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The number of modern extinctions in the ocean is unknown. The actual demise of the last individual of a species is essentially
unobservable, so extinction can only be inferred. Statistical methods are described for inferring extinction from sighting records,
species–area considerations, and taxonomic samples collected at two different times. The methods are illustrated using a variety
of real datasets, including a sighting record of the Caribbean monk seal and results from three surveys of benthic invertebrates.
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Introduction
No-one knows how many modern extinctions there have been in
the ocean. Carlton et al. (1999) conservatively identified just
12 marine species—five birds, three mammals, and four
invertebrates—declared extinct based on the time elapsed since
their last sighting. Then, based on a survey of documentary mater-
ial, Dulvy et al. (2003) increased this number to 133 extinctions, of
which 21 were global. However, after a close review of the same ma-
terial, Monte-Luna et al. (2007) argued that this estimate may be too
high by a factor of 2.

Carlton et al. (1999) discussed three issues that arose in assessing
marine extinctions: taxonomy, geography, and sampling. The first
concerns the true taxonomic status of the species under consider-
ation, the second the spatial scale of potential species loss, and
the third the incompleteness of the observational record. Here,
we focus exclusively on the last of these issues. Because actual ex-
tinction events, i.e. the demise of the last individual of a species,
are essentially unobservable, extinction needs to be inferred. The
purpose here is to review some statistical methods for this inference.
Specifically, we consider inference about extinction based on sight-
ing records, species–area considerations, and taxonomic sampling.
In the first two cases, the methods reviewed are not new to the lit-
erature, but in the third case, the methods appear to be novel.

Inferring extinction from a sighting record
The most common approach to inferring the extinction of a
particular species is based on the record of its sightings. This
was the approach used by Carlton et al. (1999), Dulvy et al.
(2003), and Monte-Luna et al. (2007). The basic question in
inferring extinction from a sighting record is how long a species
has to go unsighted before it is safe to conclude that it is extinct.
Until recently, this question was answered using ad hoc rules,
e.g. declaring a species extinct if it had gone unsighted for

50 years (Groombridge, 1993). Although conclusions based on
such rules are by no means necessarily wrong, the case of the coela-
canth that went unrecorded for all of human history until a living
specimen was found in 1938 (Smith, 1939) is salutary.

The confidence with which extinction can be inferred from a
given period during which a species is not sighted depends on
the expected rate at which it would be sighted were it not extinct.
In many situations, it is reasonable to assume that this rate is
roughly proportional to the product of sighting effort and species
abundance. The term sighting effort may be misleading because it
does not necessarily imply directed effort. As with the coelacanth,
sightings of many rare or cryptic species are simply by chance.
Returning to the main point, unless sighting effort falls to zero,
the only way that the sighting rate can fall to zero is for abundance
to fall to zero, i.e. for the species to become extinct. However, even
with constant sighting effort, abundance can fall to the point that
the expected sighting rate is very low and confidence in extinction
remains low even if the interval since the last sighting is very long.
Therefore, it is necessary to base formal inference about extinction
on an explicit statistical model of the sighting record.

Solow (2005) reviewed formal statistical approaches to inference
about extinction based on a sighting record. These approaches can
be used to test the null hypothesis that the species is extinct against
the alternative hypothesis that it is not. One of the approaches
reviewed in Solow (2005) assumes a constant pre-extinction sight-
ing rate; another assumes that the pre-extinction sighting rate
declines exponentially, e.g. as a result of declining abundance. As
an illustration, we apply these two approaches to the sighting
record for the Caribbean monk seal (Monachus tropicalis). This
species was among the 12 identified by Carlton et al. (1999) as
extinct. The modern sighting record for the Caribbean monk seal
consists of just five sightings: in 1915, 1922, 1932, 1948, and
1952. Both methods require that the start of the observation
period is known. Here, we take the start of the observation
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period as 1915, and omit the initial sighting. This leaves a very
sparse record and no test can be expected to have higher power.
The observed significance level (or p-value) under the assumption
of a constant pre-extinction sighting rate is simply

p = tn

T

( )n

, (1)

where tn is the time (since the start of the observation period) of the
most recent sighting, T the length of the observation period, and n
the number of sightings in the record. For the Caribbean monk seal,
p = ((1952 − 1915)/(2011 − 1915))4 = 0.022. By conventional
standards, this result is significant, so it is safe to conclude that
the Caribbean monk seal is extinct.

Under the assumption of an exponentially declining pre-
extinction sighting rate, the observed significance level is given by

p = F(tn)
F(T)

( )
, (2)

where

F(x) = 1 −
∑[s/x]

i=1

(−1)i−1 n
i

( )
1 − i x

s

( )n−1

, (3)

s is the sum of the n sighting times, and [.] denotes the integer part.
For the Caribbean monk seal sighting record, p ¼ 0.17, which by
conventional standards is not significant. In essence, allowing for
an exponential decline in pre-extinction sighting reduces the
extent to which even a 57-year gap in the sighting record supports
the hypothesis of extinction. We note that there is no evidence in
this sighting record of a declining sighting rate before 1952, so the
assumption of there being one is certainly questionable.

The basic point here is that the extent of support that a gap in a
sighting record lends to the hypothesis of extinction depends on
what can be assumed about the behaviour of the pre-extinction
sighting rate. This behaviour, which inter alia depends on sighting
effort and pre-extinction abundance, can be complicated and,
without additional information, difficult to assess from the sight-
ing record itself.

Solow (2005) also described a test for extinction using the most
recent sightings in a record containing many sightings. This
method is based on a remarkable asymptotic distributional
result for extreme order statistics from any distribution with a
finite endpoint, so avoiding the need to specify a model for the
pre-extinction sighting rate. Let tn . tn−1 . · · · . tn−k+1 be the
k most recent of a large set of n sighting times in the observation
period (0, T). The approximate significance level for this test is

p = exp −k
T − tn

T − tn−k+1

( )1/n̂
( )

, (4)

where

n̂ = 1

k − 1

∑k−2

i=1

log
tn − tn−k+1

tn − tn−i+1
. (5)

Note that neither the beginning of the observation period nor n
needs to be known to apply this test. As an illustration, suppose

the sighting record of the Caribbean monk seal actually represents
the five most recent of a larger number of sightings. The value of n̂
is 0.76 and the significance level is

exp −5
2011 − 1952

2011 − 1915

( )1/0.76
( )

= 0.072,

which, by conventional standards, is ambiguous as to extinction.
Of course, the treatment of this sighting record as the five most
recent of a much larger set is not justified, and the asymptotic
result is open to question even as an approximation.

Inferring extinctions from species – area
considerations
As on land, one of the chief threats to species in the marine
environment is habitat alteration, e.g. the degradation and loss of
coral-reef habitat. A common approach to estimating species loss
attributable to habitat alteration is through the species–area curve
(Pimm and Raven, 2000). Let s(a) be the number of species contained
in a region of area a. It is commonly assumed that s(a)/ az for some
constant z , 1. It follows that reducing the area by a factor c will
reduce the species number by a factor cz. The exponent z is common-
ly taken as �0.3 so, for example, a 90% reduction in area corresponds
to a 50% reduction in species number. Reaka-Kudla based her pre-
diction that up to 1.2 million reef species would be lost by the
middle of the 21st century on this approach (Malakoff, 1997). A
general discussion of the species–area curve and marine conserva-
tion was provided by Neigel (2003).

The species–area curve describes the rate at which the number
of species contained in a region increased with the area of the
region. Interest in this relationship dates back at least to Watson
(1835). A significant landmark in establishing the centrality of
this relationship with ecology was the publication of the mono-
graph by MacArthur and Wilson (1967) on island biogeography.
In this early work, the species present on each island were
known or assumed to be known. More commonly, the species–
area relationship is estimated from taxonomic counts within
small spatial samples or quadrats (Colwell and Coddington,
1994). In this case, the behaviour of the sample species–area
curve reflects two factors. First, as the spatial extent of the quadrats
increases, the coverage of the heterogeneity of the region with
respect to the species present also increases. Second, as the
number of quadrats increases, the chance of observing spatially
rare species also increases. Only the first of these is relevant to
assessing extinction, whereas the second is a sampling artefact.

Suppose that n quadrats of unit area are sampled and the
species within each are recorded. Suppose further that a total of
s species is found in the union of these quadrats, and let nj be
the number of quadrats containing species j. The sample
species–area relationship is given by

ssample(m) = s −
∑s

j=1

n − nj

m

( )
n
m

( ) , (6)

for m ¼ 1, 2, . . ., n, and where
a
b

( )
= 0 if a , b (Solow and

Smith, 1991). The quantity ssample(m) is precisely the expected
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number of species contained in m sample quadrats sampled at
random without replacement. Of course, quadrats are not
islands. If instead each quadrat is properly seen as a sample from
a different island (or another subregion) within a larger region
of interest, then it is almost certain that the species overlap
between quadrats will underestimate the species overlap between
subregions. Depending on how species are distributed across
subregions, the effect of this on the way in which species actually
accumulate with increasing area can be very large.

Suppose that each quadrat represents a sample from a sub-
region. Let xij be the number of individuals of species j contained
in quadrat i, xj = (x1j x2j · · · xnj) be the vector of quadrat counts
for species j, and Kj be the unknown number of subregions that
contain species j. By analogy to the sample species–area relation-
ship in Equation (4), Chu et al. (1998) defined the hidden species–
area relationship as

shidden(m) = s −
∑s

j=1

E
n − Kj

m

( )
|x

( )
n
m

( ) , (7)

where x = (x1 x2 · · · xs) is the complete set of observed species
counts. The hidden species–area curve is the conditional expected
value of the number of species contained in a random sample of m
subregions, given the observed species counts. If each quadrat is
treated as a subregion (and not as a sample from a subregion),
then Kj = nj and the hidden species–area relationship in
Equation (7) is the same as the sample species–area relationship
in Equation (6). Otherwise, shidden(m) ≥ ssample(m) and ssample(m)
will overestimate the rate at which species accumulate with area.

To take this argument further, it is necessary to specify a statis-
tical model for the way in which individuals are distributed within
subregions. Chu et al. (1998) presented one such model. The
model operates in the following way. First, K1, K2, . . . , Ks are
assumed to be independent and identically distributed with a zero-
truncated beta-binomial distribution with parameters a and b.
The beta-binomial distribution extends the familiar binomial dis-
tribution to allow for variability between species in the occurrence
probability within subregions. The zero truncation ensures that
the species are present in at least one subregion. Second, given
Kj, species j is distributed at random to Kj of the n subregions.
Third, the total observed number

∑n
i=1 xij of individuals of

species j is distributed among these Kj sample quadrats according
to a Dirichlet multinomial distribution with common dispersion
parameter g. The Dirichlet multinomial distribution is the exten-
sion of the beta-binomial distribution to the situation in which
.2 outcomes are possible. Note that in this model, the process
by which species are distributed in subregions is decoupled from
the process by which individuals are distributed in samples
within subregions.

The parameters a, b, and g of this model can be estimated by
the method of maximum likelihood—technical details are
provided in Chu et al. (1998)—and these estimates can be used
to estimate the hidden species–area relationship in Equation
(5). Computer code for performing these calculations is available
from the first author. A key assumption of this model is that the
dispersion parameter g is the same for all species. Roughly speak-
ing, this allows the variability of positive quadrat counts of

abundant species to provide information about the zero counts
of rare species.

As an illustration, we applied this approach to data from the
classic benthic survey described in Grassle and Maciolek (1992).
This example involves ten stations located on a 180-km transect
along the 2100-m isobath off the coast of New Jersey. The data
at each station, which are summarized in Table 1, represent
pooled results over six sampling times and three replicate cores
per sampling time. Figure 1 shows the sample species–area rela-
tionship in Equation (6). This increases from 297 species in a
single sample to 647 species in all ten samples and conforms rea-
sonably well to a power model with exponent 0.3. The estimated
hidden species–area relationship, which is also shown in
Figure 1, is strikingly different, increasing only slightly from
around 590 species in a single subregion to 647 in all ten subre-
gions. In essence, under the model outlined above, the data are
consistent with a situation in which the species tend to be cosmo-
politan across subregions, but within subregions, individuals are
distributed patchily.

Returning to the question of assessing species loss, it is clear
that failing to account for unsampled species in estimating the
regional species–area relationship can have a dramatic effect on
conclusions about the effect of habitat loss. Accounting for
unsampled species is certainly a challenge and requires specifica-
tion of a statistical model. The model of Chu et al. (1998) is

Table 1. Summary statistics for ten deep-sea sampling stations.

Station Individuals Species Singleton species Unique species

1 7 093 301 92 28
2 8 155 329 97 28
3 6 632 325 89 26
4 7 683 281 80 17
5 7 178 308 82 16
6 5 224 267 69 17
7 6 070 304 86 23
8 2 559 225 67 12
9 5 956 278 74 13
10 7 739 351 114 42

Figure 1. Observed species–area curve (dotted line) and estimated
hidden species–area curve (solid line) for deep-sea benthic data.
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only one possibility, and there is need for more work in this area
and, in particular, in the development of models that reflect
what is known about biogeographical processes.

Inferring extinction from direct species sampling
The most direct way to infer extinction in a community or other
group of species is by observing the community over time. Here,
we focus on the situation in which taxonomic samples are taken
at two times, and the question of interest is whether any of the
species observed in the earlier sample have become extinct by
the time of the later sample. Within this situation, we consider
two cases. In the first, species counts are available for both
times. In the second case, only a species list is available for the
earlier time. In both cases, the main difficulty is that the absence
of a species in the second sample can be attributed either to extinc-
tion or to sampling variability.

Suppose that an earlier sample contains a total of s species, and
let E1, E2, . . . , Es be the species counts for those species. A second
sample is taken later. Let L1, L2, . . . , Ls be the species counts for
those same s species in the second sample. Note that Ej must be .0
for all j (otherwise, the species is not observed in the earlier
sample), but that Lj can be zero. Let Cj = Ej + Lj be the combined
count for species j in both samples. We assume that, conditional
on the observed value cj of Cj, Lj has the probability mass function

prob(Lj = lj|Cj = cj) =
cj

lj

( ) ∏lj

j

(1 −Pj)cj−lj , (8)

where the random probabilities P1, P2, . . . , Ps follow a mixture
of a point mass q at zero and a beta distribution with parameters a
and b over the unit interval. This model is a modification of one
proposed by Smith et al. (1996), who called it a delta–beta
binomial model, for estimating species overlap. The basic idea is
that the point mass at zero accommodates zero species counts
associated with extinction, whereas the beta component
accommodates variability in the sampling probabilities of species
that are not extinct.

Let l1, l2, . . . , ls be the observed species counts in the second
sample. The log-likelihood of the complete sample is given by

log L(q, a, b) =
∑s

j=1

log p(lj|cj), (9)

where

p(lj|cj) = q dj + (1 − q) cj

lj

( )
B(lj + a, cj − lj + b)

B(a, b) (10)

is the conditional probability mass function of Lj given Cj = cj,
where dj = 1 if lj = 0 and 1 otherwise, and B is the beta function.
This log-likelihood can be used to test the null hypothesis
H0 : q = 0 that all zero counts at the later time are attributable
to sampling variability against the one-sided alternative hypothesis
H1 : q . 0 that some may be attributable to extinction. The like-
lihood ratio (LR) statistic for testing H0 against H1 is

L = 2(log L(q̂, â, b̂) − log L(0, â(0), b̂(0))), (11)

where q̂, â, and b̂ are the unrestricted maximum likelihood (ML)

estimates of q, a, and b, and â(0) and b̂(0) are the ML estimates of a
and b with q fixed at zero. The null hypothesis can be rejected at
approximate significance level a if the observed value of L

exceeds the upper 2a-quantile of the x2 distribution with 1
degree of freedom. Computer code for performing this test is avail-
able from the first author.

As an illustration, we applied this method to some data from a
benthic survey conducted by the Massachusetts Water Resources
Authority in Massachusetts Bay. These data, which are described
in more detail in Maciolek et al. (2008), consist of two samples col-
lected in 1996 and 2007 near the end of the Boston Harbour
sewage outfall. This outfall began operating in 2000, and the
samples were taken as part of a large monitoring programme
designed to identify and measure any effects of the outfall. The
data are presented in Figure 2, where the abundances (on a
log-scale) in 2007 of the 203 species found in 1996 are plotted
against their abundances in the 1996 sample. Of the species
found in 1996, 49 were not found in 2007. Most of these were
rare in the 1996 sample, but some were not.

For these data, the unrestricted ML estimate of q is 0.06, i.e. an
estimated 6% of the species observed in 1996 were no longer
present in 2007. This contrasts with the nearly 25% of species
observed in 1996 that were not observed in 2007. The value of
the LR statistic is 3.77 for an approximate p-value of �0.026.
Therefore, by conventional standards of significance, we reject
the null hypothesis of no extinctions. Two points are worth
emphasizing here. First, the spatial scale of the sampling is very
small and provides only a highly local picture of species loss.
Second, there is no reason to believe that any local species loss
was caused by the operation of the outfall. In particular, the
2007 sample contains 36 species that were not present in 1996.
Considerably more information is needed about the natural rate
of species turnover at this site before any issues of attribution
can be addressed.

Finally, we consider the case in which only a species list is avail-
able for the earlier time and species counts are available only for

Figure 2. Sample abundances (at a log-scale) in 2007 of 203 benthic
species found in 1996 at the Boston Harbour outfall site vs. their
abundance in 1996. Larger points indicate species numbers .1.
Species with zero abundance in 2007 are indicated as filled circles
just above the horizontal axis.
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the later time. Because species counts are not available for both
times, it is not possible as above to focus on how they are distrib-
uted between the two times conditional on their sum. Instead, we
model the species counts in the later period using a stochastic
abundance distribution (Chao and Bunge, 2002) extended to
allow for extinction. A convenient stochastic abundance model
is the Poisson lognormal (Bulmer, 1974). Under this model, the
species count Lj for species j has a Poisson distribution with sto-
chastic mean Qj that follows a lognormal distribution with
mean m and variance s2. As above, we extend this model to
allow for extinction by including an additional probability q of a
zero count.

The log-likelihood of the later sample is

log L(q, m, s2) =
∑s

j=1

log p(lj). (12)

Here,

p(lj) = q dj + (1 − q) f (lj; m, s2), (13)

where dj = 1 if lj = 0 and 0 otherwise, and f (lj; m, s2) is the
Poisson-lognormal probability mass function evaluated at lj. The
LR statistic for testing the null hypothesis H0 : q = 0 of no extinc-
tion against the one-sided alternative hypothesis H1 : q . 0 is

L = 2 (log L(q̂, m̂, ŝ2) − log L(0, m̂(0), ŝ2(0))), (14)

where q̂, m̂, and ŝ2 are the unrestricted ML estimates of q, m, and
s2, and m̂(0) and ŝ2(0) are the ML estimates of m and s2 under the
restriction that q ¼ 0. As above, H0 can be rejected at approximate
significance level a if the observed value of L exceeds the upper
2a-quantile of the x2 distribution with 1 degree of freedom.
Computer code for performing this test is also available from
the first author.

As an illustration, we applied this method to some data on
benthic invertebrates on Georges Bank off the coast of
Massachusetts. To begin with, we used the Ocean Biogeographic
Information System to compile a list of 154 benthic invertebrate
species from specimens collected before 1960. We then extracted
the counts of these species from the 1981/1982 surveys conducted
by Frederick Grassle and Nancy Maciolek (Maciolek and Smith,
2009). The 1981/1982 counts for these 154 species, of which 42
(or just over 27%) are zero, total 169 772 individuals. The unre-
stricted ML estimates of q, m, and s are 0.17, 3.14, and 2.97, re-
spectively, and the ML estimates of m and s under the
restriction that q ¼ 0 are 2.10 and 3.64. The value of the LR stat-
istic is 4.47, with an approximate significance level of 0.017.
Therefore, we can reject the null hypothesis that there have been
no extinctions. As a check of the model fit, Table 2 reports the rela-
tive frequencies of different values of species counts along with the
frequencies fitted under H1. Note that the fitted value of the fre-
quency of zero counts is guaranteed to equal the observed value.
In overall terms, the fit appears to be good, so we conclude that
of the 42 species that were unobserved in 1981/1982, an estimated
26 are no longer present. A possible explanation for this species
loss is the intensive bottom-trawling on Georges Bank during
the 1960s and the 1970s (Collie et al., 1997).

Discussion
We began by stating that no-one knows how many modern extinc-
tions there have been in the ocean. Of course, for practical pur-
poses, the precise number of modern marine extinctions cannot
be known and the real question is whether there is any credible
estimate. The answer to this question is also negative, and our
purpose has been therefore to take a step towards explaining
why this might be. The basic reason for the lack of an estimate
is that it is difficult to generate one. The main difficulty is that
extinction is a singular event and the observational basis for infer-
ring it is very thin. To make progress, it is necessary to supplement
the observational record with fairly substantial statistical assump-
tions. As illustrated here, this allows one to conduct formal infer-
ence about extinction. This level of quantitative rigour is relatively
new to questions on extinction. The results of these methods may
be sensitive to the underlying statistical model, and the thinness of
the observational record poses a challenge to the type of model-
validation exercise that would otherwise be possible. For this
and other reasons, there is a strong need to base the statistical
models on biological knowledge rather than mathematical
convenience.

Further, an argument can be made for moving away from a
focus on numbers and instead developing a deeper understanding
of the processes underlying the extinction of different types of
organism in different habitats facing differing types of perturb-
ation. Beyond its scientific value, such an understanding could
support both a qualitative assessment of the likely extinction
impacts of more easily observed perturbations, as well as measures
that can be taken to avoid or mitigate them.
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