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We present and evaluate AquaMaps, a presence-only species distribution modelling system that allows
the incorporation of expert knowledge about habitat usage and was designed for maximum output of
standardized species range maps at the global scale. In the marine environment there is a significant chal-
lenge to the production of range maps due to large biases in the amount and location of occurrence data
for most species. AquaMaps is compared with traditional presence-only species distribution modelling
methods to determine the quality of outputs under equivalently automated conditions. The effect of the
inclusion of expert knowledge to AquaMaps is also investigated. Model outputs were tested internally,
pecies distribution modelling
ange maps
lobal marine biodiversity
rawl surveys
xpert review
odel comparison

through data partitioning, and externally against independent survey data to determine the ability of
models to predict presence versus absence. Models were also tested externally by assessing correlation
with independent survey estimates of relative species abundance. AquaMaps outputs compare well to
the existing methods tested, and inclusion of expert knowledge results in a general improvement in
model outputs. The transparency, speed and adaptability of the AquaMaps system, as well as the exist-
ing online framework which allows expert review to compensate for sampling biases and thus improve
model predictions are proposed as additional benefits for public and research use alike.
. Introduction

Concerns over changing patterns of marine biodiversity result-
ng from climate change and human impacts have generated
onsiderable interest in the use of models designed to generate
patial predictions (i.e. maps) of species’ distributions from point
ccurrence data (Guisan and Thuiller, 2005). Ideally, prediction
odels would be generated from comprehensive species occur-

ence and absence data from targeted surveys. Unfortunately this
evel of data is only available for a relatively limited number of
pecies and geographic locations, creating problems for assess-
ents of changes in patterns of marine species distributions and
iodiversity at regional and global scales.
As an alternative, modellers are making use of increasing vol-

mes of presence-only data (Pearce and Boyce, 2006). These are
ublished online through global databases such as FishBase (Froese

∗ Corresponding author. Tel.: +55 0 91 3425 1745; fax: +55 0 91 3425 1209.
E-mail address: jonathan.ready@gmail.com (J. Ready).
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and Pauly, 2007) and the Ocean Biogeographic Information Sys-
tem (OBIS, 2007), both of which feed data directly into the Global
Biodiversity Information Facility (GBIF, 2007). These data frame-
works compile species occurrence data from museum records
and other sources. They therefore represent a highly patchy and
biased view of patterns of species’ distributions as a result of
regional and local variations in sampling effort. The bias inherent
to the data creates problems when data-driven modelling tech-
niques are used to generate predictions of species’ distributions.
This is because an absence of occurrence records may not nec-
essarily indicate a true absence in the distribution of the species,
but rather a lack of adequate sampling. This is especially true for
marine organisms, as inshore areas are more often sampled at
a higher rate compared to offshore areas, causing a bias in the
species–habitat relationship described by the data (Kaschner et al.,

2006; MacLeod et al., 2008). In this scenario, an offshore species
might well be predicted to have an inshore distribution if sam-
pling had only occurred over a limited proportion of its overall
depth range. Similarly, misidentification of species is a common
weakness of all existing large online occurrence record deposi-

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:jonathan.ready@gmail.com
dx.doi.org/10.1016/j.ecolmodel.2009.10.025
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aries (Meier and Dikow, 2004), which in turn can lead to false
redicted presences and unrealistic species distribution if these
ata sets are used as input for standard species distribution mod-
lling.

Until better data sets are available, these biases in sampling
ffort can be best countered if model algorithms are able to incor-
orate expert information on species–habitat preferences. These
epresent a rich but currently underutilized resource. Here, we
efine expert information as habitat use information that is not
irectly available as raw data, i.e. published information about
abitat use/preference that is based on quantitative investigations
f species occurrence in relation to environmental knowledge.
xamples include: evidence of a pelagic lifestyle, known depth
anges, latitudinal and longitudinal limits to ranges or physio-
ogical tolerances of species. Additionally, experts working on
he taxa could include personal knowledge either about occur-
ence records not yet accessible through online data depositaries,
r maximum range extents not described in the literature. This
nformation could also be included should such experts review

map. However, as research into species distribution modelling
as progressed, so has the complexity of model algorithms to
he extent that users have little or no opportunity to influence
he model outcome through the use of expert information. While
he goal of species distribution modelling is to increase predic-
ion accuracy (which might be expected to increase with model
omplexity), the use of increasingly sophisticated methods may
lso be a barrier to non-expert modellers such as biodiversity
anagers, decision makers, and planners. All of these people

ave a vested interest in the reliability of model outputs and
herefore need to understand how the models were constructed.
imple and transparent numerical approaches combined with
xpert guidance on the form of the species–habitat relationships
ay therefore help circumvent some of the inherent problems in

redicting regional and global distributions from patchy, heavily
iased occurrence data from global biodiversity databases. If these
ame algorithms are transparent and produce reliable and veri-
able results, the likelihood that predictions will have practical
se and feed into decision making and planning will be further

ncreased.
We describe such an approach, called AquaMaps (available

or use via the webpage http://www.aquamaps.org, and based on
he global distribution tool for marine mammals developed by
aschner et al., 2006). It was developed for the mass-production
f predicted distributional ranges of marine organisms from global
ccurrence databases, using simple and pre-defined numerical
escriptions of species–habitat relationships that can be modi-
ed where needed. Predictions from AquaMaps for 12 selected
arine fish and mammal species are compared alongside those

enerated from a range of other methods (GARP, GLM, GAM, MAX-
NT) that are commonly used to construct species distribution
odels but which are limited in the extent to which experts can

nfluence model parameterisation. Model comparisons were made
sing independent data from fisheries trawl surveys conducted in
K and Australian waters and dedicated marine mammal surveys

n Antarctic waters and in the North Sea.
The objective of the assessment was to compare the perfor-

ance in terms of predictive accuracy of AquaMaps, a system that
an be automated to a great extent and allows the speedy process-
ng of large number of species, with a range of popular and generally

ore sophisticated routines. If, at the scale of entire species ranges,
quaMaps can produce similarly reliable and verifiable results as

ommonly used high-end methods, then its greater transparency,
bility to incorporate expert knowledge and its online accessibility
ould facilitate the broad application of such an approach, increas-

ng practical use in the context of decision making and planning
rocesses.
ling 221 (2010) 467–478

2. Materials and methods

2.1. Marine species occurrence data

Global occurrence data for model building were obtained from
two sources. For marine fish, occurrence records were extracted
from FishBase, the most comprehensive, online database on fish
occurrence records from museum collections and selected, regional
trawl surveys (Froese and Pauly, 2007). Marine mammal occur-
rence records were obtained from OBIS (OBIS, 2007). Similar to
FishBase, OBIS is a comprehensive, online database of occurrence
data from national museum collections and other sources.

For the marine fish, the species selected represented a broad
range of taxa and life histories and were species which were also
relatively well represented in the two regions used for model test-
ing, i.e. UK and Australian waters (Table 1). Nine fish species were
selected: four that were adequately represented in fisheries surveys
conducted in UK waters by the Centre for Environment, Fisheries,
and Aquaculture Science (Cefas); four that were adequately rep-
resented in fisheries surveys conducted in Australian waters by
the Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO); and one (John dory, Zeus faber) that was represented
in both regions. Raw occurrence data (all accumulated occurrence
data per species) from FishBase were extracted for these species.
Records deriving from CSIRO surveys were removed, as this data
would form the test data for validating the models (Cefas survey
data, also used for testing, is not yet represented in FishBase or
OBIS and so did not need removing). Occurrence records were spa-
tially aggregated at a resolution of 0.5◦ latitude × 0.5◦ longitude
and assigned a unique c-squares code (Rees, 2003). These could
then be converted to a binary format that distinguishes between
presence and absence in each cell as input for most subsequent
analyses. The exception to this is the testing of predicted gradi-
ents of species occurrence with independent survey data where
proportional data is used. c-squares is a global, spatial indexing sys-
tem that allows geographic features to be referenced at multiple
spatial resolutions, and provides the framework for the database
structure behind AquaMaps. Using a fixed spatial resolution and
indexing system facilitated the process of constructing and test-
ing the models as data could easily be passed between the various
programs containing the modelling routines (see below). Having
assigned raw occurrence records to 0.5◦ c-squares cell, potentially
erroneous cells were removed if they were: (i) located entirely over
land; or (ii) located outside of UN Food and Agriculture Organisa-
tion (FAO) fisheries reporting areas where the species is known to
occur; or (iii) located outside of expert defined geographic range
extents (bounding boxes). FAO areas and bounding boxes were
assigned to species using information on species distributions from
the many references listed in FishBase (for fish) and those pro-
vided in Kaschner et al. (2006), Appendix 2 (for marine mammals).
This process is automated in AquaMaps. Further cleaning of data to
check for other errors in digitisation, misidentification or data cor-
ruption requires significant human input. As the ability of different
modelling methods is to be assessed based on their capacity to deal
with publicly available data with maximal automation to produce
reasonable predictions, such further cleaning was not performed
for training data. Test data from surveys are assumed to have min-
imal error as they came direct from the data source, though basic
tests for error in digitalisation were performed. Certain types of
error, such as misidentification, will remain in almost any dataset
not prepared entirely by a taxonomic expert from original samples.
Three marine mammal species were selected for model compar-
ison (Table 1). These species were chosen due to the contrasting
geographic ranges they are known to occupy and the availability
of sufficient occurrence data needed for model constructing and
testing. Records were treated similarly to those for marine fish.

http://www.aquamaps.org/
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Table 1
Marine fish and mammal species occurrence data used for model training and survey data used for model testing. Common name taken from FishBase (for fishes) and OBIS
(for mammals).

Species code Species name Common name Category Characteristic
description

Model training data
(# presence cells)

Test data region Model testing data

Presences
(# cells)

Absences
(# cells)

Prevalence

HYPLA Hyperoodon planifrons Southern
bottlenose whale

Mammal Beaked whale 37 Southern Oceans 468 12,425 0.04

CAEQU Carangoides equula Whitefin trevally Fish Benthopelagic 40 Australia 49 246 0.17
PSERU Psettodes erumei Indian spiny

turbot
Fish Flatfish 100 Australia 87 248 0.26

CLHAR Clupea harengus Herring Fish Small pelagic 119 UK 213 353 0.38
SASAG Sardinops sagax South American

pilchard
Fish Small pelagic 128 Australia 32 80 0.29

SOSOL Solea solea Common sole Fish Flatfish 140 UK 104 115 0.47
TRTRA Trachurus trachurus Horse mackerel Fish Benthopelagic 157 UK 294 353 0.45
SQMEG Squalus megalops Shortnose spurdog Fish Elasmobranch 216 Australia 70 260 0.21
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ZEFAB Zeus faber John dory Fish Benthope
PHPHO Phocoena phocoena Harbour porpoise Mammal Porpoise
SQACA Squalus acanthias Piked dogfish Fish Elasmobr
BAPHY Balaenoptera physalus Fin whale Mammal Baleen wh

.2. Environmental data

The following global coverage environmental datasets were
repared at 0.5◦ resolution (259,200 cells). The intention was to
gglomerate global maps of a number of key environmental vari-
bles based on long-term average conditions using comprehensive,
ublicly accessible raster data. All geospatial data manipulation and
nalysis was performed using ArcMap v.9 (Environmental Systems
esearch Institute). Data is generally available at greater resolu-
ions than the 0.5◦ resolution used here, and was converted to such
y calculating mean, minimum and maximum values, and used as
ppropriate for mean, minimum and maximum layers.

Maximum, minimum, and mean depths. Data were extracted
from the global coverage ETOPO2 2 min resolution bathymetry
dataset (NOAA, 2006).
Mean annual sea surface temperature (SST) in degrees Celsius
covering the period 1982–1999. Data were extracted from a cli-
matology produced following the methods described by Reynolds
and Smith (1995) and published by NOAA (2007).
Mean annual salinity covering the period 1982–1999. Data were
extracted from the 2001 World Ocean Atlas (Conkright et al.,
2002) published by NOAA.
Mean annual proportional ice cover (by area) on a scale
of 0.00–1.00 and covering the period 1990–1999. Data were
obtained from the U.S. National Snow and Ice Data Centre
(Cavalieri et al., 2006). Inverse distance weighted interpolation
was performed to fill missing data values in a small number of
coastal cells (approximately 1000 cells).
Mean annual primary production in mg C m−2 day−1 for the
period 1997–2004. Data were obtained from the European Joint
Research Council (http://marine.jrc.ec.europa.eu/made available
by Frédéric Mélin) having been generated from remotely sensed
chlorophyll a concentrations using an approach described in Carr
et al. (2006).

The environmental datasets and metadata are freely available at
ttp://www.aquamaps.org. Data sets were chosen for their appli-
ability at the global scale and likely variability at the resolution

sed. Slope and terrain variability measures were considered, but
ot used. This is because their value for modelling pelagic species
ay not be good, their variability within cells at the 0.5◦ resolu-

ion may be very great, and there was a desire to maintain clarity
nd transparency by using only a moderate number of layers. Max-
502 Australia and UK 153 565 0.21
509 North East Atlantic 177 457 0.28
1468 UK 219 353 0.38
1949 Southern Oceans 102 12,425 0.01

imum and minimum values for SST, salinity, proportional ice cover
and primary production are also available but represent temporal
variation within the cell rather than physical variation (as in the
case of depth). For simplicity and transparency they have not been
included.

2.3. Test data

To test the models we used independent data on presences,
absences, and relative abundance collected from targeted sur-
veys. For the marine fish species, data were provided from two
regional surveys covering UK and Australian waters. In the UK,
data from 5 annual trawl surveys were extracted from the Cefas
trawl database (CEFAS, 2007). Catch data from Australian waters
were provided from the CSIRO trawl database (MarLIN, 2007). As
all of the surveys used different trawl gear, we only used catch
data from surveys where the species were susceptible to the gear.
Catch data were converted to presences and absences within 0.5◦ c-
squares and also represented as average annual catch rates (kg hr−1

trawl time) at the same resolution. Marine mammal survey data
were obtained from two sources: the SCANS survey for the har-
bour porpoise Phocoena phocoena (Hammond et al., 2002), and
the International Whaling Commission IDCR-DESS SOWER survey
(IWC, 2001) for the Southern Bottlenose Whale Hyperoodon plan-
ifrons and the Fin Whale Balaenoptera physalus. Survey data were
processed as described in Kaschner et al. (2006) to compute ‘Sight-
ings per unit effort’ (SPUE).

2.4. Model construction

We compared AquaMaps with some of the most common
methods for generating species predictions models: the Genetic
Algorithm Rule-set Procedure (GARP), maximum entropy (Max-
ent), generalised linear modelling, and generalised additive
modelling. A list of methods used and source software is given in
Table 2.

2.4.1. AquaMaps
AquaMaps is an automated and adapted version of the Relative
Environmental Suitability (RES) modelling approach of Kaschner
et al. (2006) which was specifically developed to deal with the
data paucity that currently precludes the generation of large
scale species distribution for almost all marine mammal species.
Predictions of the natural occurrence of a species are gener-

http://marine.jrc.ec.europa.eu/made
http://www.aquamaps.org/
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Table 2
Modelling methods used in this study.

Code Method Software Source

AMG ‘non-expert AquaMaps’ AquaMaps desktop version Copy available from lead author
AMEG ‘expert AquaMaps’ AquaMaps desktop version Copy available from lead author

R stat
R stat
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GAM Generalised Additive Modelling (with random absences)
GLM Generalised Linear Modelling (with random absences)
MAX Maxent
OMG GARP best subsets (new implementation)

ted from pre-defined ‘environmental envelopes’ that numerically
escribe a species response to an environmental gradient based
n published information about species-specific habitat usage.
he combination of these responses in every cell determines the
uitability of that cell for the species. Similarly to the RES mod-
lling approach AquaMaps relies on a pre-defined, trapezoidal
hape (Fig. 1 here and Figs. 2 and 5 of Kaschner et al., 2006)
o describe the basic relationship between species occurrence by

eans of a preferred range and an absolute range representing
he limits of tolerance with respect to a set of equally pre-defined
nvironmental predictors. In addition, AquaMaps does not go
hrough an iterative model selection process which allows for
on-linear complex interactions between different predictors, but
omputes overall probabilities using a simple generic multiplica-
ive model (see below). Hardwiring of the shape of environmental
nvelopes, predictor selection and model definition was used to
a) maximize transparency and facilitate intuitive understanding
f species response curves and predictor interactions for non-
odellers (a pre-requisite for expert review and identification

f sampling biases), (b) speed up computational processing, and
c) maintain clarity in the reproducibility of the results (using

he same envelopes, algorithm and environmental data, any GIS
r database system should be able to produce the same out-
ut).

Anchor points for the species-specific absolute and preferred
abitat ranges (i.e. environmental envelopes) are calculated based

ig. 1. Comparison of the envelopes of AquaMaps (AMG and AMEG) with the response cu
lasses of the environmental variable. Envelopes or response curves for depth and sea sur
SQACA and ZEFAB).
istical software http://cran.r-project.org/
istical software http://cran.r-project.org/
nt http://www.cs.princeton.edu/∼schapire/maxent/
Modeller http://openmodeller.sourceforge.net/

on a subset of available presence cells that have been subjected
to a series of location-based quality checks (see above). The envi-
ronmental envelopes are computed from the environmental values
of the locations at which the species is found to occur using the
following rules:

• Absolute minimum (MinA) = the 25th percentile of the environ-
mental values − (1.5 × the interquartile range), OR the absolute
minimum environmental value at which the species is observed,
whichever is lower

• Preferred minimum (MinP) = the 10th percentile of the environ-
mental values

• Preferred maximum (MaxP) = the 90th percentile of the environ-
mental values

• Absolute maximum (MaxA) = the 75th percentile of the environ-
mental values + (1.5 × the interquartile range), OR the absolute
maximum environmental value at which the species is observed,
whichever is greater

Computed environmental envelopes for each species can
be viewed alongside their maps online through http://www.

aquamaps.org with some examples shown in Fig. 1, while values
for maxima and minima for all species in this analysis are described
in Table 3. After the definition of environmental envelopes, predic-
tions of species-specific relative habitat suitability are generated for
each 0.5◦ grid cell by assigning a probability of ‘1’ to all cells asso-

rves generated by Maxent. Histograms represent frequencies of presence points for
face temperature are shown for one mammal species (HYPLA) and two fish species

http://cran.r-project.org/
http://cran.r-project.org/
http://www.cs.princeton.edu/~schapire/maxent/
http://openmodeller.sourceforge.net/
http://www.aquamaps.org/
http://www.aquamaps.org/
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ig. 2. External test data survey locations (presences in red), current FAO species ac
istributions, and modelled distributions for Squalus acanthias in the NE Atlantic. M

iated with environmental values falling between the preferred
inimum and preferred maximum of a specific envelope, and ‘0’ to

ll values ≤absolute minimum and ≥absolute maximum. Environ-
ental values falling in the range between absolute minimum to

referred minimum and preferred maximum to absolute maximum
re assigned a probability of >0 and <1 using linear interpolation.
verall species-specific relative habitat suitability for each grid cell

s then computed as the geometric mean of all individual predictor
robabilities, assuming an equal weighting for all.

We generated predicted distributions for the 9 fishes and 3
ammals from environmental envelopes that were exclusively

ased on available occurrence records alone and did not incorpo-
ate additional information such as known depth ranges or other
ypes of expert knowledge. We referred to this method as ‘non-
xpert AquaMaps’ (AMG – Table 2).

In the online version of the AquaMaps approach, additional
ules are incorporated to automatically modify the minimum
nd maximum preferred and absolute ranges for a species based
n an understanding of its ecology and known distribution.
elagic fish species are modelled so that both preferred maxi-
um and absolute maximum depths are assigned the maximum

epth of the world’s oceans, as increasing depth most likely will
ot affect their distributions. Further, expert information such
s known published depth ranges for species can be automati-
ally imported from existing databases (as for all fishes in this
nalysis – data from FishBase, Froese and Pauly, 2007), or can
e manually entered into the AquaMaps system from literature
ources (as for mammals in this analysis – data from Kaschner

t al., 2006). Depth envelopes are then calculated using mini-
um and maximum depth values for each 0.5◦ cell rather than

sing a single layer (mean depth). A species’ tolerance with
espect to preferred minimum and absolute minimum depths
re related to the environment’s maximum depth attribute in
nge map (Compagno, 1984), class intervals of likelihood of occurrence in modelled
labelled as in Table 2.

each cell while the species’ tolerances with respect to preferred
maximum and absolute maximum depths are related to the envi-
ronment’s minimum depth attribute in each cell. In addition to
these default incorporations of published habitat use information,
individual environmental envelopes can be modified manually if
published information suggests that existing point occurrences
do not provide a representative coverage of a given species dis-
tribution in environmental space. We refer to the method of
producing species distribution maps using such additional infor-
mation as ‘expert AquaMaps’ (AMEG – Table 2). Predictions were
also made for the 9 fish and 3 mammal species using this
method. The modifications made for each species are given in
Table 3.

All permutations of the AquaMaps methodology were imple-
mented in a desktop version of the software, copies of which
are available from the lead author. Note that the online version
of AquaMaps (http://www.aquamaps.org) is only available in the
form of the basic ‘expert AquaMaps’ method which incorporates
independent information about depth preferences and maximum
latitudinal and longitudinal boundaries that are available from
FishBase. Envelope settings for all other environmental parame-
ters have only been reviewed on a case-by-case basis. Given the
same input settings to AquaMaps, the outputs will always be the
same. This in contrast to some other methods such as GARP, which
produce slightly different outputs with the same input informa-
tion.

2.4.2. GARP (genetic algorithm for rule-set production)

GARP has received considerable attention by ecological mod-

ellers, and has been used to model the distributions of a wide
range of terrestrial and marine organisms. Here, we ran GARP in
‘best subsets’ mode (Anderson et al., 2003) as implemented in the
openModeller package (Muñoz et al., 2007). Settings were mainly

http://www.aquamaps.org/
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left as default, i.e., a training proportion of 0.5, 2500 re-samples,
a population size of 50, 20 models under omission, a hard omis-
sion threshold of 100, a convergence limit of 0.01, a commission
threshold of 50, and a commission sample of 10,000. The number
of runs was increased to 100. Greater differentiation in prediction
values is possible by increasing run number, but computing times
increase exponentially and there is reportedly little gain in model
quality above 100 runs (Siqueira and Durigan, 2007). When 100
runs are performed, models took over five times longer to produce
than for all other methods. Exact times varied depending on the
species being modelled.

2.4.3. Maxent (maximum entropy modelling software)
Maxent was developed by Phillips et al. (2006) and is based on

the principles of maximum entropy, whereby a target probability
distribution is estimated by finding the probability distribution of
maximum entropy, i.e., that is most spread out or closest to uniform,
subject to a set of constraints that represent incomplete informa-
tion about the target distribution. Models were constructed using
the Maxent software (Table 2) set to the following default parame-
ters: use of a random seed, minimised memory use, a random test
percentage of 0, a regularization parameter of 1, a maximum of 500
iterations, a convergence threshold of 0.00001 and a maximum of
10,000 background points, with no test sample or bias file.

2.4.4. GLM (Generalised linear models) and GAM (Generalised
additive models)

Generalised linear (GLM) and additive models (GAM)
(McCullagh and Nelder, 1989; Hastie, 1991) were constructed
using the open-source statistical programming language R version
2.5.1 (http://cran.r-project.org/). To estimate GLMs and GAMs,
absence data were first generated by selecting 0.5◦ cells at random
to arrive at 50% prevalence for each species. GLMs were fitted to
the presence–absence data using a logistic link function. GAMs
were also generated using a logistic link function with cubic splines
applied to all predictors. To allow a consistent application across
species, as in other modelling approaches, models were applied
naively, without interactions, and to the full set of predictors
without prior testing for correlation.

2.5. Model testing

Models were tested in two ways. For the first test, estimates
of ROC–AUC were generated between the model predictions and
presence/absence test data using the ROCR package for R (Sing et
al., 2005). ROC is the receiver operating characteristics curve, with
AUC being the area under curve value (Swets, 1988). Construction
of distribution models for a large number of marine species, many
of which may not be well represented in targeted, independent
surveys means that in most cases prediction accuracy can only
be assessed using an internal test. The ROC–AUC test was there-
fore run using predictions generated from subsets of the original
occurrence data and tested with the remaining occurrence data.
For each fish and mammal species we generated four subsets of
occurrence data each comprising of 75% of data points chosen via
random selection. Prediction accuracy was assessed by comparing
the remaining 25% of data points with the predictions generated
from its counterpart subset. This is a cross-validation ROC (Fielding
and Bell, 1997). This variation of the ROC–AUC test could not be
used to test AMEG predictions as the expert review process would
act to standardise the environmental envelopes generated from the

four different subsets. The ROC–AUC test was also run using model
predictions generated from the full occurrence datasets and tested
with independent test data, with the latter summarised as presence
or absence per 0.5◦ cell. This test could also be run on all modelling
methods. Since ROC–AUC has been shown to be largely unaffected

http://cran.r-project.org/
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ig. 3. ROC–AUC internal test results show variation between modelling methods
ifferent 75% subsets of the original occurrence data for each species. No test was p

n Table 1 and ordered left to right based on increasing training data sample size.

y species prevalence, it allows a direct comparisons of models for
ifferent species (McPherson et al., 2004).

The second test was used to assess to what extent predictions
f relative habitat suitability produced by the different models
atched observed indices of effort-corrected species occurrence.

.e. to compare gradients of predicted and observed species occur-
ence. The test we used was developed by Kaschner et al. (2006)
ollowing an approach recommended by Pearce and Boyce (2006)
o test predictions of presence-only models. Spearman’s rank cor-
elations are computed between model predictions and relative
bundance/density estimates based on the average effort-corrected
atch or sighting rates over all cells within classes of predicted
robability. To assess the performance of our models compared to
andom distributions, we obtained a simulated p-value by record-
ng the number of times the relationship between 1000 random
ata sets and test data sets was as strong as or stronger than that
ound between the observed encounter rates and the model pre-
ictions.
. Results

The various model algorithms generated different predictions
or each species, and the envelopes and response curves for some
the range of input data quantity and species. Model predictions are based on four
ed for AMEG as expert adaption results in a single output. Species are labelled as

of these are presented for comparison in Fig. 1. Fig. 2 shows the
model outputs for Squalus acanthias along with the survey data
collection locations used for external testing of the models and the
current FAO distribution map for the same species in the same area
(Compagno, 1984). In all cases the models predicted S. acanthias to
occur far beyond the geographic range described by the input data.
The AMG model describes a similar pattern to the known distribu-
tion, though with some restriction of range in areas of extremely
high and low salinity (Mediterranean, Red and Baltic seas). The
AMEG model is similar in overall extent (area) but shows a signif-
icant restriction in probabilities with depth. The difference in this
respect is clearly seen in the expert modifications for depth across
all species (Table 3 and Fig. 1). The GAM model is quite similar to
the AMG model, though indicates a greater proportion of less suit-
able environments. The GLM and MAX models cover a greater range
than the other models, with the difference between them being that
the GLM model predicts a relatively large proportion of the range
as having a high probability of occurrence while the MAX model

predicts only a small proportion of the overall range will have a
high probability of occurrence. The OMG model predicts much the
same range as the GAM model, though it predicts nearly all of the
range to have a high likelihood of occurrence, with variation in like-
lihood of occurrence being restricted to the peripheral areas of the
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which correlate with survey abundances. GLM predictions showed
a similar trend but performed less successfully overall. Maxent
models performed successfully for a similar number of species as
AMG though for a slightly different set of species, and OMG predic-
tions performed poorly.
ig. 4. ROC–AUC statistical results for model predictions based on all points tested
gainst external survey data Species are labelled as in Table 1 and ordered left to
ight based on increasing training data sample size.

ange. The variation between model predictions in terms of range
nd the proportion of the range predicted to have a high likelihood
f occurrence is generally similar for the other species. The excep-
ions are AMEG models where, apart from similar changes based
n use of maximum and minimum depths (Table 3), variation is
ore dependent on the degree of changes due to expert modified

nvelopes.
Internal testing of predictions using ROC–AUC scores for four

ubsets testing against remaining non-independent occurrence
ata (Fig. 3) showed that modelling methods generally provided
etter outputs for species with more data (as seen for some mod-
ls where results are poor using the lowest numbers of training
ata). Deviations from this trend with large amounts of training
ata indicate points of note. ROC–AUC scores are lower and more
ariable with subsets of 37/40 occurrence points and generally high
nd not as variable with subsets of 100+ occurrence points. The
lear exception is for B. physalus which generally performed slightly
ess well than might be expected for all models given the large
mount of training data. Trachurus trachurus, Sardinops sagax and
. faber also showed scores that were marginally lower than the
eneral trend. When comparing different models, the GAMs obtain
emarkably high scores with little variation. Exceptions to this are
or the taxa Squalus megalops and Z. faber, where the distinct drop
n ROC–AUC scores is consistent with a limited number of classes
2) generated by the GAM model predicted distribution. The low
umber of classes of outputs also explains the non-valid results
f Spearman’s rank test for these taxa when this model is com-
ared with the species survey abundance estimates (see Section
).

External testing through calculation of ROC–AUC scores from
omparison of predictions with external independent test data
Fig. 4) are very variable and generally not very high, even when
raining data quantity is maximised. Some species appear to be

odelled well at least by some modelling methods (comparatively
etter ROC–AUC values). Comparatively better ROC-AUC scores
>0.7) were obtained for Carangoides equula, Clupea harengus, S.

egalops and Z. faber models produced by both AMG and AMEG
hile MAX models of C. harengus, S. megalops and Z. faber also

cored comparatively well. GLMs produced comparatively good
odels for C. harengus and S. sagax, while GAM and OMG methods

roduced no models gaining such ROC–AUC scores.
ling 221 (2010) 467–478

External testing comparing relative predicted probabilities with
relative abundances of species from survey data varied in a
similar way to ROC–AUC scores in most respects with good cor-
relations possible when models are made from as little as 37
occurrence points (Table 4 and Fig. 5). Overall, models tended to
perform better in terms of predicting gradients of relative species
occurrence as indicated by the higher number of statistically
significant correlations with external survey data. Interestingly,
GAMs, which performed extremely poorly in terms of predict-
ing binary presence/absence of species, was one of the methods
able to predict relative species occurrence most reliably. OMG
models again performed poorly. Again, the low number of out-
put classes produced from these models made some comparisons
(four species) statistically impossible. It should be noted that there
was no significant result for OMG models of C. harengus and B.
physalus, which were modelled well by almost all other meth-
ods.

Expert review effects on predictions based on results in Table 4
and Figs. 4 and 5 show that for most species for which AMG mod-
els were good predictors, the main effect in ‘expert AquaMaps’ was
an improvement in ROC–AUC score or correlation with survey data,
and that this is largely related to the incorporation of expert defined
depth preferences and the different use of depth data in AMEG
where a species’ response to depth can be applied to both maxi-
mum and minimum depths of a cell instead of just mean depth of
the cell (Table 3).

A summary of the results of both ROC–AUC and Spearman’s
rank statistics gives model/species combinations which have both
a good range as determined by the ROC–AUC score and a good
correlation with existing abundances (Table 5). Comparing model
method results, AMG predictions vary to some extent with species,
but produce reasonable results under both testing methods and
AMEG predictions performed generally slightly better than AMG.
GAM predictions performed very poorly at prediction of presence
vs. absence (ROC–AUC), but very well at producing predictions
Fig. 5. Results of Spearman’s rank correlation of predicted models with survey abun-
dances (significant correlations highlighted in Table 4 have filled symbols). Species
are labelled as in Table 1 and ordered left to right based on increasing training data
sample size.
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Table 4
Spearman’s rank correlation (Rho) between prediction models and survey calculated abundances. P (Rho) is the probability value for the correlation and P (Boot) is the
probability that the strength of the correlation between model probabilities and survey abundance is significantly different from the chance of correlation of 1000 randomly
generated datasets with the survey abundance values. Significant positive correlations are those where Rho is positive and both P (Rho) and P (boot) are both less than 0.05
(emboldened in table).

Species HYPLA CAEQU PSERU CLHAR SASAG SOSOL TRTRA SQMEG ZEFAB PHPHO SQACA BAPHY Number of significant
correlations by model

Training data
(# Presence cells)

37 40 100 119 128 140 157 216 502 509 1468 1949

Location SO Aust Aus UK Aus UK UK Aus Aus + UK NEAtl UK SO

Rho–AMG 0.392 0.094 0.526 0.712 −0.017 −0.536 −0.464 0.473 0.456 0.764 0.870 0.444
P (Rho)–AMG 0.001 0.592 0.119 0.000 0.957 0.236 0.302 0.009 0.013 0.027 0.002 0.000 4
P (Boot)–AMG 0.186 0.725 0.182 0.000 0.953 0.980 0.987 0.007 0.123 0.218 0.046 0.008

Rho–AMEG 0.865 0.240 0.580 0.764 0.092 −0.445 −0.090 0.462 0.528 0.607 0.487 0.738
P (Rho)–AMEG 0.000 0.185 0.001 0.000 0.734 0.173 0.636 0.001 0.001 0.028 0.003 0.000 6
P (Boot)–AMEG 0.000 0.193 0.002 0.000 0.845 0.976 0.875 0.026 0.010 0.299 0.083 0.005

Rho–GAM 0.552 0.699 0.922 0.895 0.629 N/A 0.482 N/A N/A 0.857 0.730 0.266
P (Rho)–GAM 0.000 0.000 0.001 0.000 0.012 N/A 0.000 N/A N/A 0.000 0.000 0.008 7
P (Boot)–GAM 0.000 0.007 0.054 0.000 0.166 N/A 0.009 N/A N/A 0.001 0.044 0.003

Rho – GLM 0.198 0.340 0.621 0.860 0.817 −0.364 −0.243 0.482 0.034 0.759 0.642 0.262
P (Rho)–GLM 0.064 0.198 0.100 0.000 0.000 0.273 0.152 0.002 0.842 0.000 0.000 0.010 5
P (Boot)–GLM 0.143 0.686 0.466 0.000 0.012 0.966 1.000 0.392 0.952 0.019 0.027 0.000

Rho–MAX 0.113 N/A 0.327 0.524 0.247 0.506 −0.323 0.518 0.609 −0.035 0.090 −0.262
P (Rho)–MAX 0.317 N/A 0.003 0.000 0.135 0.000 0.010 0.000 0.000 0.747 0.493 0.009 5
P (Boot)–MAX 0.024 N/A 0.024 0.000 0.148 0.000 0.705 0.000 0.000 0.721 0.212 0.020

Rho–OMG 0.464 0.866 N/A 0.730 0.866 N/A N/A 0.329 0.564 0.815 N/A −0.136
P (Rho)–OMG 0.150 0.333 N/A 0.025 0.333 N/A N/A 0.388 0.322 0.025 N/A 0.694 0
P (Boot)–OMG 0.198 0.134 N/A 0.083 0.143 N/A N/A 0.456 0.085 0.104 N/A 0.695

Table 5
Summary of species which were modelled reasonably by each algorithm as determined by both ROC–AUC and Spearman’s rank statistics (external test of ROC–AUC >0.7,
Spearman’s Rank positive correlation and significant as highlighted in Table 4) * indicates species with known issues regarding taxonomic uncertainty of different populations
or variable catch success in surveys due to different substrates and the effectiveness of gear at different depths. Yes/Possible indicates the fraction of models produced by
each method which performed reasonably under each test.

Species AMG AMEG GAM GLM MAX OMG

ROC–AUC Rho ROC–AUC Rho ROC–AUC Rho ROC–AUC Rho ROC–AUC Rho ROC–AUC Rho

HYPLA No No No Yes No Yes No No No No No No
CAEQU Yes No Yes No No Yes No No No N/A No No
PSERU No No No Yes No NO No No No Yes No N/A
CLHAR Yes Yes Yes Yes No Yes Yes Yes Yes Yes No No
SASAG* No No No No No No Yes Yes No No No No
SOSOL* No No No No No N/A No No No Yes No N/A
TRTRA* No No No No No Yes No No No No No N/A
SQMEG Yes Yes Yes Yes No N/A No No Yes Yes No No
ZEFAB Yes No Yes Yes No N/A No No Yes Yes No No
PHPHO No No No No No Yes No Yes No No No No
SQACA No Yes No No No Yes No Yes No No No N/A
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BAPHY No Yes No Yes No
Yes/Possible 4/12 4/12 4/12 6/12 0/12
Yes/Possible excluding * 4/9 4/9 4/9 6/9 0/9

. Discussion

The aim of developing AquaMaps was to provide a system which
an be applied globally and is automated at the basic level, pro-
ucing distributional range maps for as many species as for which
uitable data is available, and from which outputs can be sum-
arised to analyse marine biodiversity in time and space. An easy

o understand concept and transparent process that allows expert
eview of predictions was also an aim, so that poor predictions can
e improved by experts on the taxon in question rather than requir-

ng in depth knowledge of the method of modelling. This is typified

y the use of environmental envelopes to define the environmental

imits of species which is then mapped onto the known environ-
ent, rather than the more complex response curves described by
any modelling algorithms which define often complex equations

elating presence to the predictor variables.
Yes No Yes No No No No
7/10 2/12 5/12 3/12 5/11 0/12 0/8
6/8 1/9 4/9 3/9 4/8 0/9 0/7

Given these aims, the results of statistical analysis show that
AquaMaps compares reasonably (Table 5) with existing niche mod-
elling methods over a range of taxonomic groups, geographical
regions and training data sample sizes given the environmental
datasets which are easily available for such analyses. Good predic-
tion models can be achieved with the ‘expert AquaMaps’ method
with as little as 37 occurrence points (Table 4), with ‘non-expert
AquaMaps’ providing a reasonable first pass prediction for the
range of a species from as little as 40 occurrence points (Fig. 2)
with little variance under internal tests (Fig. 3). In terms of the num-
ber of points required for modelling, this fits well with the results

obtained by Stockwell and Peterson (2002), where between 20 and
50 points were demonstrated to result in reasonable models when
using Desktop GARP.

In previous analyses (Elith et al., 2006), Maxent is one of the
best performing modelling packages when testing for binary pres-
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nce/absence (ROC–AUC). Similar analyses performed here support
his result to some extent, though Maxent models were found to
erform poorly for some taxa (particularly the mammals – Fig. 3).
owever, even when performing well under ROC–AUC analysis,

he degree of correlation with survey data was not necessarily the
ighest of the modelling methods used. C. harengus was the only
pecies for which almost all modelling methods produced models
ith statistically significant correlations with survey abundances,

nd yet the correlation value obtained by Maxent was the lowest
Table 4). The only case in which Maxent was uniquely better than
ll other models was for Solea solea (Tables 4 and 5). This is the only
pecies for which training data came almost exclusively from the
ame region as the independent survey dataset. This indicates that
axent may over-fit predictions to the areas where sample occur-

ence data have been collected. This may be especially true if there
s some kind of sampling selection bias to these collection locations
e.g. a preference to catch fish in shallower water of a certain bottom
ype). Maxent does have an ability to counteract over-fitting using
ts regularization procedure (Hernandez et al., 2006; Phillips et al.,
006), but it is unclear as to how this might be included in auto-
ated mapping of many species. It would only be useful for some

pecies, and it may not be a valuable exercise given assumptions
hat the sampling is not biased (Phillips, 2008).

GLMs and GAMs are commonly used to model distributions
Guisan and Thuiller, 2005), but rely on input in the analysis
o obtain best results. Under the requirements of an automated
ystem, where selection of variables is standardised, these meth-
ds appear to perform poorly (Table 5). Neither performs well in
tandard binary presence/absence tests (ROC–AUC). The GAMs per-
ormed relatively well in the tests of correlation with survey data
Tables 4 and 5), although notably for species which other methods
ould not model well. Of particular note was the correlation of the
AM model for T. trachurus. This species may in fact represent more

han one species (see discussion below) and as such the production
f a model that performs well in such tests may not indicate good
odel performance.
OMG (GARP) models performed badly in almost all comparisons

Tables 4 and 5). The outputs were generally much more variable
han all other methods and only seemed to reduce in variability
nd obtain a stable ROC–AUC score when over 1000 occurrence
oints were used to model the distribution, at which point the
cores are quite low (Fig. 3). This is likely a result of the lower
umber of output classes under OMG models. This is seen in Fig. 2
here the predicted area includes a uniform block of red with a
igh predicted value (0.9–1). It is possible that a higher number
f output classes might be producible by increasing the number of
uns performed when modelling distributions using OMG. How-
ver, this would require modelling time in excess of that available
nd may not improve the output quality enough to generate the
eeded classes.

As all models were developed with the same set of environmen-
al layers, variation in statistical support for the models is expected
o vary with life history, taxonomic group/status and bias in sam-
ling distribution. This is clearly seen in the statistical analysis.
hen looking at internal tests with subsets of data (Fig. 2), the

lightly lower ROC–AUC score of Z. faber is likely due to the fact that
t lives over a greater range than all other fish species, and as such
ample selection bias may be greater due to more data from bet-
er sampled regions. Models for B. physalus show a significant drop
rom the trend based on numbers of occurrence points included,
hich may in part be due to sample selection bias over a large range
or both sampling and surveying options, where both are limited
emporally (to different extents) to the Antarctic summer season.
dditionally, samples from whaling efforts which are included in

he OBIS dataset may be biased to areas known for higher abun-
ances of both this and other species. Modelling performance may
ling 221 (2010) 467–478

also be poor for specific species if taxonomic uncertainty leads
to the inclusion of environments to which different populations
(potential taxa) are adapted. This may explain the poor modelling
performance for S. sagax and T. trachurus by almost all modelling
systems. S. sagax represents a species which has genetically identi-
fied sub-populations in different parts of its distribution (Grant et
al., 1998), while T. trachurus represents a species where misidenti-
fications may occur in part of its range due to presence of a closely
related species (southern populations of T. trachurus may represent
Trachurus capensis) (Froese and Pauly, 2007).

S. solea is one of the species that is generally modelled badly
when compared to survey data (Table 5), and likely reflects the
relative catch of the species being more sensitive to local factors
within the survey area itself or the methods used to sample the
species. S. solea has specific bottom type requirements, especially
with regards to depth and sediment type (Rogers, 1992). It is not
always caught evenly in surveys as the catch efficiency of the gear,
which is dependent on the bottom contact of the trawl and fishing
protocols, also varies with depth, bottom substrate and topogra-
phy. The latter refers to the process by which faster or deeper
trawls tend to cause the net to jump up more frequently resulting
in poorer catches of bottom dwelling fish. The slightly less ‘bot-
tom associated’ (Froese and Pauly, 2007) flatfish Psettodes erumei
was apparently modelled slightly better with the inclusion of depth
ranges in ‘expert AquaMaps’ resulting in a significant correlation of
the model with survey abundances, and the general additive model
nearing significant correlation.

The comparison of the expert input in AquaMaps is generally
favourable to the inclusion of expert knowledge, but some loss in
performance underlines that existing expert knowledge may not
always result in improved outputs and supports the sensitivity of
habitat rating to expert opinion found in previous analysis (Johnson
and Gillingham, 2004). All existing data, including expert knowl-
edge, is prone to bias. Even if it is assumed that all T. trachurus
occurrence data are valid identifications, bias in occurrence data
and/or expert knowledge can explain the poor model performance.
Such bias may be sufficiently strong (large survey datasets included
from certain regions) to result in poor predictions of suitable habi-
tat in other regions or may also be combined with species-specific
phenomena such as tropical submergence (Ekman, 1967) which
may also lead to bias in expert knowledge as expert knowledge is
generally biased towards surface waters.

The better performance of the ‘non-expert AquaMaps’ com-
pared to ‘expert AquaMaps’ for S. acanthias and P. phocoena is
suggested to be a result of a bias in the treatment of depth. For
S. acanthias, the given expert value for preferred depth range is
likely wrong. Textual descriptions of localities where the species is
caught indicate a lower value should be applied to preferred mini-
mum depth. Preliminary analysis with such lower values produced
predictions more similar to the ‘non-expert AquaMaps’ model. The
result for S. acanthias highlights how such analyses can draw atten-
tion to possible errors in data presented in the literature and taken
as the current state of knowledge. S. acanthias was selected for
Fig. 2 to highlight the importance of verification of expert knowl-
edge. Alternatively, the need for expert knowledge applied to the
Southern Bottlenose Whale, Hyperoodon planifrons (HYPLA), is evi-
dent in the differences in the depth envelopes of AMG and AMEG
(Fig. 1 and Table 3). The species is one of the deep-diving beaked
whale species, known to predominantly occur almost entirely in
deeper waters (Gowans, 2002; Kasamatsu et al., 2000; MacLeod
and D’Amico, 2006). The large number of shallow water sighting of

the species reflects known sampling biases of heterogeneous sur-
vey efforts in shallow waters and potential misidentifications, as all
beaked whales are highly inconspicuous and difficult to identify at
sea. In addition, the stranding records, which generally represent
the most common form of available occurrence records for most
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eaked whale species, would have been allocated to coastal (rather
han land) cells and thus would not have been successfully filtered
ut during the initial screening for erroneous species reports.

The ‘expert AquaMaps’ envelope for P. phocoena had been taken
rom the previous work of Kaschner et al. (2006) which used aver-
ge depths and had not been adjusted to the current algorithm’s use
f minimum and maximum depths. As such the differential use of
epth in ‘expert AquaMaps’ has worsened the correlation between
odel and survey data (at least within the survey area) while the

on-expert mode used occurrence points from roughly the same
rea as the independent survey dataset to create the model, thus
roducing a reasonably good approximation. Further expert review
iven knowledge of the new use of depth values may allow recov-
ry of a stronger, more significant correlation for P. phocoena. Both
ther mammals actually show improvements in statistical support
nder the new ‘expert AquaMaps’ prediction when compared to
he original RES model of Kaschner et al. (2006), indicating that
he method has generally remained effective for the prediction of

arine mammal distributions.
If taxa with known issues regarding taxonomic uncertainty or

oor catch in survey are excluded from the summary in Table 5,
hen the ‘expert AquaMaps’ also compares well with general addi-
ive models under tests of correlation with survey abundance.

Lobo et al. (2008) argue that ROC–AUC scores are not a good
easure of model performance for five reasons, one of which is that

hey ignore the predicted probability values and the goodness-of-
t of the model. We use the Spearman’s rank statistic to directly
est for a good fit between the probability values generated by

odels and true abundances. The limitation of tests such as this
re that they require external survey data for the species stud-
ed, including sampling from areas where abundances are lower,
o confirm this goodness of fit. Such data are not available for the
ast majority of species. Lobo et al. (2008) also state that the total
xtent to which models are carried out highly influences the rate of
ell-predicted absences and the AUC scores, with the generation

f pseudo-absences for points which are geographically and there-
ore probably more environmentally distant from the presence
ocalities leading to a low commission error. The statistical com-
arisons carried out here were based on surveyed regions where
he species modelled are known to occur, therefore avoiding this
roblem. Nevertheless ROC–AUC scores have been widely used in
cological modelling and retain some advantageous features. Lobo
t al. (2008) suggest that ‘the real value of AUC is that it provides
measure of the degree to which a species is restricted to a part

f the variation range of the modelled predictors, so that presences
an be told apart from absences’ i.e. it tells us whether the range
f the predicted distribution is more or less accurate in environ-
ental space, but not whether the internal probabilities are good.

omparison of ROC–AUC results of different models for the same
pecies is possible because the data used to generate and test the
redictions remain constant. ROC–AUC also remains useful as a
asic statistic to determine the amount of variation in results from
artitioned datasets, as performed here, highlighting the potential
egree of sampling bias in the original datasets with respect to the
nvironmental parameters used for modelling and the number and
istribution of known occurrences used to generate the model.

Expert review remains the quickest way to improve predicted
istributions in AquaMaps, but relies on expert knowledge being as
omplete as possible. Taxonomic uncertainty and poor knowledge
f biodiversity in certain geographical areas remain an impedi-
ent to this. One of the main problems in modelling species at the
lobal scale is the failure to predict presence of species in enclosed
ays/seas where environmental conditions are distinct from sur-
ounding areas (e.g. Red Sea, Baltic Sea and Arafura Sea). If species
ack records from such areas then their distributions often reflect
his with a predicted absence from the area. Expert review can read-
ling 221 (2010) 467–478 477

ily identify these cases and includes various methods for altering
species distributions to include these areas.

It will remain the case that an expert in modelling methods
should be able to produce a better species distribution model by:
using more data (presence and absence or even abundance); using
more exhaustive methods (such as Boosted Regression Trees);
applying better specific model settings (e.g. regularization in Max-
ent); testing for and applying corrections to environmental bias
in sampling, and; using more or different environmental layers
(potentially at different resolutions) depending on the scale of the
analysis. However, such analyses must be made on a case-by-case
basis and require good knowledge of both the modelling methods
and the species biology, whereas if the aim is to summarise biodi-
versity generally and quickly (Balmford et al., 2005), species range
maps must be produced in the greatest possible number and using
a generalised method to maintain consistency. With the datasets
available at this time, AquaMaps provides such maps online for
a large number of species and to a quality comparable to, if not
better than, other methods tested here. In addition it provides the
flexibility to review, adapt and store ranges online in a matter of
minutes which, as all predictions are in a single system, can then
be summarised based on any number of criteria.
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