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Figure 1: Here is a diagram showing some of the parameters which control the
float’s profile

1 Motivation And Objective

In an effort to streamline the production process and reduce costs for customers,
MRV does not ballast each ALTOTM. Instead, the floats are ballasted in mass
to be heavy at their target depths.

In other words, ALTOs will not be neutrally buoyant at the target depth
specified by the customer with all of the oil pulled inside.

Measuring the volume of each float would add days onto the delivery schedule
and costs would be carried to the end costumer. By making each float heavier,
the floats pump more oil (spending more energy) to reach their target depth.

This document serves to highlight and explain a new equation for piloting
ALTOs which are ballasted heavy.
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2 The Equation

As to not bury the lede, the initial pump for ALTOs is determined by two
parameters: DSD and DFT.

DSD is the Descent Start Depth. This parameter determines at what depth
the float will start the initial pump.

DFT is the Descent Fall Timeout. This parameter determines how long the
float will pump for the initial pump.

Set the DFT as follows:

DFT =
(Mρ − V0(1 − α[T0 − T ] + β[P0 − P ])) ∗ 30000

10000 −DSD
(1)

where M is the mass of the float, ρ is the target density of the water, V0

is the volume of the float at the surface with all of the oil sucked in, α is
a material constant which accounts for thermal contraction of the hull, T0 is
the temperature where the float’s surface volume V0 was calculated, T is the
temperature at depth, β is a material constant which accounts for compression
of the hull, P0 is the pressure where the float’s surface volume V0 was calculated,
P is the pressure at the target.

Let’s unpack this slightly daunting equation.
The pilot wants the float to come to rest at a target depth P which has a

target density ρ. The float’s mass is constant – and MRV ballasts all ALTOs
for a region at the same mass. The values of α and β are treated as constants in
these calculations, since they don’t vary much from float to float. That leaves
one variable, V0 which is the float’s volume at the surface with all the oil sucked
in. Because MRV does not ballast each float, we do not know this number
exactly, however, for an initial guess we can use the average V0 for all of MRV’s
ALTOs.

So the equation becomes:

DFT =
( 19500

ρ − 18666(1 − (7.29 ∗ 10−5)[19.5 − T ] − (2.43 ∗ 10−6)P )) ∗ 30000

10000 −DSD
(2)

Where the pilot inputs the target water density ρ, target water temperature
T , target water pressure P , and what depth the pilot would like the float to
start pumping DSD.
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3 The Process

Let the mass of the float be Mfloat. At the surface, with all of the oil pulled in,
the float will begin to sink. The float’s volume here is V0.

We want the float to reach a target depth as fast as possible, but also balance
the descent rate such that we do not overshoot the target depth. Because the
float is ballasted heavy, it needs to pump out oil – effectively increasing its
volume so it can come to rest near the target depth. How much does the
volume need to be for the float to be neutrally buoyant at the target depth?

The target depth has a density ρ. For the float to rest at that density, it
would need to have the same density as the target density ρ.

The float’s density is a function of its mass and volume:

ρfloat =
Mfloat

Vfloat
(3)

Each float is ballasted to weigh roughly the same amount, so the masses
between floats are roughly the same. The more challenging number to find out
is Vfloat. But we at least have a starting point: V0.

As the float descends into the depths, the water becomes colder and the
pressure continues to climb. These two environmental effects serve to thermally
contract and compress the float’s hull. Both of these effects squeeze the hull by
small, but not insignificant amounts.

We can account for these effects as

Vfloat = V0 − ∆Vα − ∆Vβ (4)

where ∆Vα is the change in volume due to the thermal contraction and ∆Vβ
is the change in volume due to the compression.

Aside from the environmental effects on the volume, which serve to decrease
the volume and make the float less buoyant, the float can pump oil to regain
volume and become more buoyant!

The floats pump for durations of time, and this initial pump offers the start-
ing point for the float to attempt on its first dive. Now we have a more complete
picture of how the float’s volume changes dynamically throughout the water col-
umn

Vfloat = V0 − ∆Vα − ∆Vβ + ∆Vpumping (5)

where ∆Vpumping = R∆t with R the pump rate and ∆t the pump time
parameter (initial pump guess).

The pump rate R is a function of depth because the pump is fighting against
more sea pressure as it descends. Let’s assume R is linear with depth. From
testing and manufacturer datasheets, we know the pump will move 20 cc’s of
oil per minute at the surface and 16 cc’s of oil per minute at 2000m (3000 psi).

With these two points, we can write a linear equation to calculate the pump
rate for a given depth (pressure) P .
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R =
(20 − 16) cc

min

(0 − 2000) dBar
∗ P + 20

cc

min
(6)

R = (20 − P

500
)

cc

min
(7)

We can then calculate the float’s volume Vfloat as

V = Vfloat = V0 − ∆Vα − ∆Vβ + (20 − P

500
)∆t (8)

We calculate the environmental factor of thermal contraction ∆Vα as

∆Vα = αV0∆T (9)

And the environmental factor of compression ∆Vβ as

∆Vβ = −βV0∆P (10)

where α and β are material constants (functions of the float’s construction).
So now we have an even better picture of the volume of the float as a function

of temperature T , pressure P , and pumping time ∆t

Vfloat = V0−αV0(Tcalculated−Ttarget)−(−βV0(Pcalculated−Ptarget))+(20− P

500
)∆t

(11)
According to Archimedes (and lots of experimental confirmation), if the float

displaces a mass of water more than the float’s own mass, the float will rise. If
the displaced water mass is the same, the float is neutrally buoyant. And if the
mass of water displaced by the float is less than the float’s mass, the float will
sink.

We calculate the mass of the water displaced by the float as

Mwater = ρVfloat (12)

To make the float neutral at some target density, the left hand side of the
equation can be set to the float’s own mass. Then we can solve for the pump
time ∆t (which is controlled by DFT) to achive Vfloat.
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4 Example Calculation

Let’s try an example calculation. An ALTO pilot wants to set a parking depth
of 1200m. The ALTO has a few key parameters to achieve this goal, DFT (the
initial pump time) and DSD (what depth the pump should turn on).

The pilot decides to pump right after the surface, around 80 dBar (see ALTO
S/N 10083).

The target water conditions are for the South China Sea. With a target
temperature of T = 4 C, salinity S = 34.51 and density ρ = 1.0329175 g/cm3,
at a target depth of P = 1200 dBar.

To be neutral at ρ, the float will need to displace a mass of water equal to
its own mass:

M = ρV (13)

Rearrange the equation to find the volume:

V =
M

ρ
(14)

These ALAMOs have been ballasted at 19275 g, so the volume of the water
displaced is

V =
19275 g

1.0329175 g
cm3

= 18660.7 cm3 (15)

The minimum displacement at the surface (with all the oil inside) for MRV’s
ALTOs is 18642 cm3. We need to apply thermal contraction and compression
effects (see Eqs.(4), (9), and (10)).

Vfloat = V0 − αV0(Tcalculated − Ttarget) − (−βV0(Pcalculated − Ptarget)) (16)

With a thermal contraction constant of α = 7.29 ∗ 10−5 C−1, and a com-
pression constant of β = 2.43 ∗ 10−6 dBar−1, we can plug and chug to find that
the float displaces

Vfloat = 18566.6 cm3 (17)

The float naturally will displace 18566.6 cm3 when it is brought to 1200m.
However for the float to be neutrally buoyant it needs to be displacing 18660.7
cm3.

This difference of 94.1 cm3 can be made up for in pumping

∆Vpumping = (18660.7 − 18566.6) cm3 = 94.1 cm3 (18)

The pumping goes as

∆Vpumping = (20 − P

500
)

cc

min
(

min

60 seconds
)∆t (19)
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If the pilot chooses to start pumping at P = 80 dBar, then the time to pump
follows

∆t =
∆Vpumping(30000)

10000 − P
(20)

Let’s use the piloting parameters now, and substitute in our values (remem-
ber 1 cm3 is conveniently 1 cc)

DFT =
∆Vpumping(30000)

10000 −DSD

s

cc
(21)

DFT =
94.1 cm3(30000)

10000 − 80

s

cc
(22)

DFT = 285 seconds (23)
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