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Abstract. Given the multitude of ecosystem services provided by mangroves, it is important to

understand their potential responses to global climate change. Extensive reviews of the literature and

manipulative experiments suggest that mangroves will be impacted by climate change, but few studies

have tested these predictions over large scales using statistical models. We provide the first example of

applying species and community distribution models (SDMs and CDMs, respectively) to coastal

mangroves worldwide. Species distributions were modeled as ensemble forecasts using BIOMOD.

Distributions of mangrove communities with high species richness were modeled in three ways: as the sum

of the separate SDM outputs, as binary hotspots (with .3 species) using a generalized linear model, and

continuously using a general boosted model. Individual SDMs were projected for 12 species with sufficient

data and CDMs were projected for 30 species into 2080 using global climate model outputs and a range of

sea-level rise projections. Species projected to shift their ranges polewards by at least 2 degrees of latitude

consistently experience a decrease in the amount of suitable coastal area available to them. Central America

and the Caribbean are forecast to lose more mangrove species than other parts of the world. We found that

the extent and grain size, at which continuous CDM outputs are examined, independent of the grain size at

which the models operate, can dramatically influence the number of pseudo-absences needed for optimal

parameterization. The SDMs and CDMs presented here provide a first approximation of how mangroves

will respond to climate change given simple correlative relationships between occurrence records and

environmental data. Additional, precise georeferenced data on mangrove localities and concerted efforts to

collect data on ecological processes across large-scale climatic gradients will enable future research to

improve upon these correlative models.
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INTRODUCTION

Sea-level rise and altered weather patterns

resulting from global climate change have

impacted and will continue to impact coastal

systems, altering the ecological and economic

services that they offer (Nicholls et al. 2007). In

coastal tropical and sub-tropical areas through-

out the world, salt-tolerant mangrove trees are of

vital ecological and societal importance (re-
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viewed by Walters et al. 2008). For instance,
mangroves have the ability to sequester five
times the amount of carbon than upland tropical
forests (Siikamäki et al. 2012). Mangroves also
provide critical habitat for organisms occupying
the land-sea interface (Ellison 2008). Seafood
production in many developing and developed
countries throughout the world relies directly or
indirectly on mangroves (Rönnbäck 1999, Ellison
2008). Mangroves may also provide a buffer that
protects coastal and nearby inland human
settlements from erosion and tropical storm
damage (Das and Vincent 2009).

To better understand the uncertainty in pro-
jecting the global economic potential for decreas-
ing carbon dioxide emissions from mangrove
loss and because many other ecosystem services
provided by mangroves also are affected by the
diversity and distribution of mangroves, it is
important to understand how large-scale pat-
terns in their distributions are likely to respond
to global climatic change (Ellison 1993, Ellison
2002). Extensive reviews of the literature sum-
marize relationships between mangroves and
environmental drivers in contemporary and
historic times to speculate on how global climate
change might affect mangroves worldwide (Elli-
son 1994, Snedaker 1995, Alongi 2008, Gilman et
al. 2008). Manipulative laboratory experiments
have explored fine-scale responses of mangroves
to drivers associated with global climate change
(e.g., elevated sea level and CO2 concentrations)
(Farnsworth et al. 1996, Ellison and Farnsworth
1997, Ye et al. 2003). These reviews and experi-
ments suggest that individual mangrove species’
distributions may contract and local species
richness and productivity may decrease in
regions where climate-change scenarios forecast
that precipitation and run-off will decrease while
salinity soil sulfides increase (Ellison 1994,
Snedaker 1995). In contrast, where precipitation
and run-off increase, upland nutrients will be
deposited, salinity will be reduced, and acid-
sulfide soils will be moderated, leading to
increased productivity, opportunities for range
expansion of individual mangrove species, and
potential for increases in local species richness.
Latitudinal range limits of mangroves are fore-
cast to increase as air temperatures warm;
current mangrove distributions are limited by
the 168C isotherm of the coldest month (Ellison

1994, Gilman et al. 2008).
Manipulative experiments and literature-based

predictions of range and compositional shifts
suggest hypotheses of how mangroves will
respond to climate change that can be addressed
using large-scale (macroecological) statistical
models that directly relate future climate-change
to mangrove distributions (Ellison 2002). Al-
though they have not been widely applied to
mangroves (cf. Gilman et al. 2007 for an example
of a regional study), species and community
distribution models (SDMs and CDMs, respec-
tively) are a common tool used by macroecolo-
gists to assess potential threats of climate change
to biodiversity (e.g., Fitzpatrick et al. 2011). These
models use simple correlative relationships be-
tween species occurrences or indices of commu-
nity composition and current environmental data
to extrapolate species (or community) distribu-
tions across space and/or time (Guisan and
Thuiller 2005, Peterson et al. 2011). While such
SDMs and CDMs do not incorporate many
ecologically relevant factors (e.g., biotic interac-
tions, evolutionary change), they do provide a
first approximation for thinking about the large-
scale impacts of climate change on organisms
(Pearson and Dawson 2003).

Previous mangrove modeling research has
focused on topics such as mangrove demography
(Clarke 1995), distributions (Cohen et al. 2005),
stand dynamics (Chen and Twilley 1998, Twilley
et al. 1999, Berger and Hildenbrandt 2000;
individual-based models reviewed by Berger et
al. 2008), ecosystem function and services (Heald
1971, Grasso 1998), and food webs (Odum and
Heald 1975) at geographic extents much smaller
than the range of a species. Here we use SDMs
and CDMs to explore how mangrove biodiver-
sity may respond to global climatic change at
large spatial extents encompassing the entirety of
species’ ranges. SDMs generate detailed informa-
tion on potential ranges of individual species, but
are meaningful only when data are extensive
(Fitzpatrick et al. 2011). In contrast, CDMs
provide additional insights into rare species
because they are capable of including infrequent-
ly sampled species. Of the SDMs we ask: (1) will
each species’ coastal range expand, contract, or
remain the same; and (2) if the species’ range
does change, does it shift poleward or towards
the equator? We use CDMs to ask: (1) will there

v www.esajournals.org 2 March 2013 v Volume 4(3) v Article 34

RECORD ET AL.



be poleward shifts in areas with multiple
mangrove species; and (2) given reasonable
scenarios of climatic change, where do we
forecast gains and losses in mangrove species
richness?

METHODS

Mangrove occurrence data
We focus our analyses on 30 species in the

eight major mangrove genera (sensu Tomlinson
1986) that contribute most to the community
structure in mangrove forests and provide the
majority of ecosystem services (Rönnbäck 1999,
Khatiresan and Bingham 2001, Ellison 2008).
Mangrove occurrence (presence-only) data (Ta-
ble 1) were obtained from the Global Biodiversity
and Information Facility Database (GBIF: http://
www.gbif.org; Appendix), and included data
from museum specimens, peer-reviewed papers,

and the Mangrove Database of the Flanders

Marine Institute (http://www.vliz.be/vmcdata/
mangroves). Occurrence records were checked
against species distribution maps (Spalding et al.
2010); outliers (including living specimens in
botanic gardens) were removed before analysis
(cf. Yesson et al. 2007).

We limited our modeling to coastal regions
because mangroves are primarily coastal (Tom-
linson 1986). We generated global coastal GIS
layers by applying the ‘‘contour list’’ tool in
ArcMAP 9.3 to a global topography and ba-

thymetry digital elevation model (http://www.
ngdc.noaa.gov). We generated coastlines at 0, 1,
3, and 6 m contours, which correspond respec-
tively to the current coastline and three projected
increases in global sea-level. A 1-m rise corre-
sponds to the upper limits of forecasted sea-level

rise not accounting for rapid dynamical changes

Table 1. List of the 30 mangrove species for which there were data in the Global

Biodiversity Information Facility (GBIF) database.

Species Abbreviation
No. GBIF
records

No. modeled
grid cells

Avicennia alba Blume AVAL 15 11
A.bicolor Standley AVBI 156 43
A. eucalyptifolia (Zipp. ex Miq.) Moldenke AVEU 20 12
A. germinans (L.) Stearn� AVGE 1569 569
A. integra Duke AVIN 5 3
A. lanata Ridley AVLA 1 1
A. marina (Forssk.) Vierh.� AVMA 1244 394
A. schaueriana Stapf. & Leechman ex Moldenke AVSC 4 3
Ceriops australis CEAU 72 45
C. decandra (Griff.) Ding Hou CEDE 23 19
C. tagal (Perr) c.B. Robinson� CETA 196 142
Kandelia candel (L.) Druce KACA 72 23
K. obovata Sheue, Liu & Yong KAOB 30 7
Laguncularia racemosa (L.) Gaertn. F.� LARA 1385 556
Lumnitzera littorea (Jack) Voigt� LULI 72 56
L. racemosa Willd.� LURA 184 137
Nypa fruticans (Thunb.) Wurmb. NYFR 37 24
Rhizophora apiculata Bl.� RHAP 85 59
R. harrisonii Leechman RHHA 29 13
R. mangle Guppy� RHMA 1166 528
R. mucronata Lamk.� RHMU 126 75
R. racemosa Meyer� RHRA 227 89
R. stylosa Griff.� RHST 167 118
R. x. harrisonii Leechman RHHAx 33 13
R. x. lamarckii Montr. RHLAx 7 7
Sonneratia alba J. Smith� SOAL 127 89
S. apetala Buch. -Ham. SOAP 2 1
S. caseolaris (L.) Engler SOCA 36 31
S. ovate Backer SOOV 6 2
S. x. gulngai N.C. Duke SOGUx 2 1

Note: Abbreviated names follow a 4-5 letter naming convention (first two letters of the generic
and specific epithets followed by a lowercase ‘x’ for hybrids). Modeled grid cells were 2.5
minutes in size. Tables 2 and 3 and Fig. 2 refer to the abbreviated names.

� These species had .50 occupied 2.5 minute resolution grid cells and were modeled by the
individual species distribution models.
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in ice-mass loss (IPCC 2007). Given the uncer-
tainty in the magnitude of ice-mass loss in areas
such as Greenland over the next 100 years,
however, we also modeled 3 and 6 m rises in
sea-level (Bromwich and Nicolas 2010).

The coastal GIS layers were converted to 2.5-
minute resolution (4,318 m grid cells) in a Goode
homolosine projection for all subsequent model-
ing. A 2.5 minute resolution balances a suffi-
ciently fine scale for non-climatic predictors (e.g.,
horizontal tide, river discharge) with computa-
tional resources. All GBIF data within 40 km of
the coastline were assigned to the nearest grid
cell of the current coast; these occurrence records
yielded 7,085 unique records distributed across
1,847 grid cells that were used in the models,
which treated each coastal grid cell as an
observation unit. All data used in this study are
available online through the Harvard Forest Data
Archives (http://harvardforest.fas.harvard.edu/
data-archives).

Environmental predictors
We compiled a data set of 21 climatic,

hydrological, and geomorphological variables
associated with mangrove distribution patterns
(Duke et al. 1998, Gilman et al. 2007, Alongi
2008). Bioclimatic variables were obtained from
the WorldClim database (http://www.worldclim.
org). These nineteen variables include summary
statistics for temperature and rainfall (e.g., mean,
range) at different temporal resolutions (e.g.,
annually, quarter annually) and represent aver-
age climatic conditions from 1950–2000 interpo-
lated from weather station data. We refer to these
data as ‘‘current’’ climate data (Hijmans et al.
2005). Estimates of horizontal tide and river
discharge were based on catchment size. Hori-
zontal tide was estimated by dividing the vertical
tidal amplitude by slope, where vertical tides
were obtained by summing the primary tidal
amplitude constituents, M2 and K1 (Lyard et al.
2006), obtained from the NASA Planetary Geo-
dynamics Lab, and slope was obtained from the
global bathymetry and topography digital eleva-
tion model. River discharge was obtained using
the ‘‘Flow Accumulation’’ tool in ArcMAP 9.3
applied to a global topography layer; flow
accumulation was weighted by mean annual
rainfall for the current and future scenarios.

For each of the 21 predictors, we used

WorldClim data to generate a corresponding set
of future environmental values based on the 2080
projections of the National Center for Atmospher-
ic Research’s (NCAR) CCSM3 general circulation
model (GCM) under the Intergovernmental Panel
on Climate Change IV’s SRES A1b scenario. We
chose this rapid growth, carbon intensive scenario
because observed data on global fossil fuel
emissions increased from 2000–2008 by 29%,
suggesting that despite efforts to stabilize CO2

emissions to curtail global climatic change our
planet is experiencing the more extreme of the
SRES scenarios (Le Quéré et al. 2009). This GCM
forecasts a þ28C change in annual temperature
within the current latitudinal limits of mangroves
(328 N and 408 S; Spalding et al. 2010). Precipita-
tion projections are more variable; some man-
grove areas are forecast to have 50% less annual
precipitation (most of Central America and the
Caribbean), whereas other areas are forecast to
have 50% more (most of Southeast Asia). Al-
though we recognize that there also is variation
among GCMs (IPCC 2007), it was beyond the
scope of this study to run different GCMs on the
SRES A1b scenario.

As we did for the mangrove occurrence data,
we assigned to each coastal grid cell the nearest
value (within a 40-km radius) of each of the
current and future environmental variables. To
account for possible spatial error in the river
discharge layer to coastal cells, this layer was first
resampled at a 14 km grid size, taking the
maximum value within that larger region before
assigning values to the coastal cells.

Species distribution modeling
We used BIOMOD (Thuiller et al. 2009) to

generate SDMs for the 12 mangrove species that
occurred in at least 50 modeled grid cells (Table
1). Note that while there were 15 species in the
GBIF data with .50 occurrences, there were only
12 species with .50 occupied 2.5 minute
resolution grid cells. Outputs of SDMs and
CDMs are sensitive to the type of statistical
model fit to the occurrence data, so it is
preferable to fit many statistical models to the
data and combine them into an ‘‘ensemble
forecast’’ (Araujo and New 2007). BIOMOD
generates ensemble forecasts of species distribu-
tions based on contributions from multiple
statistical models and initial conditions. We fit
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and compared all nine of the statistical models
available in BIOMOD R2.14: generalized linear
models, generalized boosting models, classifica-
tion and regression trees, generalized additive
models, artificial neural networks, surface range
envelopes, flexible discriminant analyses, multi-
ple adaptive regression splines, and random
forests (detailed in Thuiller et al. 2009, R
Development Core Team 2011).

BIOMOD models require both presence and
absence data. Creating pseudo-absences (i.e.,
background absences) is common when fitting
SDMs because presence only data often are
obtained from herbaria records or online data-
bases, so pseudo-absences are generated to better
characterize the set of environmental conditions
a specie’s experiences within its current range
(Thuiller et al. 2009). The results of SDMs can be
sensitive to the selection of pseudo-absences, the
ratio of presences to pseudo-absences, and the
geographic extent of pseudo-absences (Lobo et
al. 2010, Barbet-Massin et al. 2012). We therefore
used several approaches to generating pseudo-
absences to accompany our presence-only data
on mangroves. One approach we used for
selecting pseudo-absences was to use all loca-
tions within 40 kilometers of the coastline in the
entire mangrove occurrence data set as absences,
including locations where the focal species had
been found. Phillips et al. (2009) showed that
including localities with known occurrences as
pseudo-absences helps to minimize spatial bias
in survey effort (i.e., bias due to some areas being
easier to access and sample for presences than
other areas). Random selection of pseudo-ab-
sences is a common method (Stockwell and
Peters 1999, Fitzpatrick et al. 2011), and the
selection of a large number of pseudo-absences at
random has been shown to have better predictive
performance than more sophisticated methods
based on fitting a preliminary model to identify
areas of low habitat suitability (Wisz and Guisan
2009). We generated a random selection of 500,
1000, and 10,000 locations within 40 kilometers of
the coastline between latitudes 478 S and 478 N,
with an equal weight of presence to background
data. The geographic extent of the pseudo-
absence locations was limited to a lower latitude
area of the world because previous studies found
that artificial absences that were too far from the
presence locations in environmental space were

not helpful in differentiating suitable from non-
suitable conditions (Lobo et al. 2010, Barbet-
Massin et al. 2012).

To avoid model over-fitting and to identify the
most important current climate environmental
variables associated with mangrove distribu-
tions, we used generalized boosted models
(GBMs) for each species within BIOMOD. GBMs
allow for correlated predictors and average
across all regression trees created by the boosting
algorithm to give robust estimates of the relative
importance of each environmental predictor in
the model (Friedman 2001, Elith et al. 2008). To
reduce uncertainties due to the method used to
generate pseudo-absences and due to the sto-
chastic nature of the GBM algorithm, ten GBMs
were fit for each of the four pseudo-absence data
sets (a total of 40 GBMs). The average relative
importance of each predictor over these 40 GBMs
was then used to identify the five most important
predictor variables for each species to be used in
the final SDMs (following Friedman 2001) (Ta-
bles 2 and 3). For weights in these and the final
models, we used the total number of occurrence
records for each species per grid cell.

These top five most important variables for
each species were then used to fit the statistical
models in BIOMOD for each combination of
presence/pseudo-absence data. Data combina-
tions were split randomly ten times into calibra-
tion (70%) and evaluation (30%) components,
and the models were run on each of the ten
calibrations and evaluation data sets. We as-
sessed the predictive performance of each of the
SDMs with the True Skill Statistic (TSS) as it is
independent of prevalence (i.e., the proportion of
locations with presences) and it accounts for
omission and commission errors (i.e., false
negatives and false positives, respectively) (Al-
louche et al. 2006). TSS ranges from �1 to þ1; a
value of þ1 indicates perfect agreement between
model predictions and the validation data,
whereas values ,0 indicate model predictions
no better than random. We present here the
ensemble forecast for the current climatic condi-
tions and future scenarios from models fit using
presence/500 random pseudo-absence data, be-
cause this combination yielded the highest TSS
value. The contribution of each statistical model
to the ensemble was based on a weighted
average in which the relative weight of the
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Table 2. The five most important environmental predictors identified by general boosted models and the

exclusion of correlated variables for Avicennia germinans (AVGE), A. marina (AVMA), Ceriops tagal (CETA),

Laguncularia racemosa (LARA), Lumnitzera littorea (LULI), and L. racemosa (LURA). All of these species’

individual distributions were modeled.

Bioclimatic variable AVGE AVMA CETA LARA LULI LURA

Annual mean temp. 1 . . . . . . . . . . . . . . .
Mean diurnal range 2 . . . . . . 3 4 . . .
Isothermality . . . 3 5 2 . . . . . .
Temp. seasonality . . . . . . . . . . . . . . . . . .
Max. temp. of warmest month . . . 5 . . . 1 . . . . . .
Min. temp. of coldest month . . . . . . . . . . . . . . . . . .
Temp. annual range . . . . . . . . . . . . . . . . . .
Mean temp. of wettest quarter . . . 4 1 . . . . . . 2
Mean temp. of driest quarter . . . 1 3 2 . . . 4
Mean temp. of warmest quarter . . . . . . . . . . . . . . . . . .
Mean temp. of coldest quarter . . . . . . . . . . . . 3 . . .
Annual precip. . . . . . . . . . . . . . . . . . .
Precip. of wettest month . . . . . . . . . . . . . . . . . .
Precip. of driest month . . . . . . . . . . . . 2 . . .
Precip. seasonality 4 . . . . . . . . . . . . 3
Precip. of wettest quarter . . . . . . . . . . . . 5 . . .
Precip. of driest quarter . . . . . . . . . . . . . . . . . .
Precip. of warmest quarter 5 2 4 . . . 1 1
Precip. of coldest quarter 3 . . . 2 4 . . . 5
Flow accumulation . . . . . . . . . . . . . . . . . .
Horizontal tide . . . . . . . . . . . . . . . . . .

Note: Other abbreviations are as follows: temperature (temp.), precipitation (precip.), maximum (max.), and minimum (min.).
Mean diurnal range is the mean of monthly(maximum temperature� minimum temperature). Isothermality is (mean diurnal
range/temperature annual range) multiplied by100. Temperature seasonality is the standard deviation of temperature values
multiplied by 100. Temperature annual range is the maximum temperature of the warmest month minus the minimum
temperature of the coldest month. Precipitation seasonality is the coefficient of variation of precipitation values. Not all of the 19
bioclimatic predictors listed here were in the top predictor lists for the mangrove species. Ellipses indicate when a variable was
not one of the five most important environmental predictors for one of the mangrove species modeled by an individual species
distribution model.

Table 3. The five most important environmental predictors identified by general boosted models and the

exclusion of correlated variables for Rhizophora apiculata (RHAP), R. mangle (RHMA), R. mucronata (RHMU), R.

racemosa (RHRA), R. stylosa (RHST), and Sonneratia alba (SOAL). All of these species’ individual distributions

were modeled.

Bioclimatic variable RHAP RHMA RHMU RHRA RHST SOAL

Annual mean temp. . . . . . . . . . . . . . . . . . .
Mean diurnal range . . . 4 . . . 4 . . . . . .
Isothermality . . . 1 . . . . . . 5 . . .
Temp. seasonality 5 . . . 5 2 . . . 2
Max. temp. of warmest month . . . 2 . . . . . . . . . . . .
Min. temp. of coldest month . . . . . . . . . . . . . . . . . .
Temp. annual range . . . . . . . . . . . . . . . . . .
Mean temp. of wettest quarter 4 . . . 3 5 1 1
Mean temp. of driest quarter . . . 5 . . . . . . . . . . . .
Mean temp. of warmest quarter . . . . . . . . . . . . . . . . . .
Mean temp. of coldest quarter . . . . . . . . . . . . . . . . . .
Annual precip. . . . . . . . . . . . . . . . . . .
Precip. of wettest month . . . . . . . . . 1 . . . . . .
Precip. of driest month 1 . . . . . . . . . . . . . . .
Precip. seasonality . . . . . . . . . . . . . . . 4
Precip. of wettest quarter . . . . . . . . . . . . 4 . . .
Precip. of driest quarter . . . . . . 4 . . . . . . . . .
Precip. of warmest quarter 3 . . . 1 . . . 3 5
Precip. of coldest quarter . . . 3 2 . . . . . . 3
Flow accumulation 2 . . . . . . . . . . . . . . .
Horizontal tide . . . . . . . . . 3 2 . . .
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model’s TSS score was calculated using BIO-
MOD’s default decay value of 1.6 (Thuiller et al.
2009).

Binary (presence/absence) outputs were gen-
erated from the continuous outputs of BIOMOD
by selecting the threshold that maximized the
TSS score. From these data, we calculated the
percent of the total number of coastal cells
occupied by each species under each scenario.
We also calculated the minimum, maximum,
mean, and standard deviation of the absolute
value of latitude of predicted occurrences for
each species. Because the models do not account
for dispersal limitation, we cropped model
outputs to meaningful regions for each species
before summarizing. We used the GBIF data and
distribution maps (Spalding et al. 2010) to
determine the oceans in which the species occur,
and then set projected probabilities to zero at
longitudes beyond these regions (Table 4). After
selecting crop lines for each species, we examined
global projected distributions to ensure that the
crop lines did not intersect areas predicted to
have continuous occurrences. Thus, summary
statistics of model outputs should not be very
sensitive to the location of crop lines.

Community distribution models
and species richness

Mangroves tend to occur in association with
multiple mangrove species, each of which may
occur at specific tidal elevations (Macnae 1968).
At the coarse scale of this study, we are interested

primarily in identifying areas where multi-
species mangrove assemblages are likely to
occur, rather than distinguishing between differ-
ent types of mangrove communities. We mod-
eled local species richness (‘‘alpha diversity’’)
because we had inadequate data to model species
turnover (‘‘beta diversity’’).

We modeled mangrove species richness using
three different approaches: a composite model, a
continuous-response model, and a binary-re-
sponse model. For the composite model, we
combined the independent projections of the 12
individual SDMs by summing the predicted
occurrences within each coastal cell. For the
continuous and binary models, we calculated
the current species richness within each coastal
cell based upon all 30 major mangrove species in
our GBIF data set (Table 1).

In the binary model, we sought to identify
those cells where multi-species mangrove com-
munities are most likely to exist. To do this, we
assigned each cell with three or more species out
of the 30 total species in our GBIF data a value of
one and each cell with less than three species was
assigned a value of zero. In this analysis, we
modeled presence of cells with high species
richness relative to the other cells in our data
set. This process yielded 355 presences of high
richness cells. We used three species as the
threshold because this was the highest value that
would yield enough presences of these high
richness cells for sufficient predictor-to-response
ratios in the models. The presence of three
species may not indicate a true hotspot of
mangrove diversity in the field. However, this
threshold is appropriate within the context of the
GBIF data set, and allows us to confidently weed
out cells where only one or two mangrove
species exist. We considered using different
thresholds for defining high richness in the
eastern and western hemispheres, because one
might expect greater overall richness in the
eastern hemisphere. However, we only see more
high-richness cells in the east when the threshold
is set at four or five species per cell (Fig. 1), at
which levels there are insufficient sample sizes.
We further felt that it was more appropriate to
treat all of the data uniformly in the model,
rather than imposing further rules that may
introduce more potential for bias.

We ran the binary richness data through the

Table 4. Minimum and maximum longitudinal values

of extents used to crop outputs of individual species

projections.

Species
Longitude

minimum (m)
Longitude

maximum (m)

Avicennia germinans �2.1 3 107 1.8 3 106

Avicennia marina �1.8 3 106 2.0 3 107

Ceriops tagal �1.8 3 106 2.0 3 107

Laguncularia racemosa �2.1 3 107 1.8 3 106

Lumnitzera littorea 7.0 3 106 2.03 107

Lumnitzera racemosa 1.8 3 106 2.0 3 107

Rhizophora apiculata 7.0 3 106 2.0 3 107

Rhizophora mangle �2.1 3 107 1.8 3 106

Rhizophora mucronata 1.8 3 106 2.0 3 107

Rhizophora racemosa �1.5 3 107 2.0 3 107

Rhizophora stylosa 1.0 3 107 2.0 3 107

Sonneratia alba 1.8 3 106 2.0 3 107

Note: Map projection is Interrupted Goode Homolosine,
land-centered.
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same BIOMOD modeling process that we did for
each of the individual species. For weights in the
binary model, we used the actual number of
species observed in each cell (Fig. 1).

For the continuous CDMs, we did not have
access to a comprehensive software package for
ensemble distribution model selection and pre-
diction based on non-binary data (e.g., BIOMOD
does not model abundance). Instead, we fit the
full GBM and GLM models using all 21
environmental variables as predictors and the
number of mangrove species reported within
each grid cell as the response. We compared
models with the full suite of predictor variables
to those fit using subsets of variables: the five
variables with the greatest influence; or by
iteratively discarding the least influential vari-
able between pairs of variables with greater than
0.7 correlations and rerunning the model until
there were no more correlated environmental
variables (Dormann et al. 2012). We used AIC
stepwise selection to discard variables that were
not significant at the 0.05 level. As we did with
the SDMs, the mangrove presence data were
combined with pseudo-absences generated by
selecting 0, 500, 1000, or 10000 random cells from
within 40 kilometers of the entire coastline.

To determine which type of model yielded the
best predictive performance, we divided the
world into eastern and western regions defined

by a longitudinal division through central Africa
at 22.468 where there are no recorded mangrove
occurrences. We then trained each model on the
separate halves of the world and evaluated their
predictive performance on the observed data in
the other half of the world. To assess predictive
performance, we used the likelihood of univar-
iate GLMs comparing observed species richness
in the holdout data sets to predicted species
richness. Because our ultimate aim was to
examine large-scale patterns in mangrove species
diversity, we also tested predictive performance
of the full GBM and full GLM models at a coarser
resolution. In the coarse-resolution tests, we
aggregated the predicted and observed data in
the holdout regions to a 500-km grid cell size
before comparing predicted and observed spe-
cies densities. For the final selected model, we fit
the subset of predictor variables to the entire
world, and then projected forward using the
environmental variables in the 2080 3 m sea level
rise scenario because the results of the SDMs we
ran previously were not sensitive to the different
sea-level rise scenarios.

For the composite, binary, and continuous
CDMs, we generated 500-km grid cell maps of
forecasted change in species richness between
current conditions and future scenarios. We also
calculated means of latitude in each cell weighted
by the fitted species richness in current and
future scenarios for the three models. The GBM
model with the full suite of variables had the best
predictive performance in most scenarios (Table
5), and so we used this model for our future
projections. As with the SDMs, model evaluation
with holdout data suggested that models trained
with the least pseudo-absences had the best
predictive performance when tested against the
data with the original ;4 km (i.e., 2.5 minute)
grid size. However, coarse scale maps produced
by these models exhibited many nonsensical
predictions for current mangrove occurrences,
including high species richness in high latitude
regions. When examining predictions that had
first been re-scaled to a 500 km grid size,
inclusion of pseudo-absences improved model
likelihoods, and produced maps of current fitted
distributions that better matched our expecta-
tions. Because our study is focused on global
changes in mangrove distributions, we opted for
including 2000 pseudo-absences in the final

Fig. 1. Number of 4.318 km coastal grid cells

containing at least zero to eight mangrove species in

the Global Biodiversity Information Facility database.

One grid cell in the eastern region had 11 species in it.

All other grid cells had fewer than eight species.
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Table 5. Negative log-likelihoods of continuous community distribution models used to predict mangrove species

densities.

Model Resolution (km) Training data Validation data No. absences Mean SD

GBM full 4 East West 0 �7156 37.0
GBM full 4 West East 0 �6629 16.0
GBM full 4 East West 500 �7301 29.0
GBM full 4 West East 500 �6631 14.0
GBM full 4 East West 1000 �7380 32.0
GBM full 4 West East 1000 �6632 13.0
GBM full 4 East West 2000 �7526 12.0
GBM full 4 West East 2000 �6655 9.8
GBM full 4 East West 10000 �7603 2.5
GBM full 4 West East 10000 �6674 0.6
GBM top 5 variables 4 East West 0 �7245 49.0
GBM top 5 variables 4 West East 0 �6670 10.0
GBM top 5 variables 4 East West 500 �7396 33.0
GBM top 5 variables 4 West East 500 �6669 4.1
GBM top 5 variables 4 East West 1000 �7487 32.0
GBM top 5 variables 4 West East 1000 �6668 8.2
GBM top 5 variables 4 East West 2000 �7586 13.0
GBM top 5 variables 4 West East 2000 �6680 7.2
GBM top 5 variables 4 East West 10000 �7614 2.4
GBM top 5 variables 4 West East 10000 �6708 0.8
GBM uncorrelated variables 4 East West 0 �7245 49.0
GBM uncorrelated variables 4 West East 0 �6670 10.0
GBM uncorrelated variables 4 East West 500 �7396 33.0
GBM uncorrelated variables 4 West East 500 �6669 4.1
GBM uncorrelated variables 4 East West 1000 �7487 32.0
GBM uncorrelated variables 4 West East 1000 �6668 8.2
GBM uncorrelated variables 4 East West 2000 �7586 13.0
GBM uncorrelated variables 4 West East 2000 �6680 7.2
GBM uncorrelated variables 4 East West 10000 �7614 2.4
GBM uncorrelated variables 4 West East 10000 �6708 0.8
GLM full 4 East West 0 �7582 280.0
GLM full 4 West East 0 �6673 19.0
GLM full 4 East West 500 �7629 190.0
GLM full 4 West East 500 �6687 17.0
GLM full 4 East West 1000 �7554 180.0
GLM full 4 West East 1000 �6693 9.0
GLM full 4 East West 2000 �7803 57.0
GLM full 4 West East 2000 �6711 3.2
GLM full 4 East West 10000 �7831 1.0 3 10�12

GLM full 4 West East 10000 �6721 4.5 3 10�13

GLM AIC stepwise 4 East West 0 �7363 57.0
GLM AIC stepwise 4 West East 0 �6688 31.0
GLM AIC stepwise 4 East West 500 �7524 68.0
GLM AIC stepwise 4 West East 500 �6697 28.0
GLM AIC stepwise 4 East West 1000 �7610 49.0
GLM AIC stepwise 4 West East 1000 �6705 13.0
GLM AIC stepwise 4 East West 2000 �7782 20.0
GLM AIC stepwise 4 West East 2000 �6728 16.0
GLM AIC stepwise 4 East West 10000 �7844 1.4 3 10�12

GLM AIC stepwise 4 West East 10000 �6721 5.6 3 10�13

GLM significant variables 4 East West 0 �7276 190.0
GLM significant variables 4 West East 0 �6664 44.0
GLM significant variables 4 East West 500 �7414 88.0
GLM significant variables 4 West East 500 �6694 39.0
GLM significant variables 4 East West 1000 �7618 75.0
GLM significant variables 4 West East 1000 �6703 19.0
GLM significant variables 4 East West 2000 �7803 12.0
GLM significant variables 4 West East 2000 �6738 6.2
GLM significant variables 4 East West 10000 �7850 1.3 3 10�12

GLM significant variables 4 West East 10000 �6752 3.2 3 10�13

GLM uncorrelated variables 4 East West 0 �7724 190.0
GLM uncorrelated variables 4 West East 0 �6725 29.0
GLM uncorrelated variables 4 East West 500 �7338 56.0
GLM uncorrelated variables 4 West East 500 �6725 31.0
GLM uncorrelated variables 4 East West 1000 �7366 16.0
GLM uncorrelated variables 4 West East 1000 �6667 48.0
GLM uncorrelated variables 4 East West 2000 �7492 110.0
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model. This yielded an approximate presence to

absence ratio of 1:1, similar to that used in the

individual SDMs with 500 pseudo-absences.

Code for all SDMs and CDMS performed using

R statistical software version 14.0 is included in

the Supplement.

Evaluation of SDM and CDM outputs

We evaluated model outputs by generating

summary maps at a coarser resolution in order to

generalize patterns across regions. We generated

these maps with 500 km grid cells and 1000 km

grid cells. Within each of the larger cells, we

summed the predicted species richness in all of

the 4 km grid cells. The result is a mangrove

species density value for each of the measured

cells. This density is different from the mean

species richness, because it incorporates both

species richness and the number of occupied

cells. A 500-km cell centered on Panama has

much more coastline than a 500-km cell centered

on the coast of Peru. Thus, even if every 4 km

coastal cell had the same number of species, the

species density measured in the 500 km grid cells

would be higher in Panama than Peru.

Coastline versus Latitude
Our study analyzes latitudinal shifts in coastal

species. To frame our results, we also needed to
understand how the world’s coastlines are
distributed with respect to latitude. To this end,
we summed the total number of ;4 km grid cells
within each 2-degree latitudinal bin. We also
performed a separate analysis using ArcMap in
which we compared the total length of our
coastline vector data within 158 of the equator,
and between 158 and 308 from the equator. The
vector data was generated at a 1.7 km resolution.

RESULTS

Species distribution models
The current distribution of each of the most

common 12 mangrove species was best predicted
by a different set of five environmental variables
(Tables 2 and 3); precipitation in the warmest and
coldest quarters appeared in the list of top five
predictors for more than half of the mangrove
species. In the variable selection process, river
discharge and horizontal tide were identified as
important environmental predictors only for
Rhizophora apiculata, R. racemosa, and R. stylosa
(Tables 2 and 3). The predictive performance of

GLM uncorrelated variables 4 West East 2000 �6700 11.0
GLM uncorrelated variables 4 East West 10000 �7819 3.2 3 10�13

GLM uncorrelated variables 4 West East 10000 �6716 0.0
GBM full 500 East West 0 �2641 2.4
GBM full 500 West East 0 �2297 0.3
GBM full 500 East West 500 �2429 22.0
GBM full 500 West East 500 �2248 4.8
GBM full 500 East West 1000 �2467 34.0
GBM full 500 West East 1000 �2244 5.4
GBM full 500 East West 2000 �2517 31.0
GBM full 500 West East 2000 �2237 4.6
GBM full 500 East West 10000 �2640 21.0
GBM full 500 West East 10000 �2217 4.5
GLM full 500 East West 0 �2401 0.0
GLM full 500 West East 0 �2285 0.0
GLM full 500 East West 500 �2997 650.0
GLM full 500 West East 500 �2270 7.3
GLM full 500 East West 1000 �2722 450.0
GLM full 500 West East 1000 �2275 5.7
GLM full 500 East West 2000 �2977 410.0
GLM full 500 West East 2000 �2281 6.2
GLM full 500 East West 10000 �3192 190.0
GLM full 500 West East 10000 �2310 5.9

Note: Models were fit using only data from the eastern or western world regions, and then tested against data in the other
regions. Values represent negative log-likelihoods of generalized linear models comparing observed species densities to
predicted densities in the holdout regions.
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the models was high: TSS values for the twelve
species averaged 0.97 (range 0.950–0.988), but in
a few instances the SDMs predicted current
mangrove distributions outside of their current
known latitudinal range (Fig. 2). Rather than
focusing only on minimum and maximum
latitudes, we therefore also examined the mean
and standard deviations of the absolute values of
latitude.

All 12 common mangrove species were fore-
cast to change their absolute mean latitude and
total suitable coastal area relative to current
climatic conditions (Fig. 2). Half of the modeled
species were projected to have a poleward shift
of two degrees of latitude or more in the absolute
mean latitudes of their distributions under the
future climate scenario (Fig. 2). These six species
also were forecast to suffer losses in the total area
of suitable coastal habitat available within their
expanded ranges (Fig. 2). This loss of the amount
of suitable coastal habitat available for species
with poleward range shifts could be due to the
lower amount of total coastline in higher tropical
latitudes compared to equatorial areas (Fig. 3).
All of the species that did not experience a
poleward shift in the absolute mean values of
their distributions gained total suitable coastal
habitat under the future scenario regardless of
the amount of sea-level rise.

The four species with current ranges limited to
the Americas, western and central Africa, and the
western Pacific islands—Avicennia germinans,
Laguncularia racemosa, Rhizophora mangle, Rhizo-
phora racemosa—were all forecast to experience
overall losses in total suitable coastal habitat and
poleward shifts under the future climate scenario
compared to current climatic conditions (Figs. 2
and 4–9). The NCAR-CCSM3 GCM forecasts that
the annual precipitation in these regions will
decrease by at least 50% and that annual
temperature will increase by at least 28C. Our

Fig. 3. Length of coastline plotted against absolute

value of latitude. Coastline is calculated as the sum of

coastal grid cells in our data set multiplied by the cell

width (4,318 m).

Fig. 2. Predicted latitudinal distributions of 12 mangrove species under each sea-level rise scenario. Thin

vertical bars represent minimum and maximum latitudes, thick vertical bars represent standard deviations, and

horizontal bars represent means. Labels above each maximum represent the current (‘c’) fitted distributions as

well as the projections for sea level rise of 0 m, 1 m, 3 m, or 6 m. The colors of the projected vertical bars represent

the percent change in the total number of predicted occupied cells relative to the current fitted values (see color

legend). Species names are as in Table 1. Species are ordered from left to right in decreasing order of the number

of GBIF occurrence records.
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forecasts of mangrove loss in these areas sup-

ports previous hypotheses that individual man-

grove species’ distributions will contract and

richness will decline as rainfall and runoff

decrease while salinity and extent of acid-sulfide

soils increase (Ellison 1994, Snedaker 1995).

Fig. 4. Change in predicted occupancy for (A) Avicennia germinans, (B) Laguncularia racemosa, (C) Rhizophora

mangle, and (D) Avicennia marina under the National Center for Atmospheric Research’s CCSM3 general

circulation model climate scenario projected for 2080 and 3 m of sea-level rise relative to current fitted predicted

occupancy. Color shading within each 1,000 km cell represents the change in the number of 2.5-minute cells

predicted to contain the focal species. Species in Figs. 4–6 are presented in decreasing order of the number of

GBIF occurrence records.
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The remaining eight species, with current

ranges limited to eastern Africa, Asia, and

Australia, had more variable forecasts. Lumnit-

zera littorea and Rhizophora mucronata were

projected to shift polewards and lose suitable

coastal habitat, while Avicennia marina, Ceriops

tagal, Lumnitzera racemosa, and Rhizophora apicu-

lata were forecasted to gain potential coastal area

Fig. 5. Change in predicted occupancy for (A) Ceriops tagal, (B) Lumnitzera racemosa, (C) Rhizophora stylosa, and

(D) Rhizophora racemosa under the National Center for Atmospheric Research’s CCSM3 general circulation model

climate scenario projected for 2080 and 3 m of sea-level rise relative to current fitted predicted occupancy. Color

shading within each 1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain

the focal species. Species in Figs. 4–6 are ordered in decreasing order of the number of GBIF occurrence records.
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with absolute mean latitudinal gains of less than

two degrees. Sonneratia alba and Rhizophora

stylosa were projected to gain coastal habitat

and experience decreases in absolute mean

latitude (i.e., equatorial range contractions). With

forecasted gains in suitable coastal area of 260%

Fig. 6. Change in predicted occupancy for (A) Sonneratia alba, (B) Rhizophora mucronata, (C) Rhizophora apiculata,

and (D) Lumnitzera littorea under the National Center for Atmospheric Research’s CCSM3 general circulation

model climate scenario projected for 2080 and 3 m of sea-level rise relative to current fitted predicted occupancy.

Color shading within each 1,000 km cell represents the change in the number of 2.5-minute cells predicted to

contain the focal species. Species in Figs. 4–6 are ordered in decreasing order of the number of GBIF occurrence

records.
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to 290% of its current projected distribution, R.
stylosa was forecast to gain a remarkable 110 to
185% additional habitat relative to its current
distribution.

Community distribution models
and species richness

The means of the absolute value of latitude
weighted by fitted current species density were
14.58, 14.38 and 17.08 for the composite model, the
binary model, and the continuous model, respec-
tively. The projected mean latitudes for the 3m

Fig. 7. Change in predicted occupancy for (A) Avicennia germinans, (B) Laguncularia racemosa, (C) Rhizophora

mangle, and (D) Avicennia marina under the National Center for Atmospheric Research’s CCSM3 general

circulation model climate scenario projected for 2080 and 3 m of sea-level rise relative to current fitted predicted

occupancy. Color shading within each 200 km cell represents the change in the number of 2.5-minute cells

predicted to contain the focal species. Species in Figs. 7–9 are ordered in decreasing order of the number of GBIF

occurrence records.
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sea-level rise were 14.68, 14.28, and 15.78 for the
same three models. The projected maps of
change in species density differed between the
three model types, although there were a few
areas of overlap (Fig. 10). All three models
predicted gains in mangrove species density
across much of southeastern Asia, southern
Brazil, northern Chile, eastern Australia, south-

eastern Africa, parts of northern Africa, and parts
of northwestern Mexico. All three models also
predicted losses of mangrove species density in
the Caribbean Islands, parts of Central America
and parts of northern Australia (Fig. 10).

Coastline versus latitude
In summing the ;4 km coastal cells vs.

Fig. 8. Change in predicted occupancy for (A) Ceriops tagal, (B) Lumnitzera racemosa, (C) Rhizophora stylosa, and

(D) Rhizophora racemosa under the National Center for Atmospheric Research’s CCSM3 general circulation model

climate scenario projected for 2080 and 3 m of sea-level rise relative to current fitted predicted occupancy. Color

shading within each 200 km cell represents the change in the number of 2.5-minute cells predicted to contain the

focal species. Species in Figs. 7–9 are ordered in decreasing order of the number of GBIF occurrence records.
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latitude, we found that the total length of
coastline between the equator and 6158 was
42% greater than the length of coastline between
158 and 308 N or S (i.e., 182,000 km versus
129,000 km, respectively; Fig. 3). The vector
analysis similarly showed 43% more coastline
within 158 of the equator than between 158 and

308 from the equator.

DISCUSSION

Species and community distribution models
are widely used techniques for evaluating the
potential impacts of climatic change on biodiver-

Fig. 9. Change in predicted occupancy for (A) Sonneratia alba, (B) Rhizophora mucronata, (C) Rhizophora apiculata,

and (D) Lumnitzera littorea under the National Center for Atmospheric Research’s CCSM3 general circulation

model climate scenario projected for 2080 and 3 m of sea-level rise relative to current fitted predicted occupancy.

Color shading within each 200 km cell represents the change in the number of 2.5-minute cells predicted to

contain the focal species. Species in Figs. 7–9 are ordered in decreasing order of the number of GBIF occurrence

records.
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sity (Fitzpatrick et al. 2011). These models use
simple correlative relationships to project poten-
tial distributions for future climate scenarios in
order to inform management and climate-change
policy (Hannah et al. 2007). Although distribu-
tion models usually perform well in characteriz-
ing and predicting current distributions (Franklin
and Miller 2009), a number of issues have been
raised in regards to the lack of important
ecological processes and the methodological
issues of such models (e.g., Pearson and Dawson
2003, Record et al. 2013). Previous mangrove
species distribution modeling research has been
performed at geographic extents much smaller

than the ranges of the species modeled (Cohen et
al. 2005, Gilman et al. 2007). The work presented
here is the first application of species and
community distribution modeling to provide a
first approximation of how future climate-change
scenarios will influence global distributions of
mangrove species and assemblages at geographic
extents encompassing the entirety of species’
ranges. Understanding the response of mangrove
distributions to climate change is timely because
mangroves are substantial potential carbon sinks
(Siikamäki et al. 2012). Our results provide
insights into the effort to understand how coastal
organisms, such as mangroves, will be impacted

Fig. 10. Change in predicted mangrove species richness in 2080 with a 3 m rise in sea level. Color shading

within each 500-km grid cell represents sum over 2.5-minute grid cells of: (A) species richness as observed in the

GBIF data; (B) change in the number predicted occupancies for 12 independently modeled species; (C) predicted

distribution of mangrove ‘‘hot spots’’ based on a binary model of cells where more than 3 species co-occur; and

(D) predicted species richness based on a continuous model of species richness within each cell. The color scale

for the three projected maps has been standardized to represent change in future fitted predictions relative to the

mean over all cells in the current fitted predictions.
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by climate change at the global level. Our study
also highlights some of the methodological
limitations and untested ecological assumptions
of distribution models.

First, we found that species projected to shift
their ranges polewards by at least 2 degrees of
latitude consistently experience a decrease in the
amount of suitable coastal area available to them.
Previous studies have suggested that mangroves
will occupy higher latitudes in a warmer climate
because current mangrove distributions are
limited to the 168C isotherm for annual temper-
ature of the coldest month (Ellison 1994, Alongi
2008, Gilman et al. 2008), but the link between
mangrove distributional shifts and coastal area
losses at higher latitudes has not been previously
explored.

Second, Central America and the Caribbean
are forecast to suffer a greater loss of mangrove
species density than other parts of the world.
Three of the four species exhibiting declines in
Central America and the Caribbean are the best
represented species in the GBIF dataset, suggest-
ing that our forecasts for these species are more
robust than those for species with sparser
occurrence records, such as many species in the
Indo-West Pacific (Table 1). Continued contribu-
tions of quality georeferenced occurrence records
by researchers is imperative to improving our
understanding of whether the variation we see in
species forecasted distributions in locations such
as the Indo-West Pacific are realistic or reflect
only artifacts of sampling and reporting.

Third, our study also highlights the impor-
tance of considering spatial scale (both grain size
and extent) in SDMs. Past studies have demon-
strated that mangroves are sensitive to factors
including sea-level rise, tidal zones, and river
discharge (Ellison and Farnsworth 1997, Ye et al.
2003, reviewed by Duke et al. 1998, Gilman et al.
2007, Alongi 2008). However, these forces are
primarily important in influencing the distribu-
tion of individual mangrove species at relatively
small scales. At larger scales, these relationships
break down in the field (Bunt 1996, Ellison et al.
2000), and this breakdown is reflected in the
coarser-scale (500-km grid cell) analysis of our
community distribution models.

For researchers hoping to advance techniques
for distribution models based on continuous
data, our model selection process offers a further

lesson in considering spatial scale. We found that
the extent and grain size at which continuous
model outputs are examined, independent of the
grain size at which the models operate, can
dramatically influence the number of pseudo-
absences needed for optimal parameterization.
That small scales are best modeled without
pseudo-absences, but large-scale models are
benefited by pseudo-absence is somewhat intu-
itive. Without pseudo-absences, the models
evaluate finer scale differences within sites
occupied by mangroves, whereas with many
pseudo-absences, the models can better evaluate
the coarser scale differences between areas with
and without mangroves. This issue should only
apply to continuous data where all presences are
not identical, unlike in binary data.

The SDMs and CDMs presented here provide
a first approximation of how mangroves will
respond to climate change given simple correla-
tive relationships between occurrence records
and environmental data (Peterson et al. 2011). In
reality, additional factors, such as coastal devel-
opment, forestry, and biotic processes (e.g.,
propagule dispersal, recruitment limitation, in-
terspecific competition, and plant-animal inter-
actions) will also play important roles in
structuring future mangrove distributions (e.g.,
Rabinowitz 1978, Clarke and Kerrigan 2002,
Farnsworth and Ellison 1997b, Ellison 2008).
Our modeling forecasts are thus optimistic
because they assume that species will occur
wherever the environmental conditions are suit-
able for them and these other processes will
remain constant (cf. Farnsworth and Ellison
1997a). Future studies in which researchers
across the world collaborate to provide consis-
tent data on such biotic and social drivers of
mangrove distributions across a range of spatial
and temporal scales (Farnsworth 1998) would
help to make it possible to better understand and
model the future fate of mangroves in a global
context.
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SUPPLEMENTAL MATERIAL

APPENDIX

The following is a list of the Global Biodiver-
sity Information Facility data contributors. The
biodiversity occurrence data were published by:
Australian National Herbarium, Berkeley Natu-
ral History Museums, Bernice Pauahi Bishop
Museum of Natural History, Biologiezentrum
Linz Oberoesterreich, Botanic Garden and Bo-
tanical Museum Berlin-Dahlem, Botanical Muse-
um Copenhagen, Botanical Research Institute of
Texas, Cameroon National Herbarium, Colec-
ciones Instituto Alexander von Humboldt, Com-
ision Nacional para el Conocimiento y Uso de la
Biodiversidad de Mexico, Conservation Interna-
tional Rapid Assessment Program Biodiversity
Survey Database, Consortium of California Her-
baria, Ecole de Faune de Garoua, Fairchild
Tropical Botanic Garden, Finnish Museum of
Natural History, Flora del Municipio de la
Huerta Jalisco, Harvard University Herbaria,
Herbario del Jardin Botanic Marimurtra, Herbar-
ium Hamburgense, Herbarium of the Institute of
Traditional Medicine Tanzania, Herbarium of the
New York Botanical Garden, Herbarium of
Plantae TAIF (Tawian e-Learning and Digital
Archives Program TELDAP), Herbarium of the
University of Aarhus, Herbarium of the Univer-
sity Libre de Bruxelles, Herbarium Universitat
Ulm, Herbarium of the University of Zurich,
Herbarium Senckenbergianum, Herbario del
CIBNOR, Herbario del Instituto de Ecologio
Mexico, Herbario los Tuxtlas, Herbario de la
Universidad de Granada, Herbario de la Uni-
versidad de Salamanca, Herbario SANT Univer-
sidad de Santiago de Compostela, Herbier des
Conservatoires et Jardins Botaniques de Nancy,

Herbier de la Guyane, Herbier du Bacnin, Indian
Ocean Node of OBIS, Institut Botanic de Barce-
lona, Institute of Ecology and Evolutionary
Biology National Taiwan University, Instituto
de Botanica Daewinion, Instituto de Ciencias
Naturales, Instituto de Investigacion Cientifica
Tropical, Instituto Nacional de Biodiversidad
(INBio) Costa Rica, Kew Royal Botanic Gardens,
Taiwan Forestry Research Institute, Louisiana
State University Herbarium, Missouri Botanical
Garden, Museo Nacional de Costa Rica, Museum
National d’Histoire Naturelle, National Herbar-
ium of the Netherlands, National Herbarium of
New South Wales, National Museum of Nature
and Science Japan, Natural History Museum
Vienna, New South Wales Department of Envi-
ronment Climate Change and Water, New
Zealand National Plant Herbarium, Ocean Bio-
geographic Information System Bioresources
Library (OBIS Australia), Phanerogamic Botani-
cal Collections of Sweden, Real Jardin Botanico
de Madrid, Royal Botanic Garden Herbarium
Edinburgh, Royal Museum of Central Africa,
South African National Biodiversity Institute,
South Australia Department of Environment
and Natural Resources, Southern Cape Herbar-
ium, Taiwan National Museum of Natural
Science, Tama Forest Science Garden Forestry
and Forest Products Research Institute, Tela-
Botanica, TELDAP Endemic Species Research
Institute, The European Genetic Resources Cata-
logue, UNIBIO IBUNAM Collecion de Plantas
Acuaticas, United States National Museum of
Natural History Botany Collections, Univerisi-
dad de Costa Rica, University of Alabama
Biodiversity and Systematics Herbarium, Univer-
sity of Alberta Museums Vascular Plant Herbar-
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ium, University of Arizona Herbarium, Univer-
sity of California Davis Herbarium, University of
California Santa Barbara Marine Science Insti-
tute, University of Connecticut Herbarium, Uni-
versity of Gottingen Herbarium, University of
Kansas Biodiversity Research Center, University
of Loma Herbarium, University of Montreal
Marie-Victorin Herbarium, University of Oregon
Museum of Natural and Cultural History, Uni-
versity of Strasbourg Herbarium, University of
Tennessee Knoxville, University of Vienna Insti-
tute for Botany Herbarium, University of Wash-

ington Burke Museum, USDA PLANTS

Database, Western Australian Herbarium, Wild-

life Institute of India, Yale University Peabody

Museum (Accessed through GBIF Data Portal,

http://www.data.gbif.org, 2012–03-15).

SUPPLEMENT

R code for single species and community

distribution models (Ecological Archives

C004-004-S1).
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