represent a signi�cant

source of energy for the generation of the anticyclonic eddies� In addition� as with the

cyclones� wind forcing along the southern edge of Hawai�i	s wind shadow may also play

a role in their generation� In several cases noted in this study �and with at least one ex�

ception� AC��a�� the growth of these anticyclones was limited by centrifugal instability�

resulting in half�inertial eddies of core vorticity �f �Chew and Bushnell� ������ Rossby

number ��� One of the major new �ndings of this study is that the anticyclones are

generated at a period of ����� days and tend to drift along a regular west�southwest
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trajectory� consequently forming a train of anticyclones dominating the currents in the

southern half of the island wake� This vortex train passes across Johnston Atoll� and

individual eddies were tracked to the edge of the study region ������� An extrapolation

of the observed spin�down rate suggests that they persist for thousands of kilometers

further to the west�

As predicted by Cushman�Roisin et al� ������� the lee eddies propagate westward at

a speed close to that of long baroclinic Rossby waves� Variations can be attributed to

nonlinear e�ects� vortex interaction in the immediate lee of Hawai�i and advection of the

anticyclones by the North Equatorial Current as they propagate south of ����N� The

eddies	 meridional drift is due to drag from nonlinear e�ects �Chassignet and Cushman�

Roisin� ������ which causes cyclonic eddies to drift northward and anticyclonic eddies

to drift southward� As a result of these propagation characteristics� the overall �eld of

lee eddies is structured� anticyclones tend to be found south of �����N� while cyclones

are found north of that latitude� Exceptions �such as C��b� may happen when a weak

eddy is advected by a stronger one� which overwhelms the drift which the weak eddy

would experience in isolation�

As the eddies propagate westward� they grow larger and spin more slowly� In this

study� this process was described by a spin�down model in which the eddies entrain

surrounding water while conserving their angular momentum� Direct observations of one

eddy �AC��b� suggest that an additional mechanism may play a signi�cant role in the

downstream evolution of anticyclones� The eddy	s core vorticity abruptly decreased at

least twice� on a time scale much shorter than the observed spin�down� This rapid change

in the eddy	s structure may have been caused by a merging with an adjacent eddy in the

anticyclonic vortex train� Although there is an extensive literature dealing with vortex

merging� surprisingly little attention has been paid to the characteristics of the merged
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vortex� This gap has been addressed here� by using basic conservation laws as constraints

determining the size and vorticity of a merged vortex� regardless of the speci�c details

of the merging process itself� As a consequence of generation at a �xed core vorticity

and downstream merging and spin�down� the Lagrangian periods of lee anticyclones

may be �quantized
 into bands at �� �� �� �etc�� days� Evidence for this comes from

observations of individual eddies �such as AC��b and AC��c� and from the Lagrangian

spectra of all drifter trajectories in the island lee �see Fig� ���� While oceanic vortex

merging has been observed in random eddy �elds �Cresswell� ����� Tokos et al�� ������

the Hawaiian case has a special geometry reminiscent of the laboratory experiments

of Brown and Roshko ������ and Winant and Browand ������� the trajectory of the

anticyclone train de�nes the southern edge of the island wake� so vortex merging within

this train �along with the ambient spin�down of the eddies� may determine the growth

rate of the oceanic shear between the wake and the NEC to the south�

For the �rst time� this study has produced a map of the upper�ocean wake of the

Hawaiian Islands at the sub�gyre scale �a schematic picture appears as Fig� ���� Earlier

studies� such as Wyrtki and Kilonsky ������� hinted that the wake was complex in

its structure� the two�dimensional picture presented here emerges wth the synthesis of

high spatial resolution current measurements� The wake is composed of two elongated�

counter�rotating gyres extending over ���� km west from Hawai�i� The mean vorticity

of the northern gyre is cyclonic� while the southern gyre is anticyclonic� The gyres are

separated by a narrow countercurrent� called the Hawaiian Lee Countercurrent �HLCC��

which runs along �����N and reaches a peak mean eastward speed of ��� cm�s� At the

northern edge of the cyclonic gyre� a previously undocumented current� the Hawaiian

Lee Current �HLC�� runs west�northwest along the leeward coasts of the major islands

to Kaua�i and Ni�ihau� The HLC reaches peak speeds of ��� cm�s� and has year�to�year
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variations similar to that of the HLCC� After passing Kaua�i and Ni�ihau� the HLC joins

with the NHRC to form a westward HLC�NHRC extension which runs along ���N to

the edge of the study region�

Because of the propagation characteristics described earlier� cyclonic and anticy�

clonic lee eddies tend to be sorted on either side of �����N� Averaged over time� their

vorticity contributes to the vorticit of the wake gyres� The passage of anticyclones

along a regular trajectory lifts the mean dynamic height along that path� presumably

enhancing the sharpness of the North Equatorial Ridge �rst noted by Wyrtki �������

The eddies converge eastward momentum at the latitude of the HLCC� which may be

a signi�cant driving mechanism for the countercurrent� The eddy�to�mean energy 
ux

associated with eddy momentum advection reaches ���W�m� in the vicinity of the

HLCC� su�cient to spin up the �� cm�s current from rest in ��� days�

Within the main body of the North Equatorial Current south of the islands� zonal

dispersion of the Lagrangian drifters is dominated by low�frequency meanders� Every�

where else� dispersion is dominated by the mesoscale eddies� Passing east to west across

the islands� the apparent eddy di�usivity increases by ������� times due to the increased

rms velocities of the lee eddy �eld� Throughout the region� zonal dispersion is consid�

erably greater than meridional dispersion� an ubiquitous result of open�ocean drifter

studies which can be attributed to the observed meridional shear in the predominantly

zonal currents of the region�

In the course of this study� many question have been raised which remain to be

answered in future investigations� Two subjects particularly lend themselves to study

in the near�future are eddy generation and vortex merging�

Eddy generation � What is the relative signi�cance of the relevant forcing mechanisms

for Hawaiian lee eddies Two mechanisms� wind forcing and instability in an oceanic
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shear 
ow� have been discussed in this paper� For the cyclones� the only e�ective

source of energy �given the observed spin�up time� is direct wind forcing �Patzert� ������

This conclusion is supported by existing direct and indirect current observations in

the �Alenuihaha Channel� but should be reevaluated pending long�term observations of

surface currents away from the immediate coasts of Hawai�i and Maui� The anticyclones

could be generated by both direct wind forcing and shear instabilities in the northern

edge of the separated NEC jet� Much more work� both observational and numerical� is

needed before their relative signi�cance can be quanti�ed� Perhaps the most promising

method to address this issue is to create a high�resolution numerical model of eddy

generation in Hawai�i	s lee� with the wind and current forcing �elds characterized by

observations presented in this study� Within the framework of this model� the e�ects

of the individual forcing mechanisms could be observed in isolation and while acting

together� This study	s observations of lee eddies could serve to validate the model

output with all forcing mechanisms present�

Vortex merging � What are the relevant conservation laws determining the characteris�

tics of a merged vortex Two possible merging scenarios �mass conserved and energy

conserved� were examined in Appendix E� along with physical justi�cations for each�

Which �if either� is correct Is �lamentation critical in the merging process� as hy�

pothesized by Cushman�Roisin ������� or does the process more strongly resemble the

Rossby adjustment problem This question could be answered with direct observa�

tions of vortex merging� either in the oceanic context or in a tank experiment� For

small initial vortices �compared to the internal deformation radius�� the two scenarios

predict a measurably di�erent merged vortex� allowing them to be tested against the

observations�

On a grander scale� do Hawaiian lee anticyclones merge as they propagate down�
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stream Evidence has been presented in this study which suggests they do� but direct

observations of the merging process are required to verify that this process is indeed oc�

curring� Ideally� these observations could be made via repeat ADCP and hydrographic

transects along the mean anticyclone trajectory� In lieu of this� remote observations

such as coastal current�measuring radar could allow a signi�cant advance in our under�

standing of both eddy generation and evolution in the immediate lee of the Hawaiian

Islands�
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Appendix A

Kriging

The interpolation method for the drifter data is described� This appendix originally
appeared in Qiu et al� �������

The irregularly�spaced satellite �xes of the drifting buoys were interpolated to ���

day intervals using the kriging method �Hansen and Herman� ������ In this method�

the vector x containing irregularly�sampled latitude or longitude �xes �treated indepen�

dently� is considered to contain a true signal �x plus measurement noise 
�

x�ti� " xi " �xi � 
i� �A���

The noise is assumed to be uncorrelated with itself and �x� with a zero mean and �xed

variance
�
e�
�
�

hxii " h�xii � i�e� h
ii " �� �A���

h
i
ji " �ij
D
e�
E
� �A���

h
i�xji " �� �A���

An estimate �x�o of �x at time to is constructed as

�x�o " wixi� �A���

where the repeated index implies a sum over i from � to n �n " �� in our interpolations��

and the weights w are chosen such that

h�xo � �x�oi " �� �A���

D
��xo � �x�o�

�
E

" minimum� �A���

Condition A�� constrains the weights such that

nX
i
�

wi " �� �A���
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while condition A�� requires minimizing

��k �
D
��xo � �x�o�

�
E
"
D
�x�o

E
� �wi h�xo�xii� wiwj h�xi�xji�

D
e�
E
wiwi� �A���

To do this� one needs the autocorrelation function h�xi�xji� The approach taken by

Hansen and Herman ������ is to assume knowledge of a structure function �Sij�

�Sij "
�

�

D
��xi � �xj�

�
E
� �A����

h�xi�xji "
�

�

D
x�i

E
�

�

�

D
x�j

E
� Sij� �A����

In terms of Sij� the error ��k is

��k " �wi
�Soi � wiwj

�Sij �
D
e�
E
wiwi� �A����

By minimizing ��k with respect to the weights� one �nds that

wj
�Sij � wi

D
e�
E
� � " �Soi �A����

where � is an unknown Lagrange multiplier introduced to incorporate constraint A���

This result may be multiplied by
P

iwi �"�� to �nd

��k " wi
�Soi � �� �A����

Equation A��� consists of n equations and n � � unknowns �counting ��� One may

eliminate � from this set of equations by subtracting each ith equation from the �i���th

equation� With inclusion of condition A��� one is left with a set of n equations and n

unknowns� and may solve for the interpolation weights�

After applying this interpolation technique to ��� years of drifter data from the

tropical Paci�c Ocean� Hansen and Poulain ������ derived generic structure functions

for the tropical Paci�c Ocean� They used the fractional Brownian motion function

�Sij " �jti � tjj�� �A����
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for which � " � models pure Brownian motion and � " � results in strictly linear

motion� For the north tropical Paci�c Ocean� Hansen and Poulain found optimal values

for � and � of

���� " ���������� � " ����� �latitude��

���� " ���������� � " ����� �longitude��

We used these �rst�guess values for � and �� and adjusted them in a second iterative

step which minimized the variance between observed and interpolated points �Hansen

and Poulain� ������ Values for
�
e�
�
were estimated from �xes of a stationary �grounded�

drifter� as described in the text�
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Appendix B

Models for the radial structure of reduced gravity eddies

Analytical models for the structure of an eddy are described� including a generalized
core�shell model developed for this study

B�� Solid�body eddy

A solid�body eddy has an azimuthal velocity v�r� " �
�r extending to radius r " ro�

where � is the constant vorticity of the eddy� � The angular speed of the eddy is

� " �
�� and the rotational period is T " ��
�� By imposing the boundary condition

h " � at r " ro� cyclogeostrophy ����� may be integrated to yield

h�r� " ��
�

�
f �

�

�

�
r�o � r�

�g�
� r 	 ro� �B���

The total change in upper layer thickness from the eddy edge to the eddy center is

h�r " ��� which can be written as

h�r " ��

ro
" �roH�

R�
d

�

�f

�
� �

�

�f

�
� �B���

where Rd "
p
g�H�
f is the Rossby deformation radius�

In the limitH� � �� the eddy becomes a lens�shaped bulge of light water surrounded

by slightly denser water� This model is frequently invoked to describe warm�core rings

�c�f� �Gill and Gri�ths� ����� Nof� ������� Lens�shaped eddies cannot be cyclonic�

because in the absence of Coriolis forces the 
uid would relax radially outward� This

is also demonstrated by an inspection of �B���� which gives geometrically�meaningful

solutions �h � �� only if ��f � � � ��

When H� � �� the eddy can be either cyclonic or anticyclonic� The requirement

that the total thickness H� � h be greater than zero requires

�
R�
d

r�o
�

�

�f

�
� �

�

�f

�
� �B���

�In azimuthal coordinates� the vorticity is given by � � �

r
�r �r�rv��
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B�� Vortices with �nite�shear edges

The solid�body cylindrical vortex model is a simple description of both anticyclonic

and cyclonic eddies� but it has a major physical shortcoming� Once H� � �� the eddy

has an in�nite�shear edge separating vortex 
uid from surrounding upper�layer 
uid of

identical density� Without buoyancy forces to maintain the velocity discontinuity� one

would expect turbulent mixing to rapidly smear the edge vorticity into a �nite shell

surrounding the solid�body core� Within this shell� v�r� diminishes with increasing r�

B���� Gaussian eddies

If the interface displacement h is modeled as a Gaussian�

h " h���e�r
���l�� �B���

then cyclogeostrophy ����� gives an azimuthal speed

v "
fr

�

�
���

s
�� �

g�h���

f�l�
e�r���l�

	
�B���

�Patzert� ������ At small r �speci�cally� exp��r�
�l�� � ��� the eddy is in solid�body

rotation with vorticity ��

� "

�
���

s
�� �

g�h���

f�l�

	
f� �B���

Of the two solutions� only the ��root gives v � � as r � 
� indicating that � � �f �

For quasigeostrophic eddies� the second term in the square root is much less than one�

a Taylor	s series expansion to second order in this term gives the velocity structure

v � �g
�h���

fl�
re�r

���l�� �B���

Beyond the inner solid�body core� the azimuthal speed smoothly peaks at r � l� past

this� it decays rapidly due to the exponential term�
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B���� Rankine eddies

The Rankine vortex is another commonly�used model for the azimuthal velocity struc�

ture� It consists of a solid�body core surrounded by an irrotational shell�

v "
�

�



r� r 	 ro�

r�o
r� r � ro�
�B���

Gri�ths and Hop�nger ������� noted that vortices in their laboratory experiments were

well�described by this structure out to r � �ro�

The Rankine model remains analytically simple even for strongly nonlinear vortices�

However� because the azimuthal speed drops o� as �
r� Rankine vortices have in�nite

energy on an in�nite domain� In a �nite oceanic eddy� azimuthal velocity must drop

o� more rapidly than �
r� although it does not necessarily decay as rapidly as in the

Gaussian model�

B���� The core�shell eddy model

To combine the strengths of the Gaussian and Rankine model� a core�shell model was

developed for this study� The azimuthal velocity is described by

v�r� "
�

�

���

���

r� r 	 ri�

�
�

r�
i

r�o�r
�

i

��
r � r�o

r

�
� ri � r 	 ro�

�� ro � r�

�B���

The solid�body core of vorticity � extends to r " ri� Beyond this� a shell of constant

vorticity

�o " �� r�i
r�o � r�i

�B����

extends to radius r " ro� In the limit ro �
� the shell vorticity vanishes and the model

has a Rankine velocity pro�le� For ro "
p
�ri� the core and shell have opposite�signed

vorticity of equal magnitude� The shell vorticity is greater in magnitude if ro �
p
�ri�

and in the limit ro � ri the velocity pro�le reverts to the solid�body model with an
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in�nite shear edge� The three independent parameters �� ri� and ro fully determine the

eddy structure in this model� The added degree of freedom � allows the outer structure

of the eddy to be �t to the data� instead of having it be determined by the vortex

model and the observed core size� This 
exibility is physically justi�ed by the observed

variations in laboratory vortex structure� as discussed by Kloosterziel and van Heijst

�������

It was found in the experiments �of cyclonic eddy generation� that the

vorticity distribution depends to some degree on the generation technique

applied� For example� in some cases the outer ring of negative vorticity

turned out to be rather narrow� with the negative vorticity having a rela�

tively large magnitude� In other cases this ring appeared to be much wider�

and the negative vorticity magnitude correspondingly weaker� Similar re�

marks apply to anticyclonic vortices� but with �cyclonic	 everywhere replaced

by �anticyclonic�	 �negative	 by �positive�	 and so on�

As discussed in the section on centrifugal instability� the stability of cyclonic vortices is

strongly dependent on the ratio of shell to core vorticity�

�Both the Gaussian and Rankine structures are determined by two parameters�
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Appendix C

Observations of lee eddies� ���������

Drifter� ADCP� AVHRR and altimetric observations of Hawaiian lee eddies from mid�
���� to ���� are presented�

C�� August and October �		� cruises

On �� August ����� the R�V Townsend Cromwell left Honolulu� O�ahu for cruise

TC����� A day later� it passed near the south point of Hawai�i� Shipboard ADCP

recorded the NEC jet �Fig� ��� and an anticyclonic eddy� hereby dubbed AC��c� A

nearly concurrent AVHRR image �Fig ��� shows the clockwise rotation in the core of

the eddy�

The least�squares analysis of the ADCP currents suggest that AC��c was centered at

�������N� ��������W� �� km o� the coast of Hawai�i �Fig� ���� Unfortunately� the ship

did not pass close enough to the eddy to record azimuthal speed within its core� The

available measurements show the core must have been less than �� km in radius� with

peak speeds greater than �� cm�s� If it is assumed that the innermost measurements

were on the edge of a solid�body core� it had a vorticity of ����f � Because the azimuthal

speed may have climbed above �� cm�s inside of �� km� this is a lower estimate of the

core vorticity	s magnitude� Azimuthal speed dropped o� considerably more rapidly

than �
r at ����� km from the eddy center� the eddy	s outer structure may have been

strongly a�ected by its proximity to Hawai�i� and could be reasonably well described by

a shell of constant vorticity ���f �

The Townsend Cromwell returned to O�ahu in early September� passing near an an�

ticyclonic eddy on � September ���� �Fig� ���� The eddy was centered at �����N�

�������W� It is likely that this was again AC��c� which had propagated WSW at

��� cm�s� The ship came within �� km of the eddy center� The pro�le of azimuthal
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speed showed that the eddy may have had a core of radius ��� km� with a peak speed

of ��� m�s and a vorticity of � ���� � ���� s�� �����f � rotational period ��� days��

The transport through the vertical cross�section at the bottom of Fig� �� is ���� Sv�

During TC����� �� drifters were deployed in Hawai�i	s lee �Fig� ���� Five of the

drifters began circling a cyclonic lee eddy �C��a�� �ve more traveled south� advected

between C��a and AC��c� and the remaining three passed north towards the Kaiwi

Channel�

The �ve drifters captured by C��a completed ��� orbits before leaving it �Fig� ����

several were then captured by AC��c� The orbits around C��a reveal an elliptical vortex

with a solid�body core of vorticity ��� � ���� s�� �����f � rotational period ���� days��

A least�squares �t of the core�shell model	s sea surface displacement was performed on

the altimetry in the frame of reference moving with C��a� and showed a core of radius

�� km� vorticity ���� ���� s�� with peak speeds of �� cm�s� All but one of the drifter

orbits were consistent with this structure� the outermost drifter had a radius of ���� km�

but a longer period ����� days��

On � October ����� the Cromwell traveled SW from O�ahu to equatorial waters on

cruise TC����� Nine additional drifters were deployed during this cruise� The Cromwell

passed within �� km of the center of an anticyclonic eddy at �����N� ������W� As shown

in Fig� ��� it seems reasonable to identify this eddy as �yet again� AC��c� a sea level

anomaly high propagates WSW from the � September eddy center to the � October

one� this is also visible in the ��� to ���N band�averaged sea level anomaly �Fig� ���� in

which a ridge smoothly connects the � September and � October eddy center longitudes�

From � September to � October� AC��c had traveled westward at a mean speed of

���� cm�s� southward at ��� cm�s� anomalously rapid compared to other anticyclones

at this latitude�
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The ADCP pro�le �Fig� ��� shows that the ship did not penetrate the core of the

eddy� To the north of the eddy center� the azimuthal speed decayed with distance more

rapidly than irrotationally� to a distance of ���� km� the decay could be described

by a shell of vorticity ����f � To the south� the velocity dropped o� similarly within

���� km� then nearly leveled out �perhaps due to the superposition of the NEC�� The

azimuthal speed was �� cm�s at the closest approach radius of �� km� so the vorticity in

the core must have been greater in magnitude than ��������� s�� ������f � rotational

period ��� days�� Drifters entrained within the eddy �described below� indicated a core

of � �� km in radius� thus� this vorticity estimate may have been close to the actual core

vorticity of the eddy� If so� the rotational period of the core roughly doubled between

the � September and � October ADCP transects� The azimuthal transport through the

vertical pro�le at the bottom of Fig� �� is ���� Sv�

The trajectories of many drifters were strongly in
uenced by the presence of AC��c�

marking its passage from ������W to ������W �Figs� ��� ���� Three drifters were de�

ployed within the eddy and spent over ��� days orbiting it� Fig� ��� shows the rotational

radii and periods of their orbits� Two of the drifters completed several orbits of ���

�� km and periods of �� days� with a linearly�increasing speed vs� radius suggesting

they were in the solid�body core of the eddy� One of the drifters moved to a radius of

� �� km in late October� and completed six loops with a mean period of ���� days� It

then made one very small orbit ��� km radius� ��� day period� before leaving AC��c

in January ����� A second drifter completed six orbits of mean radius ���� km� pe�

riod ��� days� then slowly increased in both period and radius until its �nal orbit was

���� km� �� days� It left the eddy at the end of December ����� The third drifter

stayed within the core until early December� making �� loops of mean radius ���� km�

period ���� days� It then jumped to three large ���� km� orbits of period ���� days
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before joining the �rst on a �nal loop of radius ���� km� period ��� days and leaving the

eddy� AC��c propagated close to the mean anticyclone path at speeds well�described

by ������ ������ It passed across Johnston Atoll on �� January ����� lifting sea level

there by ��� cm �Fig� ����

Fig� ��� shows the ERS�� and TOPEX passes in the frame of reference moving with

AC��c� Least�squares �ts of the core�shell model give the values presented in Table C���

The inferred core radius agrees reasonably well with the direct drifter observations

�Fig� ����� but the �t gives a lower core vorticity�

Table C��� Structure of AC��c from altimetry�
Dates ri �km� ro �km� � ����� s��� �
f � �
� �days�

���� Oct� ���� ���� ����� ����� ����� ���
� Nov���� Dec� ���� ���� ����� ����� ����� ���

�� Dec� ������� Jan� ���� ���� ����� ����� ����� ���

Anticyclone AC��d trailed AC��c� and was a particularly strong feature in the al�

timetry �Figs� ��� ���� AC��d forming o� the south point of Hawai�i in early October

�Fig� ���� approximately �� days after AC��c had formed� AVHRR imagery on � Octo�

ber �Fig� ���� shows a jet of cold water passing the south point� and by �� October the

warm pool may have been rotating anticyclonically in the immediate lee of Hawai�i �un�

fortunately� this was somewhat obscured by clouds�� The altimetry shows that AC��d

had moved out of the immediate lee of the island by �� November� Its in
uence on drifter

trajectories can be seen in the subplots for ��������� ��������� ��������� ������ and

������� of Figs� ��� ��� AC��d crossed Johnston Atoll on �� March ����� creating

a pronounced sea level rise there �see Fig� ���� It also captured a drifter for a large

half�orbit from �� May�� June ���� �not shown��

Anticyclone AC��e can be seen in the altimetry NW of AC��b on �� September

���� �Fig� ���� it propagated westward at ���� cm�s� and AC��b passed it to the south
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in December ����� Another anticyclone� AC��f� was also well north of the mean path

of anticyclones� It may have propagated into the study region from the north in early

November� In mid�November� it captured a drifter� a second one joined it in early

January ����� AC��f propagated westward along ���N at ��� cm�s� Both AC��e and

AC��f were near the latitude of Wake Island� if their position is extrapolated from their

last appearance in the altimetry �at ����� to Wake	s longitude� and their westward

speed is assumed to have remained constant� they crossed Wake Island on � October

���� and � November �����

Cyclone C��b was born in the lee of Hawai�i sometime before �� October� A sequence

of AVHRR images �Fig� ���� show that the eddy moved south along the west coast of

Hawai�i for over half a month� It then began propagating WNW� On �� December �����

a drifter began orbiting C��b at �����N� ������W �due south of O�ahu� �Fig� ����� The

drifter made � complete orbits before leaving the eddy� the �rst four� of radii ����� km�

all had periods of ����� days� suggesting a solid�body core of vorticity ����� ���� s��

�����f�� The drifter jumped to larger orbits in February ����� and another drifter joined

it for one large and anomalously fast orbit� Eddy C��b moved WNW for �� days at

an impressive ���� cm�s� then in early February ���� it slowed and turned to the SE�

propagating in that direction at ���� cm�s for the remaining �� days that the drifters

tracked it�

Anticyclone AC��g formed in early December ���� �see Fig� ���� southeast of C��b

and �� days after AC��d� The eddy can be seen trailing AC��d to at least ����W in

the altimetry �Fig� ���� Although it did not capture any drifters� AC��g is noteworthy

because of its unusual prominence in several AVHRR images� The young eddy can

be see on �� December �Fig� ���� in the immediate lee of Hawai�i� On �� December�

AC��g was a spectacular feature in the SST image� It is nearly circular� with a radius of
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���� km� The eddy had swept away most of Hawai�i	s warm pool� and remained visible

through December due to the anticyclonic advection of this water� The altimetry shows

that AC��g	s propagation was described fairly well by ������ ������ it passed C��b in

early February ������ and crossed Johnston Atoll in late August�early September �����

The Johnston sea level record has a ��� cm�s peak concurrent with the eddy	s passage

�Fig� ����

Another signi�cant feature in the altimetry �Figs� ��� ��� and in�situ sea level at

Johnston Atoll �Fig� ��� are the deep lows between and to the south of anticyclones

AC��b� AC��c and AC��d� These lows drift WNW� with approximately the same

westward speed as the anticyclones� The drifters clustered around the lee anticyclones�

did not enter the lows for any appreciable span of time� These lows may be cyclonic

eddies generated east of the Hawaiian Islands� which have been occasionally seen in

hydrographic transects of the North Equatorial Current south of the latitude of Hawai�i

�Wyrtki� ������

C�� July�August �		� cruise

On �� July�� August ����� the R�V Townsend Cromwell conducted cruise TC����

between Honolulu� O�ahu and the lee of Hawai�i �Fig� ����� Eight WOCE drifters were

deployed on this cruise� and shipboard ADCP recorded upper�ocean currents�

While passing south of the Kaiwi Channel and SW of Moloka�i� the Cromwell crossed

a relatively small cyclone �eddy C��a� Fig� ����� The eddy had an inner core of radius

��� km� with an edge speed of ��� cm�s and a vorticity of ��� � ���� s�� ����� f �

rotational period ��� days�� Outside the core� the azimuthal speed dropped o� with

an anticyclonic vorticity of O��� � ���� s��� �����f�� C��a was shallow� core speeds

�It was during this time that C��b turned from WNW to SE propagation� This suggests that it was
advected o� the mean propagation path of lee cyclones by AC��g�
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dropped rapidly below �� m� The total transport through the vertical pro�le in Fig� ���

is ���� Sv� AVHRR images �Fig� ���� show that C��a formed south of the Kaiwi Channel

in early July� By �� July� it was a well�de�ned elliptical mass of cold water� the ADCP

transect on �� July passed across its semiminor axis� which was approximately half the

length of its semimajor axis� The two drifters deployed south of O�ahu completed one

circuit around C��a before leaving it and becoming entrained in C��b�

Cyclone C��b formed shortly before � July in the immediate lee of Hawai�i� AVHRR

imagery from � July �not shown� show an undisturbed warm pool� but by � July cold

water o� Keahole Point had begun rotating cyclonically �Fig� ����� Over the next ten

days� C��b drifted SW� but then turned to the east and propagated directly into the

west coast of Hawai�i� This eastward drift may have been advection from AC��a �to be

discussed momentarily�� which was south of C��b�� It was pressed tightly against the

island during TC����� The Cromwell made several back�and�forth transects through

the eddy	s core� and deployed �ve drifters in it� the resulting data showed that C��b

was comparable in size to the two largest cyclones presented in Patzert ������ �c�f� his

Figs� �� and ���� From �� July to � August� C��b is visible in the AVHRR images

because of the cyclonic advection of warm ����C� water� Presumably� diurnal warming

in Hawai�i	s wind shadow had created a thin layer of warm water overlying the upwelled

cold water in C��b	s core� Fig� ��� shows the center of the eddy as determined by

least�squares �t onto the ADCP data� The eddy was within �� km of the leeward coast

of Hawai�i� resulting in �� m�s northward currents along the shore� As a lowest�order

attempt to address the eddy	s asymmetry while examining its structure� the eddy was

divided into nearshore and farshore sides� each assumed to be azimuthally symmetric�

�The positions of these two eddies may have resembled the newly�formed cyclone and AC��b in
Fig� ��� note the striking similarity between the �� May ���� image and the � August ���� image of
Fig� ��� as the cyclones press against Hawai�i�
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A least�squares �t of a Rankine vortex described the velocity structure of each side

reasonably well �Fig� ����� At �� m depth� the Rankine vortex �t to the nearshore data

had a peak speed of �� cm�s at ���� km from the eddy center� giving a core vorticity

of ���� � ���� s�� ����� f�� At the same depth� the farshore velocity pro�le had a

peak speed of �� cm�s at a radius of ���� km� giving a core vorticity of ����� ���� s��

����� f�� While the core radius had tightened on the inshore side of the eddy� there was

not strong evidence that the 
ow was accelerated� The northward transport across the

inshore ADCP section of Fig� ��� is ��� Sv� while the southward transport across the

farshore section is ��� Sv� As demonstrated by Nof �����a�� the interaction of a cyclonic

eddy with a wall to its east will produce a southward� propagating squirt which bleeds


uid from the eddy� The ADCP data suggests this was indeed happening� a narrow

����� km wide�� ���� cm�s jet 
owed SW towards the south point of Hawai�i� It is worth

noting that the farshore radius was greater than the separation distance between the

eddy and Hawai�i� the edge of the eddy may have been rotating onto the south point

of the island� shearing o�� and 
owing NE along the SE coast� One would expect this

mechanism to strip the eddy of all but the core 
uid in a single rotation� ���� days� As

suggested by the AVHRR images �Fig� ����� this cruise observed C��b in the process

of colliding with the island�

If 
uid was being sheared from the edge of the eddy� it may have produced an

extremely sharp vorticity gradient at the eddy	s edge� For a core radius of �� km

and vorticity of ����f � the stability condition ������ shows that the eddy is unstable if

the shell is less than �� km in radius� There is some evidence for azimuthal�mode �

instability in the AVHRR images �Fig� ����� on � August� what appears to be small

anticyclonic satellite vortices lie north and south of AC��b� The northern feature had

rotated a quarter�turn around the eddy by � August� The elongated S�shape of the eddy
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on � August �also see the �� May ���� image of Fig� ��� resembles the tripolar vortex

described by van Heijst et al� ������� Tripoles form when a cyclonic vortex becomes

unstable and sheds the anticyclonic vorticity of its shell into two satellite anticyclones�

Unfortunately� it is di�cult to verify the presence of these satellite eddies in the data� the

ADCP transects did not overlap them� and the drifter tracks are not a�ected by them�

On � August� one of the drifters was deployed at �����N� ������W �immediately SW

of Kaho	olawe�� and completed four very tight ������ km radius� anticyclonic orbits

before passing north through the Kaiwi Channel� The orbits had a mean period of

��� � ��� days �suggesting a core vorticity of ���� � ���� s��� ����f�� However� as

can be seen in Fig� ��� �e� and �f�� these loops did not appear to coincide with the

satellite�eddy�like features in the AVHRR� While it is possible that this was a small

anticyclone shed from C��b� the anticyclone was �rst observed exactly where wind

forcing could have produced it �see section ����� In addition� the AVHRR images on

���� August suggest that C��b was drawing a plume of cold water westward through

the �Alenuihaha Channel� As this 
ow separated from Kaho	olawe and passed into the

region of anticyclonic shear between C��a and C��b� it could have become unstable and

formed the small vortex�

By �� August� C��b had propagated to ����W and reverted to a cold�core SST

feature �Fig� ����� Presumably� once it moved out of Hawai�i	s lee� wind�driven mixing

erased the thin �� � m �Wenzel� ������ layer of warm water overlying the cold core�

In addition� the eddy may have drawn cooler ����C� water from the windward side of

the islands through the �Alenuihaha Channel� as suggested by the ���� August images�

On � September� the eddy was elongated along its N�S axis� and again showed some

evidence of mode � instability �Fig� ������ Images on �� and �� September show that

�The � September AVHRR image also shows cold water passing the south point and forming an
anticyclonic cusp� reminiscent of the AC��g spin�up image �Fig� ����� during this time� anticyclone
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C��b became quite circular over the course of the intervening week�

The trajectories of the drifters deployed during the Cromwell cruise are presented

in Figs� �������� Five drifters were deployed in C��b� and moved WNW with it as it

propagated out of Hawai�i	s lee �Fig� ����� The drifters were initially ����� km from

the eddy center� with orbital periods averaging ��� days �suggesting a solid�body core of

vorticity ���� ���� s��� ����f�� From mid�August to early October� the drifters moved

outward in the eddy� with radii of ����� km and periods of ��� days� During this time�

the azimuthal speeds of the drifters were no longer linearly increasing with distance�

suggesting that they had moved outside the eddy	s core�

Three of the drifters remained in C��b for greater than �� days� and three more

drifters were temporarily captured by the eddy after � October �Fig� ����� One of the

drifters remained in the eddy for a spectacular ��� days� from early December ����

to late January ����� it switched to small ������ km� orbits with a mean period of

��� days� The linear speed�vs��distance during this interval indicated a solid�body core

of vorticity ��� � ���� s�� �����f�� The core did not extend beyond ��� km� for in

February ���� the drifter made two � �� km loops with a �� day period� then returned

to two small �� �� km� orbits of period ��� days before leaving the eddy�

Anticyclone AC��a was born west of the south point of Hawai�i in July ���� �Fig� ����

Two drifters deployed during TC���� orbited AC��a for nearly �� days �Fig� ����� after

which one left the eddy and the other abruptly stopped transmitting� A third drifter

orbited AC��a for a single loop� The orbital characteristics of the drifters suggest an

azimuthal structure very similar to that of AC��c seen on � October ���� �see Fig� ����

which had a core of vorticity ��������� s�� �����f � rotational period � days�� Outside

this core� azimuthal speed may have dropped o� more rapidly in AC��a than in AC��c�

AC��b was born�

���



In mid�October ����� two drifters began circling anticyclone AC��b at �����N�

������W �just west of the south point of Hawai�i�� and remained in orbital motion

for over two months �Fig� ����� AC��b was born in early September ���� �Fig� ���� an

AVHRR image on � September �Fig� ���� shows cold water passing the south point and

forming an anticyclonic cusp� reminiscent of the AC��g spin�up image �Fig� ����� The

drifter orbits show that AC��b had a solid�body core of radius �� km� maximum speed

�� cm�s� and vorticity ����� ���� s�� ������f � rotational period ���� days��

In December ���� to early January ����� two drifters began orbiting an anticyclone

ahead of AC��b� which may have again been AC��a� The drifter tracks �Fig� ����

suggest that the two eddies may have begun rotating anticyclonically about their cen�

ter of mass� and were possibly drawing together� Unfortunately� all four drifters left

the anticyclones in early to mid�January ����� leaving the fate of these anticyclones

unknown�

C�� April �		� cruise

On ��� April ����� the R�V Townsend Cromwell sailed from O�ahu to Maui to recover

three current meters deployed near the latter island� Seven drifters were launched west

of Lana�i during this cruise� Two looped counter�clockwise around Lana�i� passed around

Moloka�i to the north� and left the island lee region� A third drifter ran aground on the

south shore of Moloka�i� The remaining four drifters passed south of Lana�i and into

Hawai�i	s lee �Figs� ��������� These all made at least a partial clockwise loop around

AC��c� which was centered near �����N� ������W� Only two completed a full orbit�

one of period ���� days� radius �� km �mean speed ��� cm�s� and the other of period

���� days� radius ��� km �mean speed ��� cm�s�� These drifters then left the vicinity

of the eddy�

���



On �� April� a small boat was used to deploy two additional drifters o� the west

coast of Hawai�i� They were placed within the core of lee cyclone C��b� which was

immediately to the east of AC��a� One of the drifters orbited for �� days �Fig� ����� then

left to encounter C��a �described below�� The other orbited for over �� days� revealing

a solid�body core greater than �� km in radius� with core vorticity ��� � ���� s��

����f � rotational period ��� days�� C��b was initially stationary� in early May it began

propagating almost due south at �� cm�s� The drifter left C��b around ���N� ������W�

During most of May ����� the drifter trajectories suggested that AC��a and C��b were

very close to each other� and that AC��a was also moving southward� It is possible

that these two eddies had paired� creating a dipole which was self�advecting southward�

the May ���� trajectories show the eddies were ���� km apart� so the observed C��b

propagation speed of � cm�s is only slightly faster than the advection speed of �� cm�s

suggested by the drifters around AC��a�

The drifter which left C��b headed NW� in early May� it entered eddy C��a south

of Maui �Fig� ����� The eddy drifted WNW until mid�May� then turned south� The

orbits of the drifter suggest that the core was ������ km in radius� with a vorticity of

�������� s�� �����f � rotational period ��� days�� In late May� the drifter left C��a and

traveled into the immediate lee of Hawai�i� There it made three clockwise orbits� each

��� km in radius with an orbital period of ���� days� If this was the solid�body core

of a newly�formed anticyclone �AC��b�� its vorticity was ���������� s�� ������f�� A

concurrent AVHRR image on �� May �Fig� ���� shows a possible anticyclonic cusp west

of Hawai�i	s south point� although the feature is not particularly clear� After the third

orbit� the drifter passed NE through the �Alenuihaha Channel and out of the Hawaiian

lee region�

In September ����� a drifter which had run aground was redeployed in the immediate

���



lee of Hawai�i� very close to the core of anticyclonic eddy AC��c �Fig� ����� It tracked

the eddy for nearly ��� days� leaving it on �� January ���� at �����N� ������W� Initially�

the drifter moved outward from �� km orbits to �� km orbits in a solid�body core of

vorticity �� � ���� s�� �����f � rotational period ��� days�� In early October� the

orbits slowly increased in size from �� to �� km� while the period rapidly increased

from � days to ���� days� Throughout this time� the eddy drifted NW� Then� in late

October� AC��c abruptly turned SW and the drifter spiraled into orbits ����� km in

radius� These orbits again indicated a solid�body structure� but of a lower vorticity�

������ ���� s�� ������f � rotational period ��� days�� Finally� the eddy turned WSW

as the drifter made three large �� �� km� orbits� then left the eddy�
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given date� the tail shows the previous ten days of the drifters	 trajectories�
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Figure ���� Orbital characteristics of drifters in C��b �� August � � October ������

Top� trajectories of drifters around eddy �solid lines�� with dots marking the location
of the drifter on � October� The dashed line is the path of the eddy center� with an x
marking its location on � October�
Middle� left� orbital radius vs� time� Di�erent symbols are used for di�erent drifters�

Middle� right� orbital period vs� time�
Bottom� orbital speed vs� radius� The dashed line is for solid�body rotation at a period
of ��� days�

���



166 164 162 160 158 156 154
18

19

20

21

22

23

 8/95 10/95 12/95  2/95  4/95
0

20

40

60

80

km

 8/95 10/95 12/95  2/95  4/95
3

6

12

24

da
ys

0 20 40 60 80
0

0.2

0.4

0.6

km

m
/s

Figure ���� Orbital characteristics of drifters in C��b �� October ���� � � March ������

Top� trajectories of drifters around eddy �solid lines�� with dots marking the location
of the drifter when it left the eddy� The dashed line is the path of the eddy center� with
an x marking its last known location�
Middle� left� orbital radius vs� time� Di�erent symbols are used for di�erent drifters�

Middle� right� orbital period vs� time�
Bottom� orbital speed vs� radius� The dashed line is for solid�body rotation at a period
of ��� days�
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Figure ���� Orbital characteristics of drifters in AC��a�
Top� trajectories of drifters around eddy �solid lines�� with dots marking the location
of the drifter when it left the eddy� The dashed line is the path of the eddy center� with

an x marking its last known location�
Middle� left� orbital radius vs� time� Di�erent symbols are used for di�erent drifters�
Middle� right� orbital period vs� time�

Bottom� orbital speed vs� radius� The solid line is the �t to the ADCP observations of

eddy AC��c� which was at the same position the previous year �see Fig� ����
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Figure ���� Orbital characteristics of drifters in AC��b�

Top� trajectories of drifters around eddy �solid lines�� with dots marking the location
of the drifter when it left the eddy� The dashed line is the path of the eddy center� with
an x marking its last known location�
Middle� left� orbital radius vs� time� Di�erent symbols are used for di�erent drifters�

Middle� right� orbital period vs� time�
Bottom� orbital speed vs� radius� The dashed line is for solid�body rotation at a period
of ���� days�
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Figure ���� Ten�day snapshots of drifters� Dots show the location of the drifters on the
given date� the tail shows the previous ten days of the drifters	 trajectories�
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Figure ���� Ten�day snapshots of drifters� Dots show the location of the drifters on the
given date� the tail shows the previous ten days of the drifters	 trajectories�
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Figure ���� Orbital characteristics of drifters in C��b�

Top� trajectories of drifters around eddy �solid lines�� with dots marking the location
of the drifter when it left the eddy� The dashed line is the path of the eddy center� with
an x marking its last known location�
Middle� left� orbital radius vs� time� Di�erent symbols are used for di�erent drifters�

Middle� right� orbital period vs� time�
Bottom� orbital speed vs� radius� The dashed line is for solid�body rotation at a period
of ���� days�
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Figure ���� Orbital characteristics of a drifter in C��a�

Top� trajectory of drifter around eddy �solid lines�� with a dot marking the location of
the drifter when it left the eddy� The dashed line is the path of the eddy center� with
an x marking its last known location�
Middle� left� orbital radius vs� time�

Middle� right� orbital period vs� time�
Bottom� orbital speed vs� radius� The dashed line is for solid�body rotation at a period
of ���� days�
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Figure ���� Orbital characteristics of a drifter in AC��c�
Top� trajectory of drifter around eddy �solid line�� with a dot marking the location of
the drifter when it left the eddy� The dashed line is the path of the eddy center� with

an x marking its last known location�
Middle� left� orbital radius vs� time�
Middle� right� orbital period vs� time�
Bottom� orbital speed vs� radius� The lower dashed line is for solid�body rotation at

a period of ��� days� The upper dashed line is for solid�body rotation at a period of
��� days�
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Appendix D

Eddy dissipation

A simple model for eddy spin�down� paramaterized in terms of entrainment� is presented�

The core�shell model of an eddy	s azimuthal velocity structure is given by �B����

With the explicit inclusion of a momentum 
ux� the vorticity discontinuities would

rapidly smooth� and on a longer time scale the eddy would spin down as shell vor�

ticity di�uses outward� the peak azimuthal speed drops� and the core vorticity lowers

in magnitude� In this appendix� a spin�down model is described which was designed

to implicitly simulate this process� while retaining the analytically simple core�shell

structure� This was done by formulating vorticity di�usion in terms of an entrainment

rate� As the core gains mass� angular momentum conservation requires its vorticity to

approach zero�

The shell radius ro is assumed to expand at a rate set by the magnitude of the shell	s

vorticity�

d

dt
ro "

q
j�ojA� �D���

where A is a viscosity constant� This formulation assumes that the more irrotational

the shell is� the slower its vorticity will di�use outward� The entrainment rate into the

shell from outside is then

d

dt
M�r " ro� " ���roH�

q
j�ojA� �D���

i�e� the side area of the eddy at r " ro times the density� times dro
dt� The shell vorticity

�o is related to the core vorticity � by

�o " � r�i
r�o � r�i

�� �D���
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Substitution gives an entrainment rate

d

dt
M�r " ro� " ���riH�

s
j�jA

�� r�i 
r
�
o

� �D���

Similarly� the core radius ri is assumed to expand at a rate set by the magnitude of

the vorticity jump across r " ri�

d

dt
ri "

q
j� � �ojA� �D���

The entrainment rate into the core is then

d

dt
Mi " ���ri�H� � h�r " ri��

s
j�jA

�� r�i 
r
�
o

� �D���

This 
uid must come from the surrounding shell of opposite�signed vorticity� Thus� the

net change in the shell	s mass is �D�� minus �D����

d

dt
Mo " ����rih�r " ri�

s
j��t�jA

�� r�i 
r
�
o

� �D���

The assumptions of the model lead to an asymmetry between cyclonic and anticyclonic

eddies� For cyclones �h � � at r " ri�� the side area of the core is relatively small� the

shell gains 
uid from the outside more rapidly than the core gains 
uid from the shell�

However� anticyclones �h � � at r " ri� have a relatively large side area� so the shell

loses 
uid to the core more rapidly than it is replaced from the outside� Consequently�

the core of an anticyclone spins down more quickly than that of a cyclone�

For a given viscosity A� the entrainment rates were numerically evaluated in in�

cremental steps� After each step� conservation of net angular momentum was used to

determine the new core vorticity� The shell vorticity was set by �� ri and ro� The value

of A was tuned to match the observed decrease in a drifter within eddy AC��b�
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Appendix E

Vortex merging in a ��
�
	layer fluid on an f	plane

An analytical model of eddy merging is presented� with the accompanying mathematical
development focused upon the appropriate conservation laws for merging and the char�
acteristics of the merged vortex� This appendix is a slightly modi�ed form of a paper
by Rick Lumpkin� Pierre Flament� Rudolf Kloosterziel and Laurence Armi submitted to
J� Phys� Ocean� Notes and Correspondences�

E�� Introduction

Liked�sign vortices spontaneously merge in rotating tanks �Nof and Simon� ����� Grif�

�ths and Hop�nger� ����� and in the ocean �Cresswell� ����� Tokos et al�� ������ Merging

has been numerically modeled in a wide range of settings �Melander et al�� ����� Verron

and Valcke� ����� Carton and Bertrand� ����� Valcke and Verron� ������ However� be�

cause most of these experiments have focused on quantifying the space and time scales

in which merging occurs� less progress has been made in understanding the kinematics

of merging� How do the basic conservation laws govern the characteristics of the merged

vortex Existing analytical models which conserve mass and angular momentum �nd

that the merged vortex has more energy than the initial vortices �Gill and Gri�ths�

������ These results have lead some researchers to conclude that the complete� unforced

merging of reduced gravity vortices is not energetically possible �Cushman�Roisin� �����

Dewar and Killworth� ����� Pavia and Cushman�Roisin� ������

In this paper� the mass� angular momentum and energy budgets of merging vortices

are examined with a simple analytical model� It is shown that the absolute angular mo�

mentum of vortices and surrounding 
uid is equal to the background angular momentum

�the angular momentum in the absence of vortices�� plus the sum of the vortices	 rela�

tive angular momentum �the angular momentum seen in the rotating reference frame��

Consequently� conservation of the absolute angular momentum requires conservation

���



of the relative momentum of the vortices� It is concluded that free vortex merging is

not energetically prohibited� two possible merging scenarios are suggested based on the

conservation budgets�

E�� Development of the model

The model has two layers� the upper layer �density �� extends from z " � to z " �H��

and the lower layer �density � � ��� extends from z " �H� to z " �H� �Fig� �����

The system is rotating at angular speed ( �Fig� ����� Before merging� there are two

identical� azimuthally�symmetric vortices in the upper layer� touching at a single point�

It is assumed that the 
uid is reorganized into quiescent 
uid surrounding a single

vortex� and that the �nal vortex has the same velocity structure as its parents� for

example� vortices in solid�body rotation merge to produce a vortex also in solid�body

rotation �though not necessarily rotating at the same rate��

E���� Mass and angular momentum of an isolated vortex

Consider a vortex in the upper layer with radius ro� extending vertically from the surface

z " ��r� to z " �H� � h�r� �Fig� ����� The surface de
ection � is related to the

azimuthal speed v by cyclogeostrophy�

v�

r
� �(v " g	r�� �E���

where r is the radial distance from the vortex center and g is gravity� Since there are

no horizontal pressure gradients in the lower layer�

h "
g

g�
�� �E���

where the reduced gravity g� is g�
g " ��
�� The total mass of the vortex is

M " mH �mh �m�� �E���
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where

mH " ��r�oH�� mh " ���

Z ro

�
dr rh�r�� m� " ���

Z ro

�
dr r��r�� �E���

With �E���� it follows that

m� "
��

�
mh� �E���

In the rotating frame� the relative angular momentum � of the vortex is

L " ���

Z ro

�
dr r��H� � h�r� � ��r��v�r�� �E���

In the inertial frame� the vortex is centered at R " Ro �the position of R " �� the axis

of rotation� does not a�ect the solutions�� Its absolute angular momentum is

)L " L�MR�
o(� �IH � Ih � I��( �E���

�the tilde indicating absolute quantities expressed in the inertial frame�� where the

moments of inertia are

IH " ���

Z ro

�
dr r�H� "

�

�
mHr

�
o� Ih " ���

Z ro

�
dr r�h�r�� I� " ���

Z ro

�
dr r���r��

�E���

Using �E���� it follows that

I� "
��

�
Ih� �E���

E���� Angular momentum of vortices immersed in quiescent �uid

In the absence of vortices� the absolute angular momentum of the quiescent background

state would be

)Lback " �H��� �H� �H����� ����

Z
A
dA R�( �E����

�Speci�cally� the vertical component of the angular momentum vector
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where the integral is taken over an arbitrary �nite domain A�

In the presence of N vortices �denoted by the subscript � " � � � � N�� the absolute

angular momentum of the quiescent surrounding 
uid is

)L� " )Lback �
NX
�
�

��
mH�� �

�� ��

�
mh��

�
R�
� �

�
IH�� �

�� ��

�
Ih��

��
(��E����

This is less than )Lback because the vortices occupy volume below z " ��

The absolute angular momentum of the total system �with N vortices� is obtained

by combining �E��� and �E�����

)Ltot " )L��
X
�

)L� " )Lback �
NX
�
�

�
L� �

��
m��� � ��

�
mh��

�
R�
� �

�
I��� � ��

�
Ih��

��
(

�
�

�E����

Vortices extend to height � above z " �� revolution and rotation of this mass at speed (

adds angular momentum to the background state� Similarly� vortices extend a distance

h� into the lower layer� because this 
uid is lower in density� it subtracts angular

momentum from the background state� Using �E��� and �E���� �E���� simpli�es to

)Ltot " )L� �
X
�

)L� " )Lback �
X
�

L�� �E����

Angular momentum added by surface bulges is equal to angular momentum subtracted

by layer interface bulges� and they cancel� The absolute angular momentum of the

entire system di�ers from the angular momentum of the background state only by the

sum of the relative angular momentum of the vortices�

E���� Energy of vortices

The kinetic energy of a vortex is

KE " ���

Z ro

�
dr r �H� � h�r� � ��r��

�

�
v�� �E����

and the potential energy is

PE " ���

Z ro

�
dr r �h�r� � ��r��

�

�
g�� �E����
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The net energy E " KE � PE may be related to the relative angular momentum as

follows� The relative angular momentum L is given by �E���� From cyclogeostrophy

�E����

v " � �

�(

�
v�

r
� g	r�

	
� �E����

Substitution yields

�(L " ���

Z ro

�
dr r �H� � h� ��

�
�

�
v� � �

�
rg	r�

�
� �E����

The term containing 	r� may be integrated by parts� yielding

�(L " ���

Z ro

�
dr r

�
�H� � h� ��

�

�
v� � ��H� � h� ��

�

�
g�

�
� �E����

Using �E���� �E���� and �E����� this becomes

E " �(L� gH�m�� �E����

The total energy of N vortices is then

Etot " �
NX
�
�

�(L� � gH�m���� � �E����

E�� Vortex merging

When two vortices �denoted by subscripts a and b� merge to produce a single vortex

�c�� mass conservation requires

Mc " Ma �Mb �E����

where the mass is given by �E����

By de�nition� the background angular momentum )Lback remains unchanged� Thus�

from �E����� conservation of angular momentum requires

Lc " La � Lb� �E����
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Conservation of the absolute angular momentum reduces to conservation of the relative

angular momentum of the vortices�

Energy conservation requires Ec " Ea �Eb� Using �E����� this becomes

(Lc � gH�m��c " (La � gH�m��a �(Lb � gH�m��b� �E����

From �E����� it follows that angular momentum and energy can be simultaneously

conserved when either

m��c " m��a �m��b �E����

or H� " ��

E���� Solid�body vortices

A solid�body vortex has the velocity structure v�r� " �r� where � is constant� By

imposing � " � at r " ro� cyclogeostrophy �E��� may be integrated to yield

��r� " � �

�g
���( � ��

�
r�o � r�

�
� r 	 ro� �E����

The relative angular momentum is

L " �IH � Ih � I���� �E����

Consider two solid�body vortices �a and b� merging to produce vortex c� assumed to

be in solid�body rotation� Given �a� �b� ra and rb� two independent constraints deter�

mine �c and rc� This leads us to the dilemma which faced Pavia and Cushman�Roisin

������� which of the three constraints �mass� angular momentum and energy conserva�

tion� should be applied Following Pavia and Cushman�Roisin� two separate merging

scenarios are considered� in each� two of these properties are conserved� and the budget

of the third is examined� Physical interpretations of the results will be discussed in

the �nal section� This development is speci�cally restricted to the particular case of

identical merging vortices ��a"�b� ra"rb�
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Conserving mass and angular momentum

Fig� ��� shows the values of �c and rc which conserve mass and angular momentum�

Several curves are shown� each corresponding to a �xed ratio of ra to the internal Rossby

radius Rd�

Rd "
�

�(

s
g�H�

� � g�
g
� �E����

In the limit ra
Rd �
� the vortices are anticyclonic lenses �H� � ha�c�� in partic�

ular� zero PV lenses ��� " �(� merge such that

�c "
�

�
�a� rc "

r
�

�
ra� �E����

The bottom panel of Fig� ��� shows the ratio of �nal energy Ec to initial energy

�Ea� For lens�shaped vortices� energy is conserved� However� for �nite ra
Rd� energy

is lost in the merging� this approaches ��! in the limit ra
Rd � � �in this limit� the

vortices are cylinders��

Conserving angular momentum and energy

Fig� ��� shows the values of �c and rc which conserve angular momentum and energy�

Compared to the mass�conserving scenario �Fig� ����� the change in period ��a
�c� is

smaller for a given ra
Rd� and decreases with decreasing ra
Rd� The �nal radius is

smaller than in the mass�conserving scenario� in the limit ra
Rd � �� rc
ra � ������

������

For �nite ra
Rd� the �nal vortex has less mass than the initial two vortices� In the

limit ra
Rd � �� the mass loss is Mc
�Ma " �

p
��� ������ Mass is conserved in the

lens�shaped limit ra
Rd "
�
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E���� Vortices with �nite�shear edges

When H� � � in the solid�body model� the vortex has an in�nite�shear edge separating

vortex 
uid from upper�layer 
uid of identical density� This is not a stable con�guration�

turbulent mixing will rapidly smear the edge vorticity into a shell surrounding the solid�

body core� Within this shell� v�r� diminishes with increasing r �c�f� Fig� � of Gri�ths

and Hop�nger �������� If this shell is included in the vortices	 structure� how does

it a�ect the characteristics of the �nal vortex To address this question� vortices are

considered with the velocity structure

v�r� "

���

���

�r� r 	 ri�

�
�

r�
i

r�
o
�r�

i

�
�
�
r � r�o

r

�
� ri � r 	 ro�

�� ro � r�

�E����

The azimuthal speed v is continuous at r " ri� ro �Fig� ����� The solid�body core extends

to r " ri� and is surrounded by a constant�vorticity shell extending to r " ro� The ratio

of shell vorticity �o to core vorticity �i is

�o
�i

" � r�i
r�o � r�i

� �E����

In the limit ro 
 ri� the outer shell is nearly irrotational and the vortex becomes

Rankine�like� If ro �
p
�ri� the shell vorticity is greater in magnitude than the core

vorticity� In the limit ro � ri� the velocity pro�le reverts to the solid�body model�

Initially� I had planned to use conservation of mass� angular momentum and energy

to determine �c� ri�c and ro�c� However� except in a particular limit �described below�� all

constraints could not be simultaneously satis�ed� presumably due to their nonlinearity�

Paralleling the solid�body case� two merging scenarioes are considered� one in which

mass is conserved� and the other in which energy is conserved� In both scenarios� it is

assumed that the mass Mi of the solid�body core is conserved�

Mi " ���

Z ri

�
dr r �H� � hi�r� � �i�r�� � �E����
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This additional constraint demands that 
uid parcels retain the sign of their vorticity�

i�e� the core of the merged vortex is the fused cores of the initial vortices� In the

energy�conserved scenario� it demands that mass changes occur for shell 
uid� Unlike

total mass� �E���� can be conserved simultaneously with energy� in this scenario� mass

changes are associated with shell 
uid�

Conserving mass and angular momentum

If net mass and angular momentum are conserved� the initial vortices are identical� and

ro�a
ri�a " ��� Fig� ��� shows �c� ri�c and ro�c as functions of �a
(� The curves closely

resemble those of Fig� ���� they converge for ri�a
Rd � � �in this limit� the vortices are

cylinders�� Due to the presence of the opposite�vorticity shell� the period jump �a
�c

is always closer to � and the radius jump ri�c
ri�a is always closer to
p
� than for the

solid�body counterpart to this scenario�

The bottom panel of Fig� ��� shows the ratio of �nal energy Ec to initial energy

�Ea� Energy is lost for small ri�a
Rd� this loss approaches � for ri�a 
 Rd� The energy

loss is nearly independent of �a
(� If ri�a
Rd � �� energy is conserved within ��� ! for

all values of �a
(�

Fig� ��� shows how the characteristics of the merged vortex vary as a function of

ro�a
ri�a� for �a
( " ��� For vortices with nearly irrotational shells �ro�a 
 ri�a�� the

merged vortex has a core period nearly double that of the original vortices ��a
�c � ��

and inner and outer radii larger by � p�� The dependence of the solutions on ri�a
Rd

becomes increasingly signi�cant as ro�a � ri�a �the solid�body limit�� and energy is lost

�particularly for small ri�a
Rd��
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Conserving angular momentum and energy

Fig� ��� shows the characteristics of the merged vortex if angular momentum and energy

are conserved� As in the previous scenario� the initial vortices are assumed to be identical

and ro�a
ri�a " ��� Compared to the solid�body counterpart of this scenario �Fig� �����

�a
�c is closer to �� The increase in the shell radius ro�c
ro�a is closer to
p
� than in the

solid�body case� and is only weakly a function of �a
(�

Mass is conserved for large vortices �ri�a 
 Rd�� but for smaller vortices the �nal

state has less mass� This loss is approximately independent of �a
(� for ri�a " Rd� ���!

of the mass is lost in the merging�

Fig� ��� shows the characteristics of the merged vortex as a function of ro�a
ri�a�

for �a
( " ��� For vortices with nearly irrotational shells� mass is conserved and the

solutions are identical to those of the previous scenario� The mass loss exceeds ��! for

shell radius smaller than ro�a
Rd � ���

E�� Discussion

In this model of vortex merging� potential vorticity conservation has been replaced by the

constraints that the integrated angular momentum of the system is conserved� and the

vortices preserve a particular velocity structure� These assumptions require that some

physical process alters the PV of individual 
uid parcels during merging� Nof ������

����b� has suggested this is done by turbulent mixing at the vortices	 contact point�

where strong opposite�signed vorticity is entrained as the vortices enmesh each other�

In numerical models� the sharp vorticity gradients are rapidly smoothed by di�usion

�Melander et al�� ������ Laboratory observations �Nof and Simon� ����� support Nof	s

������ hypothesis that PV alteration is an essential feature of vortex merging�

Although the surrounding 
uid is assumed to remain quiescent� 
uid columns un�
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derlying the vortices may be compressed or stretched in the merging� A column of

quiescent 
uid beneath a vortex bears potential vorticity �(
�H��H�� h�� where h is

the downward displacement of the layer interface induced by the vortex� If the merging

causes h to increase by *h� the underlying column must gain anticyclonic vorticity ��

�

�(
" � *h

H� �H� � h
� �E����

in order to conserve its angular momentum� Thus� our assumption of quiescence is

valid in the limit H� �H� � h
 *h� and exact in the ����layer limit H� �
� While

this limit is appropriate for many oceanic applications� it does not apply to lens�shaped

vortices created by the collapse of 
uid cylinders �such as those of Nof and Simon	s ������

experiment�� For these vortices� motion within the surrounding 
uid may signi�cantly

a�ect the energy budget �Dewar and Killworth� ������

In their examination of lens�shaped vortex merging� Pavia and Cushman�Roisin

������ conserved the mass and energy of the initial vortices� and showed that the absolute

angular momentum of the vortices is not conserved� However� in this derivation the

absolute angular momentum of the entire system was conserved� including the 
uid

which is quiescent in the rotating frame� This surrounding 
uid plays a signi�cant role

in angular momentum conservation� which leads us to conclude that there is no �energy

paradox
 �Cushman�Roisin� ����� inherent in lens�shaped vortex merging� To highlight

the surrounding 
uid	s role� consider the following thought experiment� a pair of two�

dimensional cylinders of density �� mass ma and radius ra in solid�body rotation at

rate �a touch at the center of a tank which is rotating at rate (� The cylinders are

surrounded by 
uid of density ��� Some time later� they have merged to produce a

single cylinder of the same density� with mass mc " �ma� radius rc and rotation rate

�c� It is centered on the contact point of its parents �the tank center�� Conservation of

���



mass requires rc "
p
�ra� and angular momentum conservation requires

�c "
�

�

��
�� ��

�

�
(� �a

�
� �E����

In the absence of surrounding 
uid� �� " �� and �E���� becomes

�c "
�

�
�( � �a� � �E����

This expression is analogous to the formulation of angular momentum conservation

in Cushman�Roisin ������ and Pavia and Cushman�Roisin ������� When �� " �� the

thought experiment is describing coalescing �xed�height disks on a rotating table� To

an observer in the rotating frame� the rotation rate of the resulting disk is more positive

�for positive (� than it would be in the absence of rotation� due to Coriolis de
ection

applying a net torque on the coalescing 
uid parcels �c�f� Feynman et al� ������� pg� ���

��� However� if �� " �� �E���� simpli�es to

�c "
�

�
�a� �E����

i�e� the period doubles and relative angular momentum is conserved� As the cylinders

coalesce� they lose the absolute angular momentum associated with revolution about

their joint center of mass� but this is balanced by the angular momentum gained by

the displaced quiescent 
uid� In the rotating frame� Coriolis de
ection of the coalescing

parcels is balanced by a pressure gradient in the surrounding quiescent 
uid �Rossby�

����� Rossby� ������

As shown in section E����� solid�body vortices can conserve mass� angular momentum

and energy only if the upper�layer depth H� " �� If H� is nonzero� energy conservation

is independent from mass and angular momentum conservation� The three constraints

cannot then be simultaneously satis�ed� Two merging scenarios were considered� one

in which mass is conserved� and the other in which energy is conserved �with angular

���



momentum conserved in both�� If mass is conserved� the �nal vortex has less total

energy than the initial vortices� These solutions are thus �energetically allowable


�Dewar and Killworth� ����� in the sense that an external energy source is not required�

Essentially� these solutions are analogous to the classical Rossby adjustment problem�

for which the steady�state solution contains only ��� of the initial energy �c�f� Gill �������

pp� ��������� For the adjustment problem� and presumably for this merging scenario�

the remaining energy is removed via Poincar#e wave radiation� In the alternative merging

scenario� it was assumed that energy is conserved� as a result� the �nal vortex has

less mass than its parents� Cushman�Roisin �Cushman�Roisin� ����� has proposed a

physical interpretation to this� merging vortices often eject 
uid in narrow �laments

as they axisymmetrize �Gri�ths and Hop�nger� ����� Melander et al�� ������ Because

the �laments bear negligible energy and relative angular momentum but a signi�cant

fraction of the mass �Cushman�Roisin� ������ they are implicitly modeled by relaxing

the mass conservation constraint as done in this scenario �Pavia and Cushman�Roisin�

������ It should be noted for completeness that a third scenario was considered in which

mass and energy are conserved� the �nal state contained more angular momentum than

the initial state ����! more for ra " Rd�� and thus did not represent a physically

meaningful free merging scenario�

The two merging scenarios predict similar results for large vortices �ra 
 Rd�� their

predictions diverge as the vortex size is decreased relative to the Rossby radius� However�

while the solid�body model may accurately simulate the structure of a frontal oceanic

eddy �Gill and Gri�ths� ������ it does not describe the structure of typical ����layer

vortices� By including a nearly irrotational shell� mass� angular momentum and energy

can be conserved in the merged vortex �see section E������ However� if the shell is a

narrow ring of relatively strong vorticity� solutions do not exist which simultaneously

���



conserve all three� In numerical experiments� narrow rings of this form oppose vortex

merging� and can halt merging completely if the internal Rossby radius is large compared

to the radius of the vortex core �Valcke and Verron� ������ Alternatively� merging may

require energy or mass loss� as was the case with solid�body vortices� This loss rapidly

becomes negligible if the outer core is large compared to the Rossby radius� especially

if the inner core is also large�

It can be concluded that in two physically signi�cant limits� vortices can conserve

mass� angular momentum and energy when they merge� Processes such as Poincar#e wave

radiation� �lamentation �Cushman�Roisin� ����� or shielding �Valcke and Verron� �����

may explain why all three cannot be simultaneously conserved over the full range of

sizes considered here� By quantifying the characteristics of initial and merged vortices�

future laboratory experiments could determine which merging scenario best describes

the actual process� and add signi�cant insight into the kinematics of vortex merging�
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Figure ���� Side view of a vortex and surrounding quiescent 
uid in the ��layer
model� For a vortex in solid�body rotation� the surface and interface displacements
are parabolic� as sketched here�
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Appendix F

Dispersion magnification by the mean current shear

The e
ect of a mean meridional shear on zonal dispersion is calculated and compared
to the observations�

Krauss and B%oning ������ noted that meridional shear in the mean zonal current

could arti�cially magnify the zonal dispersion� This derivation is inspired by theirs�

but di�ers by treating the meridional position of a drifter as a function of time� and

assuming that the ensemble average of this quantity is zero� This approach produces

an estimate of the zonal dispersion as a function of the mean meridional shear� which

can be compared to direct measurements�

Consider mean currents of the form

� u �" uo � �y�� � v �" �� �F���

By introducing a meridional shear in the mean zonal current� the assumption of homo�

geneity is violated� How will this a�ect the long�time zonal dispersion 

A spatially�homogeneous estimate of � u � will be averaged over a meridional scale

B �the maximum meridional size of the tracer cloud�� This estimate �which I denote

with a hat� is

�� u � "
�

B

Z B��

�B��
dy� u "� u � ��y�� �F���

The estimate of u� is thus contaminated by the meridional shear of the mean current�

�u� " u� �� u � " u� � �y�� �F���

Then

�� u�� � "� u�� � ��� � u�y� � ��� � y�� � � �F���

If u� and y� are nearly uncorrelated� the �rst and third terms dominate the right�hand

���



side of �F��� and

�� u�� � �� u�� � ���� � v�� � Tvt� t
 Tv� �F���

where ����� has been used� Assuming that the EKE is roughly homogeneous

�� u�� ��� v�� ��� then

�� u�� � �� u�� � �F���

for t � �
���Tv

�
��

� This time scale can be estimated as follows� east of the Hawaiian

Islands� the zonal current goes from � m�s at ���Nto ���� m�s at ���N�see Fig� ����

giving j�j � ���� ���� s��� Using this value and Tv � ��� days�
�
���Tv

��� � ��� days�

Because I am interested in dispersion for t 	 ��� days� I proceed under the assumption

that �F��� applies and restrict this derivation to the �long�time limit
 de�ned as

Tu � t�
�
���Tv

�
��

� �F���

The estimated autocorrelation of u� is

�Ru " �
�u��	Tm

Z Tm

�
d�

�
u��t� � �y��t�

� �
u��t� �� � �y��t� ��

�
� Ru � ��v

��	
�u��	�

�TvtRy�
�F���

where Ry is the integral time scale of y�� a function which decays considerably more

slowly than Rv� Because Ry 	 �� t� �
���Tv� and � u�� ��� v�� ��

�Ru � Ru� �F���

The estimated autocorrelation function is not signi�cantly contaminated by the merid�

ional shear in � u �� so direct estimates of the integral scales should not be either�

In the long�time limit� the dispersion is

�� x�� � " � � u�� �

Z t

�
d� �t� �� �Ru���

� � � u�� � t

Z t

�
d�

�
Ru � �

� v�� �

� u�� �
��TvtRy

�

" � � u�� � Tut� � � v�� � ��TvTyt
��

�F����

���



where Ty is the integral time scale of y� �for all ���day independent drifter segments

in the Hawaiian region� the mean value of Ty is �� days�� The second term on the

right�hand side of �F���� scales to the �rst term as

� � v�� � ��TvTyt

� u�� � Tu
� ���Tyt� �F����

Thus� for t � �
���Ty � ��� days� xrms grows linearly due to the meridional shear of

the mean zonal current�

According to �F����� the mean shear scales as

j�j � dxrms
dt

�
q
� v�� � TvTy

� �F����

Thus� an estimate of j�j can be derived from the observed long�time dispersion� From

Fig� ��� *xrms
*t east of the islands between days ��� and ��� is � ��� m�s� Using this

value� vrms � ��� m�s� Tv � ��� days and Ty � �� days� �F���� gives j�j � �������� s���

approximately twice the direct measurement �j�j � ��� � ���� s���� This discrepancy

may be due to the �rst term in the right�hand side of �F���� playing a non�negligible

role� Nevertheless� given the crude scaling arguments involved� this order�of�magnitude

agreement suggests that Krauss and B%oning	s ������ hypothesis is consistent with the

observed long�time zonal dispersion�
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