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a  b  s  t  r  a  c  t

Species  distribution  models  are  important  tools  to explore  the  effects  of  future  global  change  on  biodiver-
sity.  Specifically,  AquaMaps,  Maxent  and  the  Sea Around  Us  Project  algorithm  are  three  approaches  that
have been  applied  to  predict  distributions  of marine  fishes  and  invertebrates.  They  were  designed  to cope
with issues  of  data  quality  and  quantity  common  in  species  distribution  modelling,  and  especially  per-
tinent  to the  marine  environment.  However,  the  characteristics  of  model  projections  for  marine  species
from  these  different  approaches  have  rarely  been  compared.  Such  comparisons  provide  information
about  the  robustness  and  uncertainty  of  the  projections,  and  are  thus  important  for  spatial  planning  and
developing  management  and  conservation  strategies.  Here  we  apply  the  three  commonly  used  species
distribution  modelling  methods  for commercial  fish  in  the  North  Sea  and  North  Atlantic,  with  the  aim  of
drawing  comparisons  between  the  approaches.  The  effect  of  different  assumptions  within  each  approach
on the  predicted  current  relative  habitat  suitability  was  assessed.  Predicted  current  distributions  were
tested following  data  partitioning  and  selection  of pseudoabsences  from  within  a specified  distance  of
occurrence  data. As indicated  by the  test  statistics,  each  modelling  method  produced  plausible  predic-

tions of  relative  habitat  suitability  for each  species,  with  subsequent  incorporation  of  expert  knowledge
generally  improving  predictions.  However,  because  of  the  differences  between  modelling  algorithms,
methodologies  and  patterns  of  relative  suitability,  comparing  models  using  test  statistics  and  selecting
a  ‘best’  model  are  not  recommended.  We  propose  that  a multi-model  approach  should  be  preferred  and
a  suite  of  possible  predictions  considered  if biases  due  to uncertainty  in  data  and  model  formulation  are

to be minimised.

. Introduction

Many pressures are currently affecting the marine environment
nd driving change in species composition and distribution. Fish-
ries are removing fishes at a rate considered to be unsustainable
Pauly et al., 2002), while essential habitat is being damaged or
estroyed, for example through sand and gravel extraction, or
hemically altered through release of endocrine-disrupting sub-
tances. Furthermore, concern over the impact of climate change

n marine ecosystems is increasing (Root and Rosenzweigk, 2003),
ith longer term shifts in mean environmental conditions and

limatic variability moving outside the bounds within which
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adaptations in marine communities have previously been associ-
ated (e.g. Beaugrand, 2004; King, 2005). The altered abundances
and novel distributions resulting from these ocean-atmospheric
changes (e.g. Beaugrand, 2009; Perry et al., 2005; Southward et al.,
1995; Stebbing et al., 2002) may  severely change the biological and
environmental functioning of ecosystems or food webs, the goods
and services derived from them, and conservation and resource
management.

Species distribution modelling is widely used to study and pre-
dict the ecological effects of climate change (e.g. Hijmans and
Graham, 2006; Beaumont and Hughes, 2002; Pearson and Dawson,
2003; Thuiller et al., 2008; Cheung et al., 2009). It uses statistically
or theoretically derived response surfaces to relate observations
of species occurrence or known tolerance limits to environmen-
tal predictor variables (Guisan and Zimmermann, 2000), thereby

predicting a species’ range as the manifestation of habitat charac-
teristics that limit or support its existence at a particular location.
It is thus grounded in ecological niche theory. The environmen-
tal conditions under which a species can survive and grow and

dx.doi.org/10.1016/j.ecolmodel.2011.11.003
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:miranda.jones@uea.ac.uk
mailto:stephen.dye@cefas.co.uk
mailto:john.pinnegar@cefas.co.uk
mailto:r.warren@uea.ac.uk
mailto:w.cheung@fisheries.ubc.ca
dx.doi.org/10.1016/j.ecolmodel.2011.11.003


1  Mode

w
d
o
t
c
i
o
w
p
o
a
2
t
m
o

t
a
a
r
a
s
i
o
m
F
a
s
e
2
u
a
(
p
t
t
v
t
2
i
m

f
e
a
e
m
b
p
f
i
c
d
a

t
fi
C
s
w
i
p
2
o
G
b

34 M.C. Jones et al. / Ecological

hich therefore define the ecological properties of a species are
escribed as the fundamental ecological niche (Hutchinson, 1957)
r a species’ potential distribution. The area within a fundamen-
al niche into which a species is restricted due to the effects of
ompetition and other biotic interactions is described as its real-
zed niche (Austin et al., 1990; Guisan and Zimmermann, 2000),
r distribution. To make use of the diversity of available data, a
ide range of species distribution models (SDMs) have been pro-
osed [see Guisan and Thuiller (2005) and Franklin (2009) for an
verview], approaches varying widely in data requirements, mech-
nisms used and model performance (Guisan and Zimmermann,
000; Elith et al., 2006; Austin, 2007; Wisz et al., 2008). The extent
o which models are able to capture a species’ realized or funda-

ental niche may  thus vary depending on the modelling approach
r data requirements.

When choosing and applying an SDM, it is therefore impor-
ant to understand its performance, assumptions, characteristics
nd uncertainties, as well as how these might be affected by data
vailability and quality. Ideally, an SDM is developed from the
elationship between direct or indirect environmental predictors
nd datasets of species presence and absence obtained by targeted
urveys. Comprehensive data are, however, seldom available and
nstead frequently represent a restricted, patchy or biased view
f species’ distributions, leading to problems when data-driven
odelling techniques are used to generate distribution predictions.

urthermore, it has been suggested that presence–absence data
ttribute superior performance, for example as measured by test
tatistics, to an SDM and thus a more reliable prediction (Brotons
t al., 2004; Hirzel et al., 2001; Martinez-Meyer, 2005; Lobo et al.,
008). This would not be the case, however, if absence at a partic-
lar location is caused by factors not included in the model, such
s dispersal limitations, biotic interactions or incorrect assessment
Pearson et al., 2007; Pearson and Dawson, 2003). Distributions
redicted from recorded species’ occurrence (presence) only may
hus be more suitable for constructing models of potential habi-
at. Several studies show that SDM model accuracy decreases and
ariability in predictive accuracy increases with decreasing size of
he species occurrence dataset (Wisz et al., 2008; Hernandez et al.,
006; Kadmon et al., 2003; Stockwell and Peterson, 2002). These

ssues of data paucity and quality are especially pertinent in the
arine environment (Kaschner et al., 2006; MacLeod et al., 2005).
Model complexity is another important factor affecting the per-

ormance of SDMs. Complex models are suggested to be more
ffective (Elith et al., 2006; Tsoar et al., 2007; Wisz et al., 2008)
nd more accurate at finer resolutions (Kimmins et al., 2008). How-
ver, including more parameters or fitting complex response curves
ay  result in a model that generalizes poorly (Drake et al., 2006),

ecoming less applicable to areas at a broader scale. Greater com-
lexity also often reduces model transparency, which is important
or the effective testing and reviewing of model outputs and solic-
ting additional information to improve model predictions. The
omplexity and transparency of a selected model may  therefore
epend not only on its perceived robustness but also on the specific
pplication and the community by which it is being implemented.

Maxent, AquaMaps and the Sea Around Us Project model are
hree approaches commonly used to model distributions of marine
shes and invertebrates (Kaschner et al., 2008; Ready et al., 2010;
lose et al., 2006; Bigg et al., 2008; Cheung et al., 2009). The Maxent
oftware package (Phillips et al., 2006; Phillips and Dudík, 2008)
as designed to overcome the problems of small sample sizes

n presence-only datasets (Pearson et al., 2007). The AquaMaps
rocedure, based on a Relative Suitability Model (Kaschner et al.,

006), and the Sea Around Us Project model were also designed to
vercome the lack of data and knowledge for many marine species.
enerative modelling approaches, such as Maxent, may, however,
e more vulnerable to biases from the skewed distribution of
lling 225 (2012) 133– 145

sampling effort present in many ‘opportunistically’ collected
datasets, especially those with limited data-points. In these
instances, discriminative methods (defined here as distribution
models which restrict a species distribution, from a potential extent
that encompasses the entire study area, based on a set of filters
determined by known parameters or habitat preferences), such as
that developed by the Sea Around Us Project (Close et al., 2006),
might produce the more valid results. The incorporation of ‘expert
information’ may  also overcome this problem (Ready et al., 2010).
Expert information may  be defined as “habitat use information
that is not directly available as raw data; published information
about habitat use or preference that is based on quantitative
investigations of species occurrence in relation to environmental
knowledge” (Ready et al., 2010). It may  be incorporated into
a modelling procedure in various forms of knowledge such as
species’ behaviour, known depth range or geographic limits.

This study aims to assess the abilities of three statistical
modelling approaches, representing a spectrum of theoretical
frameworks and data-requirements, to predict current distribu-
tions of a range of marine species. Mentioned above, these are the
correlative, presence-only modelling approaches Maxent (Phillips
et al., 2004; http://www.cs.princeton.edu/∼schapire/maxent)
and AquaMaps (Kaschner et al., 2008; Ready et al., 2010;
http://www.aquamaps.org), and the discriminative approach
developed for the Sea Around Us Project (Close et al., 2006;
http://www.seaaroundus.org). The comparison not only focuses
on the perceived value of a modelling procedure as indicated
by test statistics, but also considers the usability and practical
application of the approaches and their results.

2. Methods

2.1. Model construction

2.1.1. Maxent
Maxent (Phillips et al., 2004) uses a generative approach

(Phillips et al., 2006) to estimate the environmental co-variates
conditioning species presence and bases the final prediction on the
principle of maximum entropy. This specifies that the best approx-
imation of an unknown distribution is the probability distribution
with maximum entropy, subject to the constraints imposed by the
sample of species presence observations (Phillips et al., 2006). Max-
ent has been shown to compete well with alternative approaches
(Pearson et al., 2007; Phillips et al., 2006), perform better than clas-
sical presence-only methods (Elith et al., 2006) and perform well
with small sample sizes (Pearson et al., 2007). Models were con-
structed using Maxent (version 3.3.3e) with default parameters for
a random seed, regularization parameter (1, included to reduce
over-fitting), maximum iterations (500), convergence threshold
(0.00001) and maximum number of background points (10,000
points which have not been recorded as present). Selection of envi-
ronmental features and their relative contribution to each iteration
of the model was  also carried out automatically.

2.1.2. AquaMaps
The AquaMaps approach to modelling species’ distributions was

based on a global distribution tool for marine mammals (Kaschner
et al., 2006), and has now been applied to a large number of
marine fishes (see FishBase, Froese and Pauly, 2011). AquaMaps
uses simple, numerical descriptors of species relationships with
environmental variables to predict distributions from publically
available, global occurrence databases. This methodology does not

allow complex, non-linear interactions to be fitted between pre-
dictors, but aims for transparency and understanding in the wider,
non-modelling, community while also explicitly promoting incor-
poration of expert judgement.

http://www.cs.princeton.edu/~schapire/maxent
http://www.aquamaps.org/
http://www.seaaroundus.org/
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abitat predictor, and the relative environmental suitability, the highest obtainable
alue being 1 (PMax).

Modified from Kaschner et al. (2006)).

Predicted current distributions are generated multiplicatively
rom a suite of ‘environmental envelopes’ over each cell in a study
rea. This produces a cell value between 0 and 1, representing the
elative suitability of that cell for the specified species. The rela-
ionship between species occurrence and environmental limits is
pecified by a trapezoidal distribution (Fig. 1).

The trapezoidal distribution represents a compromise between
he likely uni-modal annual distributions exhibited by restricted
ange species, and the more bi-modal distribution of migratory
pecies. To create environmental envelopes, occurrence data are
ssociated with environmental variables to find absolute and ‘pre-
erred’ preference ranges and calculated as shown in Table 1.

It is therefore assumed that (relative) environmental suitability
s uniformly high throughout the preferred parameter range, with a
robability of 1. Those values lying outside the observed minimum
r maximum (representing critical predictor limits for a species)
re assigned a value of 0, while between these two thresholds rela-
ive environmental suitability decreases linearly. Having calculated
robability distributions for each predictor, overall habitat suit-
bility can be computed by the geometric mean of all probability
istributions, assuming equal influence weighting of predictors.

Expert opinion was incorporated into Maxent and AquaMaps to
ive refined predictions by eliminating (‘clipping’) areas that were
urrently outside known occurrence ranges, including reported

ccurrence/absence in large ocean basins [delineated by the United
ations’ Food and Agricultural Organisation (FAO) statistical area,
ww.fao.org/fishery/area/search/en] or depth limits reported in

able 1
ules used to compute environmental envelopes (MinA, MinP, MaxP, MaxA (Fig. 1))

n  AquaMaps (Ready et al., 2010) and its application in calculating cell probability
alues for a particular environmental variable at a location (×).

Envelope value Description/calculation

MinA Absolute minimum value at which the species is observed
OR the 25th percentile of the environmental
values − 1.5 × the interquartile range (whichever is lower)

MinP Preferred minimum, the 10th percentile of the
environmental values

MaxP Preferred maximum, the 90th percentile of the
environmental values

MaxA Absolute maximum value at which the species is observed
OR the 25th percentile + 1.5 × the interquartile range
(whichever is greater)

Condition of x Value/calculation of cell probability value

x ≤ MinA 0
MinA < x < MinP (x − MinA)/(MinP − MinA)
MinP ≤ x < MaxP 1
MaxP ≤ x < MaxA (MaxA − x)/(MaxA − MaxP)
x  ≥ MaxA 0
lling 225 (2012) 133– 145 135

FishBase. This avoided over-prediction of relative habitat suitabil-
ity in areas where species are known not to occur, or which are
unsuitable due to depth.

2.1.3. The Sea Around Us Project model
The Sea Around Us Project model (Close et al., 2006, Cheung

et al., 2008) was specifically developed to address a need for
predicting distribution ranges of commercial fish and inverte-
brates. The approach employs a discriminative method, applying
a set of key environmental predictors, ‘filters’, to reduce a species’
potential range. Firstly, an ‘FAO filter’ was applied to restrict a
species on the basis of its current verified presence in the 18
FAO statistical areas. Subsequently, the distribution was  refined
by a filter specifying the latitudinal limits of a species’ puta-
tive ‘normal’ distribution range. Information for both these filters
is available for most fish species on FishBase. The third filter
was a ‘range-limiting polygon’, which was  applied to restrict
species to a more specific level, thereby preventing occurrence
in semi-enclosed seas which are located within specified FAO
areas and latitudinal ranges which are unsuitable, for example,
due to low salinity values. Data for this filter was obtained from
FAO publications (http://www.fao.org/fishery/species/search/en),
FishBase (www.FishBase.org), SealifeBase (www.SealifeBase.org
(Palomares and Pauly, 2011)) and the Sea Around Us Project
database (www.seaaroundus.org). A ‘depth range’ filter for dem-
ersal species was  ascertained using the maximum and minimum
depth where juvenile and adults are most often found. This range,
available from FishBase may  be calculated as the range within
which approximately 95% of the biomass occurs. Both latitudinal
and depth filters were further refined by defining a species’ relative
occurrence throughout the respective range, assuming a triangular
distribution. The model allowed for seasonal differences in the lat-
itudinal centroid of the distribution for migratory pelagic species
(Lam et al., 2008). To improve a distribution prediction based on a
species’ association with different habitats, a habitat preference fil-
ter was applied. This assumes that the relative abundance of a taxon
within a cell unit is in part determined by a fraction derived from
the number of habitats (e.g. coral reefs; seamount; estuaries; see
Cheung et al., 2008) it associates with inside that cell, and how far
the association effect will extend from that habitat. Extension from
a habitat is calculated as a function of a taxon’s body size. Finally,
an ‘equatorial submergence filter’ was implemented to account for
the tendency for cold-water species to deepen in regions with warm
surface waters (Ekman, 1953; Dulvy et al., 2008).

2.1.4. Species data
A set of commercially exploited fish species were cho-

sen, reflecting a diversity of environmental preferences and
life history traits. These were as follows: Molva molva (Ling);
Merlangius merlangus (Whiting); Gadus morhua (Atlantic cod);
Melanogrammus aeglefinus (Haddock); Merluccius merluccius (Euro-
pean Hake); Scomber scombrus (Atlantic mackerel); Pleuronectes
platessa (European plaice); Pollachius pollachius (Pollack); Pol-
lachius virens (Saithe); Psetta maxima (Turbot); Solea solea
(Common Sole); Sardina pilchardus (European pilchard); Sprattus
sprattus (European sprat); Scopthalmus rhombus (Brill). Species
occurrence data were obtained from the three global online
databases: the International Council for Exploration of the Sea
(ICES) EcoSystemData database (http://ecosystemdata.ices.dk); the
Ocean Biogeographic Information System(OBIS) (Vanden Berge,
2007; http://www.iobis.org)  and Global Biodiversity Information
Facility (GBIF) (http://data.gbif.org), all last accessed in 2010.
Occurrence records were spatially aggregated at the level of
0.5◦ latitude × 0.5◦ longitude to give a binary value of presence
or absence for each cell. As these data sources are prone to error,
for example, due to data being amalgamated from many sources

http://www.fao.org/fishery/area/search/en
http://www.fao.org/fishery/species/search/en
http://www.fishbase.org/
http://www.sealifebase.org/
http://www.seaaroundus.org/
http://ecosystemdata.ices.dk/
http://www.iobis.org/
http://data.gbif.org/
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Table  2
Environmental/oceanographic predictors input into AquaMaps and Maxent.

Variable Description Source

Bathymetry Minimum and
maximum depth.

ETOPO2 2 min
resolution bathymetry
dataset (NOAA, 2006)

Sea surface
temperature (SST)

Mean annual sea
surface temperature
(◦C) for the period
1982–1999.

Climatology published
by NOAA (2007)
produced following
methods described by
Reynolds and Smith
(1995).

Sea  bottom
temperature (SBT)

Mean annual sea
bottom temperature
(◦C) for the period
1982–1999.

Sea Around Us Project,
unpublished data.

Salinity Mean annual surface
salinity for the period
1982–1999.

2001 World Ocean
Atlas (Conkright et al.,
2002).

Ice Mean annual
proportional ice cover
(by area on a scale of
0.00–1.00, for the
period 1990–1999.
Inverse distance
weighted interpolation
was performed to fill
missing data values in
a small number of
coastal cells
(approximately 1000
cells).

U.S. National Snow and
Ice Data Centre
(Cavalieri et al., 2006).

Primary productivity Mean annual primary
production in
mg  Cm−2 day−1 for the
period 1997–2004.
Generated from
remotely sensed
chlorophyll-a
concentrations using
an approach described
in Carr et al. (2006).

European Joint
Research Council
(http://marine.jrc.ec.
europa.eu/ made
available by Frédéric
Mélin).

o
o
p
a
2
r
v
i
e
B
u
2

2

0
2
w
U
a
r

2

(
s

Distance to coast Nearest distance of
each cell to the coast.

Sea Around Us Project,
unpublished data.

r not being recorded with a date, data were checked and rigor-
usly filtered using further information on species environmental
references and geographic limits, obtained from FishBase and
lternative data sources (Whitehead et al., 1986; Ojaveer et al.,
003; Helcom, 2009; FAO Fact Sheets: www. fao.org). Points were
emoved if they were: 1. located on land; 2. located outside a
erified FAO area (unless contiguous with points lying within a ver-
fied FAO area); 3. located outside expert defined geographic range
xtents (obtainable as latitudinal and longitudinal limits from Fish-
ase); 4. located in the Baltic Sea if a species’ persistence there was
nverifiable (using FishBase, Whitehead et al., 1986; Ojaveer et al.,
003; Helcom, 2009; FAO Fact Sheets: www. fao.org).

.1.5. Environmental/oceanographic data
Environmental/oceanographic variables were prepared on a

.5◦ latitude × 0.5◦ longitude resolution global grid, comprising
59,200 cells of which 179,904 contain some area of ocean. Data
ere publicly available and compiled primarily by the Sea Around
s Project (see Table 2). The use of particular environmental vari-
bles in the SDM was based on data availability and biological
elevance.

.2. Model evaluation
Model predictions were tested using the Area Under the Curve
AUC) of the Receiver Operating Characteristic (ROC) plot test
tatistic. This was implemented using the ROCR package (Sing
lling 225 (2012) 133– 145

et al., 2007, http://rocr.bioinf.mpi-sb.mpg.de),  R version 2.10.1,
with the ROC curve being plotted as the true positive rate (esti-
mated as the number of true positives/number of positive samples)
against the false positive rate (estimated as the number of false
positives/number of negative samples). AUC is a widely used test
statistic which allows a threshold-independent measure of model
performance and can be calculated using pseudoabsences from a
random sample of background pixels rather than true absences.
It may  be interpreted as the probability that a randomly chosen
presence site is ranked above a random background site, indicat-
ing the quality of site ranking according to suitability (Phillips et al.,
2006). A random ranking has on average, AUC = 0.5 and AUC  > 0.75 is
suggested as providing a useful amount of discrimination between
sites where a species is present and those where it is absent (Elith
et al., 2006). Due to the lack of independent test datasets, models
were assessed internally, by 4-fold cross validation (Fielding and
Bell, 1997). Occurrence datasets for Maxent and AquaMaps were
thus split into 4 sub-sets, each containing a randomly selected 75%
of points for model training, and a corresponding 25% for model
testing. As no ‘true’ absence points were available and using ran-
domly selected points from the entire study areas may  artificially
inflate the AUC statistic if the geographic area of the study is large
(Lobo et al., 2008) or the area of suitable habitat is small relative
to the study area, pseudoabsence points were randomly selected
from within specified distances of presence points using buffers
(Fig. 2). This allowed more valid comparisons between species if
AUC values are influenced by relative predicted range area and
the distance of pseudo-absence points to presence points. During
selection of environmental variables, model runs were tested using
global pseudoabsences and those selected from within 2000 km,
1000 km and 500 km buffers whereas only global and 1000 m pseu-
doabsence points were used in testing final models for all species.
Maxent models were further run to perform model cross validation
internally, using a random test percentage of 25%. ROC-AUC val-
ues were produced for each of 4 subsets of occurrence datapoints
by plotting the ROC curve as sensitivity against 1 − specificity (the
fraction of the total study area predicted present).

Model assessment was supplemented with the Point Biserial
Coefficient (PBC) (Elith et al., 2006; Zheng and Agresti, 2000). PBC
was calculated as a Pearson’s correlation coefficient between the
observation in the occurrence dataset (presence (1) or pseudo-
absence (O)) and the prediction and therefore takes into account
how far the prediction varies from the observation. This addresses
the concern that the AUC test statistic may  not always reflect a
model’s ability to prioritise areas in terms of their habitat suitability
relative to alternative models (e.g. Lobo et al., 2008; Austin, 2007).
Predictions were further inspected visually and compared to plot-
ted occurrence data in order to assess their plausibility with respect
to the known distribution and areas of habitat suitability outside
known occurrence range (overprediction).

A subset of species was investigated to undertake a model selec-
tion process and determine the sensitivity of predicted species
distribution to environmental variables using the Maxent and
AquaMaps modelling procedures. These species include the dem-
ersal species P. platessa and M.  molva and the pelagic species S.
pilchardus and S. scombrus. Models were run following sequential
removal of variables according to the degree of autocorrelation
between them, as indicated by Pearson’s correlations. They were
then evaluated using AUC and PBC test statistics to enable the
selection of a final set of input data.

3. Results
3.1. Model selection

Final environmental variables selected for the Maxent and
AquaMaps modelling algorithms were as follows: salinity, sea

http://marine.jrc.ec.europa.eu/
http://marine.jrc.ec.europa.eu/
http://www.%20fao.org/
http://www.%20fao.org/
http://rocr.bioinf.mpi-sb.mpg.de/
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Fig. 2. Diagram representing the selection of pseudoabse

urface temperature, sea bottom temperature, minimum
athymetry, ice concentration and primary productivity. Min-

mum bathymetry was omitted for pelagic species due to its
iological irrelevance and propensity to misleadingly restrict
ange predictions in these species. It was, however, substituted
ith distance to coast to account for the fact that many pelagic

pecies are restricted to coastal habitats at certain stages in their
ife cycle and may  not persist in the open ocean despite its seeming
nvironmental suitability.

The AUC values from Aquamaps predictions are above 0.75 and
ary over a relatively small range of values (with the exception of
. pollachius)  (see Supplementary data, Table 1, for a summary of
ey statistics). Although test statistic values vary with the buffer
sed to generate pseudo-absences, with a few exceptions, the pat-
ern of difference is similar across buffers for both AUC and PBCs.
elagic species (S. rhombus and S. pilchardus)  showed less varia-
ion in test statistics according to environmental variables included
n the AquaMaps models. Maxent models also showed less varia-
ion in AUC value with different sets of environmental variables,
ariation instead mostly resulting from using different sets of pseu-
oabsences.

.2. Model comparison

.2.1. Maxent
Cross-validation using sub-sets of data and Maxent’s automated

alidation test showed relatively little variation in the AUC statis-
ic (e.g. maximum difference in AUC values of 0.01 and 0.009 in
. rhombus and P. pollachius respectively). The quality of predic-
ions, as indicated by test statistics, was also relatively consistent
cross species, with the most noticeable deviation in AUC value
eing shown by S. scombrus (AUC = 0.953).

Test statistic values decreased when calculated using pseu-
oabsences restricted to 1000 m from presence points, although
he extent of the difference varied between species and were
enerally smaller for demersal species (Fig. 3a). While M. molva,
or example, varied little in model performance (indicated by test

tatistics) the greatest difference was seen in S. pilchardus.  AUC
alue decreased from 0.998 to 0.793 when pseudoabsences from a
lobal and 1000 km buffered distribution were used respectively.
BC values also varied little across species (Fig. 3a), with little
ta points from within 1000 m of species occurrence data.

difference between values tested with ‘global’ and ‘1000 km buffer’
pseudo-negatives other than for the pelagic species S. pilchardus
and S. scombrus.

With the exception of P. pollachius and P. virens, AUC values gen-
erally dropped following clipping by depth in the Maxent refined
prediction, when tested using global pseudo-absences (Fig. 3b). The
extent of this decrease was slight, although varied between species
and fell most for those species restricted to the shallowest depths.
Thus while M. molva was  clipped only to a depth of 1000 m and
AUC values decreased slightly by 0.004, P. maxima and S. rhombus,
which were clipped to 70 m and 50 m decreased by 0.101 and 0.193
respectively (using 1000 m buffers). The same was  true for PBC val-
ues, although frequently the use of a buffer made more difference
to this value than the depth clipping of the prediction, for example
in M.  merluccius and S. solea.

3.2.2. AquaMaps
The AquaMaps methodology showed a greater response in AUC

value to the data subset used in model training and testing. With
the exception of a subset of P. pollachius (AUC = 0.871) all sub-
sets still obtained high values of 0.944 or greater. This modelling
approach also showed greater variation between species, with the
most robust, or highest performing, models, as indicated by the
test statistics, being obtained for the pelagic species S. sprattus.
Although another pelagic species (S. pilchardus)  showed the next
highest AUC values, this result was not paralleled by PBC val-
ues (Fig. 3c), highlighting the difference in test statistic obtainable
when binary presence/absence data are considered as opposed to
actual values.

As with Maxent, refinement of predictions by depth clipping
produced little difference in PBC and AUC values other than in P.
maxima (decreases in PBC and AUC of 0.127 and 0.096, respec-
tively) and S. rhombus, whereas the reduction in PBC with the
1000 m buffer was  more pronounced than in Maxent evaluations
and showed wider variation between species. The use of the 1000 m
buffer has a less marked effect on test statistics in depth clipped
predictions. These patterns are reflected in the high (>0.75) AUC

test statistic.

There seemed to be no significant effect on the test statistic of
number of occurrence points for either modelling method, although
the variation in occurrence dataset size was  not great (between 445
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Fig. 3. Test statistic values for all species, calculated using pseudoabsences from within a global distribution or those restricted to within 1000 km of presence points. Test
statistic  values are calculated as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) plot test statistic, and the Point Biserial Coefficient (PBC) for
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ach  model (Maxent, Refined Maxent (following clipping of predictions by depth fo
ea  Around Us Project model.

nd 1323 occurrence data points). P. pollachius,  M. molva,  M. mer-
angus and P. platessa gave consistently high test statistics across
quaMaps, Maxent and their refined models, also when tested with
ifferent sets of pseudonegatives. Test statistics for S. solea and
. merluccius varied most following model clipping by depth and

se of a buffer in pseudoabsence selection. Although all achiev-
ng AUC > 0.97 using global pseudoabsences, the pelagic species
howed large decreases in performance relative to other species fol-
owing implementation of a buffer, and this was most pronounced
n Maxent.

.2.3. Sea Around Us Project Model
The Sea Around Us Project methodology exhibited greater

ariation in test statistics than both Maxent and AquaMaps, with
he AUC and PBC test statistics showing mostly parallel patterns of
hange across species (Fig. 3d). Values decreased consistently fol-
owing implementation of a buffer, with larger decreases in results
or M.  merluccius and S. pilchardus compared to other species
AUC decrease = 0.173 and 0.184 respectively, PBC decrease = 0.263

nd 0.372 respectively). This reflects a similar pattern of results
ound in these two species in AquaMaps and, to a lesser extent,

axent. Some AUC values for predictions for the Sea Around Us
roject method compared well to AquaMaps and Maxent (such as
pecies other than pelagic species (S. pilchardus,  S. sprattus, S. scombrus), AquaMaps,

P. pollachius and the pelagic species S. sprattus, S. pilchardus and S.
scombus).

Variation was, however, observed in the relative performance
of the three models for particular species. In almost all cases, the
AquaMaps algorithm produced the least constrained prediction,
and thus the greatest distribution ranges, although these were
reduced following refinement by depth for demersal species. Max-
ent occasionally resulted in over-prediction in the Baltic Sea (e.g.
P. pollachius;  P. virens)  with respect to verified occurrence data
and other sources (see Section 2). While M.  merlangus was pre-
dicted consistently well across models, M. molva obtained lower
test statistics in the Sea Around Us Project model relative to other
species, failing to meet the 0.75 threshold AUC and with PBC scores
below 0.333.

Overall, although the three models did not vary greatly in the
area, or extent of occurrence, predicted for each species, differences
lay in the detailed pattern and values of predicted suitability within
this area (Figs. 4–6). While Sea Around Us Project predictions were
characterised by relatively low levels of suitability, they were con-

trasted most strongly by AquaMaps, which frequently produced
uniformly high predictions across the range, only decreasing in rel-
atively suitability around the periphery of the predicted range, as
seen, for example, in P. platessa (Fig. 4).
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Fig. 4. Predicted distributions of relative habitat suitability (0–1) for Pleuronectes platessa using (a) Maxent; (b) AquaMaps; (c) Sea Around Us Project model.



140 M.C. Jones et al. / Ecological Modelling 225 (2012) 133– 145

Fig. 5. Predicted distributions of relative habitat suitability (0–1) for Molva molva using (a) Maxent; (b) AquaMaps; (c) Sea Around Us Project model.
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Fig. 6. Predicted distributions of relative habitat suitability (0–1) for Scomber scombrus using (a) Maxent; (b) AquaMaps; (c) Sea Around Us  Project model.
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. Discussion

.1. Uncertainties and assumptions

This study aimed to draw comparisons between three com-
only used models for obtaining distribution predictions of marine

pecies. Uncertainties are introduced into a multi-model proce-
ure by differences in the data-types used, how the models are
arameterized and the actual modelling mechanisms used. Confi-
ence in species occurrence data may, for example, be lowered by
ampling bias and taxonomic uncertainty, whereas data on species
olerance limits and expert judgement may  be biased by limited
xperimental data and incomplete or out-dated knowledge. Fur-
her uncertainly is caused by inherent assumptions of any species
istribution modelling procedure, such as the assumption that a
pecies is in pseudo-equilibrium with its environment (Guisan
nd Thuiller, 2005). Upholding this assumption ensures that the
bserved realized distribution used in making predictions or set-
ing environmental filters represents the absolute environmental
imits of a species’ range, and that true potential range is not under-
stimated by closely fitted, biased, distribution data (e.g. Svenning
nd Skov, 2004). The assumption may  not be upheld when mod-
ls fail to take into account biotic interactions that prevent species
ccupying otherwise seemingly suitable habitat. It has been sug-
ested, however, that many species distributions can be assumed to
e in equilibrium with current climate at the macro scale, although
he finer details of the distribution may  not be identified (Pearson
t al., 2002). An attempt to counter this problem was made here
y including all occurrence data available rather than restricting
oints to a specific time period or region. While this may  intro-
uce uncertainty as to whether current distributions fail to reflect
otential movement of species population due to stock depletion in
ommercially exploited fisheries, it is hoped that it will contribute
o capturing the species true limits of environmental tolerance. It
s also assumed that there has been no adaptation towards climatic
ariation over the period for which data has been amalgamated.
lthough this might seem reasonable over a short time span, bias
ay be introduced if, as is frequently the case in compiled online

atasets, there is no date associated with a species occurrence
ecord. In this instance, models parameterized on known tolerance
imits and expert opinion may  be more suitable at depicting current
istributions.

.2. Model characteristics

While predicted distribution ranges from AquaMaps, Maxent
nd the Sea Around Us Project model show general agreement,
here are consistent differences in predictions resulting from dif-
erences in input data and model structure (Table 3). Although test
esults from ROC-AUC and PBC values vary between species, mod-
ls tested with pseudo-negatives selected from both a global and
estricted (1000 m buffer) distribution obtained AUC values indi-
ating performance which is better than random [in all but one
ase (M.  merluccius,  Sea Around Us Project)], and may  be considered
otentially useful (>0.75, Elith et al., 2006).

The generally high test statistic values obtained for Maxent
redictions are consistent with its use elsewhere (Elith et al.,
006; Hernandez et al., 2006; Wisz et al., 2008). The lesser vari-
tion between test results for partitioned datasets in Maxent than
quaMaps also indicates a greater robustness of this procedure

o the particular dataset used and thus to outliers and possibly
rroneous datapoints. However, although high model performance

uggests accuracy and reliability in predictions of species distribu-
ion made by Maxent, it may  also be caused by the tendency of

axent to over-fit the occurrence data of the sample, for which it
as been criticised (Jiménez-Valverde et al., 2008). It has also been
lling 225 (2012) 133– 145

suggested that complex models, such as Maxent, are likely to be
more accurate at finer resolutions (specificity), but would general-
ize poorly in predicting potential distributions at large spatial scale
(Drake et al., 2006; Jiménez-Valverde et al., 2008) whereas sim-
pler models, such as AquaMaps, will offer useful and parsimonious
solutions at a broader scale (generality) (Thuiller et al., 2008). This
agrees with the tendency, seen here, of Maxent to produce more
constrained predictions than AquaMaps, and indicates that test
statistics should not be used as definitive indicators of model per-
formance, but should be assessed together with visual inspection
of the distributions and expert knowledge.

Our analysis agrees with Ready et al. (2010) that a ‘black-box’
use of complex SDM programmes such as Maxent may  act as a bar-
rier to users who are not expert, and may  also hinder the potential
for alteration by experts and thus perhaps their actual practical
use and application. Maxent and AquaMaps models were refined
by ‘expert’ review of a distribution map  subsequent to a predic-
tion, by ‘clipping’, and may  thus not necessarily involve a detailed
knowledge of a modelling procedure. Despite this, the ability to eas-
ily investigate and manipulate the environmental envelope for each
variable in the AquaMaps approach aids the incorporation of expert
judgement and checking for errors caused by potential outlying or
erroneous occurrence data points.

The Sea Around Us Project method requires the least amount
of point data, and its predicted distributions are generally
more restricted relative to those predicted using the other two
approaches. However, inherent differences in input data and the
way environmental limits and parameters are defined under this
approach further seem to prevent the valid comparison of the rel-
ative performance of these three models. Thus while the test data
subset form a representative sample of the training data used to
generate predictions in both Maxent and AquaMaps, a Sea Around
Us Project prediction is generated using environmental and geo-
graphic limits and thus independently from the occurrence dataset,
precluding the selection of the most accurate, reliable ‘best’ model
by direct comparison of test statistics. Particularly, spatial auto-
correlation between the presence data for distribution predictions
and that for calculation of test statistics may  over-estimate the per-
formance of Maxent and AquaMaps relative to the Sea Around Us
Project method. For example, in modelling M.  molva (Fig. 5) and
M. merluccius using the Sea Around Us Project approach, regions
were predicted as being unsuitable despite coinciding with species
occurrence data points, resulting in the models obtaining low AUC
and PBC values (M.  molva:  AUC = 0.657; PBC = 0.147 with buffer, M.
merluccius: AUC = 0.667, PBC = 0.087). This is, however, likely due
to the fact that, being tested but not trained on environmental data
associated with occurrence points, the minimum depth restric-
tion imposed by the Sea Around Us Project filter excludes areas
retained by the other models. The discrepancy presented a valid
difference between the two  types of data driving the approaches
(species occurrence data and tolerance limits) and one that confi-
dence in data quality did not justify eliminating. Minimum depth
restrictions were therefore retained in the Sea Around Us Project
methodology although that for M. molva was  reduced from 100 m
due to the presence of immature individuals up to a depth of 15 m
(Whitehead et al., 1986). Following this adjustment, the predicted
distribution for M.  molva has an AUC that is more consistent with
other species and methods. Similarly, the differences between data-
types and their effect on test statistics was highlighted following
incorporation of expert knowledge in Maxent and AquaMaps pre-
dictions for P. maxima and S. rhombus (Fig. 6). The substantial depth
restrictions of these species (of 70 m and 50 m respectively) encom-

passed areas where occurrence data are found and therefore likely
result in the relatively low test statistics obtained.

Difficulty therefore lies in the relative confidence in data used for
model training and testing. Although occurrence data for S. rhombus
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Table  3
Summary of general model characteristics for the original models of Maxent and AquaMaps and the Sea Around Us Project model, inferred from results.

Characteristic Maxent AquaMaps Sea Around Us Project

Relative habitat suitability
values

Relatively even allocation from high to
low suitability.

Dominated by areas of uniformly high
suitability following clipping by depth.

Dominated by area with low
suitability values.

Extent of predicted distribution Intermediate constraint before
clipping.

Least constrained before clipping. Most constrained.

Under-prediction with respect
to occurrence data

None pre clipping, some in refined
Maxent.

None pre clipping, some in refined
AquaMaps.

Some e.g. M.  molva.

Variation in AUC/PBC value in
response to partitioned
training/testing data

Low. Higher. n/a.

Variation in AUC/PBC value
across species

Low. Intermediate. High.

Species data (minimum)
requirements

Species occurrence points, presence
only.

Species occurrence points, presence
only.

Knowledge of general
geographic range, habitat and
depth preferences.

Model  complexity Complex: statistical, generative
method enabling predictor variable

Simple: assumes a trapezoidal
distribution and equal weighting of

Simple: discriminative
approach using a set of key
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weighting, modelling of interactions
and complex response curves.

ndicate its realized niche to be throughout the North Sea, its habit
f living on sandy or mixed sea bottoms, only to a depth of 50 m
FishBase), questions its long-term persistence in the deeper areas
ndicated by occurrence data. If the aim is to model a species’ poten-
ial niche, where it can reproduce and persist and is not dependent
n access to other (shallower) habitats, it may  therefore be more
uitable to restrict predicted distributions to the more conservative
stimate, despite the wider distribution suggested as the observed,
ealized niche. If projecting predictions in time or space, it does,
owever, seem wise to take into account both range predictions
s containing useful information about the species environmental
equirements and tolerances.

Discrepancies between predicted relative suitability in the Baltic
ea further highlight differences in the methodologies and algo-
ithms of the three models. The most accurate predictions for the
uitability of the Baltic Sea for particular species, according to
erified occurrence data and other sources (see Section 2) were
roduced by AquaMaps and the Sea Around Us Project model. This

ikely resulted from the equal weighting given to each environmen-
al variable such that the effect of salinity was considered in equal
roportion to other predictors in these two models. As Maxent, by
ontrast, attributes a low contribution by salinity to the prediction,
he suitability of other environmental variables in this area may
ompensate for an unsuitable salinity value, resulting in predicted
istribution in areas where a species is known not to occur. Com-
aring the two correlative species distribution models used here,
quaMaps is therefore more robust than Maxent to uncertainty in

he relative influence of environmental predictor variable due to
ts simple, multiplicative approach which assigns equal weighting
o each predictor.

.3. Interpretation of test statistics and the problem of model
omparison

Further to the problem, mentioned above, of comparing mod-
ls based on different data sources, in reference to complex SDM
echniques such as Maxent, it was suggested that model testing
tatistics using presence-(pseudo)absence data might produce arti-
cially high values for more restricted distribution predictions as

 greater number of absences or ‘pseudo-absences’ are likely to be
redicted as absent. This characteristic would lead to the conclu-
ion that complex techniques are more accurate than simpler ones,

recluding any useful comparison between modelling approaches.

Furthermore, although Maxent models generally produce
igher AUC values than those produced by AquaMaps, this is sel-
om the case using the PBC statistic. This disparity raises questions
predictor variables. ecological predictors.

whether either value allows a useful and valid comparison across
modelling procedures. Although calculation of AUC scores may be
highly influenced by the total modelling area, larger areas increas-
ing the likelihood that pseudoabsences will be more distant in
environmental space and decreasing commission error (Lobo et al.,
2008), in this case the study area remained consistent. Evaluation
of perceived model performance may, however, also be affected by
a species’ relative occurrence. This is consistent with the observa-
tion that the test statistics for AquaMaps fell when all species were
tested using pseudoabsences taken from a restricted area (within a
buffer of 500 or 1000 m of observed presence points). The decrease
in AUC value followed by incorporation of depth limits in the distri-
bution predictions (using Maxent and AquaMaps) do not, however,
support the hypothesis that AUC values will increase with decreas-
ing predicted extents of occurrence. This loss of model performance
following depth clipping is rarely seen when test statistics are
calculated using pseudoabsences restricted to particular distances
from presence points, refined models then performing consistently
better than the originals. The exceptions to this are shown by P.
maxima and S. rhombus, whose substantial depth restrictions (of
70 m and 50 m respectively) encompass areas where occurrence
data-points are found, likely resulting in lower test statistics if
presence points from outside these restricted areas are used in
their calculation. Results obtained here using global pseudoab-
sences therefore contrast those obtained by Ready et al. (2010),
who found the AquaMaps approach to be generally favourable to
the inclusion of expert knowledge in the form of defined depth
preferences. It is thus proposed that, in this case, the perceived
performance of expert reviewed, or ‘refined’ predictions may  be
subject to characteristics of model testing statistics.

As it has been suggested that the focus on predictive perfor-
mance should be broadened to encompass ecological realism and
model credibility to the user community (Franklin, 2009), it is
also important not to become over-focused on data errors and
model fit. When selecting environmental variables in this study,
for example, minimum bathymetry was  included although it did
not consistently improve test statistics as the vertical (depth) gra-
dients of temperature and oxygen are considered important factors
limiting demersal species distributions (Pauly, 2010). A misunder-
standing of ecological relevance may  thus lead to errors in model
specification despite seemingly high test statistic values. Biological
relevance should therefore be considered both in model selection

and when assessing the applicability of the three models used.

As undertaken here, it is suggested that a range of AUC/PBC
statistics should be calculated in order to assess the scope for vari-
ation and possibly contrasting results. Although a range of values



1  Mode

m
t
a
t
a
r
p
A
v
d
o
m

5

d
S
m
t
m
a
E
i
b
t

t
d
w
p
r
w
e
w
o
b
s
t
p
i
m
q

A

m
F
A
C
f
K

A

t

R

A

A

44 M.C. Jones et al. / Ecological

ay  then only allow broad conclusions to be drawn, it is argued
hat the greater understanding of the model evaluation process and
ny differences will facilitate reasoned judgement in model evalua-
ion. In conclusion, it is proposed that the refinement of AquaMaps
nd Maxent predictions by expert opinion do represent more accu-
ate representation of species’ distributions, agreeing for the most
art with occurrence data and the predictions produced by the Sea
round Us Project model. It should be noted, however, that AUC
alues are useful in determining the amount of variation in pre-
ictions caused by partitioned datasets, emphasising the degree
f influence of possible outlying points and the robustness of the
odel to the occurrence data (Lobo et al., 2008).

. Conclusions

Uncertainties inherent in both specifying and testing species
istribution models indicate that expert review is a vital part of the
DM process. Although the modelling approaches employed here
ay  lose precision in assuming that species distributions are dic-

ated by a general and restricted set of environmental variables, in
odelling marine species, for which data and ecological knowledge

re frequently scarce, a general approach would seem advisable.
xpert review allows models to be refined and developed with
ncreases in knowledge or data, and the ease at which this may
e done, by a variety of non-specialist users, will be enhanced by a
ransparent and intuitive procedure.

The three modelling approaches produced predictions of rela-
ive habitat suitability which were plausible given the occurrence
ata of each species. This analysis does not, however, indicate
hether there are differences in the capabilities of each model to
ortray specific features of the distribution, such as the pattern of
elative habitat suitability. In conducting this comparison doubts
ere raised as to the validity of direct comparisons between mod-

ls. Striving to find the best model, as indicated by test statistics
ould therefore risks substantial inaccuracies if wrong selection

f alternative data sources or model design are made. Differences
etween modelling procedures that mask uncertainty as to true
uitability values should therefore be retained and used to view
he range of plausible predicted distributions for a species. It is pro-
osed that a multi-model ensemble approach is most suitable for

nvestigating distribution ranges, especially in the marine environ-
ent where modelling is likely to be hampered by issues of data

uality.
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