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Abstract This study diagnoses the climate sensitivity,

radiative forcing and climate feedback estimates from

eleven general circulation models participating in the Fifth

Phase of the Coupled Model Intercomparison Project

(CMIP5), and analyzes inter-model differences. This is

done by taking into account the fact that the climate

response to increased carbon dioxide (CO2) is not neces-

sarily only mediated by surface temperature changes, but

can also result from fast land warming and tropospheric

adjustments to the CO2 radiative forcing. By considering

tropospheric adjustments to CO2 as part of the forcing

rather than as feedbacks, and by using the radiative kernels

approach, we decompose climate sensitivity estimates in

terms of feedbacks and adjustments associated with water

vapor, temperature lapse rate, surface albedo and clouds.

Cloud adjustment to CO2 is, with one exception, generally

positive, and is associated with a reduced strength of the

cloud feedback; the multi-model mean cloud feedback is

about 33 % weaker. Non-cloud adjustments associated

with temperature, water vapor and albedo seem, however,

to be better understood as responses to land surface

warming. Separating out the tropospheric adjustments does

not significantly affect the spread in climate sensitivity

estimates, which primarily results from differing climate

feedbacks. About 70 % of the spread stems from the cloud

feedback, which remains the major source of inter-model

spread in climate sensitivity, with a large contribution from

the tropics. Differences in tropical cloud feedbacks

between low-sensitivity and high-sensitivity models occur

over a large range of dynamical regimes, but primarily

arise from the regimes associated with a predominance of

shallow cumulus and stratocumulus clouds. The combined

water vapor plus lapse rate feedback also contributes to the

spread of climate sensitivity estimates, with inter-model

differences arising primarily from the relative humidity

responses throughout the troposphere. Finally, this study

points to a substantial role of nonlinearities in the calcu-

lation of adjustments and feedbacks for the interpretation

of inter-model spread in climate sensitivity estimates. We

show that in climate model simulations with large forcing

(e.g., 4 9 CO2), nonlinearities cannot be assumed minor

nor neglected. Having said that, most results presented here

are consistent with a number of previous feedback studies,

despite the very different nature of the methodologies and

all the uncertainties associated with them.

Keywords Climate sensitivity � Feedback � Radiative

forcing � Fast adjustment � Radiative kernel � CMIP5

climate model simulations � Climate change � Inter-model

spread

1 Introduction

The equilibrium global-mean surface temperature change

associated with a doubling of CO2 concentration in the

atmosphere is referred to as climate sensitivity. As it

controls many aspects of climate change, including the

response of the hydrological cycle and of regional climate

features to anthropogenic activities, climate sensitivity

remains a centrally important measure of the size, and
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significance, of the climate response to greenhouse gases

(Bony et al. 2013a, b). Unfortunately, climate sensitivity

estimates from climate models have long been associated

with a large spread (Charney et al. 1979; Randall et al.

2007). This spread, which has not narrowed among the

current generation of models (Andrews et al. 2012),

remains within the 2–4.5� range.

Attempts to estimate the likely range of climate sensi-

tivity from observations of the current climate or from

instrumental or natural archives have not narrowed this

range substantially (Knutti and Hegerl 2008). An alterna-

tive to this holistic approach consists in constraining

observationally the individual processes or feedbacks that

control climate sensitivity, especially those which are most

responsible for inter-model differences. For this purpose,

interpreting the spread of climate sensitivity estimates

amongst models constitutes a pre-requisite.

For climate models participating in the Third Phase of

the Coupled Model Intercomparison Project (CMIP3),

cloud feedbacks were identified as the leading source of

spread of climate sensitivity estimates (Bony et al. 2006;

Dufresne and Bony 2008; Soden and Held 2006), with a

major contribution from low-cloud feedbacks (Bony and

Dufresne 2005; Randall et al. 2007; Webb et al. 2006).

However, Gregory and Webb (2008) and Andrews and

Forster (2008) subsequently pointed out that the atmo-

sphere, humidity and clouds in particular, could exhibit fast

adjustments to the CO2 radiative forcing, and that inter-

model differences in cloud adjustments could contribute

significantly to the spread of climate sensitivity.

The CO2 radiative forcing has been commonly taken as

the radiative flux change at the top of the atmosphere (TOA)

after allowing the stratosphere to adjust to the CO2 increase

(Forster et al. 2007). The reason for using this stratosphere-

adjusted forcing rather than the instantaneous CO2 forcing,

is that the stratospheric temperature adjustment occurs on

shorter time-scales (i.e., weeks to months) than the long-

term climate response (operating over decades to millenia).

The same rationale is used now for the tropospheric

adjustments to change in CO2 concentration. As tropo-

spheric adjustments to greenhouse gases are fast and not

necessarily mediated by surface temperature changes, they

may not be considered as part of feedbacks but rather as part

of forcing. Such a distinction matters for models for which

the cloud response to increased CO2 does not depend on

surface warming but primarily results from fast tropo-

spheric adjustments. These findings call for a revisit of the

concepts of forcing and feedback, of the methodologies

used to assess them from model outputs, and of our inter-

pretation of climate sensitivity uncertainties.

The purpose of this study is to interpret the range of

equilibrium climate sensitivity estimates from models par-

ticipating in the Fifth Phase of the Coupled Model

Intercomparison Project (CMIP5, Taylor et al. 2012). In

Sect. 2, we present the methodologies used to diagnose the

radiative forcing and feedbacks of each model by taking into

account the tropospheric and land surface adjustments to

CO2. In Sect. 3, these methodologies are applied to CMIP5

model outputs, and model estimates of climate sensitivity are

interpreted in terms of radiative adjustments and feedbacks.

The inter-model spread of climate sensitivity is quantified,

and then decomposed into different contributions related to

individual adjustments and feedbacks, and into regional

contributions. As the spread of climate sensitivity arises

primarily from the tropics, mainly by being the largest region

covering half the Earth, we analyze in Sect. 4 inter-model

differences in water vapor, lapse-rate and cloud feedbacks. A

conclusion is presented in Sect. 5.

2 Data and methodology

2.1 Conceptual framework

Let F and DR be a radiative forcing imposed to the climate

system and the resulting imbalance in the Earth’s radiation

budget at the TOA, respectively. The climate system

responds to this radiative imbalance by changing its global

mean surface temperature DTs; and at any time the climate

response opposes the radiative forcing according to:

DR ¼ F þ kDTs; ð1Þ

where kð\0Þ is the feedback parameter (Bony et al. 2006;

Dufresne and Bony 2008; Gregory et al. 2004). When the

climate system reaches a new equilibrium, DR ¼ 0 and the

equilibrium climate sensitivity DTe
s can be estimated as

DTe
s ¼
�F

k
ð2Þ

Consider now that the radiative forcing F induces

tropospheric adjustments to increased CO2 concentration

(Fadj,co2), without any change in DTs. The equilibrium

climate sensitivity DTe0
s can then also be estimated as:

DTe0

s ¼
�ðF þ Fadj;co2Þ

k0
; ð3Þ

where k0 is the feedback parameter when the adjustments

are considered as part of the forcing. If we assume that

both equilibrium temperature changes are equals (i.e.,

DTe
s ¼ DTe0

s ), then the relationship between k and k0 can be

written as:

k0

k
¼ F þ Fadj;co2

F
ð4Þ

Figure 1, which illustrates this reasoning, shows the

relationships between the forcings, the feedback parameters
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and the equilibrium global mean surface temperature

according to the energy balance in Eq. 1, when the

adjustments to CO2 are included in the forcing (in blue)

or in the feedbacks (in black). Figure 1 also represents an

alternative forcing (F ? Fadj, as defined in Sect. 2.2 and

Eq. 12), which we use in this study; this forcing includes

tropospheric adjustments to CO2 while holding the SST

fixed, but allowing the land surface to warm.

Under this framework, the imbalance in the Earth’s

radiation budget at the TOA ðDRÞ depends on changes in

CO2 concentration, in surface temperature Ts and in the

feedback variables X (where X :
P

x and x—used in

Sects. 2.3–2.6—refers to atmospheric temperature, water

vapor, surface albedo and clouds). To first order, by

neglecting nonlinearities, Eq. 1 can be written in a general

form as:

DRðCO2; Ts;XÞ �
oR

oCO2

�
�
�
�
Ts;X

DCO2 þ
oR

oTs

�
�
�
�
CO2;X

DTs

þ oR

oX

�
�
�
�
Ts;CO2

DX ð5Þ

where on the right hand side of Eq. 5, we now explicitly

introduce the stratosphere-adjusted forcing to CO2 (first

term), the Planck response (second term) and the TOA

radiative response to changes in feedback variables (third

term). Note that there is a logarithmic relationship between

the direct CO2 radiative forcing and the increase in atmo-

spheric CO2 concentration (Arrhenius 1896): DRðCO2Þ ¼

oR

olnðCO2Þ

�
�
�
Ts;X

DlnðCO2Þ; which does not appear explicitly in

the equations of this paper to simplify their writing. There

are at least two more specific approaches that can be used

to diagnose the radiative forcings and feedbacks from

Eq. 5.

1. In the case where tropospheric adjustments to CO2

are not taken into account, but rather included in the

feedback response (e.g., in Soden and Held 2006), the

changes in feedback variables X only depend on

surface temperature Ts, while the dependency to CO2

is neglected: DX � DXðTsÞ � oX
oTs

DTs: Eq. 5 can then

be re-written as:

DRðCO2; Ts;XðTsÞÞ �
oR

oCO2

�
�
�
�
Ts;X

DCO2

þ oR

oTs

�
�
�
�
CO2;X

þ oR

oX

�
�
�
�
Ts;CO2

oX

oTs

" #

DTs

ð6Þ

2. In the case where we recognize the existence of

tropospheric adjustments to CO2 while holding the

SST fixed, but allowing the land surface temperature to

adjust, DTs can be decomposed as:

DTs ¼ DTs;0 þ DTs;DSST ð7Þ

where DTs;0 is the surface temperature change after CO2

quadrupling at fixed SST and DTs;DSST is the subsequent

surface temperature change when the SST varies by DSST :

The changes in the variables X now depend on both

surface temperature and CO2 changes as follows:

DX � DXðCO2; TsÞ

� oX

oCO2

�
�
�
�
Ts

DCO2 þ
oX

oTs

�
�
�
�
CO2

DTs;0 þ
oX

oTs

�
�
�
�
CO2

DTs;DSST

ð8Þ

This yields for Eq. 5

DRðCO2;Ts;XðCO2;TsÞÞ �
oR

oCO2

�
�
�
�
Ts ;X

þoR

oX

�
�
�
�
Ts ;CO2

oX

oCO2

�
�
�
�
Ts

" #

DCO2

þ oR

oTs

�
�
�
�
CO2 ;X

þoR

oX

�
�
�
�
Ts ;CO2

oX

oTs

�
�
�
�
CO2

" #

DTs;0

þ oR

oTs

�
�
�
�
CO2 ;X

þoR

oX

�
�
�
�
Ts ;CO2

oX

oTs

�
�
�
�
CO2

" #

DTs;DSST

ð9Þ

The right hand side of this equation includes the strato-

sphere- and troposphere-adjusted forcing to CO2 (first

row), the fast climate response to a change in land surface

temperature (second row), and the climate response to the

subsequent temperature change when the oceans warm

(third row).

In this present study, we follow this approach to diag-

nose the radiative forcings and feedbacks. The next section

Fig. 1 Schematic representation of Eq. 1 showing the relationships

between the forcings, the feedback parameters and the equilibrium

global mean surface temperature when the tropospheric adjustments

to CO2 forcing are considered (in blue) or not (in black). Here, we

assume that the adjustments to CO2 are negative (Fadj-co2 \ 0). The

intercept at DTs ¼ DTs;0 (red cross) represents the adjusted radiative

forcing estimated from fixed-SST experiments, in which the land

surface temperature is allowed to adjust by DTs;0 to increased CO2,

while holding the SST fixed (see also Sect. 2.2)
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describes how we proceed, in practice, when we apply this

methodology to CMIP5 model experiments.

2.2 Using CMIP5 experiments to diagnose radiative

forcings and feedbacks

We analyze climate model outputs recently made available on

the CMIP5 multi-model ensemble archive. The list of models

(with their respective climate sensitivity estimated from

Eqs. 22–29) considered in this study is given in Table 1.

Model outputs from a range of CMIP5 idealized

experiments (described in Taylor et al. 2012) are analyzed:

1. abrupt4xCO2, a fully-coupled ocean-atmosphere sim-

ulation in which the CO2 concentration is abruptly

quadrupled and then held fixed

2. sstClim, a 30-year atmosphere-only experiment forced

by a prescribed climatology of sea surface tempera-

tures derived from fully-coupled pre-industrial simu-

lation (piControl)

3. sstClim4xCO2, the same experiment as sstClim,

except that the CO2 concentration is abruptly quadru-

pled and maintained fixed for 30 years.

We compute monthly-resolved seasonal cycle using the

30-year periods of the sstClim and sstClim4xCO2 experi-

ments and a 10-year period centered around the 130th year

after the CO2 quadrupling in abrup4xCO2. For the 3D

fields, we use the data on pressure levels.

The framework described in the previous section pro-

vides the possibility of isolating the role of CO2 and sur-

face warming in the radiative changes associated with

clouds, water vapor, albedo and temperature (Eq. 9). In the

sstClim4xCO2 experiment, the atmosphere and land

surface are free to respond to the change in CO2 concen-

tration. However, the climate feedbacks, which by defini-

tion are mediated by the global mean surface temperature

change, are prevented from evolving, since the fixed-SST

condition implies that DTs ’ 0; actually, the small change

in Ts resulting from the warming of land surfaces, DTs;0; is

of the order of 0.5 K. Therefore, the fixed-SST experiments

we dispose, allow us to consider the adjustments to CO2

and land surface warming together (first two rows in

Eq. 9). According to Eq. 1, the atmosphere-adjusted radi-

ative forcing F0, as defined in Eq. 12, is simply the change

in the net TOA radiation fluxes between the 30-year

average climate of sstClim4xCO2 and sstClim experiments

(i.e., F0 ¼ DR). As for the radiative feedbacks (third row in

Eq. 9), they are investigated between the sstClim4xCO2

and abrupt4xCO2 experiments, where the CO2 concentra-

tion is now held fixed, but the surface temperature is

allowed to change as the ocean warms.

The forcing definition used in this study assumes a small

warming of the climate system; the land surface warming

may affect the estimates of adjustments to CO2. Never-

theless, it has the advantage of being unambiguous and

practical. Therefore, we diagnose the radiative forcing by

permitting the stratospheric temperature, the troposphere

and the land surface temperatures to adjust to the increased

CO2 concentration. And since the climate feedbacks are

delayed by century time-scales because of the ocean’s

thermal inertia, it is not unreasonable to include ‘‘fast

processes’’, such as land and sea-ice surface warming,

withing the forcing rather than in the long-term climate

response.

Some previous studies have attempted to devise a

forcing that could capture adjustments to CO2 without also

Table 1 Institute, model name and climate sensitivity (computed from Eqs. 22–29) of the 11 CMIP5 Global Climate Models (GCMs) con-

sidered in this study

Model acronym Institution Climate sensitivity

for 2 9 CO2 (in K)

1 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 3.9

2 NorESM1-M Norwegian Climate Center, Norway 2.7

3 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 3.7

4 INMCM4 Institute for Numerical Mathematics, Russia 1.9

5 HadGEM2-ES Met Office Hadley Centre, United Kingdom 4.4

6 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 3.7

7 MIROC5 Japan Agency for Marine-Earth Science and Technology, Japan 2.8

8 CCSM4 National Center for Atmospheric Research, United States 2.3

9 BNU-ESM College of Global Change and Earth System Science, Beijing Normal

University, China

4.1

10 FGOALS-s2 State Key Laboratory of Numerical Modeling for Atmospheric

Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric

Physics, Chinese Academy of Sciences, Beijing, China

4.1

11 MRI-CGCM3 Meteorological Research Institute, Japan 2.6
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capturing changes due to land surface warming. For

instance, Hansen et al (2005) and Mauritsen et al. (2013)

corrected the change in the net TOA radiation fluxes from

fixed-SST experiments for land surface warming by eval-

uating F0 ¼ DR� kDTs;0: This was done by assuming that

the global climate feedback parameter ðkÞ is the same in a

fixed-SST experiment as in a transient experiment. How-

ever, although the global climate feedback parameter might

be independent of climate state at first order, this is not

necessarily true regionally nor for individual feedbacks

(Boer and Yu 2003).

Another method to isolate the role of CO2 and surface

warming consists in regressing the TOA radiative imbal-

ance of each feedback variable against the global mean

temperature change (Block and Mauritsen 2013; Colman

and McAvaney 2011). By doing this, the regression

slopes can be understood as feedbacks and the y-inter-

cepts as adjustments to CO2. However, this method can

sometimes lead to misleading results (e.g., the negative

sea-ice albedo adjustment in Block and Mauritsen 2013)

partly because different parts of the climate system may

warms at different rates relative to the global mean

temperature change.

Hereafter, and to ensure clarity throughout this paper,

the different terms in Eq. 9 are defined as:

• the stratosphere-adjusted forcing to CO2:

F ¼ oR

oCO2

�
�
�
�
Ts;X

DCO2 ð10Þ

• the tropospheric adjustments to CO2 forcing and land

surface warming:

Fadj ¼
oR

oX

�
�
�
�
Ts;CO2

oX

oCO2

DCO2

þ oR

oTs

�
�
�
�
CO2;X

þoR

oX

�
�
�
�
Ts;CO2

oX

oTs

" #

DTs;0 ð11Þ

• the atmosphere-adjusted forcing to CO2 and land

surface warming:

F0 ¼ F þ Fadj ð12Þ

• the Planck feedback:

kp ¼
oR

oTs

�
�
�
�
CO2;X

ð13Þ

• the feedback parameter including Planck:

k0 ¼ kp þ
oR

oX

�
�
�
�
Ts;CO2

oX

oTs

ð14Þ

• In the following Sects. 2.3, 2.4 and 2.6, we describe

how the tropospheric adjustments to CO2 (Eq. 11) and

the feedbacks (Eq. 14) are computed using the radiative

kernel approach, and how the climate sensitivities (in

Table 1) are estimated within that framework.

2.3 Estimate of adjustments

Here, the tropospheric adjustments to CO2 and land surface

warming arise, to first order, from changes in temperature

(t), water vapor (wv), surface albedo (alb) and cloud (cl),

which are induced by increased CO2 and land surface

warming, but without any change in sea surface tempera-

ture: Fadj =
P

x Fx ? Ref = Ft ? Fwv ? Falb ? Fcl ? -

Ref (Eq. 11), where Ref is a residual term, usually neglected

for sufficiently small climate perturbations (e.g., Soden

et al. 2008). However, in large forcing experiments (e.g.,

4 9 CO2), this residual term is sometimes too large to be

ignored; this drawback of the kernel technique is discussed

in more details in Sect. 2.5.

Following the same approach as for the feedback

estimation (in Sect. 2.4—see also in Soden et al. 2008), all

clear- and all-sky adjustment terms (except clouds) are

derived using the radiative kernel technique as follows:

Fx ¼
oR

ox
Dx ¼ KxDx; ð15Þ

where Kx is the radiative kernel. We use the same kernels

as in Shell et al. (2008), the National Center for Atmo-

spheric Research (NCAR) model’s kernels for water vapor,

temperature and albedo, which are made available at

http://people.oregonstate.edu/*shellk/kernel.html. Each

kernel, Kx, is obtained by perturbing the climate base state

(with pre-industrial CO2 concentration) by a standard

anomaly dx of the corresponding climate variable x at each

grid point and model level and by measuring the resulting

change in TOA radiative fluxes (with separate consider-

ation of the all- and clear-sky LW and SW radiation

fluxes). See Soden et al. (2008) and Shell et al. (2008) for

more details on the kernel technique.

Dx is the climate response of each variable, computed

as the difference between the 30-year model predicted

climate in sstClim4xCO2 and the 30-year climate of the

sstClim simulation (refer to Sect. 2.2 for details on the

experiments). Both Kx and Dx are functions of longitude,

latitude, pressure level and are monthly means. To obtain

tropospheric averages, the water vapor and temperature

adjustments are vertically integrated by summing over

mass-weighted model levels up to the tropopause level,

which varies linearly between 300 hPa at the poles and

100 hPa at the equator. As commonly done in feedback

studies, the temperature radiative response is further

separated into the Planck adjustment (Fp), which is that

due to a vertically uniform tropospheric warming equal

the surface warming, and the lapse rate adjustment (Flr)

On the interpretation of inter-model spread 3343
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being due to deviations from uniform tropospheric

warming.

The cloud adjustment is estimated by the changes in

cloud radiative effect (CRE) and corrected for changes in

non-cloud variables that can alter the change in CRE and

lead to a biased estimate of the cloud adjustment.

Fcl ¼ DR� DR0 �
X

x

ðFx � F0
x Þ þ ðG� G0Þ

" #

; ð16Þ

where the exponent 0 indicates clear-sky variables, and DR

is computed with the same experiments as Dx (i.e., between

sstClim4xCO2 and sstClim). G and G0 are the all-sky and

clear-sky stratosphere-adjusted forcing computed at the

tropopause, for a quadrupling CO2, using the Laboratoire

de Météorologie Dynamique (LMDz) radiation code and

control climate state. G - G0 is the cloud masking effect

arising from changes in CO2 concentration only, estimated

at about -1.24 W m-2. This yields a proportionality of

cloud masking of G�G0

G
� � 0:16, which is consistent with

that reported in Soden et al. (2008).

Finally, the magnitude of the residual term Ref (reported

for each model in Table 2) is computed for clear-sky

conditions (by construction, it is the same for all-sky

conditions) by differencing the clear-sky TOA radiative

fluxes from the sum of the clear-sky adjustment terms and

clear-sky CO2 forcing:

Ref ¼ DR0

�
X

x

F0
x þ G0Þ ¼ DR0 � ðF0

t þ F0
wv þ F0

alb þ G0

 !

ð17Þ
In this paper, we often express this quantity in percent

as: %Ref ¼ Ref

DR0

�
�
�
�
�
�� 100 (also reported in Table 2 into

brackets).

Vertically-integrated, global and annual mean tropo-

spheric adjustments to CO2 and land surface warming are

shown in Table 2 for each model; multi-model ensemble-

mean maps are also presented in Fig. 2. We find a rela-

tively large negative contribution from the temperature

associated with land surface warming (Fp). Clouds con-

stitute the second most important tropospheric adjustment

to CO2; it is positive for most models, dominated by the

shortwave component (Fclsw) and stronger over land than

over the ocean (Fig. 2d, f). However, the cloud adjustment

is negative over the storm track regions (Fig. 2f, and as

reported in Block and Mauritsen 2013), with a greater

contribution arising from the longwave component

(Fig. 2e). Additional analyzes using aquaplanet experi-

ments (‘aquaControl’ and ‘aqua4xCO2’–not presented in

the paper) show that the positive contribution from the

lapse rate (over land–not shown), the water vapor (over

land, Fig. 2b) and the albedo (over sea-ice, northern con-

tinental areas and semi-arid regions, Fig. 2c) are due to

land surface warming rather than tropospheric adjustments

to CO2. On the other hand, cloud changes partly reflect

changes in the large-scale circulation induced by the direct

effect of CO2, especially the weakening of large-scale

ascending motions over ocean (Bony et al. 2013b).

These adjustment estimates may be compared with val-

ues reported in previous studies. For instance, Webb

(2008)’s estimates of global cloud adjustments, obtained

from the y-intercept of the regression line for DCRE against

DTs; are -1.7 ± 0.42 W m-2 and 0.98 ± 0.82 W m-2 for

the LW and SW components, respectively, of an ensemble

of mixed layer ocean models (note that the original

2 9 CO2 results have been doubled for ease of comparison

with 4 9 CO2 results of this study). While Gregory and

Webb (2008)’s and the present estimates are relatively

similar for the SW component, substantial differences arise

for the LW cloud adjustment. This can largely be explained

by the cloud-masking effect of non-cloud variables, which

is not taken into account in Gregory and Webb (2008)’s

study. Our multi-model mean estimates of the adjustments

in CRE are -1.42 ± 0.49 W m-2 and 0.93 ± 0.88 W m-2

for the LW and SW components, respectively, which are

now very similar to Gregory and Webb (2008)’s estimates.

Quantitative differences can also be found by comparing

our results with those reported in Colman and McAvaney

(2011), who analyzed a single model. Using the ‘‘Partial

Radiative Perturbation’’ technique, Colman and McAvaney

(2011) found that the SW cloud adjustment, estimated at

*1.5 W m-2 (scaled by 2 for comparison with 4 9 CO2

results of this study), is the only significant response to CO2,

while the linear regression highlights additional contribu-

tions from the LW cloud adjustment (*-0.2 W m-2,

scaled by 2) and water vapor (*-0.6 W m-2, scaled by 2).

The different results found by these studies highlight the

sensitivity of adjustments to CO2 to the methodology

employed. Having said that, previous studies’ estimates and

ours remain qualitatively consistent.

2.4 Estimate of feedbacks

At first order, by neglecting interactions between variables,

the feedback parameter, previously defined in Eqs. 1 and 14,

is commonly split as the sum of the temperature (t), water

vapor (wv), surface albedo (alb) and cloud (cl) feedback

parameters (Bony et al. 2006; Soden et al. 2008), with a

longwave (LW) and (SW) radiation contribution for the

water vapor and cloud feedbacks. In addition, here, we

consider a residual term Rek; which may reflect nonlinear-

ities in the relationship between the TOA radiative flux

changes and the climate responses, or more generally,
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limitations in the kernel approximation (as for the adjust-

ments in Sect. 2.3): k ¼
P

x kx þ Rek ¼ kt þ kwv þ kalbþ
kcl þ Rek:

As for the adjustments, all clear- and all-sky feedbacks

(except the cloud feedback) are computed using the radi-

ative kernel technique as follows:

(a) (b) (c)

(d) (e) (f)

Fig. 2 Multimodel ensemble-mean maps of the tropospheric adjust-

ments associated with temperature (a), water vapor (b), albedo (c) and

clouds: shortwave (d), longwave (e) and net component (f) estimated

using the NCAR model’s radiative kernels and the sstClim and

sstClim4xCO2 experiments. Units in W m-2

Table 2 Vertically-integrated (up to tropopause), global and annual

mean of adjustments to CO2 forcing and land surface warming (in

W m-2) estimated using the NCAR model’s radiative kernels, for the

11 CMIP5 models used in this study, their multi-model mean and

inter-model standard deviation

Fp Flr Fwv Falb Fclsw Fcllw Fcl

P
x Fx F0 Ref (%Ref)

IPSL-CM5A-LR -1.64 -0.12 0.54 0.18 2.15 -1.33 0.81 -0.21 6.48 -0.77 (10.96)

NorESM1-M -1.72 -0.04 0.38 0.19 1.61 -0.49 1.09 -0.07 6.95 -0.49 (6.79)

MPI-ESM-LR -1.58 0.07 0.35 0.15 1.89 -0.43 1.44 0.45 8.63 0.71 (8.39)

INMCM4 -1.45 -0.06 0.55 0.12 -0.32 0.42 0.09 -0.72 6.24 -0.54 (7.26)

HadGEM2 -1.56 0.00 0.28 0.09 1.34 -0.27 1.06 -0.12 6.99 -0.39 (5.50)

CanESM2 -1.52 -0.18 0.40 0.05 1.13 -0.04 1.07 -0.15 7.34 0.02 (0.34)

MIROC5 -1.40 -0.09 0.33 0.16 1.56 -0.66 0.89 -0.09 7.94 0.52 (6.28)

CCSM4 -1.97 0.06 0.39 0.21 1.65 -0.25 1.39 0.11 8.84 1.21 (13.80)

BNU-ESM -1.37 -0.23 0.56 0.53 1.03 0.07 1.08 0.59 7.87 -0.21 (2.51)

FGOALS-s2 -1.15 -0.33 0.56 0.11 -0.64 0.23 -0.42 -1.22 8.05 1.80 (18.20)

MRI-CGCM3 -1.22 -0.06 0.41 0.16 0.50 0.00 0.49 -0.20 7.19 -0.10 (1.18)

For all models:

Multi-model mean -1.51 -0.09 0.43 0.18 1.08 -0.25 0.82 -0.15 7.50 0.16 (7.38)

Inter-model std dev 0.23 0.12 0.10 0.13 0.89 0.48 0.56 0.50 0.84 0.81 (5.38)

For the 8 models that exhibit a linear behavior (i.e., %Ref \10):

Multi-model mean -1.48 -0.07 0.41 0.18 1.09 -0.17 0.90 -0.04 7.39 -0.06 (4.78)

Inter-model std dev 0.15 0.09 0.10 0.15 0.71 0.35 0.42 0.40 0.74 0.46 (3.02)

Also shown are the multi-model mean and inter-model standard deviation for the 8 models that exhibit a linear behavior in the forcing period (for

which %Ref \10; see also in Sect. 2.5). From left to right are the contributions from the Planck response to land surface warming (Fp), lapse rate

(Flr), water vapor (Fwv), albedo (Falb), shortwave, longwave and net cloud components (Fcl sw, Fcl lw and Fcl, respectively), the sum of all

adjustments to CO2 and land surface warming (
P

x Fx), the total adjusted forcing (F0) and the residual term (Ref, expressed in W m-2 and %Ref

into brackets, expressed in %)
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kx ¼
oR

ox

Dx

DTs;DSST

ð18Þ

where Dx and DTs;DSST are computed by differencing the

10-year average (centered around the 130th year) model

predicted climate in abrup4xCO2 from the 30-year climate

of the sstClim4xCO2 simulation. By only considering the

period between the abrupt4xCO2 and sstClim4xCO2

experiments, feedbacks are separated from tropospheric

adjustments to CO2, and only depend on the surface tem-

perature change when the oceans warm. To obtain tropo-

spheric averages, the water vapor and temperature

feedbacks are vertically integrated in the same way as for

the tropospheric adjustments (see Sect. 2.3). We also sep-

arate the temperature feedback into the lapse rate compo-

nent ðklrÞ and the Planck component ðkpÞ:
As for the cloud feedback, we use the same approach as

in Soden et al. (2008), by estimating the changes in CRE

and correcting for non-cloud feedbacks.

DCRE

DTs;DSST

¼ DR� DR0

DTs;DSST

ð19Þ

kcl ¼
DCRE

DTs;DSST

�
X

x

ðkx � k0
xÞ; ð20Þ

DR and DR0 are with the same experiments as kx (i.e.,

between abrupt4xCO2 and sstClim4xCO2), and the

exponent 0 indicates clear-sky variables. As there is no

change in forcing between these experiments, the forcing

terms in Eqs. 23–25 of Soden et al. (2008) are not included

in the cloud feedback calculation. Note that in Eq. 23 of

Soden et al. (2008), the change in CRE is constructed from

the TOA flux change residual of the clear-sky feedback

factors. In doing so, they assume that the clear-sky change

in TOA flux ðDR0Þ can be decomposed into the sum of

clear-sky responses (i.e., DR0

DTs;DSST
¼
P

x k0
x). This might be

true for small perturbations, but it is not necessarily the

case when the system is forced beyond 2 9 CO2 (Jonko

et al. 2012; see also in Table 3 and Sect. 2.5). Therefore,

here, we compute the difference between these two terms

as the residual term Rek; which is used to measure the

accuracy for the kernel approximation of model-derived

clear-sky flux changes for the abrupt4xCO2 experiment.

Rek ¼ DR0

DTs;DSST

�
X

x

k0
x ð21Þ

As for the adjustments, we also express this quantity in

percent, which is defined as: %Rek ¼ Rek

DR0=DTs;DSST

�
�
�

�
�
�� 100

(values into brackets in Table 3).

Vertically-integrated, global and annual mean feedback

parameters are shown in Table 3 for each model. For

comparison, and to assess the robustness of our results, the

feedbacks have also been computed using the Geophysical

Fluid Dynamics Laboratory (GFDL1) (Soden et al. 2008)

models’ kernels. Both the GFDL and NCAR estimates, as

well as their differences are shown in Table 3. On average

over the set of models considered in this study, the two

feedback calculations agree to within ±0.1 W m-2 K-1,

and the inter-model spread is the same for both models’

radiative kernels. Larger uncertainties arise for the cloud

components, but these are relatively small compared to the

inter-model differences. These results indicate that the use

of an alternative model’s kernel does not alter significantly

the feedback strength nor its inter-model differences.

However, according to the values of the residual term Rek

(last column in Table 3), the NCAR models’ kernels

reproduce the ensemble mean TOA flux changes more

accurately (i.e., Rek
NCAR\Rek

GFDL). In the remaining of the

paper, all results are therefore presented for the NCAR

models’ kernels only.

2.5 Clear-sky linearity test

The radiative kernel technique assumes a linear rela-

tionship between TOA radiative changes and the associ-

ated climate responses (i.e., Kx is constant, independent

of models and climate states). The applicability of this

method was verified for model responses to forcings of

up to 2 9 CO2, but its adequacy seems reduced when the

system is forced by 4 9 CO2 and beyond (Block and

Mauritsen 2013; Jonko et al. 2012). In fact it has been

recently shown that the radiative kernels are depen-

dent on the control state climate and on the magnitude of

the forcing (Block and Mauritsen 2013; Jonko et al.

2012).

Here, we test the applicability of the kernel method on

our range of climate models, by comparing the changes in

clear-sky TOA radiative fluxes derived from the model

simulations and the sum of clear-sky fluxes approximated

by the kernels. This analysis is performed for the zonally-

averaged SW, LW and NET components of the adjust-

ments and forcings (Fig. 3) and the feedbacks (Fig. 4), in

addition of the global-averaged residual terms computed

for the adjustments (%Ref, Table 2) and the feedbacks

(%Rek; Table 3).

The linear kernels are considered to be a useful tool for

analyzes of feedbacks when the residual term is compara-

ble to or less than 10 % relative to the simulated values

(Jonko et al. 2012; Shell et al. 2008), although compen-

sating errors could yield a small residual. We also use that

criterion to test the ability of the kernels to reproduce the

1 The GFDL model’s kernels are available at http://metofis.rsmas.

miami.edu/*bsoden/data/kernels.html.
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Table 3 Vertically-integrated (up to tropopause), global and annual mean of feedbacks parameters (in W m2 K-1) estimated using both the

GFDL and NCAR models’ radiative kernels, and their multi-model mean and inter-model standard deviation

kp klr kwv kwvþlr kalb kclsw kcllw kcl kwvþlrþalbþcl Rekð%Rek)

IPSL-CM5A-LR

GFDL -3.29 -0.97 1.86 0.89 0.18 0.81 0.38 1.18 2.23 0.03 (1.92)

NCAR -3.27 -0.97 1.94 0.97 0.16 0.89 0.32 1.21 2.32 -0.03 (1.57)

Diff 0.01 0.01 0.08 0.08 0.02 0.08 0.06 0.03 0.08 0.06

NorESM1-M

GFDL -3.19 -0.47 1.54 1.07 0.30 -0.14 0.29 0.14 1.47 0.16 (12.67)

NCAR -3.16 -0.46 1.59 1.13 0.26 -0.04 0.23 0.18 1.53 0.07 (5.45)

Diff 0.04 0.01 0.05 0.05 0.04 0.10 0.06 0.04 0.05 0.09

MPI-ESM-LR

GFDL -3.27 -0.88 1.76 0.89 0.29 0.01 0.46 0.45 1.61 0.28 (22.11)

NCAR -3.24 -0.87 1.83 0.96 0.25 0.12 0.40 0.51 1.68 0.18 (13.88)

Diff 0.03 0.00 0.07 0.07 0.05 0.11 0.06 0.05 0.08 0.11

INMCM4

GFDL -3.24 -0.67 1.62 0.95 0.33 -0.20 0.16 -0.05 1.20 0.06 (4.24)

NCAR -3.20 -0.66 1.68 1.02 0.29 -0.09 0.10 0.00 1.28 -0.05 (3.22)

Diff 0.04 0.01 0.06 0.07 0.05 0.10 0.06 0.05 0.07 0.11

HadGEM2

GFDL -3.18 -0.55 1.49 0.94 0.29 0.00 0.41 0.39 1.57 0.51 (51.98)

NCAR -3.14 -0.54 1.58 1.04 0.25 0.11 0.33 0.42 1.65 0.42 (43.00)

Diff 0.04 0.01 0.09 0.09 0.05 0.11 0.07 0.04 0.08 0.09

CanESM2

GFDL -3.23 -0.64 1.67 1.03 0.32 -0.21 0.74 0.52 1.83 0.19 (15.18)

NCAR -3.18 -0.64 1.72 1.07 0.26 -0.10 0.68 0.57 1.87 0.10 (8.38)

Diff 0.04 0.01 0.05 0.04 0.05 0.11 0.06 0.05 0.04 0.08

MIROC5

GFDL -3.22 -0.66 1.68 1.02 0.36 -0.22 0.28 0.04 1.38 0.10 (8.50)

NCAR -3.21 -0.63 1.74 1.11 0.33 -0.11 0.21 0.08 1.47 0.03 (2.36)

Diff 0.01 0.03 0.07 0.09 0.04 0.11 0.07 0.04 0.09 0.07

CCSM4

GFDL -3.18 -0.44 1.48 1.05 0.40 -0.27 -0.14 -0.42 1.00 -0.26 (18.51)

NCAR -3.14 -0.44 1.55 1.11 0.32 -0.13 -0.22 -0.36 1.04 -0.31 (21.85)

Diff 0.05 0.00 0.07 0.06 0.08 0.15 0.09 0.06 0.04 0.05

BNU-ESM

GFDL -3.15 -0.22 1.39 1.17 0.48 -0.17 0.28 0.09 1.70 0.28 (39.76)

NCAR -3.10 -0.23 1.43 1.20 0.39 -0.02 0.22 0.18 1.73 0.20 (28.58)

Diff 0.05 0.01 0.04 0.03 0.09 0.15 0.06 0.09 0.03 0.08

FGOALS-s2

GFDL -3.20 -0.53 1.73 1.20 0.37 -0.37 0.28 -0.10 1.43 0.60 (122.58)

NCAR -3.16 -0.52 1.77 1.25 0.32 -0.26 0.21 -0.06 1.47 0.53 (108.70)

Diff 0.04 0.01 0.04 0.05 0.06 0.11 0.07 0.05 0.03 0.07

MRI-CGCM3

GFDL -3.22 -0.61 1.53 0.92 0.37 0.21 -0.00 0.21 1.46 0.11 (8.72)

NCAR -3.17 -0.60 1.60 1.00 0.32 0.32 -0.09 0.23 1.51 0.06 (4.83)

Diff 0.05 0.01 0.07 0.07 0.05 0.11 0.09 0.02 0.04 0.05

Multimodel mean and intermodel standard deviation
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global-averaged simulated flux changes in the fixed-SST

and the abrupt4xCO2 experiments.

For both the adjustments and the feedbacks, there is a

good agreement in the spatial structure of the multi-model

mean simulated changes in clear-sky fluxes (black lines)

compared to those estimated using the kernels (red lines).

However, the magnitude and the inter-model spread of

model-derived flux changes are not always well reproduced

by the kernels.

For the adjustments (top part of Fig. 3a–c), the NET TOA

clear-sky radiative imbalance is positive everywhere and

dominated by the LW forcings. A small positive contribution

also arises from the SW component between 60�N and 90�N,

where there are surface albedo changes due to melting snow

and sea-ice as land surfaces warm (Fig. 2c). Values of the

residual term for the adjustments, reported for each model in

Table 2 (%Ref), tend to be relatively small, except for three

models for which %Ref is just above 10 % (IPSL-CM5A-

(a) (b) (c)

(d) (e) (f)

Fig. 3 Multi-model mean (solid lines) and inter-model standard

deviation (shading) for the change in clear-sky TOA fluxes as derived

from model output (DR0; in black), and for the sum of clear-sky

adjustments and forcings derived from the NCAR model’s kernels

(
P

x Fx
0 ? G0, in red). Zonally-averaged fluxes in W m-2. a–c show

the SW, LW and NET components for all models. d–f is for the 8

models that exhibit a linear behavior (for %Ref \10 in Table 2)

Table 3 continued

kp klr kwv kwvþlr kalb kclsw kcllw kcl kwvþlrþalbþcl Rekð%Rek)

GFDL -3.22 (0.04) -0.60 (0.21) 1.61 (0.14) 1.01 (0.11) 0.34 (0.08) -0.05 (0.33) 0.28 (0.23) 0.22 (0.42) 1.54 (0.32) 0.19 (0.23)

NCAR -3.18 (0.05) -0.60 (0.20) 1.68 (0.14) 1.08 (0.09) 0.28 (0.06) 0.06 (0.32) 0.22 (0.24) 0.27 (0.41) 1.59 (0.33) 0.11 (0.23)

Diff 0.04 0.00 0.06 0.07 0.05 0.11 0.07 0.05 0.06 0.08

Multi-model mean and inter-model standard deviation for the 6 models that exhibit a linear behavior (i.e., %Rek\10)

GFDL -3.23 (0.03) -0.67 (0.17) 1.65 (0.12) 0.98 (0.07) 0.31 (0.07) 0.04 (0.41) 0.31 (0.25) 0.34 (0.45) 1.60 (0.37) 0.11 (0.06)

NCAR -3.20 (0.04) -0.66 (0.17) 1.71 (0.13) 1.05 (0.06) 0.27 (0.06) 0.14 (0.40) 0.24 (0.26) 0.38 (0.45) 1.66 (0.37) 0.03 (0.06)

Diff 0.03 0.01 0.06 0.07 0.04 0.10 0.07 0.04 0.06 0.08

Also shown for each model, with the same units, is the difference in feedbacks’ strength between the two models’ kernels. The magnitude of the residual term is

also presented (Rek; expressed in W m-2 K-1 and %Rek into brackets, expressed in %), as well as the multi-model mean and inter-model standard deviation for

the 6 models that exhibit a linear behavior in the feedback period (for which %Rek\10; see also in Sect. 2.5). Note that the multi-model means and inter-model

standard deviations of the residual term is only expressed in W m-2 K-1
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LR, CCSM4 and FGOALS-s2). The ability of the kernels to

reproduce the global averaged model-derived flux changes,

arises, however, from hemispheric compensating errors in

the LW component: the kernels systematically overestimate

the model-derived flux changes between 60�S and 90� S,

while over the Arctic the simulated flux changes are slightly

underestimated (Fig. 3b).

For the feedbacks (top part of Fig. 4a–c), the NET clear-

sky flux changes are negative everywhere and dominated by

the LW component, except over the Arctic and Southern

Ocean because of strong SW flux changes associated with

decreased surface albedo. There is a systematic difference

over the poles, where the net radiative changes, computed

using the kernels, are overestimated, while elsewhere they

rather tend to be slightly underestimated (Fig. 4c). In most

models the kernels overestimate the model-derived SW flux

change over the Arctic and Southern Ocean (Fig. 4a). As for

the changes in LW flux, the kernels generally underestimate

the model-derived values between 30�S and 30�N (Fig. 4b),

while no clear tendency emerges at middle and high latitudes

because of a large inter-model spread in the differences

between the kernel- and the model-derived changes (not

shown). We find that the linear kernel analysis is applicable

to six models only for the feedback calculation, namely

IPSL-CM5A-LR, NorESM1-M, INMCM4, CanESM2, MI-

ROC5 and MRI-CGCM3 (for which %Rek\10 in Table 3).

The results presented in Figs. 3 and 4 also show that the

kernel method tends to underestimate the inter-model

standard deviation of the changes in clear-sky fluxes

(compare the width of red and grey shadings; grey is wider

than red shading). The bias introduced by the kernel

method essentially affects the clear-sky LW component

over the tropics and the mid-latitudes (Figs. 3b, 4b).

We repeated the calculations shown in Figs. 3a–c and

4a–c, but by only using the models that behave linearly, for

which %Ref \10 and %Rek\10; respectively, and we find

that the inter-model spread of kernel-derived clear-sky flux

changes is now in good agreement with that of model-

derived values (red and grey shadings have similar width in

Figs. 3d–f, 4d–f).

Finally, large deviations from linearity are found in the

feedbacks for MPI-ESM-LR (14 %), HadGEM2 (43 %),

CCSM4 (22 %), BNU-ESM (29 %), FGOALS-s2 (109 %),

and in the forcings for IPSL-CM5A-LR (11 %), CCSM4

(14 %) and FGOALS-s2 (18 %), which call into question

the robustness of the linear assumption in the calculation of

feedbacks and forcings for those models. Given the results

presented in this section, the kernel method might have

quantitative limitations for these models that exhibit a

nonlinear behavior, but is qualitatively consistent with

model-derived analysis. In the remaining of the paper, we

therefore present our analysis using all models, but to

ensure robustness in our interpretations, we verify our

conclusions by restricting our analysis to the models that

exhibit a linear behavior in the forcing or feedback

calculation.

(a) (c)

(d) (e) (f)

(b)

Fig. 4 Same as Fig. 3 but for the feedbacks. TOA flux changes

derived from model output have been normalized by DTs;DSST for

comparison with the feedbacks. Units are W m-2 K-1. a–c is the SW,

LW and NET components for all models, and d–f is for the 6 models

that exhibit a linear behavior (for %Ref \10 in Table 3)
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2.6 Relative contributions of feedbacks

and adjustments to climate sensitivity

Here, we follow the methodology employed in Dufresne

and Bony (2008) to decompose the contributions of the

different feedbacks and adjustments to the equilibrium

global temperature change DTe
s :

The energy balance in Eq. 9, combined with Eqs. 10–

21, separating the Planck feedback from the non-Planck

feedbacks and normalizing by the Planck feedback, can be

rewritten as:

DTs;DSST ¼
�1

kp

F þ Fadj � DRþ
X

x 6¼p

kx þ Rek

 !

DTs;DSST

" #

ð22Þ

At equilibrium, when DR ¼ 0; it becomes:

DTe
s;DSST ¼

�1

kp

F þ Fadj þ
X

x 6¼p

kx þ Rek

 !

DTe
s;DSST

" #

ð23Þ

with DTe
s;DSST ¼ F0

k0
(by substituting F and k for F0 and k0 in

Eq. 2).

Finally, because we consider the radiative changes due

to land surface warming as part of the forcings rather than

of the feedbacks (which therefore act to reduce the effec-

tive forcing—see Fig. 1), we must add to the equilibrium

global temperature change when the ocean warms, in

Eq. 23, the contribution from the warming of land surfaces

DTs;0: Therefore, the total equilibrium global temperature

change is defined as:

DTe
s ¼
�1

kp

F þ Fadj þ
X

x 6¼p

kx þ Rek

 !

DTe
s;DSST

" #

þ DTs;0

¼ DTe
s;DSST þ DTs;0

ð24Þ

From Eq. 24, we define:

• the Planck response associated with the stratosphere-

adjusted forcing (F):

DTs;F ¼ �
F

kp

, as in Eq.4 of Dufresne and Bony (2008)

ð25Þ

• the Planck response associated with all the tropospheric

adjustments to CO2 forcing and land surface warming:

DTs;Fadj
¼ �Fadj

kp

þ DTs;0 ð26Þ

• More explicitly, this term includes direct adjustments to

CO2 and adjustments to land surface warming associated

with temperature, water vapor, albedo and clouds, the

residual for the forcings (Ref), and the actual small

warming of land surfaces (DTs;0; largely compensated by

the radiative cooling of the Planck component Fp).

• the temperature change associated with each feedback

parameter x, in response to the atmosphere-adjusted

forcing F0:

DTs;x ¼ �
kx

kp

DTe
s;DSST ð27Þ

• and the temperature change associated with the

feedback residual term Rek :

DTs;Re ¼ �
Rek

kp

DTe
s;DSST ð28Þ

such that:

DTe
s ¼ DTs;F þ DTs;Fadj

þ
X

x 6¼p;adj

DTs;x þ DTs;Re; ð29Þ

3 Decomposition of climate sensitivity estimates

from CMIP5 models

The climate sensitivity estimates of the 11 models considered

in this study (as computed from Eqs. 22–29 and reported in

Table 1) range between 1.9 and 4.4� for a doubling of CO2

concentration. This range is similar (although slightly lower)

than that of CMIP3 (Randall et al. 2007) and than that of

CMIP5 diagnosed by Andrews et al. (2012) using a different

methodology. Actually, the differences between Andrews

et al. (2012)’s estimates and ours remain within ±5 % for

the 7 models that are analyzed in both studies, while one

model only (INMCM4) exhibits a larger difference between

the two methodologies (9.5 % difference). These results are

therefore rather promising given all the uncertainties

involved in estimating the climate sensitivity of models, and

the very different nature of the two methodologies.

We now analyze the decomposition of equilibrium

temperature changes into forcing and feedback terms, as

described in Sect. 2.6, for the 11 models (in Table 1). In

addition, each contribution to the equilibrium temperature

change is separated into three different regions: the tropics

(between 30�S and 30�N), the mid-latitudes (between 30�
and 60� in each hemisphere) and the poles (between 60�
and 90� in each hemisphere). Each regional contribution is

weighted by its respective surface area, so that the sum of

all regions equals the global value.

3.1 Multi-model mean analysis

The multi-model mean of the equilibrium temperature

change DTs; decomposed into regional contributions,

feedbacks and into the Planck response of stratosphere-

adjusted forcing and adjustments, is shown in Fig. 5a. On

average over the set of models considered in this study,
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43 % of the global warming is associated with the direct

response to CO2 forcing (36 % for the stratosphere-adjus-

ted forcing and 7 % for the adjustments), and 57 % from

the feedbacks: 32 % of the warming arises from the com-

bined water vapor ? lapse rate (hereafter, WV?LR), 10 %

from clouds, 8 % from surface albedo and 7 % from the

feedback residual term. When we restrict our analysis to

the 6 models for which the residual term is lower than

10 % (in Table 3), the contribution to DTs arising from

clouds increases up to 14 % and that of the residual term

becomes less than 3 %, while the contribution from the

other components changes by at most 2 % (not shown).

This suggests that errors introduced by the radiative kernels

in the calculation of feedbacks mainly affect the cloud

component, and lead to an underestimation of the multi-

model mean temperature change that results from the cloud

feedback.

These results are qualitatively similar to those reported

by Dufresne and Bony (2008). However, quantitative dif-

ferences may arise from the fact that cloud adjustments are

now included in the forcing term rather than in the feedback

term. Indeed, cloud adjustment to CO2 is generally positive,

except for CCSM4 (Table 2), and the estimated cloud

feedback is reduced; the multi-model mean cloud feedback

is about 33 % weaker (see Sect. 4.2, where different mea-

sures of the cloud feedback are compared). As demonstrated

in Sect. 2.1, if the climate sensitivity is not affected by

the methodology (this is verified with an uncertainty to

within ±3 %), the feedback parameter, however, is

(according to the relation in Eq. 4 and Fig. 1). The negative

total feedback parameter is enhanced by 11 % (not shown)

compared to the previous methodology (Eq. 6).

It is interesting to mention that the differences between

the adjusted feedback parameters (calculated between

sstClim4xCO2 and abrupt4xCO2) and the non-adjusted

feedbacks (calculated between sstClim and abrupt4xCO2)

are rather small for the non-cloud feedbacks and for the

feedback residual term; the multi-model mean difference is

2 % for the temperature and albedo feedbacks, 6 % for the

water vapor feedback and 5 % for the residual term (not

shown). This suggests that the positive cloud adjustment

(in Table 2) is the main component that can alter the

feedback parameter, and that the non-cloud adjustments

associated with temperature, water vapor and albedo seem

to be better understood as responses to land surface

warming.

It appears in Fig. 5a (left bar) that each latitude belt

contributes to global DTs in proportion to its area: the

tropical contribution is *50, *35 % arises from the mid-

latitudes and *15 % from polar regions. Note however

that regional contributions to the inter-model spread are not

necessarily proportional to their area extent.

3.2 Feedback parameters

The amplitude of DTs associated with the Planck response

(i.e., of stratosphere-adjusted forcing ? adjustments,

obtained by summing Eqs. 25, 26) and the feedbacks is

shown in Fig. 5b. The contributions from the different

regions is also represented for each component, and the

sum of all regions (represented by the black dots) corre-

sponds to the global climate sensitivity estimate (also

reported in Table 1).

For all models, the contribution to DTs from the Planck

response to forcing is the greatest in the tropics and the

smallest over the poles. A similar tendency is observed for

the clouds, the residual term and the combined water vapor

? lapse rate feedback. However, as expected from sea-ice

loss and snow melt with rising temperatures, the albedo

feedback is the largest over polar regions.

Inter-model differences occur for each feedback, but

those associated with cloud feedbacks are the largest

(Fig. 5b). As a result, the spread of climate sensitivity is

primarily driven by the spread of cloud feedbacks, espe-

cially tropical cloud feedbacks. This is confirmed by the

comparison of the normalized inter-model standard devia-

tion associated with each feedback and each region (Fig. 6a

for all models and Fig. 7a for the 6 models with

%Rek\10), and by the inter-model regression of the

feedbacks against the global mean temperature change

(Fig. 8). These maps of regression slopes indicate the

feedbacks and the regions the most strongly associated

with the inter-model spread in climate sensitivity; positive

(negative) values means that the global mean climate

sensitivity is positively (negatively) correlated with the

local feedback parameter. Figure 8f shows that high sen-

sitivity models tend to have strong positive cloud feed-

backs in the tropics, with contributions from the SW

component in subsidence zones (Fig. 8d), and from the LW

component in convective regions (Fig. 8e). Moreover,

although at a lesser extent, high sensitivity models have a

positive cloud feedback over the oceanic basins in the mid-

latitudes, associated with a reduced cloud-albedo effect in

the storm track regions (Fig. 8d).

Inter-model differences in cloud feedbacks represent

about 55 % the standard deviation of climate sensitivity in

Fig. 6a. This estimate is substantially reduced as compared

to the ‘‘70 %’’ reported by Dufresne and Bony (2008), and

this is not due to the fact that tropospheric adjustments to

CO2 are now included in the forcing term rather than in the

feedback term. It is, however, highly sensitive to the

feedback residual term (which contributes for 34 % to the

inter-model standard deviation in DTs in Fig. 6). When we

restrict our analysis to the 6 models that have a small

residual term (i.e., %Rek\10 in Table 3), its contribution
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to the inter-model standard deviation in DTs drops to only

10 %, while that of the cloud feedbacks increases up to

70 % (Fig. 7a). Therefore, the limitations in the kernel

approximation not only affect the magnitude of the cloud-

related temperature change, as shown previously, but also

lead to an underestimation of cloud-induced inter-model

spread in climate sensitivity. The tropics is clearly the

region where the spread in cloud feedbacks is the largest

(48 %), followed by the mid-latitudes (23 %) and the poles

(3 %). If the temperature spread resulting from the cloud

feedback is underestimated by the kernel method, that

associated with the non-cloud feedbacks, however, is

overestimated (compare Figs. 6a, 7a). The contribution of

WV?LR to the inter-model spread in climate sensitivity,

which is the second most important source of spread in

DTs; is 25 % weaker for the models that have a small

feedback residual term (30 % in Fig. 7a and 40 % in

Fig. 6a). For this component, the spread also primarily

originates from the tropics, and is mainly driven by the

water vapor feedback (Fig. 8b), while the lapse rate feed-

back tends to be more strongly associated (and anti-cor-

related) with the temperature spread over the middle and

high latitudes (Fig. 8a).

Fig. 5 a multi-model mean of the climate sensitivity estimate DTs;
separated into regional contributions from the tropics (between 30�S

and 30�N), the mid-latitudes (between 30�and 60� in each hemi-

sphere) and the poles (between 60� and 90� in each hemisphere) (left)

and into its different components, including the Planck response to

stratosphere-adjusted forcing (F, Eq. 25), the Planck response to the

adjustments to CO2 forcing and land surface warming (ADJ, Eq. 26),

the combined water vapor ? lapse rate (WV?LR), the albedo (ALB),

the cloud (CL) feedbacks (Eq. 27) and the feedback residual term

(Rek; Eq. 28) (right). b climate sensitivity estimates (as indicated by

the black dots) associated with the Planck response to the strato-

sphere-adjusted forcing and the adjustments (F’, in blue–obtained by

summing Eqs. 25 and 26), the combined water vapor ? lapse rate

feedback (WV?LR, in purple), the albedo feedback (ALB, in green),

the net could feedback (CL, in red) and the feedback residual term

(Re, in grey), computed for each of the 11 models listed in Table 1.

DTs;F þ DTs;Fadj
;DTs;x and DTs;Re’s are also decomposed into the three

different regions: the tropics (light shading), the mid-latitudes

(medium shading) and the poles (dark shading). c global mean

surface temperature change (as indicated by the black dots) associated

with the Planck response to land surface warming (DTs;Fp
) ? DTs;0

(blue), the adjustments for the combined water vapor ? lapse rate

(purple), the albedo (green), the net could adjustments (red) and the

residual term (grey). The models are sorted according to increasing

DTs; and model numbers correspond to the listing in Table 1. The last

column (M) in panels (b) and (c) correspond to the multi-model mean

for the feedbacks and adjustments, respectively. Note the different

scales of the temperature change (y-axis) among each panel

b

(a) (b)
(c)

Fig. 6 a Inter-model standard deviation of climate sensitivity esti-

mates associated with the atmosphere-adjusted forcing (which

includes the Planck response to the stratosphere-adjusted forcing

and to the adjustments) and the feedbacks in each region, normalized

by the inter-model standard deviation of DTs (no units). Note that for

this metrics, the contributions from the different regions are not

additive, and the normalized inter-model standard deviation of DTs

over the globe is reported as black dots. b same as (a), but for the

Planck response to the adjustments only. c Inter-model standard

deviation of climate sensitivity estimates (in Kelvin) associated with

the atmosphere-adjusted forcing (which includes the Planck response

to the stratosphere-adjusted forcing and to the adjustments) and the

feedbacks ðkÞ. The last bar (TOTAL) is the inter-model standard

deviation of DTs associated with both the forcing and the feedbacks.

Note the different scales and units on the y-axis among each panel.

Note also that, unlike it appears in panel (c), the regional contribu-

tions to the inter-model standard deviation are not necessarily

proportional to their area extent
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The spread of climate sensitivity arising from the

direct response to CO2 (i.e., stratosphere-adjusted forcing

? adjustments) is less than 15 % in Fig. 7a, with the

largest contributions in the tropics and the mid-latitudes

(6 % of DTs in each region). The temperature spread

resulting from the surface albedo is the smallest (\10%

in Fig. 7a), with the largest contribution over polar

regions. This also appears in Fig. 8c, where the global

mean surface temperature change is positively associated

with the surface albedo feedback over the Arctic region,

while both measures are anti-correlated over Southern

Ocean.

(a) (b)

Fig. 7 a Same as Fig. 6a, but

for the 6 models for which the

residual for the feedbacks

%Rek\10 (see Table 3). b
Same as Fig. 6b, but for the 8

models for which the residual

for the adjustments %Ref \10

(see Table 2)

(a) (b) (c)

(d) (e) (f)

Fig. 8 Inter-model regression slopes of the lapse rate (a), water vapor

(b), albedo (c) and cloud (SW in d; LW in e; NET in f) feedbacks

against the global mean surface temperature change for the 11 models

considered in this study and reported in Table 1. Large values indicate

the regions where the feedbacks are the most strongly associated with

the inter-model spread in climate sensitivity. Positive (negative)

values means that the global mean climate sensitivity is positively

(negatively) correlated with the local feedback parameter
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3.3 Adjustments to CO2 forcing and land surface

warming

A similar analysis is performed for the Planck response to

tropospheric adjustments associated with water vapor,

lapse rate, surface albedo, clouds, and the residual for

forcings (Figs. 5c, 6b, 7b). Recall also from Eq. 26 that

there is a contribution from surface temperature, which

includes the actual warming of land surfaces (DTs;0) and

the Planck response (DTs;Fp
). We consider those two

components together rather than each term individually,

because they are strongly correlated and largely offset each

other (DTs;Fp
þ DTs;0; in Fig. 5c).

The sum of all adjustments produces a small warming

(DTs;Fadj
), ranging between 0.04 and 0.54 K (black dots in

Fig. 5c). No correlation appears between the spread asso-

ciated with adjustments and that associated with feedbacks.

On average over the 11 models, the largest adjustment

arises from the clouds (53 % of DTs;Fadj
), followed by the

WV?LR (22 %), the albedo (11 %), the residual term

(8 %) and the contribution from land surface warming

(6 %). When we only consider the 8 models that have a

small residual term (i.e., %Ref\10 in Table 2), there is an

increased contribution from the clouds (up to 64 % of

DTs;Fadj
), which tends to be compensated by a decreased

contribution from the residual term, while the other com-

ponents remain fairly similar (as also seen in Table 2).

Therefore, similarly to the feedbacks, the results indicate

that errors associated with the kernel method pertain mainly

to the cloud component and lead to an underestimation of

the multi-model mean cloud-induced temperature change.

Although the multi-model mean of the cloud response is

the greatest, the residual term constitutes the largest spread

in the amplitude and in the sign of the adjustments

(Fig. 5c). The contribution of Ref to the inter-model stan-

dard deviation in DTs is also the largest among all adjust-

ments, especially in the tropics (Fig. 6b), and this result

remains robust when we restrict the analysis to the 8

models with Ref\10 (Fig. 7b). Having said that, the resid-

ual term for the forcings contribute only 9 % of the total

spread (Fig. 7b), which is less than that of any individual

feedback parameter alone (Fig. 7a). Hence, the inter-model

spread of climate sensitivity arises primarily from the

spread of feedbacks rather than adjustments.

The spread resulting from the cloud adjustment is nearly

8 % of the inter-model difference in DTs (Fig. 7b). The

tropics contribute the most to the global response in clouds

(35 % of the multi-model mean for the 8 models with

%Ref\10), but it is not the principal source of spread. The

tropics and the mid-latitudes contribute almost equally to

the temperature spread (Fig. 7b), while the polar regions

constitute the smallest spread.

The WV?LR response is weaker than that of the net

cloud adjustment (Fig. 5c), with polar regions contributing

the most to the global response because of a positive lapse

rate response associated with a larger surface warming in

these areas, and a relatively small water vapor response in

warm regions. Over the tropics and the mid-latitudes the

WV?LR adjustment is similar, with a weak but positive

(negative) WV (LR) response consistent with the slight land

and tropospheric warmings associated with increased CO2

concentration. Although the greatest WV?LR adjustment is

over polar regions, the largest spread is, as for the feed-

backs, over the tropics (in Figs. 6b, 7b).

The amplitude of adjustment associated with the surface

albedo is small, each region contributing equally to the

global response, but its contribution to the spread in DTs is

comparable to that of the WV?LR adjustment (in Figs. 6b,

7b), although slightly greater in the tropics and the mid-

latitudes. The high tropical surface albedo response (e.g.,

for models 1 and 9 in Fig. 6b) arises from semi-arid land

regions (e.g., over Central Australia and the Sahel in

Fig. 2). The adjustment in surface albedo has been further

analyzed (not shown) by separating the contribution from

the change in incoming SW radiation and the change in

reflected SW radiation at the surface, under clear-sky and

all-sky conditions. It is found that the incoming flux

depends, as expected, on the cloud cover (i.e., with an

increase in incoming solar radiation at the surface when the

cloud cover decreases, and vice versa), while the reflected

flux (which decreases over continental regions in the

Northern Hemisphere, the Sahel and central Australia) is

the same under clear- and all-sky conditions. This poten-

tially suggests a link between direct or indirect CO2-

induced changes in vegetation, in turn impacting the sur-

face reflectance (Denman et al. 2007).

The multi-model mean and inter-model spread resulting

from land surface warming (DTs;Fp
þ DTs;0) is the smallest

in Figs. 5c, 6b and 7b.

3.4 Summary

Considering adjustments to CO2 does not alter climate

sensitivity estimates, but does affect the quantification of

feedbacks. Indeed, the multi-model mean cloud feedback is

reduced by about 33 %. However, it does not affect the

spread of feedbacks. Cloud feedbacks remain the main

contribution to the spread of climate sensitivity, especially

the tropical cloud feedbacks. To a lesser extent, the tropical

WV?LR feedback also contributes to the spread of climate

sensitivity estimates. The tropical cloud and WV?LR

feedbacks are analyzed further in the next section. Finally,

our results point to a substantial role of the residual term in

the calculation of adjustments and feedbacks for the
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(d) (e)
(f)

Fig. 9 Tropically-averaged, annual-mean vertical profile of the WV?LR (a), WV (b), LR (c), WV?LR (assuming fixed RH, d), WV (assuming

fixed RH, e) feedbacks and the contribution of the WV feedback arising from changes in RH (f)
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interpretation of inter-model spread in climate sensitivity

estimates, and caution against the use of methods that

include the residual term into one of the linear components

(e.g., the cloud feedback of Soden and Held 2006).

4 Analysis of the spread of climate feedbacks

in the tropics

4.1 The combined water vapor ? lapse rate feedbacks

In this section we analyze the role of relative humidity

(RH) changes to understand the amplitude and the spread

of the tropically-averaged WV?LR feedback seen in

Figs. 5 and 6. This is done by following the method pro-

posed by Soden et al. (2008), whereby the water vapor

feedback is recomputed by multiplying the water vapor

Fig. 10 Vertically-integrated, tropically-averaged, annual mean

WV?LR feedback for the 11 models plotted as a function of the

vertically-integrated, tropically-averaged, annual mean contribution

of RH changes to the WV feedback

Fig. 11 Global and annual mean of three cloud sensitivity measures

for the SW, LW and NET components computed for the set of models

considered: the cloud feedback computed, using the NCAR model’s

radiative kernels, by considering the adjustments to CO2 as part of the

forcing rather than the feedbacks (stars), the cloud feedbacks that

include the adjustments to CO2 (triangles), and the changes in CRE,

normalized by DTs; that include the adjustments to CO2 and that are

not corrected for cloud-masking effects (circles)

Fig. 12 Tropically-averaged cloud feedback parameter (estimated

using the NCAR kernels) plotted as a function of the change in cloud

radiative effect (i.e., including cloud adjustments, and without

correction of the cloud-masking effect) normalized by the global

mean surface temperature change over the tropics. Models that

predicts a greater tropically-averaged NET cloud sensitivity (i.e.,

cloud feedback or change in CRE) than the tropically-averaged multi-

model mean NET cloud sensitivity are shown in red (5 models), and

those predicting a lower cloud sensitivity than the multi-model mean

are in black (6 models)

On the interpretation of inter-model spread 3357

123



kernel with the simulated change in atmospheric temper-

ature and assuming no change in simulated RH (see

Eqs. 20 and 21 of Soden et al. (2008) for more details).

Hereafter, we refer to this feedback as the fixed-RH WV

feedback (see also Held and Shell 2012 for an alternative

feedback decomposition using relative humidity).

Figure 9 shows the tropically-averaged, annual-mean

vertical profiles of the WV?LR (a), WV (b) and LR (c)

feedbacks, as well as the fixed-RH WV?LR (d) and WV

(e) feedbacks, and the contribution of RH changes to the

WV feedback (computed as the differences: kwv� fixed-

RH kwv; this quantity is referred hereafter to as ~kwv; and is

shown in f). As already reported in Soden and Held (2006)

and Soden et al. (2008), the strength of the WV feedback is

weaker by about 5 % than that computed under the

assumption of fixed-RH (difference between the two ver-

tically-integrated global-mean, annual-mean feedbacks–not

shown). This difference arises primarily from the upper

troposphere (above 400 hPa–compare Fig. 9b, e), and is

consistent with a reduction in upper-tropospheric relative

humidity in all models (as seen in Fig. 9f by negative

values of ~kwv). This feature is robust over the set of models

considered in this study. The spread of the WV?LR

feedback computed with the assumption of fixed-RH is

considerably reduced throughout the troposphere (Fig. 9d),

which confirms that the spread in WV?LR is mainly

controlled by departures from constant relative humidity as

simulated by climate models, and that changes in relative

humidity alter the radiative coupling between the water

vapor and lapse rate feedback (Bony et al. 2006). Indeed,

the spread of the WV?LR feedback closely follows that of
~kwv (compare Fig. 9a, f): models with high WV?LR

feedback have large increase in RH (and vice versa). This

appears also when we consider the WV?LR feedback

plotted as a function ~kwv over the tropics (Fig. 10): the

spread in WV?LR feedback in this region can be

explained by different changes in RH simulated by the

models. Note however that no clear relation arises in the

mid-latitudes, and no change in RH over the poles occur

(not shown). The spread of the WV?LR feedback in the

mid-latitudes and the poles can however be explained by

inter-model differences in LR feedbacks (not shown).

Water vapor in the upper troposphere is recognized as

playing a key role in the water vapor feedback (Held and

Soden 2000). The present results show however that the

upper-tropospheric WV and LR feedbacks largely offset

each other, with even a tendency for a greater contribution

from the lapse rate resulting in a negative WV?LR feed-

back between 300 and 200 hPa (Fig. 9a). Below 300 hPa,

however, the contribution from the positive WV feedback

increases up to a maximum near 700 hPa. These results

therefore suggest that the positive WV?LR feedback

arises mostly from the mid-troposphere between 500 and

900 hPa.

4.2 Cloud feedbacks

About 70 % of the inter-model spread in climate sensitivity

estimates arises from differing cloud feedbacks (Sect. 3)

Although many areas contribute to these differences, the

tropics play a prominent role in the spread of global cloud

feedbacks (Fig. 7a). In this section, we analyze further the

origin of this spread.

Historically, two main approaches have been used

commonly to analyze the response of clouds to climate

change: the diagnostic of cloud feedbacks through Partial

Radiative Perturbation (PRP; Wetherald and Manabe 1988)

or kernel approaches (Soden and Held 2006), and the

change in CRE at the top of the atmosphere (DCRE)

between control and perturbed climate states (Cess et al.

1990), which constitutes a much simpler diagnostic. It is

recognized that owing to cloud-masking effects, the sign of

DCRE can differ from that of the cloud feedback (a neg-

ative DCRE being generally associated with a neutral or

weakly positive cloud feedback) and that both measures

differ by an offset of about 0.3 W m-2 K-1. (Soden and

Held 2006; Soden et al. 2004).

Besides cloud-masking effects, how do cloud adjust-

ments to CO2 alter the relationship between DCRE and

cloud feedbacks? Fig. 11 shows that excluding cloud

adjustments from the definition of cloud feedbacks also

affects the magnitude of cloud feedback estimates (com-

pare the star and triangle symbols in Fig. 11). The multi-

model mean cloud feedback is about 33 % weaker when

the cloud adjustments are considered as part of forcing

rather than of feedbacks. In addition, cloud feedbacks

remain strongly correlated with the basic DCRE (i.e. the

DCRE not corrected for cloud-masking effects and

adjustments to CO2), both at the global scale (Fig. 11) and

at the tropical scale (Fig. 12). Any of these diagnostics may

thus be considered for analyzing the spread of cloud

feedbacks amongst models.

In the tropics, all but two models predict a positive or

neutral cloud feedback (Fig. 12). To understand why some

models have a larger cloud feedback than others, we use

the methodology proposed by Bony et al. (2004) whereby

the cloud feedback (or CRE sensitivity to surface temper-

ature change, DCRE
Ts

) is composited into different dynamical

regimes defined from the large-scale mid-tropospheric (500

hPa) vertical velocity ðxÞ: By using this variable as a proxy

of the large-scale tropical circulation, we discretize the

tropical geographical pattern into regions of subsidence

and ascendance for positive and negative values of x;
respectively.
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Using this method, the tropically-averaged CRE (�C; in

W m-2 K-1) can be expressed as:

�C ¼
X

x

PxCx; ð30Þ

where Px is the probability of occurrence of regime x and

Cx is the CRE sensitivity in the regime x:
Now, following Eq. 30, the cloud feedback or CRE

sensitivity ( �DC) is written as:

�DC ¼
X

x

CxDPx þ
X

x

PxDCx þ
X

x

DCxDPx; ð31Þ

where DCx and DPx are the changes in Cx and

Px, respectively.

The first two terms of Eq. 31 quantify CRE changes that

arise from large-scale circulation changes (referred to as

the dynamical component), and changes in cloud-radiative

properties which are not primarily related to dynamical

changes (referred to as the thermodynamical component),

respectively. The third term, which arises from the co-

variation of dynamical and thermodynamical components,

is much weaker than the two other terms. For this reason,

the following analysis will be focusing on the dynamical

and thermodynamical components. As done by Bony and

Dufresne (2005), we group the 11 models into two cate-

gories (5 high-sensitivity models and 6 low-sensitivity

models) according to their tropically-averaged NET cloud

feedbacks or DCRE=DTs (high-sensitivity models are in

red in Fig. 12). Then, the multi-model mean and inter-

model spread of the dynamical and thermodynamical

components of the tropical cloud feedback or DCRE=DTs

are computed for each group. The results being very sim-

ilar for both measures, and when considering land?ocean

regions or ocean regions only, hereafter we present only the

results for the cloud feedback over tropical oceans.

Inter-model differences in tropical NET cloud feedbacks

primarily arise from the SW component. Figure 13 shows

that it is the SW thermodynamical component of the

feedback which best discriminates the two groups of

models. All dynamical regimes, from deep convective to

subsidence regimes, contribute to these differences. How-

ever, the regimes of weak subsidence and of moderate

large-scale rising motion (from -10 to ?30 hPa/day) have

a predominant role in the spread, both because these

regimes are associated with a larger contrast between the

two groups of models, and mainly because of the large

Fig. 13 SW (top), LW (middle) and NET (bottom) cloud feedback

ð �DCÞ composited in each dynamical regime (left), the contribution

from the thermodynamic component (PxDCx; middle) and from the

dynamic component (CxDPx; right). Results are presented for two

groups of models: models that predicts a greater tropically-averaged

NET cloud feedback than the tropically-averaged multi-model mean

NET cloud feedback (in red, 5 models), and those with a lower cloud

sensitivity than the multi-model mean (in blue, 6 models). Vertical

bars show the inter-model standard deviation in each group. Cloud

feedbacks are estimated using the NCAR model’s radiative kernels
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statistical weight of these regimes in the tropics (PDF of

x500): small thermodynamic changes in these regimes have

large effects on the cloud sensitivity (Fig. 13 middle

panels).

To facilitate the comparison between these results and

those associated with CMIP3 models, we also compute the

change in CRE predicted by the two groups of models,

normalized by the surface temperature change predicted

within each dynamical regime as done by Bony and Duf-

resne (2005) (Fig. 14). As in climate change the tropical

SST does not warm uniformly, the sensitivity of the SW

CRE to local rather than global surface temperature changes

is slightly enhanced (reduced) in subsidence (convective)

regimes. The comparison of Figs. 13 and 14 also shows the

offset of the LW component, and then of the NET DCRE;

when cloud-masking effects are not accounted for. Differ-

ences in the SW component between the low and high

sensitivity groups of models remain roughly similar, how-

ever, although more pronounced in regimes of subsidence.

Compared to CMIP3, the spread of tropical cloud

feedbacks among CMIP5 models thus arises from a larger

range of dynamical regimes, ranging from weak large-scale

rising motions to subsidence regimes. Given the predomi-

nance of shallow cumulus and stratocumulus clouds in

these regimes, it is likely that the responses of boundary-

layer processes and shallow convection to climate change,

and of the different clouds associated with them, constitute

a critical component of the climate sensitivity uncertainty.

Although local feedback processes might explain part of

inter-model differences (Zhang and co authors 2012), the

possibility that inter-model differences in cloud-radiative

responses in these regimes be driven by remote responses

of deep convection can not be ruled out and will have to be

investigated.

5 Conclusion

In this paper, we propose an alternative approach to diag-

nose the radiative forcing, fast adjustments, feedbacks and

the climate sensitivity in CMIP5 climate models. We use

the NCAR model’s radiative kernels (Shell et al. 2008) to

analyze the different feedbacks and adjustments, by con-

sidering tropospheric adjustments to CO2 and land surface

warming as part of forcings rather than feedbacks. The

amplitude and inter-model spread of climate sensitivity is

quantified, and decomposed into different contributions

related to individual adjustments and feedbacks, and into

regional contributions. We show that in climate model

simulations with large forcing (e.g., 4 9 CO2), limitations

in the kernel approximation for the calculation of adjust-

ments and feedbacks play a non-negligible role for the

interpretation of inter-model spread in climate sensitivity

estimates (also consistent with Jonko et al. 2012’s find-

ings). In particular, the results indicate that errors associ-

ated with the kernel method pertain mainly to the cloud

component and lead to an underestimation of the multi-

model mean and inter-model spread cloud-induced tem-

perature change. We therefore caution against the use of

methods in which nonlinearities are assumed minor and

included into one of the linear components (e.g., the cloud

feedback of Soden and Held 2006).

Taking into account the tropospheric adjustments to

CO2 does not affect the estimate of climate sensitivities.

For a doubling of CO2 concentration, the equilibrium

global-mean temperature change estimates range from 1.9

to 4.4�. This range is similar to that of CMIP3 (Randall

et al. 2007) and to that diagnosed by Andrews et al. (2012)

for CMIP5 models using a different methodology. On the

other hand, considering tropospheric adjustments to CO2

Fig. 14 Same as the left panel of Fig. 13, but for the change in CRE,

normalized by the mean surface temperature change in the regime x:
The models that predict a greater change in the tropically-averaged

NET CRE than its multi-model mean are in red (i.e., multi-model

mean for this group), and models that predict a lower change are in

blue
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does alter the quantification of feedbacks. The total feed-

back parameter is increased by 11 % compared to the

previous methodology in which the adjustments to CO2

were included in the feedbacks rather than in the forcing.

The cloud feedback is the most affected, with a reduction

of 33 % relative to the previous method’s estimates, while

the non-cloud adjustments (associated with temperature,

water vapor and albedo) seem to be better understood as

responses to land surface warming. The effect of cloud

adjustments on feedbacks is qualitatively consistent but

quantitatively weaker than found by Andrews and Forster

(2008) using a different methodology to diagnose feed-

backs. Moreover, and unlike Andrews and Forster (2008),

the consideration of the adjustments to CO2 does not

reduce the inter-model spread of feedbacks amongst

CMIP5 models. Cloud feedbacks remain the main con-

tributors to the spread of climate sensitivity, especially

tropical cloud feedbacks. The tropical combined water

vapor ? lapse rate feedback also contributes substantially

to the spread of climate sensitivity, although to a lesser

extent, mainly because of the well-known cross-model

compensation between the water vapor and lapse rate

feedbacks.

Further analysis of the tropical combined water vapor ?

lapse rate feedback shows that changes in relative humid-

ity, as simulated by climate models, affect the radiative

coupling between the water vapor and lapse rate feedback.

The spread of the tropical combined water vapor ? lapse

rate feedback is almost entirely due to different simulated

changes in relative humidity throughout the troposphere.

Like in CMIP3, the spread of tropical cloud feedbacks

primarily arises from differing changes in the shortwave

cloud-radiative properties in regions of shallow convection

(where shallow cumulus and stratocumulus clouds prevail),

which in turn result from changes in the thermodynamic

structure of the tropical atmosphere. Interpreting this

spread in terms of local and remote physical processes and

using observations to assess the relative reliability of the

different model responses clearly remains a scientific

challenge for the years to come. However, the wealth of

CMIP5 experiments and output now available constitutes a

wonderful opportunity to make progress on that matter.
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