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4Institut de Ciències del Mar de Barcelona, CSIC, Passeig Marı́tim de la Barceloneta 37-49, 08003 Barcelona, Spain

Abstract. The contribution of carbonate-producing benthic organisms to the global
marine carbon budget has been overlooked, the prevailing view being that calcium carbonate
(CaCO3) is predominantly produced and exported by marine plankton in the ‘‘biological
pump.’’ Here, we provide the first estimation of the global contribution of echinoderms to the
marine inorganic and organic carbon cycle, based on organism-level measurements from
species of the five echinoderm classes. Echinoderms’ global CaCO3 contribution amounts to
;0.861 Pg CaCO3/yr (0.102 Pg C/yr of inorganic carbon) as a production rate, and ;2.11 Pg
CaCO3 (0.25 Pg C of inorganic carbon) as a standing stock from the shelves, slopes, and
abyssal depths. Echinoderm inorganic carbon production (0.102 Pg C/yr) is less than the
global pelagic production (0.4–1.8 Pg C/yr) and similar to the estimates for carbonate shelves
globally (0.024–0.120 Pg C/yr). Echinoderm CaCO3 production per unit area is ;27.01 g
CaCO3�m�2�yr�1 (3.24 g C�m�2�yr�1 as inorganic carbon) on a global scale for all areas, with a
standing stock of ;63.34 g CaCO3/m

2 (7.60 g C/m2 as inorganic carbon), and ;7.97 g C/m2 as
organic carbon. The shelf production alone is 77.91 g CaCO3�m�2�yr�1 (9.35 g C�m�2�yr�1 as
inorganic carbon) in contrast to 2.05 g CaCO3�m�2�yr�1 (0.24 g C�m�2�yr�1 as inorganic
carbon) for the slope on a global scale. The biogeography of the CaCO3 standing stocks of
echinoderms showed strong latitudinal variability. More than 80% of the global CaCO3

production from echinoderms occurs between 0 and 800 m, with the highest contribution
attributed to the shelf and upper slope. We provide a global distribution of echinoderm
populations in the context of global calcite saturation horizons, since undersaturated waters
with respect to mineral phases are surfacing. This shallowing is a direct consequence of ocean
acidification, and in some places it may reach the shelf and upper slope permanently, where the
highest CaCO3 standing stocks from echinoderms originate. These organism-level data
contribute substantially to the assessment of global carbonate inventories, which at present are
poorly estimated. Additionally, it is desirable to include these benthic compartments in
coupled global biogeochemical models representing the ‘‘biological pump’’ and its feedbacks,
since at present all efforts have focused on pelagic processes, dominated by coccolithophores.
The omission of the benthic processes from modeling will only diminish the understanding of
elemental fluxes at large scales and any future prediction of climate change scenarios.
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INTRODUCTION

Global significance of echinoderms: a critical role

in the marine CaCO3 cycle

The Echinodermata constitute a quantitatively im-

portant carbonate-producing marine phylum (Weber

1969), dominating numerous soft and hard bottom

ecosystems in the world’s oceans at all depths (McClin-

tock 1994), where they are often the predominant grazer

(Lawrence 2007). Echinoderms are divided into five

classes: Asteroidea, Echinoidea, Ophiuroidea, Holothu-

roidea, and Crinoidea, which are found from the

intertidal to the deep sea (Gage and Tyler 1991, Ellis

and Rogers 2000). Asteroidea establish dense popula-

tions over extensive geographical and bathymetric

ranges (see Franz et al. 1981, Sloan and Aldridge

1981, Howell et al. 2002). Echinoidea frequently

populate littoral and sublittoral zones (Turon et al.

1995), and the shelf and slope areas with species-specific

bathymetric ranges (e.g., Gutt 1991). Ophiuroids are
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particularly abundant at bathyal depths (Smith and

Hamilton 1983, Haedrich and Maunder 1984, Fujita

and Ohta 1989, 1990, Piepenburg and Schmid 1996).

Holothuroidea are common dwellers of soft sediments

especially in the deep sea in all oceans (Gutt 1988, Billett

1991, Billett et al. 2001). Lastly, the Crinoidea are the

least studied class, some of which are largely bentho-

pelagic, with certain species restricted to the deep sea

(Tokeshi 2002), while others dominate shallow tropical

coral reefs (Messing 1994). This ubiquitous presence of

echinoderms in all oceans and latitudes, especially on the

neritic, shelf, and slope areas, indicates a critical role in

calcium carbonate (CaCO3) production and sedimenta-

tion processes, which has been widely ignored to date.

A reliable assessment of the role of neritic CaCO3 in

the carbon cycle is still in its infancy (see Ridgwell and

Zeebe 2005), with large gaps in the understanding of the

contemporary global carbon budget that regulates large-

scale processes (Schlesinger 1997). Within the global

carbon budget, processes in the continental shelf are

poorly understood in terms of carbonate production and

accumulation (Milliman and Droxler 1995). Biologically

mediated reactions (precipitation and dissolution of

CaCO3) contribute significantly to the global CO2

balance (Berelson et al. 2007, Doney et al. 2009), as

the calcification process shifts the seawater carbonate

equilibrium, producing dissolved CO2 (Wollast et al.

1980). Approximately 0.6 moles of CO2 are released to

the seawater with the secretion of one mole of CaCO3 at

a temperature of 258C (Ca2þ þ 2HCO3
� ! CaCO3 þ

CO2 þH2O) (Ware et al. 1992).

The role of CaCO3 production in marine ecosystems

has been studied in detail for coral reefs (Gattuso et al.

1998), coccolithophores (Westbroek et al. 1989), Hal-

imeda bioherms (Rees et al. 2007), the pelagic realm

(Lee 2001), and in limited detail for the continental

shelves and slopes (Milliman and Droxler 1995, Iglesias-

Rodriguez et al. 2002). Shelf and slope environments,

where high echinoderm biomass occurs, have been

poorly sampled in terms of CaCO3 production and

accumulation, with present estimations having uncer-

tainties of up to 100% (Iglesias-Rodriguez et al. 2002).

Additionally, the CaCO3 compartment on production

and export that is included in global formulations of

coupled biogeochemical models of the ‘‘biological

pump’’ only accounts for pelagic processes mainly

concerning the calcite of coccolithophores (with an

exclusive focus in Emiliania huxleyi; e.g., Gehlen et al.

2007), and to a lesser extent the aragonite of pteropods

(e.g., Gangstø et al. 2008). An omission of coupled

benthic compartments in the biological pump, including

the echinoderm’s budget, may compromise the out-

comes of these models and future predictions.

Yet, quantitative studies on regional benthic CaCO3

budgets at the organism-level are scarce (Smith 1972,

Collins 1986). For echinoderms, the available CaCO3

production data are for an ophiuroid in the English

Channel (682 g CaCO3�m�2�yr�1; Migne et al. 1998) and

for a suite of echinoderms off California, between 20

and 336 g CaCO3�m�2�yr�1 (Smith 1972).

The contribution of echinoderms in the benthic

compartment of the global CaCO3 cycle is important

for three reasons: (1) echinoderms incorporate calcium

(Ca) and magnesium (Mg) into single crystals of

magnesium containing calcite after the pluteus stage of

development (as larvae) (see Politi et al. 2004 and

references therein) in a varying ratio related to the

concentrations in the water (Weber 1969, Dickson 2002),

storing high amounts of CaCO3; (2) echinoderm

populations typically attain high biomass in the neritic,

shelf, and slope environment (Ellis and Rogers 2000,

Metaxas and Giffin 2004), and are widely present,

dominating the abyssal plains (Gage and Tyler 1991,

Ruhl 2007), bearing a substantial CaCO3 standing stock

over large areas (Migne et al. 1998); and (3) the carbon

stored in echinoderms is directly released to the benthic

system when they die. Mortality occurs year round as a

result of a natural process (Rees and Dare 1993), or it can

happen in mass mortality events (Lessios et al. 1984a, b).

Echinoderm CaCO3 contribution at risk:

ocean acidification

Ocean acidification is predicted to occur under current

IPCC CO2 emissions scenarios (Houghton et al. 2001).

Around 50% of the emissions of CO2 are being absorbed

by the oceans, increasing the pCO2 with a concomitant

decrease in the surface pH by 0.3–0.4 units by the end of

the century (Feely et al. 2004, Caldeira and Wickett

2005, Orr et al. 2005). At present, the CO2 interaction

with seawater reduces the carbonate ion concentration,

which is thought to regulate the calcification of

extracellularly calcifying organisms (Spero et al. 1997,

Marubini et al. 2008). This process is governed by the

CaCO3 saturation state (X¼ (CO3
2�)(Ca2þ)/K �sp ), where

K �sp is the apparent stoichiometric solubility product.

For values of X , 1 (undersaturated), seawater is

corrosive, and dissolution may proceed (Isaji 1995). It

should be noted that for organisms bearing magnesium,

such as echinoderms, the saturation state may be lower

due to the higher solubility of the Mg mineral (see

Morse et al. 2006 for calculations). At present CO2

concentrations, for an echinoderm with a 10% mineral-

ogy of MgCO3, the saturation state (X) with respect to

its mineralogy (XMg; Morse et al. 2006, Andersson et al.

2008) is more than one unit lower than only with respect

to calcite (Lebrato et al. 2009).

Saturation horizons with respect to all mineral phases

(including Mg-bearing calcites) are migrating toward the

surface (Feely et al. 2004, Morse et al. 2006, Andersson

et al. 2008, Tyrrell et al. 2008), especially in the Pacific

Ocean (Feely et al. 2008), potentially risking the survival

of calcifiers in the neritic, shelf, and slope environments

(see Millero et al. [1979] for the special situation in the

Mediterranean Sea). Orr et al. (2005) predicted that by

2100 the Southern and the Arctic Oceans could be

undersaturated with respect to aragonite, and then
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calcite would follow in ;50–100 years. This has also

major implications for calcifying taxa at those latitudes.

Organism-level responses are still poorly understood

(Fabry et al. 2008, Doney et al. 2009). Studies on the

effects on echinoderms are still in their infancy, but

preliminary work suggests morphological failure (Kur-

ihara and Shirayama 2004) and a decrease in the

amount of CaCO3 incorporated (Clark et al. 2009) (as

seen for molluscs in Gazeau et al. [2007]). However, the

main concern is a failure of planktonic larvae to recruit

to adult populations due to the effect of changing water

carbonate chemistry and rising temperatures on the

onset of calcification in larvae (long-term reduction in

the CaCO3 contribution). Abnormal skeletogenesis and

100% mortality has been recorded in ophiuroid larvae

under pH conditions that were set at 0.2 units lower than

present values (Dupont et al. 2008). Reduced larval

survival has also been found in echinoid, ophiuroid, and

asteroid larvae cultured under high CO2 conditions

(Byrne and Davis 2008; see Dupont and Thorndyke

2009 for details). Yet, emerging work suggests that there

are fundamental gaps preventing us from understanding

the effect of acidification, with some examples of

completely contrary responses to enhanced CO2 condi-

tions (Ries et al. 2008, Wood et al. 2008, Dupont and

Thorndyke 2009). Experiments combining CO2 with

temperature in multifactorial approaches show even

more complex responses. While Gooding et al. (2009)

report an increase in growth of an adult starfish at high

CO2 and high temperature, Byrne et al. (2009) show that

elevated CO2 has no major effect on sea urchin early

stages, but that temperature deeply reduces gastrulation

success and impairs early development. Echinoderms do

incorporate high-magnesium calcite, which is more

susceptible to dissolution than other skeletons formed

only of calcite or aragonite (Bertram et al. 1991). The

consequence of this is a higher susceptibility to under-

saturation with respect to this mineral phase in the water

(Morse et al. 2006). Moreover, during larval stages,

unstable, transient, amorphous CaCO3 is formed and is

more soluble than the other compounds (Raz et al.

2003). This may impede optimum biomineralization

processes at early developmental stages that could

impact upon the pool of adult populations and their

contribution to the carbon cycle.

This study focuses on the measurement of organic and

inorganic carbon in a suite of species from the five

echinoderm classes to provide the first estimation of

their contribution to the benthic compartment of the

oceanic CaCO3 budget. This contribution is examined

both in terms of a standing stock (‘‘static term’’) and a

production rate (‘‘rate term’’). We also address the

global distribution of the echinoderm adult populations

and put this into perspective with the present-day

CaCO3 saturation horizons. Our work highlights the

poor understanding of large-scale carbon processes

associated with calcifying taxa such as echinoderms

and tackles some of the uncertainties in the CaCO3

budget in neritic zones, shelves, and slopes. The results

and conclusions of this work draw attention to the need
for a major reassessment of the contribution of benthic

organisms such as echinoderms to the global marine
CaCO3 cycle, and the incorporation of a benthic

compartment in coupled global biogeochemical models
of the biological pump, beyond the traditional pelagic
processes.

ECHINODERMS CARBON MEASUREMENTS

Samples origin and treatment

Fresh echinoderm samples were collected in the
Atlantic Ocean at different latitudes, with collection

methodologies including vessel-based and manual sam-
pling (Table 1). Representatives from the five echino-

derm classes were analyzed (Table 1). The number of
individuals per species depended on the availability of

material. In the case of deep-sea samples, few individuals
were available (three per species), while in shallow water
surveys, between three and 14 individuals per species

were collected (Table 2). All individuals analyzed were
selected according to size to ensure that the main

representative size classes for adults were included.
Samples used for analysis had all their body parts intact,

including spines in the case of echinoids. Samples with
missing components or severe damage were excluded.

All material was carefully cleaned to exclude any
calcareous encrustations and sediment. All samples were

sealed in individual plastic bags and stored at�808C.

Carbon estimations

All echinoderm samples were transferred from�808C

to a freeze dryer within their respective plastic bags
(Harris 1954). Samples were freeze dried continuously

for 48 hours and subsequently disintegrated to a
homogeneous powder with a rotating metal blade.
Carbon analyses were performed in triplicate for

inorganic carbon (IC) and for total carbon (TC) using
Model 5012 UIC Coulometers (UIC Coulometrics,

Joliet, Illinois, USA; Johnson 1995, Johnson et al.
1998). The amount of echinoderm sample used in the

subsample measurements was 16.08 mg 6 4.01 (n¼ 174)
for IC, and 11.55 mg 6 2.56 (mean 6 SD; n¼ 174) for

TC. Calibration of the Coulometers was verified with
pure, dry CaCO3 standards. IC content was determined

to be 11.94% 6 0.12% (cf. 12.00%), equivalent to 99.55%
6 1.01% CaCO3 (n ¼ 16). TC content of the standard

was determined to be 11.98% 6 0.01% (cf. 12.00%),
equivalent to 99.85% 6 0.81% CaCO3 (n ¼ 8). Organic

carbon (OC) was calculated as the difference between
TC and IC.

The carbon fraction representing CaCO3 was assumed
to be almost equal to the IC (Davoult et al. 1992). Thus,

the CaCO3 content was a function of the IC: CaCO3

percentage ¼ (IC% 3 8.33), where 8.33 is the CaCO3/C
ratio based on the elemental atomic mass. We assumed

that the IC present as MgCO3 made a negligible
contribution to the total although the proportion of
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CaCO3 and MgCO3 depends on the class and is mainly

species-specific (Vinogradov 1953, Weber 1969). The

proportions of MgCO3, which can attain between 5%

and 18% of the dry skeleton mass alone or single skeletal

parts (see Vinogradov 1953), represent an overestima-

tion when considering whole bodies of echinoderms with

all the CaCO3 and the organic carbon. The contribution

in terms of MgCO3 was not included in our CaCO3

budget analysis. Yet, the separate contribution of

CaCO3 and MgCO3 to the global budget is being

reassessed with samples used in this study as well as with

new ones from the equator, the Arctic, and the Southern

Ocean (Antarctica) (J. Ries and M. Lebrato, unpublished

manuscript).

Echinoderm global carbon data set

Data compilation.—Field data were compiled from the

literature and two unpublished data sets (Appendix:

TABLE 1. Echinoderm samples used as model organisms along with sampling survey details.

Class and species
Sample
depth

Collection
method Location coordinates Location name

Asteroidea

Asterina gibbosa intertidal manual 50.638 N, 2.398 W English Channel (NE Atlantic)
Asterias rubens intertidal manual 53.248 N, 4.468 W Swansea (NE Atlantic)
Marthasterias glacialis intertidal manual 43.588 N, 6.248 W Cape Vidio (NE Atlantic)
Zoroaster fulgens 1131–1156 m semi-otter trawl

collection
49.288 N, 12.368 W Porcupine Sea Bight (NE Atlantic)

Echinoidea

Cidaris blakei 595 m submersible
collection

24.838 N, 77.508 W South West Reef (NW Atlantic)

Paracentrotus lividus intertidal manual 43.588 N, 6.248 W Cape Vidio (NE Atlantic)
Psammechinus miliaris intertidal manual 50.358 N, 4.138 W Plymouth (NE Atlantic)
Tripneustes ventricosus subtidal manual 25.128 N, 77.298 W Paradise Island (NW Atlantic)

Ophiuroidea

Ophiosium lymani 1131–1156 m semi-otter trawl
collection

49.208 N, 12.308 W Porcupine Sea Bight (NE Atlantic)

Holothuroidea

Holothuria forskali intertidal manual 43.588 N, 6.248 W Cape Vidio (NE Atlantic)

Crinoidea

Antedon mediterranea 63 m bottom trawl
collection

41.438 N, 2.328 W Catalan Slope (Mediterranean Sea)

TABLE 2. Regression equations fitted to the collected-samples data to allow conversions from size (S ) to dry mass of an average
adult (also included are general equations used for literature data).

Species or class
No.

samples Equation for dry mass r2 S definition�
Dry mass/

wet mass (%)

Asterina gibbosa 10 ¼(0.079 3 S ) � (0.101) 0.98 center disk to arm tip 44.18
Asterias rubens 8 ¼(0.797 3 S ) � (40.114) 0.77 center disk to arm tip 24.73
Marthasterias glacialis 7 ¼(0.409 3 S ) � (7.633) 0.79 center disk to arm tip 33.00
Zoroaster fulgens 4 ¼(0.301 3 S ) � (10.314) 0.98 center disk to arm tip 61.05
Cidaris blakei 3 see Echinoidea 0.84 test diameter 44.19
Paracentrotus lividus 14 ¼(0.808 3 S ) � (20.168) 0.90 test diameter 40.61
Psammechinus miliaris 14 ¼(0.554 3 S ) � (10.621) 0.99 test diameter 38.07
Tripneustes ventricosus 3 see Echinoidea 0.84 test diameter 18.80
Ophiosium lymani 6 ¼(0.027 3 S ) � (0.611) 0.83 center disk to arm tip 88.19�
Ophiosium lymani 6 ¼(0.149 3 S ) � (1.007) 0.72 disk diameter 88.19�
Holothuria forskali 3 ¼(0.067 3 S ) � (1.371) 0.99 body length 11.06
Antedon mediterranea 3 ¼(0.052 3 S ) � (0.727) 0.72 center disk to arm tip 43.07
Antedon mediterranea 3 ¼(0.200 3 S ) � (0.070) 0.95 disk diameter 43.07
Asteroidea 32 ¼(0.309 3 S ) � (2.518) 0.83 center disk to arm tip 32.90§
Echinoidea 36 ¼(0.492 3 S ) � (8.202) 0.84 test diameter 34.02
Ophiuroidea 12 ¼(0.038 3 S ) � (0.320) 0.88 center disk to arm tip 47.10§
Ophiuroidea 12 ¼(0.136 3 S ) � (0.949) 0.86 disk diameter 47.10§
Holothuroidea 3 ¼(0.067 3 S ) � (0.070) 0.99 body length 19.30§
Crinoidea 3 ¼(0.052 3 S ) � (0.727) 0.72 center disk to arm tip 43.07
Crinoidea 3 ¼(0.200 3 S ) � (0.070) 0.95 disk diameter 43.07

Note: Dry mass to wet mass conversions used both in samples and biomass data are also presented (for literature data, also).
� Size measured with knife-edged calipers. Two types of size (S ) estimation were used for the Ophiuroidea and Crinoidea.
� Value likely to have been affected by a freezing issue.
§ Value recommended by Ricciardi and Bourget (1998).
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Table A1) when three conditions were met: (1) the

echinoderm data were species specific or class specific

(papers just including a general ‘‘echinoderms’’ termwere

excluded), (2) a density and/or biomass estimation (dry or

wet) was available (Appendix: Table A1), and (3) geo-

graphical information (latitude and longitude) was

available. Additional information included the depth of

the density/biomass estimation, a size reference, the areal

extent occupied at such density/biomass, and any annual

mortality rate. The field sampling methodology was also

recorded (Appendix: TableA1). Field surveys varied from

visual counts with quadrates, to trawls and submersible

photographs. The final data set was intended to represent

all oceans and latitudes (Fig. 1), but it is biased toward the

Atlantic Ocean. The low latitudes, the Indian Ocean,

southeast and west Pacific, and African coasts are greatly

undersampled (Fig. 1). The most northern samples were

from the Barents Sea (808570 N, 278140 E), while the most

southern originated in the Weddell Sea (778300 S, 46800

W). The deepest data correspond to the Angola Basin at

5497 m and a suite of other records in the northeast

Atlantic and northeast Pacific from 3000 to .4000 m.

Shallow water samples come from all oceans starting in

the intertidal environment.

Standing stocks and production rates calculation.—The

majority of the literature data had only a density value

recorded (e.g., number of individuals per unit area), and

intermediate steps were taken to translate density to

biomass estimations, carbon standing stocks, and

production rates. Regression equations enabled to

convert size (S ) for a mean adult to dry mass using

data from the species analyzed (Table 2). Equations for

each species and class were in the form of dry mass¼ (a

3S )� b, where a is the intercept, b is the gradient, and S

is a representative size measurement. Size was derived

from published data (Weber 1968, Barnes et al. 1976,

Russo 1980, Lewis and Storey 1984, Gutt 1988, Brey

and Gutt 1991, Gutt and Klages 1991, Kenner and

Lares 1991, Clark and Downey 1992, Ebert and Russell

1992, Sala et al. 1998, Chiappone et al. 2002, McCarthy

and Young 2002, Griffin et al. 2003, Pearce et al. 2005).

From the estimated dry mass of the species, the dry

biomass was a function of the recorded density and the

mean dry mass of an adult.

FIG. 1. Echinoderm distribution data from the literature used to estimate the echinoderm global carbon contribution (n¼ 523
sites). For each ocean basin, the percentage contribution of each class is included in the pie charts. The echinoderm class labels in all
charts follow the sequence (a–e) of those shown in the pie chart in the inset of the map. Bathymetric data range from 100 to 2000 m.
Gridded data were taken from the general bathymetric chart of the oceans (GEBCO) Digital Atlas (IOC et al. 2003).
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Data points with biomass estimations were divided

between wet and dry values. Wet mass values were

converted to dry by using either published dry mass/wet

mass percentage conversions (Ricciardi and Bourget

1998) or measurements from the laboratory (Table 2).

Dry biomass data were used directly (few cases). Original

data that were not estimated per square meter were nor-

malized to this unit (m2) for comparability. All other data

converted through the dry or wet mass protocol were

eventually in the form of dry biomass per square meter.

The calculation of the standing stock of carbon was the

product of the dry biomass and a standard carbon

percentage (OC, IC, and CaCO3). Carbon data for the

species analyzed were extrapolated to all literature data

in all oceans (see Results and Table 3; for limitations see

Echinoderms carbon measurements: Echinoderm global

carbon data set: Limitations in the extrapolation of carbon

and mortality conversions globally).

The conversion of standing stocks to production rates

was based on the data from Smith (1972), which used in

situ data from the CaCO3 mass of live echinoderms per

unit area (‘‘calcimass’’) to assess the production rates off

California, USA. We refer to this calcimass term here

for echinoderms as ‘‘CaCO3 standing stock’’ in grams of

CaCO3 per square meter. In order to convert the calcu-

lated CaCO3 standing stocks to production, we used a

rate factor (referred to as ‘‘turnover’’). The standing

stocks are a ‘‘static term,’’ while the turnover is a ‘‘rate

term’’; the product of the two is the ‘‘production rate’’

for the purpose of this paper. Haderlie (1969) provided a

model to assess organism’s turnover rate, which is a

function of the continual growth and the time to achieve

a limiting size. It assumes that organisms (in this case

echinoderms) grow to this limiting size and then they die

(see Smith [1972] and Haderlie [1969] for the mathe-

matical details). Thus, growth and size distribution data

can be used to work out mortality based on the as-

sumption that mortality is constant (at a limiting size),

growth follows the von Bertalanffy equation (von

Bertalanffy 1938), and recruitment is constant (see

Smith 1972).

For the purpose of our global calculations we used a

turnover rate from the standing stock of 0.2 yr�1 for

ophiuroids, 1.0 yr�1 for echinoids, and 0.3 yr�1 for the

rest (see details for specific species in Smith [1972] and

references therein). The work of Smith (1972) was done

off southern California, from 328 to 348 N, in waters

between 108 and 208C, and depths between 0 and 22 m.

The conversion factors used for echinoderms in this

study (turnover rate) may be valid for many temperate

neritic and shelf environments globally, since the

original authors derived their data from those areas.

However, they represent an extrapolation to the

echinoderms’ turnover rates in the slopes, the bathyal

depths, and certainly for the low latitudes.

The ability of this data set to predict the total carbon

contribution of echinoderms to the carbon cycle is

limited, since we do not know the global area they

occupy. However, it is a useful approximation per unit

area based on the amount of data collected. In order to

provide conservative global carbon figures both as

standing stocks and production rates, the area occupied

by the shelves, slopes, and the abyssal depths published

in Iglesias-Rodriguez et al. (2002) and in Milliman

TABLE 3. Organic carbon percentage (OC%), inorganic carbon percentage (IC%), and CaCO3

percentage (CaCO3%), mean 6 SD, for sample species used as model organisms.

Species or class n� OC% IC%� CaCO3%

Asterina gibbosa 6 12.93 6 3.61 7.35 6 0.83 61.25 6 6.95
Asterias rubens 8 18.75 6 5.37 5.85 6 1.03 48.78 6 8.61
Marthasterias glacialis 7 17.36 6 3.11 6.49 6 0.90 54.98 6 7.55
Zoroaster fulgens 4 9.64 6 0.52 8.96 6 0.54 74.64 6 4.53
Cidaris blakei 3 2.32 6 0.56 10.42 6 0.17 86.83 6 1.42
Paracentrotus lividus 8 7.53 6 1.08 8.95 6 0.24 74.63 6 2.02
Psammechinus miliaris 8 4.88 6 0.98 9.69 6 0.34 80.71 6 2.85
Tripneustes ventricosus 3 7.40 6 0.07 7.61 6 0.23 63.42 6 1.98
Ophiosium lymani 6 5.98 6 0.63 9.35 6 0.14 77.91 6 1.24
Holothuria forskali 3 27.44 6 2.01 0.41 6 0.13 3.46 6 1.09
Antedon mediterranea 3 8.48 6 1.13 8.74 6 0.16 72.86 6 1.36
Asteroidea 4 14.67§ 7.16§ 59.69§
Echinoidea 2 4.86} 9.01} 75.12}
Echinoidea 2 6.21# 9.32# 77.67#
Ophiuroidea 1 5.98§ 9.35§ 77.91§
Holothuroidea 1 27.44§ 0.41§ 3.46§
Crinoidea 1 8.48§ 8.74§ 72.86§

Note: Also included are the general carbon percentages applied to other species compiled from
studies in the literature.

� Represents either the number of individuals per sample species or the number of sample species
included per class used to extrapolate to other literature studies.

� Inorganic carbon in echinoderms is stored as CaCO3, MgCO3, and high-Mg CaCO3 (Weber
1969, Dickson 2002).

§ Data for all latitudes.
} Data for equatorial latitudes.
# Data for all latitudes except equatorial.
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(1993) were used in combination with the calculated

data. We also used data on the depth range of the shelf,

slope, an abyssal depths from Gage and Tyler (1991)

and Anikouche and Sternberg (1973) to derive specific

standing stocks and production rates at those areas. For

the shelf we used an area of 103 1012 m2 (from 0 to 200

m), for the slope an area of 3231012 m2 (200 to 2000 m),

and for the abyssal depths (including the continental

rise) an area of 290 3 1012 m2 (.2000 m). For the shelf

depth range, we ignored that in Antarctica it is deeper

compared with other shelves worldwide with a mean

water depth of 350 m (Picken 1985).

Limitations in the extrapolation of carbon and mortal-

ity conversions globally.—The assumption of a constant

mortality rate at a limiting size (Smith 1972) in our

conversion from standing stocks to production rates

represents a ‘‘steady state.’’ This means that the

‘‘observed behavior’’ of the system (in this case the

turnover rate applied), will remain unchanged over time.

This is an assumption we make, avoiding the inclusion

of data from mass mortality events representing a ‘‘non-

steady state’’ system (e.g., Lessios et al. 1984a, b). It is

not the purpose of this paper to assess the contribution

of mass mortality events to the CaCO3 inventories, but

they certainly merit further characterization and scien-

tific study.

In the extrapolation of carbon data from our model

species, we assumed that their biogeochemical compo-

sition was similar across species and latitudes, and this is

supported by data comparing the Antarctic with

temperate and tropical regions (McClintock and Pearse

1987). Additionally, we compiled literature data of per-

centage dry mass as CaCO3 in echinoderm skeletons for

all latitudes and oceans (data in Vinogradov 1953). We

found the following means and standard deviations:

85.61% 6 4.14% CaCO3 in asteroids (n ¼ 26 species),

87.52% 6 4.24% CaCO3 in echinoids (n ¼ 17 species),

86.90% 6 3.41% CaCO3 in ophiuroids (n ¼ 18 species),

and 87.24% 6 1.63% CaCO3 in crinoids (n¼ 22 species).

This consistence among species is a major finding, since

we may not need to sample many species globally to

build up a global CaCO3 budget. The differences across

species, at least in the inorganic carbon fraction, are

minor. These data support our limited use of echino-

derm samples as model organisms in this data set.

Data analyses.—All statistical analyses were per-

formed in Minitab 14.0 (Minitab, State College,

Pennsylvania, USA). Data were normally distributed

after a log transformation. A general linear model

(GLM) was run to compare the carbon content

differences across classes and species due to an

unbalanced design (the model is y ¼ Xb þ e, Xibi þ ei,
where y is carbon, X is class, Xi is species, b is the vector

of coefficients, and e is the vector of residuals). The same

GLM type was used to assess the carbon standing stock

in the four oceans (Atlantic OceanþMediterranean Sea,

Pacific Ocean, Southern Ocean, and Arctic Ocean) and

among the five echinoderm classes (where X is ocean, Xi

is class). Post hoc analyses (Tukey test) were subse-

quently performed to assess further differences. All

mapping work was carried out in ArcGIS 9.2 (ESRI,

Redlands, California, USA), and graphics plotted in

SigmaPlot 9.0 (Systat, Chicago, Illinois, USA).

Calcite saturation (X-Ca) depth calculations

and echinoderms global distribution

Global calcite saturation (X-Ca) data were highlight-

ed in areas extensively populated by echinoderms, as it is

these populations that will be adversely affected first by

the predicted shoaling in saturation depth. X-Ca data

were calculated from the GLODAP bottle database

(available online)6 (also see Appendix: Fig. A1; Key et al.

2004, Sabine et al. 2005). The X-Ca calculations were

done with the software CO2SYS (CO2 System Calcula-

tions; Lewis and Wallace 1998, Pierrot et al. 2006). The

calculations used the dissociation constants from Mehr-

bach et al. (1973) refitted by Dickson and Millero

(1987), KHSO4 from Dickson (1990), and the input

parameters were dissolved inorganic carbon (DIC),

titration alkalinity (TA), temperature, salinity, pressure,

silicate, and phosphate in situ. To construct a global

map of the calcite saturation depth (X-Ca¼ 1) at depth,

all the data were gridded in the software Surfer (Golden

Software, Golden, Colorado, USA) inside a polygon to

ensure it would not grid on land (minimum curvature

method, with a grid size of 28 3 28). X-Ca data were also

calculated from the GLODAP carbon database and

from cruise Niskin bottle data (Arctic Ocean) at specific

locations and depths where echinoderm data were also

available. There are limited data from the Arctic Ocean,

and the X-Ca values presented here do not represent a

comprehensive and detailed representation of the Arctic

Ocean.

Data to assess the echinoderms global distribution

and put it in perspective with the present saturation

horizons were compiled from the Census of Marine Life

(available online),7 the Ocean Biogeographic Informa-

tion System (available online),8 and published literature.

The databases were extensively explored and data were

compiled individually for the five echinoderm classes

(see ‘‘Other data’’ in Fig. 2). This data set provides a

limited understanding of the distribution of the echino-

derms since many species are missing (see Pawson 2007,

Uthicke et al. 2009 for an update). Moreover, the

records are potentially biased toward those locations

where more samples have been collected, and places

such as the Arctic Ocean, Southern Ocean, and the east

Pacific are probably undersampled. Another substantial

source of uncertainty and lack of data is the deep waters,

where ophiuroids, for example, are known to exist at

high densities (Blaber et al. 1987, Metaxas and Giffin

2004).

6 hhttp://cdiac.ornl.gov/oceans/glodap/Glodap_home.htmi
7 hhttp://www.coml.org/i
8 hhttp://www.iobis.org/i
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RESULTS

Echinoderm carbon measurements

The organic (OC) and inorganic carbon (IC) (includ-

ing CaCO3) content as a function of the dry mass was

significantly different among classes (OC, F4,54 ¼ 52.01,

P , 0.01; IC/CaCO3, F4,54 ¼ 265.59, P , 0.01), and

among species within the same class (OC, F3,54¼ 10.17,

P , 0.01; IC/CaCO3, F3,54 ¼ 3.64, P , 0.05; Table 3).

The maximum difference in OC between any two classes

was 22% (holothurian–echinoid), while between species

within the same class it was 9% (asteroids). For

inorganic carbon (IC), the maximum difference between

any two classes achieved was 10% (83% of CaCO3;

echinoid–holothurian), and among species it was 3%
(23% of CaCO3; echinoids). The percentage of OC was

highest in holothurians (27.44% 6 2.01%; all data shown

are mean 6 SD), followed by asteroids (18.75% 6

5.37%), while for CaCO3, echinoids (86.83% 6 1.42%),

ophiuroids (77.91% 6 1.24%), and crinoids (72.86% 6

FIG. 2. Geographical distribution of the calculated CaCO3 standing stock from echinoderms: (a) northeast Atlantic, (b)
northwest Atlantic, (c) east-equatorial Atlantic and Mediterranean Sea, (d) west-equatorial Atlantic and south Atlantic, (e) north
Pacific, (f ) west and south Pacific, (g) Southern Ocean, and (h) Arctic Ocean. Colored symbols indicate the estimated CaCO3

standing stock, and black crosses indicate the sites where echinoderms have been recorded. The gray bathymetric line represents the
1000-m break.
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1.36%) had the highest proportions. Inorganic to

organic carbon ratios (IC/OC) varied from ,1 in

asteroids to .1.5 in echinoids and ophiuroids.

Global patterns of echinoderm carbon

Standing stocks per unit area and global production

rates.—The calculated echinoderm global CaCO3

standing stocks and production rates were strongly

differentiated and ‘‘patched’’ in the four oceans studied
(Atlantic Ocean þ Mediterranean Sea, Pacific Ocean,

Southern Ocean, and Arctic Ocean). There were

significant differences among oceans (F3, 515 ¼ 17.78,

P , 0.01) and classes (F4, 515 ¼ 15.85, P , 0.01). The

post hoc analysis (Tukey test) revealed the following

underlying differences in the CaCO3 standing stocks

and production rates at P , 0.05: (1) Atlantic Ocean,

significant differences among all combinations of

classes; (2) Pacific Ocean, significant differences among
the Asteroidea, Echinoidea, and Ophiuroidea, among

the Echinoidea, Ophiuroidea, and Holothuroidea, and

between Echinoidea and Crinoidea; (3) Southern

Ocean, only significant differences between the Aster-

oidea and the other classes; (4) Arctic Ocean, only
significant differences between the Asteroidea and the

Crinoidea.

The global averaged standing stock of carbon derived

from echinoderms at all areas is partitioned as follows:

7.97 g C/m2 organic carbon, 7.60 g C/m2 inorganic

FIG. 2. Continued.
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carbon, and 63.34 g CaCO3/m
2 (Table 4). Bathymetri-

cally, the major contribution originates in the shelf, with

values for all carbon compartments over an order of
magnitude higher than in the slope and the abyssal depths

(Table 4). The major contribution of organic carbon is

from holothurians (10.34 g C/m2) and asteroids (9.68 g C/
m2), while ophiuroids (127.36 g CaCO3/m

2) and echi-

noids (66.72 g CaCO3/m
2) contribute the most CaCO3

(Table 4). In terms of the annual global CaCO3

production in all areas based on the field data turnover
rates, echinoderms produce 27.01 g CaCO3�m�2�yr�1 on
average (3.24 g C�m�2�yr�1 as inorganic carbon), with

echinoids (66.72 g CaCO3�m�2�yr�1) and ophiuroids
(25.47 g CaCO3�m�2�yr�1) producing the most (Table

4). The CaCO3 production in the shelves is 77.91 g

CaCO3�m�2�yr�1 (9.35 g C�m�2�yr�1 as inorganic carbon),
which is over an order of magnitude higher than the

production in the slopes and abyssal depths of 2.05 and

0.056 g CaCO3�m�2�yr�1 respectively (0.24 and 0.006 g
C�m�2�yr�1 as inorganic carbon respectively; Table 4).

Using these data along with the global figures of the

areas occupied by the shelves (;10 3 1012 m2), slopes

(;32 3 1012 m2), and the abyssal depths (;290 3 1012

m2), the echinoderms CaCO3 standing stock translates

into ;1.843 1015 g CaCO3, ;0.243 1015 g CaCO3, and

0.037 g CaCO3, respectively (0.22 3 1015, 0.028 3 1015,
and 0.0044 g C as inorganic carbon, respectively). The

total is 2.11 3 1015 g CaCO3 (0.25 3 1015 g C as

inorganic carbon). On the production side, echinoderms
account for ;0.783 1015 g CaCO3/yr (0.0933 1015 g C/

yr as inorganic carbon) from the shelves, ;0.065 3 1015

g CaCO3/yr (0.0078 3 1015 g C/yr as inorganic carbon)

from the slopes, and ;0.016 3 1015 g CaCO3/yr (0.0019

3 1015 g C/yr as inorganic carbon) from the abyssal

depths (Table 5). This translates into a final global figure
of ;0.861 3 1015 g CaCO3/yr (0.102 3 1015 g C/yr as

inorganic carbon) for the shelves, slopes, and abyssal

depths together (Table 5).

Geographical distribution of the CaCO3 standing
stock.—The available data for calculation of CaCO3

standing stocks were patchily distributed in all areas

studied, limiting a detailed characterization of the
carbon budget. This patchiness can be observed in

detail in Fig. 2. In the northeast Atlantic (Fig. 2a),

CaCO3 produced by echinoderms attained values .2000
g/m2, especially in the Irish Sea and the English

Channel. Ophiuroids (Ophiothrix fragilis, Ophiocomina

nigra, Ophiopholis aculeata), asteroids (Asterias rubens,
Hymenaster spp., Astropecten irregularis), and echinoids

(Psammechinus miliaris, Echinus spp.) accounted for the

majority of the calculated CaCO3 stocks. The carbonate

stock in the well-sampled Porcupine Seabight (1000–
1400 m depth) deep areas was relatively low compared

with that in shallow water. Other areas around Ireland

and Scotland, as well as the North Sea, revealed a
conspicuous presence of echinoderms, which may well

bear substantial CaCO3 stocks. In the northwest

Atlantic (Fig. 2b), although limited data were available,
a substantial contribution was observed, between 100

and .1000 g CaCO3/m
2, mainly by ophiuroids

(Ophiopholis aculeata, Ophiacantha abyssicola, Ophio-
musium lymani ). Areas such as the New England

continental slope are well known to harbor high biomass

of echinoderms. In the east and equatorial Atlantic (Fig.

TABLE 4. Echinoderm standing stock of organic carbon (OC), inorganic carbon (IC), and CaCO3, given as means, with minimum
and maximum values calculated globally for all areas (for class) and for the shelf, slope, and abyssal areas (for depth); calculated
CaCO3 production rates based on the conversion data in Smith (1972) are also included.

Category

Carbon standing stock
(g C/m2)�

n§

OC IC CaCO3

Mean Range Mean Range Mean

Class

Asteroidea 170 9.68 9.65 3 10�7–630.88 3.10 4.71 3 10�7–196.95 25.82
Echinoidea 132 6.28 2.48 3 10�6–152.44 8.01 3.72 3 10�6–181.23 66.72
Ophiuroidea 156 1.87 5.29 3 10�5–29.24 15.29 1.23 3 10�6–510.15 127.36
Holothuroidea 41 10.34 7.89 3 10�7–326.50 0.02 8.02 3 10�7–0.44 0.16
Crinoidea 24 0.16 8.48 3 10�8–3.39 0.17 8.74 3 10�8–3.50 1.41

Mean� 523 7.97 8.43 3 10�8–630.88 7.60 8.74 3 10�8–510.15 63.34

Depth

Shelf (0–200 m) 164 21.77 9.65 3 10�7–630.88 22.31 4.71 3 10�7–510.15 184.77
Slope (200–2000 m) 180 2.23 8.48 3 10�8–98.70 0.90 8.74 3 10�8–28.35 7.51
Abyssal (.2000 m) 78 0.023 2.48 3 10�6–0.75 0.015 8.74 3 10�8–28.35 0.12

� Data calculated as global means of the five classes from the 523 sites at all depths. The mean is not from data of the five classes
directly from the table.

� Conversion made from standing stocks with data from Smith (1972), which includes a turnover factor (see Materials and
methods).

§ Number of locations (data compiled from the literature).
} Calculated with 3.24 g C�m�2�yr�1 as inorganic carbon.
# Calculated with 9.35 g C�m�2�yr�1 as inorganic carbon.
jj Calculated with 0.24 g C�m�2�yr�1 as inorganic carbon.

�� Calculated with 0.006 g C�m�2�yr�1 as inorganic carbon.
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2c), very few CaCO3 values were calculated, and they

were mainly derived from the Mauritania slope (,1 g

CaCO3/m
2), the Canary Islands (,200 g CaCO3/m

2),

the Angola Basin (,1 g CaCO3/m
2), and the Ivory

Coast (,10 g CaCO3/m
2). The majority of these data

were based on echinoid populations (Paracentrotus

lividus, Arbacia lixula, Diadema antillarum). In contrast,

the Mediterranean Sea had values .100 g CaCO3/m
2 in

several areas, entirely due to the echinoid Paracentrotus

lividus (Fig. 2c). In the west and equatorial Atlantic (Fig.

2d), mainly in areas of the Caribbean Sea, CaCO3 levels

always remained ,300 g CaCO3/m
2. Echinoids also

dominated the CaCO3 production (Echinothrix spp.,

Tripneustes spp., Diadema antillarum). Few data were

analyzed in the northeast Pacific (Fig. 2e), with values

,5 g CaCO3/m
2 derived from asteroids (Henricia spp.)

and ophiuroids (Amphiura spp.). CaCO3 values were

.500 g/m2 from asteroids (Pisaster spp.) and echinoids

TABLE 4. Extended.

Carbon standing stock
(g C/m2)�

Production
(g CaCO3�m�2�yr�1)�

CaCO3 CaCO3

Range Mean Range

3.92 3 10�6–1640.59 7.76 1.17 3 10�6–492.18
3.10 3 10�5–1509.71 66.72 3.10 3 10�5–1509.71
1.02 3 10�5–4249.54 25.47 2.05 3 10�6–849.91
6.68 3 10�6–3.66 0.070 2 3 10�6–1.10
7.28 3 10�7–29.15 0.42 1.81 3 10�7–8.74

7.28 3 10�7–4249.54 27.01} 2.18 3 10�7–1509.71

3.92 3 10�6–4249.57 77.91# 1.17 3 10�6–1509.71
7.28 3 10�7–236.21 2.05|| 2.18 3 10�7–70.86
6.68 3 10�6–3.07 0.056�� 2 3 10�6–2.47

TABLE 5. Reassessment of the global CaCO3 budget with updates of recent organism-level measurements.

Production term

Production
estimate
(Pg C/yr)

Area
(1012 m2) Reference

Sources

Neritic�
Coral reefs 0.108 0.6 Iglesias-Rodriguez et al. (2002)
Halimeda bioherms 0.02 Iglesias-Rodriguez et al. (2002)
Banks/bays 0.048 0.8 Iglesias-Rodriguez et al. (2002)

Non-carbonate shelves 0.05 1.5 Iglesias-Rodriguez et al. (2002)
Shelves� 0.024–0.120 10 Iglesias-Rodriguez et al. (2002)
Slopes� 0.06 32 Iglesias-Rodriguez et al. (2002)
Pelagic

Euphotic zone 0.6–1.6 6 0.3� 300 Balch et al. (2007)§
Export , 100 m 0.6 Sarmiento et al. (2002)}
Export , 2000 m 0.4 6 0.05� Honjo et al. (2008)}
Export from models 0.4–1.8 Moore et al. (2004)

Organism level

Foraminifera 0.036–0.065 290 Schiebel (2002)#
Fish (pelagic) 0.04–0.11 300 Wilson et al. (2009)||
Molluscs (neritic) 0.047 1.8 Chauvaud et al. (2003)��
Pteropods (pelagic) 0.87 Gangstø et al. (2008)
Echinoderms (shelves) 0.093 10 this study��
Echinoderms (slopes) 0.0078 32 this study��
Echinoderms (abyssal) 0.0019 290 this study��
Total 0.96–2.56

Sinks

Dissolution (200–1500 m) 1 300 Berelson et al. (2007)
Dissolution in the seafloor

(.2000 m)
0.4 6 0.03� 300 Berelson et al. (2007)

Buried in sediments 0.10 300 Catubig et al. (1998)

Total 1.50 Catubig et al. (1998)

Notes: Data have been summarized from other studies, apart from the data from this study. All values are converted to Pg C/yr
as inorganic carbon (1 Pg¼Gt¼ 1015 g). The total in sources is an approximation from the sum of what we know. It is a range,
since all studies have their own error, and giving a figure as such is impossible. The total in sinks comes only from the work in the
water column, and it is the sum of the different figures. Blank cells indicate that data are not available.

�Original data in Milliman (1993).
�Range or mean 6 SE.
§ Satellite production estimation.
} Sediment trap flux data.
# Multinet and sediment trap flux data at 500 m. No production rate data.
jjModel output.

�� Global extrapolation based on data from three stations off California over a period of 7 years.
�� 0.102 Pg C/yr as a global figure for all areas. Global extrapolation is based on data from 523 stations.
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(Strongylocentrotus franciscanus). The west and south

Pacific areas (Fig. 2f ), especially the Indo-Pacific, were

extremely undersampled, and the only calculations were

available from the south China Sea. CaCO3 standing

stock values remained ,200 g/m2 with a well-mixed

suite of species from the five classes, mainly dominated

by echinoids (Diadema spp., Echinometra lucunter,

Echinothrix spp.). In the vicinity of the Philippine Sea,

the echinoid Anthocidaris crassispina accounted for .70

g CaCO3/m
2 while the ophiuroid Ophiura sarsii ac-

counted for 30 g CaCO3/m
2 near the Tsugaru Strait

(Japan Sea). The Australian, Tasman, and New Zealand

coasts are well known to shelter high echinoderm

biomass, but were also undersampled, with estimations

,20 g CaCO3/m
2 attributed mainly to the ophiuroid

Ophiacantha fidelis. The Southern Ocean (parts of the

south Atlantic, Weddell Sea, and Ross Sea; Fig. 2g) were

reasonably sampled, with CaCO3 calculations ,500 g/

m2. The main contributors were asteroids (Odontaster

validus), echinoids (Sterechinus neumayeri ), and ophiu-

roids (Ophionotus victoriae, Ophiurolepis gelida). Lastly,

in the Arctic Ocean data were scarce (Fig. 2h), and

calculations remained ,60 g CaCO3/m
2, with the

echinoid Strongylocentrotus pallidus and a suite of

asteroids (Hymenaster spp.) and ophiuroids (Ophiacan-

tha spp., Ophiocten spp., Ophiura spp.) dominating the

CaCO3 stock.

Bathymetric trends in the CaCO3 standing stock

according to ocean basin.—The CaCO3 standing stock

of echinoderms is inversely related to depth in all oceans,

with differences of several orders of magnitude in the

gradient of this regression according to latitude (Fig. 3).

Within the same ocean there were also marked contrasts;

in the Atlantic, the averaged CaCO3 standing stock at

temperate latitudes attained 127.43 g CaCO3/m
2,

compared to 13.96 g CaCO3/m
2 in the tropical regions

(Fig. 3). In the Pacific, the situation was reversed with

the tropical latitudes supporting roughly 70 g CaCO3/m
2

and the temperate ones 16.75 g CaCO3/m
2. The

Southern Ocean presented on average a higher standing

stock than the Arctic Ocean at any one depth, with a

mean of 32.21 g CaCO3/m
2 compared to 2.65 g CaCO3/

m2 (Fig. 3). The standing stock calculations in any ocean

revealed much less variability in the tropics than at

higher latitude. The standard deviation of all the

Atlantic temperate data was 6471 g CaCO3/m
2 while

in the tropics it was 634.77 g/m2, compared to 689.15

(temperate) and 666.02 g/m2 (tropical) in the Pacific.

More than 80% of the substantial CaCO3 stocks (.10 g

CaCO3/m
2) were found in waters shallower than 800 m,

and especially from 0 to 500 m (Fig. 3). This coincided

with the neritic, shelf, and slope areas in most regions.

The deep-sea areas sampled presented a low CaCO3

standing stock per unit area, progressively decreasing

down to 4000–5000 m. However, the area covered by the

benthic systems at bathyal and abyssal depths cannot be

ignored on a global scale. Moreover, data originating

deeper than 2000 m only accounted for 19% of the data

set, while .60% of the data were recorded shallower

than 500 m.

Global X-Ca saturation horizons in echinoderm-rich areas

The global distribution of adult echinoderms and

their potential carbon contribution based on the
available data reveals clear trends (Fig. 4). Continental
margins are the areas most populated, with thousands of

records. Especially the west and northwest Atlantic, east
Atlantic, east and west Pacific, and the south Pacific

(New Zealand, Tasman Sea) presented the majority of
the echinoderm records (Fig. 4). Deep-sea data were

scarce, and therefore our understanding of their
contribution to the global carbon budget is limited.

The deep-sea echinoderm’s biogeography and contribu-
tion to the CaCO3 inventory is even more complicated

to assess with the knowledge of very low X-Ca
saturation values deeper than 4000 and 1000 m in the

Atlantic and Pacific Ocean, respectively (see graphs in
Fig. 4): The depth where the X-Ca ¼ 1.0 (saturation

state) gets closer to the surface from the Atlantic, to the
Indian, and to the Pacific Ocean, approaching the

surface in the north Pacific (see Feely et al. 2004 for
details). The situation in enclosed basins such as the
Mediterranean Sea is different, and undersaturation is

not even achieved at the seabed ,2000 m (see Millero et
al. 1979).

The in situ X-Ca saturation horizons where adult
echinoderm populations have been recorded varied

depending on latitude and depth (see graphs in Fig.
4). From 0 to 300 m, the mean X-Ca saturation in the

Atlantic (5.01) and the Pacific (4.79) are similar. Deeper
than that, the mean saturation in the Atlantic is higher

(2.65 between 300 and 1000 m, and 1.84 between 1000
and 2500 m) in comparison with the Pacific (2.03

between 300 to 1000 m, and 0.94 between 1000 and
2500 m). In the northwest Pacific, X-Ca values are

relatively close to undersaturation (1.66) at 250 m in
some areas (see graph in Fig. 4), while beyond 1000 m

they are already undersaturated. Undersaturation in the
north and south Atlantic only occurs deeper than 4000

m. The Southern Ocean data reveal no undersaturation
down to 2000 m (see graph in Fig. 4), but there are
values near the X-Ca ¼ 1 threshold between 300 m (X-

Ca ¼ 1.88) and 2000 m (X-Ca ¼ 1.24). The scarce data
from the Arctic make it difficult to assess the situation

there, but near 600 m X-Ca is still 2.42 (see Jutterström
and Anderson 2005 for details).

DISCUSSION

CaCO3 standing stock patchiness

Data presented here show patchiness in echinoderm
distribution at large and small scales depending on the

species and the population sampled, in agreement with
findings by other authors (e.g., Summers and Nybakken
2000). Global data showed high variability in echinoderm

density, with dense aggregations occurring in some
places, while being almost nonexistent at others. This
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partitions the echinoderms CaCO3 inventory in an

immense mosaic of ‘‘hot spots’’ with a clear trend of

decrease in carbon per unit area with depth, and a slight

decrease toward the low latitudes (see Fig. 3). In this

study, the bathymetric trends created spatial patchiness in

the CaCO3 stocks observed. Howell et al. (2002) showed

that the maximum abundance of asteroids over large

depth gradients is observed only in ranges of 200–300 m.

The same is recorded for ophiuroids (and for all

echinoderms), since their bathymetric distribution shows

a dependence on food (Haedrich et al. 1980), oxygen

(Summers and Nybakken 2000), seabed properties

(Mayer and Piepenburg 1996), and temperature (Garcia

et al. 2002). Recently, Cartes et al. (2009) provided

information on bathymetric patchiness and hot spots of

biomass for echinoderms in theMediterranean Sea. These

data support our conclusion of large hot spots of CaCO3

globally following depth and latitudinal gradients.

The highest CaCO3 contribution beyond neritic

waters is from ophiuroids, which are known to dominate

various habitats in the shelves, slopes, and deep sea

(Smith and Hamilton 1983, Blaber et al. 1987, Shin and

FIG. 3. Log of echinoderm global CaCO3 standing stock (originally measured as g C/m2) in relation to log of depth (originally
measured in meters) for temperate (30–648 N, 30–648 S), tropical (308 N–308 S), and polar latitudes (.648 N, .648 S) in (a) the
Atlantic (n ¼ 245) and Pacific Oceans (n ¼ 68) and (b) the Southern (n ¼ 64) and Arctic Oceans (n ¼ 29). A log scale is used to
visualize the data. Mean CaCO3 standing stocks for each latitudinal range (irrespective of depth) are also included as dashed lines.
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Koh 1993). They have been especially ascribed to the

upper continental slope (Marshall 1979; see Fig. 5 for a

visual illustration of high densities of ophiuroids in

different areas). This can be seen from the data (Fig. 3),

where the maximum CaCO3 standing stocks per unit

area occurred at depths where ophiuroids are known to

exist in dense aggregations (e.g., Metaxas and Giffin

2004). In the Atlantic Ocean the maximum standing

stock recorded from ophiuroids was .3000 g CaCO3/

m2. However, in the Pacific and the Southern Ocean,

echinoids accounted for the maximum standing stocks

(,700 g CaCO3/m
2), especially in the neritic areas. High

ophiuroid densities occur in shelves and slopes from 200

to .2000 individuals/m2 (Warner 1971, Blaber et al.

FIG. 4. Global distribution of the calcite saturation depth (X ¼ 1). When the degree of saturation, X, is .1, seawater is
supersaturated. With calcite, seawater is undersaturated with respect to this mineral when X-Ca , 1. Echinoderm global
distribution data are overlaid as black squares. Note that the number of species per class is related to the data in the map and not to
the present number of species found in sampling (see Pawson [2007] and Uthicke et al. [2009] for an update). Numerical data shown
are number of individuals with number of species in parentheses. Also shown are plots of depth against profiles of X-Ca at sites
where echinoderms were recorded in the database (geographical information presented in graphs). There was only one set of
coordinates available for the Southern Ocean.
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1987), at times covering .60% of the seabed (Blaber et

al. 1987; see Metaxas and Giffin [2004] for a detailed

discussion of high density areas; Fig. 5). In shallow

waters ,100 m depth, their distribution is very patchy,

attaining densities between 100 and 1000 individuals/m2

at times (see Metaxas and Giffin 2004) but covering

,30% of the seabed (Warner 1971; see Fig. 5). In

sublittoral shallow waters they occur at much lower

FIG. 5. Aggregations of living and freshly deposited echinoderms on shelves and slopes. (a) Dense Ophiothrix fragilis bed on the
shelf at 50 m depth off the Shetland Islands (north of Scotland; copyright � D. O. B. Jones, SERPENT project), (b) dense
ophiuroids bed on the slope at 613 m depth off Peru from the research vessel Meteor, cruise 77-1 (IFM-GEOMAR department
SFB754; T. Mosch, unpublished data), (c) ophiuroids (ophiolepadidae) on the slope at 935 m depth off Ivory Coast (photo credit:
M. Lebrato and D. O. B. Jones), and (d) Ophiacantha bidentata aggregation on the slope at 1400 m depth in the Norwegian Sea
(copyright � A. Gates, SERPENT project). (e) Freshly deposited carcasses from the starfish Asterias rubens and (f ) from an
ophiuroid in the Normandy–Boulonnais coasts (northwest France, east Atlantic Ocean); the carcasses were starting to decompose
(copyright � I. Harding, National Oceanography Centre, University of Southampton). Scale bars are 200 mm in all cases.
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FIG. 6. Echinoderm remains in the present oceans and in the geological record. (a) ‘‘Echinoderm sand’’ and particles (greenish
color) along with other shelf calcifier remains visually surveyed in Lanzarote Island (Canary Islands, east Atlantic Ocean; 298 N, 138
W) (photo credit: M. Lebrato). The echinoderm remains dominated (visually) all the areas surveyed both on the top layer and in
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densities (Hendler and Meyer 1982). Other echinoderms

such as echinoids populate at much higher densities the
neritic areas (e.g., Turon et al. 1995). However, in

Antarctic regions, echinoids also populate the shelf and
the slope in dense aggregations (Brey and Gutt 1991,

David et al. 2005). Therefore, as a general rule with
exceptions in the low latitudes, ophiuroids account for

the majority of the shelf and slope CaCO3 production,
while echinoids do so in the shallow littoral and

sublittoral areas. Yet, at finer scales (regional and
especially local) these trends may change and rely on

factors such as seabed substrate or hydrography (see

Cartes et al. 2009). Cartes et al. (2009) show that at
regional scales, such as in the western Mediterranean

Sea, crinoids and holothurians can dominate the deep
shelf and the shelf-slope break with densities up to 15

individuals/m2 (Pérès 1985). In the deep Mediterranean,
holothurians and echinoids dominate the biomass

between 400 and 2000 m, which translates into enhanced
local hot spots of CaCO3. In consequence, the trends in

the CaCO3 standing stocks diversify and get more
complex at fine scales.

Our global CaCO3 standing stock data of echinoderms
decreased with depth, which is consistent with observa-

tions in most Arctic (e.g., Piepenburg et al. 2001),

Antarctic (e.g., Jones et al. 2007), and subantarctic
studies (e.g., Arntz et al. 1994, Thatje and Mutschke

1999) and is most likely related to reductions in
availability of organic matter to the benthos with depth

(Lampitt et al. 2001). In areas such as the Mediterranean
Sea, echinoderm productivity and CaCO3 hot spots are

highly dependent on the availability of organic matter
from canyons (Cartes et al. 2009). Energy availability in

deep-sea benthic habitats and thus the possibility for
echinoderms to establish significant CaCO3 hot spots is

positively correlated with (1) sediment community
respiration (Berelson et al. 1997), (2) the rate of organic

carbon burial within the sediment (Jahnke 1996), (3)
benthic biomass and abundance (Cosson et al. 1997),

and (4) the overlying primary productivity (Lampitt and
Antia 1997).

The differences observed among the temperate,

tropical, and polar regions in terms of the echinoderms

CaCO3 standing stock may be attributable to highly

seasonal pulses of primary production at low latitudes
(Picken 1985). The ‘‘quality’’ rather than the ‘‘quantity’’

of food reaching the seabed may also explain at fine and
broad scales the discontinuities and peaks of echino-

derms biomass and CaCO3 globally (Billett and Hansen
1982, Hudson et al. 2004). Moreover, latitudinal trends

are highly dependent on the organism-level carbon
values measured, and at present we do not have any

data from species either in the Arctic or the Antarctic.

Watson et al. (2008) showed that the shell of an
Antarctic echinoid (Sterechinus neumayeri ) was 15%
thinner than a temperate species (Psammechinus mili-
aris). We hypothesize that this could be a consequence

of the mineral composition (Vinogradov 1953) and the
lower mineral saturation states of the waters (Orr et al.

2005). Echinoderms will need to allocate more energy to
calcify, and this will explain the occurrence of thinner

shells and potentially less carbon. If this is a common
feature in all echinoderms, then the carbon they can

produce as organisms will be reduced at the high
latitudes. In turn, this could be compensated by

increasing the population density and biomass.

Processes in the sediments and in the geological record

The fate of the echinoderms CaCO3 at the seabed.—
The high productivity of echinoderms in terms of

CaCO3 and their carbon standing stocks eventually
result in their downward flux at/to the seafloor through

mortality. Sources of echinoderm mortality (see Rees
and Dare 1993) that could result in a flux of CaCO3

include burial and wash out resulting from wave energy
(Anger et al. 1977) and storm events (see Fig. 6a, b),

exposure to unusual temperatures and desiccation
(Schafer 1972, Verling et al. 2005), predation (Menge

1979, Cartes 1994), prolonged hypoxia due to eutrophi-
cation and collapse of algal blooms (Rosenberg and Loo

1988), trawling (Bergman et al. 1990), natural mortality

(Scheibling and Stephenson 1984; see Fig. 6d for
mortality, e.g., in the deep sea), and disease (Bauer

and Young 2000). As a general rule, mortality rates
increase with increasing latitude (Bullock 1955). This

has major implications for the carbon inventories in the

 
the sediment underneath; the scale bar is 30 mm. (b) Echinoids living at the seabed (dark) and freshly deposited carcasses (bright) at
.1000 m depth off west Africa; the scale bar is 300 mm (copyright � SERPENT project). (c, d) Echinoid remains at 203 m depth in
the Ibiza Channel (Mediterranean Sea) (38.658 N, 0.948 E) from the EUROLEON cruise (numbered REN2002-11216E; copyright �
Laia Beni-Casadella and Miquel Canals, GRC-GM [Grup de Recerca Consolidat en Geociencies Marines, Universitat de
Barcelona], HERMES project); the scale bar is 150 mm. (e, f ) Echinoderm remains at 717 m depth in sediment core sections
(numbered JR31-BGS9; copyright � C. J. MacLeod) from the Atlantis Bank massif adjacent to the Atlantis II fracture zone
(southwest Indian Ocean; 32.68 S, 57.38 E) (for details, see MacLeod et al. [1998, 2000]). The cores are probably from the Pliocene
(2.5–5.3 million years ago), with a matrix of well-lithified micritic calcite. The spines and other remains of echinoids are clearly
visible at different sediment depths showing temporal accumulations over thousands of years. The animals probably originated in a
much shallower ocean. Scale bars are 8.6 mm. (g) Crinoid fossil remains from the lower Devonian in La Coladilla formation
(Cantabrian mountains, northwest Spain; copyright � I. Harding, National Oceanography Centre). Crinoids were the important
carbonate producers before the Jurassic. The scale bar is 26 mm. (h) Scanning electron microscope (SEM) image of the
decomposition of the echinoid Echinus esculentus (copyright � I. Harding, National Oceanography Centre). The organic material
(mainly muscle) is decaying. On the front view decaying muscle can be observed (with small fractures) on the attachment to the test
tubercles. The same is observed on the back left (between the spines). The scale bar is 1 mm.

August 2010 457ECHINODERMS AND THE MARINE CARBON CYCLE



polar regions, since echinoderms contribute substantial-

ly at the higher latitudes to the CaCO3 standing stock

per unit area (see Figs. 2 and 3). Annual mortality rates

of echinoderm populations are species specific and site

specific: ,10%/yr (Bluhm et al. 1998, Verling et al. 2005)

and .80% yr (Lessios et al. 1984a, b, Hunte et al. 1986,

Zann et al. 1987). Mortality is also correlated with age,

growth, and the limiting size of individuals within the

population (see Smith [1972] and references therein for

mathematical production models based on mortality).

This makes using global data analysis to generate

realistic projections of the CaCO3 production and fluxes

from echinoderms based on standing stocks in the global

carbon cycle very challenging. The situation gets even

more complicated with the occurrence of high mass

mortality events in some years where up to 95% of the

population perishes (Lessios et al. 1984a, b). This will

transfer vast amounts of CaCO3 to the seafloor. We did

not include any of these data into our calculations as

already pointed out in Echinoderms carbon measure-

ments: Echinoderm global carbon data set: Limitations in

the extrapolation of carbon and mortality conversions

globally.

Evidence from the subtropical east Atlantic (Canary

Islands) and the northeast Atlantic (France) suggests that

shallow water echinoderm carcasses are freshly deposited

in the intertidal and subtidal environment (Figs.

5e, f, 6a). Eventually, the fragmented CaCO3 particles

formmajor depositions either on sediments in the vicinity

or in sand/boulder beaches (also up the shore far from

water after a period of time) forming a denominated

‘‘echinoderm sand’’ (Fig. 6a). In the deep sea, echino-

derm mortality is a common natural phenomenon (Fig.

6b–d), with carcasses decomposing in situ, directly

incorporating the CaCO3 into the sediments. Elsewhere,

dead echinoderms freshly deposited in high-energy

neritic environments may be also retained in the vicinity,

rapidly transported offshore in fragments, or remineral-

ized in situ (Verling et al. 2005). After deposition in

shallow waters or the deep sea (Fig. 5e, f, Fig. 6b–d), the

echinoderm organic material decomposes rapidly (be-

tween 4 and 8 days; Glynn 1984), exposing the skeleton,

which is usually disarticulated (Weber 1969). The test

and spines (in the case of echinoids) are quickly separated

by muscle degradation (see Fig. 6h), and the spines are

the first to fell off, being deposited in the sediments

(Smith 1984). The tests, more rigid and resistant, may be

retained for months in situ until buried or disintegrated.

A rapid degradation facilitates the retention or the export

of their CaCO3 skeletons into deeper waters, where

CaCO3 is incorporated into sediments (see Moran 1992)

or dissolved (Rude andAller 1991). Echinoderms skeletal

carbonate sand and gravel (echinoderm sand) have been

described in sediments from coastal margins (Brunskill et

al. 2002), along with fragments of foraminifera, benthic

algae, bryozoans, and molluscs (see Fig. 6). The

carbonate burial rate for echinoderms was estimated to

be between 500 and 1700 g CaCO3�m�2�yr�1 in neritic

zones off Australia (Brunskill et al. 2002). There is

sedimentary evidence suggesting the burial of echino-

derms carbon at the seabed, especially from sediment

cores with recent inorganic carbon skeleton remains of

the starfish Acanthaster planci (Maxwell 1971). Addi-

tional evidence from holothurian spicules and skeletons

found in sediment deposits (see Vinogradov 1953)

suggest that echinoderm carbon may be quickly incor-

porated into the sediment, sequestering the CaCO3. The

most convincing evidence is encountered in sediment

cores from the Pliocene (2.5–5.3 million years; C. J.

MacLeod, unpublished data) with echinoid deposits over

thousands of years (Fig. 6e, f ). Moreover, records in

rocks from crinoids date back from the Devonian (Fig.

6g; see Discussion: Processes in the sediments and in the

geological record: Echinoderms CaCO3 accumulation on

geological time scales).

The assessment of the immediate fate of the echino-

derm CaCO3 may be complicated by the controls on

carbonate formation and dissolution, which are depen-

dent upon physicochemical and biogeochemical pro-

cesses (Callender et al. 2002). The echinoderm CaCO3

particle size (Powell et al. 1986) and burial processes

(Powell and Davies 1990, Moran 1992) will exert an

impact on carbonate fragmentation and dissolution.

Work on molluscs suggested site-specific responses

(Reaves 1986) with no CaCO3 preservation in certain

areas, and massive dissolution between 5 and 15 years in

others. Rude and Aller (1991) estimated that up to 23%
of the CaCO3 produced by benthic organisms is

dissolved by early diagenesis on a time scale of ;20

years. These estimates may give a rudimentary idea of

the fate of the global echinoderm CaCO3, which in any

case is not comparable to the mollusks shell carbonate

(mainly aragonite; see Davies and Hooper 1962,

Comperse and Bates 1973).

Echinoderms CaCO3 accumulation on geological time

scales.—Echinoderms were important carbonate sedi-

ment producers from the Palaeozoic to the Mesozoic

(Wilkinson 1979, Ausicht 1997). In the modern oceans it

is though that they are not an important biogenic

CaCO3 production compartment (Carozzi and Gerber

1985), although this view is not supported by sediment

cores data from the Pliocene (2.5–5.3 million years; C. J.

MacLeod, unpublished data; Fig. 6g, h) and the present

study. Echinoderm remains preserved in the geological

record are ascribed to crinoids (dominant from the

Ordovician to the Jurassic, peaking in abundance in the

Carboniferous; see Hunter and Zonneveld 2008 and

references therein) and to echinoids (e.g., found in

sediment cores in the last 5 million years, but present

since the Silurian; see Fig. 6g, h). Crinoid remains form

a type of rock known as ‘‘encrinities,’’ being very

common, for example, in North America and the United

Kingdom, illustrating Paleozoic accumulations in the

fossil record (e.g., Tang et al. 2000). Crinoid accumu-

lations in North America can reach a thickness .10 m,

extending over .500 km2 (Carozzi and Soderman 1962,
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Ausicht 1997). Crinoid deposits mainly formed after

catastrophic burying events (Meyer and Meyer 1986) in

shallow water environments or in deep-sea settings (Hall

1991, Hunter and Zonneveld 2008; see Figs. 5e, f, 6b–d

for evidence from present events for other species in

shallow and deep waters).

Over the past 600 million years the evolution of

biomineralization has been mainly shaped by the

adaptation of organisms to external environmental

parameters (see Wilkinson 1979 and references therein).

Planktonic (mainly coccolithophores and foraminifera)

and benthic compartments (green algae and coralline

algae, molluscs, corals, brachiopods, bryozoans, and

echinoderms) all drove the CaCO3 accumulation from

the Palaeozoic to the present time with different

mineralogies arising over time (Johnson 1961, Lipps

1970). Coccolithophores, which are though to account

for the majority of the CaCO3 exported at present, only

contributed significantly from the middle Jurassic, while

echinoderms did so from the Silurian. Within the

echinoderms there was a switch from CaCO3 production

being dominated by crinoids to echinoids at about the

onset of the Jurassic. At present, ophiuroids seem to

dominate the carbonate production globally, but they are

not commonly recorded in the sediments. Other benthic

taxa have contributed greatly to the global marine

carbon cycle since the onset of the Mesozoic at about

the Triassic (250 millions years ago), and their cumula-

tive carbonate input over time seems much higher than

the planktonic organisms (see Wilkinson 1979).

Importance of echinoderm CaCO3 in large-scale processes

Reassessment of the global CaCO3 budget.—From our

global calculations, the echinoderm standing stocks are

;1.84, 0.24, and 0.037 Pg CaCO3 in the shelves, slopes,

and abyssal depths, respectively (0.22, 0.028, and 0.0044

Pg C as inorganic carbon) (Pg ¼ Gt ¼ 1015 g). Using

these standing stocks and the turnover rates calculated

by Smith (1972), echinoderms produce ;0.78, ;0.065,

and ;0.016 Pg CaCO3/yr, which translate into ;0.093,

;0.0078, and ;0.0019 Pg C/yr as inorganic carbon from

the shelves, slopes, and abyssal depths, respectively.

These data add to a global total of 0.861 Pg CaCO3/yr

or 0.102 Pg C/yr as inorganic carbon contribution

(Table 5). These data are about a factor of two higher

than the production rate of 0.047 Pg C/yr calculated for

mollusks globally (Chauvaud et al. 2003; Table 5). Our

global echinoderm calculations also compare well with

the global fish production of CaCO3 ranging between

0.04 and 0.11 Pg /yr (including magnesium carbonates)

recently estimated by Wilson et al. (2009; Table 5). The

last estimations from the shelves (where echinoderms

may be included) from Milliman and Droxler (1996;

updated in Iglesias-Rodriguez et al. 2002), showed

production rates similar to these organism-level calcu-

lations (Table 5). Values between 0.024 and 0.12 Pg C/yr

in the shelves, and 0.06 Pg C/yr as inorganic carbon in

the slopes have been obtained from the literature (Table

5). These data are within the range presented here for

echinoderms alone as global production rates on an

annual basis (0.093 and 0.0078 Pg C/yr from the shelves

and slopes, respectively; Table 5). The pelagic CaCO3

production data included in biogeochemical models of

the ‘‘biological pump’’ are also comparable to the

echinoderms data (even if arising from different

environments; Table 5). The echinoderm global annual

production (0.102 Pg C/yr as inorganic carbon) falls

below the values for pelagic production (0.6–1.6 6 0.3

Pg C/yr; range 6 SE; e.g., Balch et al. 2007), but it is not

negligible at all. The echinoderms production data are

above the pelagic foraminifera inorganic carbon flux at

500 m (;0.036–0.065 Pg C/yr) and that reaching the

seabed (0.04–0.10 Pg C/yr) (Schiebel 2002). However,

the foraminifera fluxes estimated from sediment traps

may underestimate the in situ production rate, and in

reality the foraminifera production may be higher.

On the sinking side, the echinoderm global carbonate

burial rate is complicated to assess. In order to provide

an educated guess, the data from Brunskill et al. (2002)

suggest that at least in coastal margins, between 60 and

200 g C�m�2�yr�1 (inorganic carbon) may be deposited

annually from carbonate skeletons of echinoderms

(among other organisms). Globally the shelves’ inor-

ganic carbon sedimentation rates are between ;0.06 and

0.2 Pg C/yr using Brunskill et al. (2002) data. This is

comparable to the ‘‘accumulation’’ data (0.17 Pg C/yr)

given by Iglesias-Rodriguez et al. (2002) from all the

neritic areas. The total inorganic carbon production as

CaCO3 globally from the neritic, slopes, and pelagic

areas along with the organism-level data (source) will

range between ;0.96 and 2.56 Pg C/yr, with net sinks

from dissolution and burial in sediments amounting to

;1.50 Pg C/yr (Table 5).

Gollety et al. (2008) specifically addressed the need to

target neritic areas in terms of inorganic carbon

production since they have been particularly ignored in

large-scale estimates, even if major secondary production

rates have been suggested (e.g., Duarte et al. 2005). This

assertion is reinforced by our calculation of the global

contributions of echinoderms to the CaCO3 budget. As a

general rule, carbon budgets at large scales are normally

derived from models or field data compilations (Feely et

al. 2004), while budgets representing ecosystems or

organisms need to be addressed and calculated at much

smaller scales (e.g., Davoult et al. 1998, Gollety et al.

2008). The data presented here for echinoderms as well as

other benthic data sets need to be explicitly addressed

and investigated to provide a robust benthic compart-

ment in global biogeochemical models coupled to the

biological pump (Lebrato et al. 2009). A prompt

incorporation of a benthic compartment, not only

including echinoderms, but also other calcifiers such as

mollusks, coralline algae, foraminifera, and the like, will

certainly improve model outputs and predictions,

reducing at the same time the uncertainties in produc-

tion, export, and sink globally.
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Significance of organism-level measurements in the
global CaCO3 cycle.—Planktonic coccolithophores, fo-
raminifera, and pteropods are traditionally regarded as

the taxonomic groups that contribute mostly to the flux
of CaCO3 (calcite and aragonite) from the euphotic zone

to the oceans’ interior in the biological pump (Lalli and
Gilmer 1989, Broerse et al. 2000, Ziveri et al. 2000, Balch

et al. 2007). This traditional view of the oceanic CaCO3

production has been challenged by the suggestion that

fish secrete CaCO3 in their guts, which is then voided to
such a large extent as to make an appreciable contribu-

tion to the global CaCO3 flux (;5–15% of global pelagic
carbonate production; Wilson et al. 2009). The contri-

bution of other animals such as echinoderms and
mollusks has been widely ignored so far as playing a

major role in the global CaCO3 cycle. This study
estimates a global CaCO3 production from echinoderms

in all areas to be .25 g CaCO3�m�2�yr�1 and .70 g
CaCO3�m�2�yr�1 for the shelves (Table 6). These
estimates are below the regional flux estimation from

ophiuroids of Megne et al. (1998) in the English Channel
(Table 6), with a mean of 682 g CaCO3�m�2�yr�1.
However, some regional production calculations in our
study were .1000 g CaCO3�m�2�yr�1 from ophiuroids,

which are well above what is normally recorded in the
literature for macrobenthic communities. This reinforces

the role of echinoderms in the production side in the
global CaCO3 budget. Their production rates are above

regional production calculations from Smith (1972)
benthic community estimate of 400 g CaCO3�m�2�yr�1
off California, USA (42 6 84 g CaCO3�m�2�yr�1 for
echinoderms production), Medernach (1996) polychaete

community production in the Mediterranean Sea, and
the brachiopod assemblages studied by Collins (1986) in

Scotland (Table 6). The echinoderms data are similar at a

regional level to Chauvaud et al. (2003) calculations from

clams, with a maximum production of 1100 g

CaCO3�m�2�yr�1 (mean of 221 6 184 g CaCO3�m�2�yr�1)
in San Francisco Bay, California, USA (Table 6). Other

organism-level calculations include bryozoans in the

Mediterranean Sea, which cover substantial parts of the

benthos with CaCO3 production rates between 358 and

1214 g CaCO3�m�2�yr�1 (Cocito and Ferdeghini 2001;

Table 6). Rocky-shore invertebrates such as barnacles

may produce between 400 and 1800 g CaCO3�m�2�yr�1
(Gollety et al. 2008). The reduced global areal cover of

barnacles beyond hard substrata in the neritic areas may

render them a minor contributor to the global CaCO3

cycle. However, their production should not be ignored in

regional calculations due to the high production rate per

unit area. Lastly, coral reef and Halimeda bioherms bear

some of the highest global production rates, where their

contributions have already been well assessed (Table 6).

Our global echinoderm production rate from the shelf

(77.91 g CaCO3�m�2�yr�1) is within the range provided

by Iglesias-Rodriguez et al. (2002) for the carbonate

shelves (;20–100 g CaCO3�m�2�yr�1). However, our

calculation for the slopes (2.05 g CaCO3�m�2�yr�1) is

below the one provided in the literature (;15 g

CaCO3�m�2�yr�1). The slope is a very poorly sampled

area in terms of carbon cycling processes, which need

further detailed study. These results illustrate an

emerging need for an adequate characterization of the

CaCO3 inventories in all the benthic areas (neritic, shelf,

slope, and abyssal) including calcifying organisms on a

global scale. To achieve this, organism-level measure-

ments in combination with physicochemical analysis of

the surrounding water are fundamental to provide a

global representation of the echinoderm contribution to

TABLE 6. Organism-level and global mean CaCO3 production rates.

Organism
CaCO3 production

(g CaCO3�m�2�yr�1)� Location Reference

Echinoderms 42 6 84 California Smith (1972)
Ophiuroid 682 English Channel Migne et al. (1998)
Polychaet 0.7–397 Mediterranean Sea Medernach (1996)
Brachiopod 330 Scotland Collins (1986)
Mollusc 221 6 184 San Francisco Bay Chauvaud et al. (2003)
Mollusc 7–64 Florida Bay Bosence (1989)
Bryozoan 358–1214 Mediterranean Sea Cocito and Ferdeghini (2001)
Barnacles 481 6 111 to

1803 6 467
Brittany Gollety et al. (2008)

Halimeda 1200 Bahamas Freile et al. (1995)
Echinoderms�,§ 27.01 global this study
Halimeda bioherms� 3000 global Iglesias-Rodriguez et al. (2002)
Coral reefs� 1500 global Iglesias-Rodriguez et al. (2002)
Carbonate shelves� 20–100 global Iglesias-Rodriguez et al. (2002)
Slopes� 1.5 global Iglesias-Rodriguez et al. (2002)
Pelagic� 21 global Li et al. (1969)
Pelagic� 8 global Milliman (1993)

� All production rate estimates are as stated in the original paper. Data are sometimes given with
a standard deviation, and other times with a range. See reference for the method used in the
calculation.

� All data were converted from g C�m�2�yr�1 as inorganic carbon to g CaCO3�m�2�yr�1 by
multiplying the original values by the CaCO3/C ratio (8.33).

§ Global mean for all areas and depths. See Table 4 for the shelf, slope, and abyssal depths.
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the CaCO3 budget on shelves, slopes, and other deep-sea

areas.

Potential effects of shallowing X-Ca horizons

on echinoderms CaCO3 inventories

Shallow water echinoderms in the Atlantic Ocean are

not expected to encounter undersaturated waters in the

next few decades (see Fig. 4), but for deep-sea and polar

populations the situation may be different (Orr et al.

2005). Howell et al. (2002) recorded 47 asteroid species

in the northeast Atlantic between 150 and 4950 m depth,

with nine of them occurring at maximum abundance

between 4000 and 5000 m. X-Ca undersaturation occurs

in the Atlantic Ocean deeper than ;4500 m (Fig. 4; see

also Feely et al. 2004), which means that a few deep-sea

asteroids already inhabit undersaturated waters. The

question is whether or not shallower water species with

very restricted bathymetric ranges (e.g., 200–300 m;

Howell et al. 2002) will be able to withstand calcium

carbonate undersaturation. It appears that .80% of the

global CaCO3 standing stocks from echinoderms occur

between 0 and 800 m. However, the saturation horizons

are shallower in the South Atlantic (see Fig. 4), and thus

the fate of echinoderm populations there remains an

open question. In the Mediterranean Sea and in other

enclosed basins, the water masses remain saturated with

respect to calcite down to the seabed, and they are more

highly saturated than Atlantic water at the same depth

(Millero et al. 1979). This is due to lower pH in the deep

Atlantic waters as a consequence of much higher organic

supply and subsequent remineralization.

The situation in the Southern Ocean (Antarctic

region) is difficult to predict, since animals there may

be very sensitive to changing conditions (Arntz et al.

1994, Orr et al. 2005). Antarctic animals are very

sensitive to small biological changes that can affect their

long-term survival capacities (Peck et al. 2004). Watson

et al. (2008) reported that the shell of an Antarctic

echinoid (Sterechinus neumayeri ) was 15% thinner than

a temperate species (Psammechinus miliaris). A thinner

shell in Antarctic species may be a consequence of the

elemental concentrations (mainly magnesium and calci-

um) in the surrounding waters as seen for coccolitho-

phores and corals (see Stanley et al. 2005, Ries et al.

2006). A priori, these animals may be even more

susceptible, but the data from Clark et al. (2009) on

sea urchin Antarctic larvae (S. neumayeri ) at high CO2

reveal the contrary. At pH levels reduced to 6.5, the

Antarctic larvae were the least affected (in terms of

survival and calcification) in comparison with other

equatorial and mid-latitude species. This may be a

consequence of evolution in a natural high-CO2

environment, enabling the animals to be adapted to

those conditions, making them actually more resilient.

In the Arctic, at present there are not enough data to

draw a conclusion, but surface areas in the subarctic

Pacific, north of 608 N are close to undersaturation.

In the Pacific Ocean, saturation horizons are shallow

north of 408 N, and in some places near the equator

(Fig. 4; see Feely et al. 2004, 2008, Fabry et al. 2008). In

areas such as the Gulf of Alaska, where dense

populations of echinoderms are recorded (Fig. 4),

undersaturation may be achieved at ,300 m. Feely et

al. (2008) also reported on the upwelling of undersatu-

rated waters off California, from 26–528 N. At present,

these undersaturation events are highly seasonal (Feely

et al. 2008) but are predicted to become common as a

result of the anthropogenic emissions of CO2. It is

desirable to ascertain if future increases in the duration,

range, and intensity of undersaturated waters will affect

both echinoderm survivorship and what effect this will

have on the global CaCO3 budget. If a reduction in

calcification or survival is widely found in echinoderms,

as it has been observed in the majority of experiments

carried out to date with organisms other than echino-

derms (Langdon et al. 2003, Kleypas et al. 2006, Gazeau

et al. 2007), their contribution to the CaCO3 inventory

may be diminished, especially in the north Pacific. The

data from Clark et al. (2009) indicate a reduction in

calcification between 10% and 40% in sea urchin larvae

of three species from the southern hemisphere, except in

an Antarctic one. Unless we have more information

across all latitudes it will be impossible to predict the

echinoderms CaCO3 production and export in the

future. However, the main way of reducing their

contribution to the CaCO3 budget is through physio-

logical failure (survival and development) and the

impossibility to recruit to adult populations due to

mortality at larval stages. Dupont et al. (2008) found

100% mortality in ophiuroid larvae at a pH of between

7.9 and 7.7, as well as abnormal skeletogenesis. These

pH values were well above X-Ca undersaturation (e.g.,

X-Ca¼ 2.57 at pH¼ 7.9, and X-Ca¼ 1.7 at pH¼ 7.7; S.

Dupont, personal communication). However, whether X-

Ca ¼ 1 represents a tipping point for skeletogenesis

remains an open question. Dupont and Thorndyke

(2009) present larval survival responses from 17

echinoderm species, with seven of them showing reduced

survival in response to increased CO2 and reduced X-Ca,

and three showing increased survival. They also show a

negative effect on larval body development in 16 of the

17 species in response to increased CO2 and reduced X-

Ca. The response of echinoderms larvae may be species

specific (e.g., Clark et al. 2009), and the main effect

seems to be in terms of survival and developmental

dynamics (Dupont and Thorndyke 2009). A decrease in

recruitment as low as 1% per generation may reduce

adult populations substantially in the long-term (Du-

pont et al. 2008), ultimately affecting their CaCO3

contribution.

The potential for inorganic carbon dissolution in

echinoderms may be exacerbated since many species

incorporate high magnesium calcite (.5 mole% MgCO3;

e.g., Weber 1969, Dickson 2002), which is more soluble

than aragonite (Bischoff et al. 1987). The saturation
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state of water with respect to high magnesium calcite is

much lower than that of calcite or aragonite (Morse et

al. 2006, Andersson et al. 2008). This could affect even

more the contribution of high-magnesium calcite taxa

such as echinoderms. However, data from Wood et al.

(2008) indicate that adult ophiuroids may increase

calcification rates in a high CO2 world. Seemingly, data

from Gooding et al. (2009) combining CO2 and temper-

ature show an increase in growth rate of a starfish. Even

more complicated is the response of a sea urchin larvae

presented by Byrne et al. (2009), where CO2 did not have

any effect on gastrulation or development, but temper-

ature alone affected both processes. These complex

responses, especially in multifactorial experiments com-

bining high CO2 with high temperature, prevent us from

predicting predominantly linear responses to ocean

acidification, which seem to be species specific (Clark

et al. 2009). This taxonomical response has also been

discussed by Fabry et al. (2008) based on the Ries et al.

(2008) study, which presented both positive and negative

as well as parabolic relationships in calcification for

benthic invertebrates under high CO2. Beyond experi-

mental data, it is proposed that changes in the upper

ocean biogeochemistry influenced by both CO2 and

temperature, may alter the ultimate food supply to

benthic ecosystems by reducing the POC flux as a

consequence of declines in primary production (e.g.,

Buesseler et al. 2007), especially in deep-sea areas (Smith

et al. 2008). Echinoderms, which dominate many of

these areas, may be affected (declining in density) by

reducing the quality of their food or their reproductive

success. These results, particularly those showing

nonlinear patterns or indirect effects, need to be

carefully examined if we are to understand mechanisms

that drive the future global CaCO3 cycle. Unless we have

a clear pattern of response in a high CO2 world (very

unlikely), it will be difficult to derive equations to predict

future changes in the carbon exported by echinoderms

and other benthic compartments, if we wish to

incorporate this knowledge into the global biogeochem-

ical models coupled to the biological pump. Addition-

ally, as more experimental work is done and more data

are gathered on both pelagic and benthic organisms

responses, it is becoming obvious that we need to make a

profound reassessment and to reconsider of our

‘‘presumed knowledge’’ both on the ocean acidification

field and on the global biogeochemical cycles and

processes associated to the biological pump.
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APPENDIX

A table showing global echinoderms database details along with the sampling method used to collect samples and to estimate
density and biomass, and a figure showing GLODAP bottle data distribution used to estimate the calcite compensation depth (X¼
1) with depth in Fig. 4 (Ecological Archives M080-015-A1).
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