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Methods are developed for estimating the size/density of cetacean populations using data from a set
of fixed passive acoustic sensors. The methods convert the number of detected acoustic cues into
animal density by accounting for �i� the probability of detecting cues, �ii� the rate at which animals
produce cues, and �iii� the proportion of false positive detections. Additional information is often
required for estimation of these quantities, for example, from an acoustic tag applied to a sample of
animals. Methods are illustrated with a case study: estimation of Blainville’s beaked whale density
over a 6 day period in spring 2005, using an 82 hydrophone wide-baseline array located in the
Tongue of the Ocean, Bahamas. To estimate the required quantities, additional data are used from
digital acoustic tags, attached to five whales over 21 deep dives, where cues recorded on some of the
dives are associated with those received on the fixed hydrophones. Estimated density was 25.3 or
22.5 animals/1000 km2, depending on assumptions about false positive detections, with 95%
confidence intervals 17.3–36.9 and 15.4–32.9. These methods are potentially applicable to a wide
variety of marine and terrestrial species that are hard to survey using conventional visual
methods. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3089590�

PACS number�s�: 43.30.Sf, 43.80.Ka �WWA� Pages: 1982–1994
I. INTRODUCTION

Cetaceans �whales and dolphins� form a key part of ma-
rine ecosystems, and yet many species are potentially threat-
ened with extinction by human activities. One essential ele-
ment of an effective conservation or management strategy is
a reliable estimate of population size �“abundance”� or,
equivalently, number per unit area �“density”�. However,
most cetacean species are hard to survey, since they live at
low density over large areas of ocean and spend almost all of
their time underwater. The object of this paper is to increase
the repertoire of tools available for making species assess-
ments, by developing and demonstrating methods for esti-
mating cetacean density from surveys of their vocalizations
collected from fixed passive acoustic sensors.

Currently, the main method for obtaining estimates of
density is through visual line transect surveys. A set of ran-
domly placed lines is traversed by an observation platform
�e.g., ship, airplane, or helicopter� and all sighted animals of
the target species are recorded, together with their perpen-
dicular distance from the line. In the standard method, it is
assumed that all animals on the transect line �i.e., at zero
distance� are seen with certainty, but that probability of de-
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tection declines with increasing distance from the line. The
distribution of observed detection distances is then used to
estimate the average probability of detection, and this in turn
allows estimation of population abundance or density. Line
transects are a special case of distance sampling methods,
which are described in detail in the two standard texts by
Buckland et al. �2001, 2004�.

Visual line transect methods have a number of disadvan-
tages for surveying cetaceans: they can only be performed
during daylight hours and are strongly dependent on good
weather conditions; they do not work well for species that
spend long periods of time underwater; they are expensive to
do well and have restricted temporal coverage. On the other
hand, some cetacean species make frequent and characteris-
tic vocalizations, and this has led to increasing recent interest
in the use of passive acoustic methods for monitoring ceta-
cean populations �see review by Mellinger et al., 2007b�.
One solution is to replace or supplement the visual observers
on a shipboard line transect survey with a towed passive
acoustic platform, since even a simple two-element hydro-
phone array can be used to obtain locations of repeatedly
vocalizing animals, and hence the required perpendicular
distances. This has proved particularly effective for sperm
whales �Physeter macrocephalus�, which are long, deep

divers and hence hard to detect visually, but produce loud
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echolocation clicks �Hastie et al., 2003; Barlow and Taylor,
2005; Lewis et al., 2007�.

Acoustic line transect methods still require an expensive
survey platform and have restricted temporal coverage. By
contrast, technology exists where fixed acoustic sensors �ei-
ther anchored or buoyed� can be deployed to record data over
long periods or transmit it to shore via cables. Mellinger
et al. �2007b� provide a review of the potential modalities.
Such sensors have the potential to provide relatively inex-
pensive long-term monitoring and, if deployed in a wide-
baseline array, could also cover large spatial areas.

There are several examples of the use of fixed acoustic
sensors to provide an index of abundance, or at least to de-
tect the presence of a species over time �e.g., Au et al., 2000;
Charif et al., 2001; Moore et al., 2006; Mellinger et al.,
2007a; Stafford et al., 2007�. However estimating absolute
density or abundance from such data is considerably more
difficult, although considerably more useful too. Broadly, the
key problems are as follows: �i� to convert the number of
vocalizations detected to the number produced within a de-
fined area, by accounting for false positive and false negative
detections, and �ii� to convert this estimate of vocalizations
produced to the average number of animals present. To date,
no method has been proposed that might be used in general
to estimate cetacean density from fixed passive acoustic de-
vices �Mellinger et al., 2007b�, although several papers have
addressed elements of the problem �e.g., Aubauer et al.,
2000; McDonald and Fox, 1999; Wiggins et al., 2004;
Stafford et al., 2007; Zimmer et al., 2008�.

This paper presents a framework for estimating cetacean
density from an array of fixed passive acoustic detectors. The
framework lays its foundation in a type of distance sampling
survey methodology called cue counting �Buckland et al.,
2001� and is general enough that it might be used under
considerably different scenarios, with appropriate modifica-
tions that are also discussed. The proposed approach is illus-
trated by a case study: estimating the density of Blainville’s
beaked whale, Mesoplodon densirostris �Md�, at the Atlantic
Undersea Test and Evaluation Center �AUTEC� range, an
instrumented US Navy testing range in the Bahamas. Part of
the data used here were also used in a previous attempt to
estimate Md density at AUTEC by Moretti et al. �2006�,
which provides a useful comparison for the results obtained.

II. STATISTICAL FRAMEWORK FOR ESTIMATING
DENSITY

Density D is defined as a number of animals per unit
area, and hence density can be expressed as

D = N/a , �1�

where N is the number of animals present in a region of area
a. It is therefore straightforward to convert any density esti-
mate into an abundance estimate, as long as the area it ap-
plies to is known, as N=Da. Given the number of animals n
detected in survey area a, an intuitive estimator of abundance

is given by

J. Acoust. Soc. Am., Vol. 125, No. 4, April 2009 Marque
D̂ =
n

aP̂
, �2�

where P̂ represents the estimated probability of detecting an
animal. P can be estimated by a number of methods, of
which distance sampling �Buckland et al., 2001� is arguably
the most commonly used.

A. Proposed estimator and variance

Here it is assumed that a set of replicate fixed passive
acoustic sensors has been deployed using a random design
�e.g., systematic random� within the survey region of interest
�see, for example, Buckland et al., 2001, Chap. 7 and Buck-
land et al., 2004, Chap. 7, for discussions of appropriate
sampling designs�. The goal is to estimate average density
and/or abundance of a cetacean species over the time period
that the sensors were deployed. The methods generalize eas-
ily to multiple species, spatial and temporal stratification, etc.
They are also applicable to single sensor situations and non-
random sensor placement, although in these cases caveats
must be introduced.

The methods proposed here involve counting �for a
known period of time� the number of detected acoustic cues
produced by the animals of interest, and appropriately scal-
ing up this number of detected cues to estimate animal den-
sity. The appropriate definition of a cue is study-specific, but
it will usually be a distinct animal vocalization such as a
song unit, echolocation click, etc. Considering Eq. �2�, an

estimate of density D̂ from the nc detected cues over a time
period T �and additional information detailed below� can be
obtained by

D̂ =
nc�1 − ĉ�

K�w2P̂Tr̂
, �3�

where w is the distance away from the hydrophones beyond

which cues are assumed to not be detected, P̂ is the estimated
average probability of detecting a cue made within distance
w, r̂ is the estimated cue production rate, ĉ is the estimated
proportion of false positive detections, and K is the number
of replicate sensors used.

Note that Eq. �3� can be seen as a special case of Eq. �2�.
nc�1− ĉ� corresponds to the number of detected cues that
were actually from the target species. Tr̂ corresponds to the
number of cues produced by an average animal during the
recording time T. Hence nc�1− ĉ� /Tr̂ corresponds to n in Eq.
�2�, while K�w2 corresponds to a in Eq. �2�.

Strictly speaking, the hydrophones should be indepen-
dent sampling units, but in practice some clicks are detected
at more than one hydrophone. However, Buckland �2006�
showed by simulation that these methods are insensitive to
this sort of nonindependence.

Assuming independence of the various random compo-
nents, the variance for the density estimator can be approxi-
mated via the delta method �Seber, 1982� �see also Powell,

2007, for an applied review of the method� as
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var�D̂� � D2�CV�nc�2 + CV�r̂�2 + CV�ĉ�2 + CV�P̂�2� , �4�

where CV denotes the coefficient of variation of the estimate,
i.e., the standard error of the estimate divided by the esti-
mate.

The variance in nc can be estimated from the empirical
variance of the cue counts ncj �j=1,2 , . . . ,K� over K hydro-
phones, as is usually done for conventional distance sam-
pling methods �Buckland et al., 2001, p. 78� as

var�nc� = K�
j=1

K
�ncj − nc/K�2

K − 1
.

For the other three components, obtaining the appropri-
ate variance will depend on how these are estimated. Ex-
amples are given in the case study.

Confidence intervals on density can be obtained by as-
suming that the density estimate follows a log-normal distri-
bution �Buckland et al., 2001, p. 77�. An alternative ap-
proach for obtaining both variance and confidence intervals
is the nonparametric bootstrap �Buckland et al., 2001; see
section 3.6 for details in this context, and Efron and Tibshi-
rani, 1993 for an overview�. Both the analytic and bootstrap
methods are commonly employed in conventional distance
sampling.

Sections II B–II D consider methods for obtaining esti-
mates of the three components P �probability of detection�, r
�cue production rate�, and c �false positive proportion�.

B. Probability of detection

To understand the potential methods for estimating P, it
is convenient to start by describing the estimation of the
detection function, g�y�, that is the probability of detecting a
cue given it is produced at horizontal distance y. Here y
refers to horizontal distance �i.e., projected onto the sea sur-
face�; the use of direct �i.e., slant� distances is discussed later.

In conventional distance sampling methods, including
cue counting, g�y� is estimated using the horizontal distances
of detected objects from the line or point �usually referred to
as “transect,” with the equivalent here being a point with the
acoustic sensor at the center, from which acoustic cues are
detected�. This is feasible because, with random transect
placement, the true distribution of object distances is known;
hence any departure in the distribution of detected distances
from this known distribution can be attributed to the detec-
tion process. Specifically, in variants of distance sampling
where the transect is a point, as in the current case, the true
distribution of horizontal object distances, h�y�, is given by
2y /w2, where w is some distance beyond which detections
are not recorded �and can be infinity�. Thus, the probability
density function �pdf� of observed distances, f�y�, is given by

f�y� =
h�y�g�y�

	0
wh�y�g�y�dy

=
2yg�y�

w2P
, �5�

where P=	0
wh�y�g�y�dy acts as a normalizing constant that

ensures f�y� is a pdf �i.e., that integrates to 1�. Note that g�y�
can be multiplied by any constant without changing f�y�; in
other words, the observed distances give information about

the shape of g�y� �i.e., the change in detectability with dis-
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tance� but not the absolute level of g�y�. Therefore, an addi-
tional assumption must be made before g�y� can be esti-
mated, and the conventional assumption is that all objects at
zero distance are detected, i.e., that g�0�=1. Then, given a
parametric model for g�y�, the parameters of the model can
be estimated from a sample of distances using, for example,
maximum likelihood estimation.

Once an estimate of the detection function parameters is
obtained, it is straightforward to estimate the average prob-
ability of detecting an object within w, as the average of the
estimated detection probability at each distance multiplied by
the density of objects at that distance:

P̂ = 

0

w

ĝ�y�h�y�dy . �6�

Specialized software, DISTANCE �Thomas et al., 2006�, is
freely available for the analysis of such data, and variance
estimates and confidence limits are readily available from the
output.

The conventional approach is sometimes possible using
data from fixed acoustic sensors, so long as �i� horizontal
distances to detected cues can be obtained, and �ii� the basic
assumptions are met: that the true distribution of horizontal
object distances, h�y�, is known and that g�0�=1. Calculation
of horizontal distances using a single bottom-mounted sensor
was demonstrated by McDonald and Fox �1999�, using trans-
mission loss and multi-path methods to estimate distance to
calling fin whales near a Hawaiian seamount, and by Wig-
gins et al. �2004�, using waveguide propagation to estimate
distances to North Pacific right whales in the Bering Sea.
However, the assumption of known h�y� is often question-
able with a single sensor. If cues are received on multiple
sensors and can be associated, then time differences of ar-
rival can potentially be used to localize the source, thereby
providing a distance �e.g., Freitag and Tyack, 1993�. How-
ever, the conventional methods would then need to be ex-
tended to allow the input data to be a set of detections of the
same cue from multiple sensors at different distances.

An alternative way to obtain the detection function is to
derive it from assumed models for sound production, propa-
gation, and detection. This approach was demonstrated �us-
ing different modeling approaches and on different species�
by Zimmer et al. �2008� and Stafford et al. �2007�. Such
approaches are naturally heavily dependent on the accuracy
of the models and input parameters.

A third approach is to estimate the detection function
empirically, using a set of experimental “trials” where vocal-
izations are produced at known times and distances from
sensors, and the outcome is whether they are detected or not.
One way to achieve this is to play recorded vocalizations, but
a more realistic method involves placing acoustic recording
tags on a sample of animals that are within the vicinity of the
sensors, and using the tag data to determine where and when
vocalizations were produced. Ideally, this additional experi-
ment should be undertaken concurrently with the primary
survey and on a representative sample of animals and sen-
sors; otherwise differences in conditions between the tagging

experiment and the primary survey will need to be accounted
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for, by modeling covariates thought to influence detectability
and then predicting detectability at the time of the trials. This
is the approach taken in the case study, and the analysis
options are described more fully later.

C. Cue production rate

The cue production rate r can be estimated using acous-
tic tag data, as described at the end of the Sec. II B, and this
is the approach taken in the case study. Again, ideally, this
would be collected concurrently with the primary survey and
on a representative sample of animals. Otherwise, factors
that potentially affect cue rate such as season, time of day,
sex, etc., will need to be accounted for.

A second approach, if additional experimental tagging
data are unavailable, is to use a cue rate estimate published
elsewhere. For some species, which have very predictable
vocalization patterns, this may produce a reliable estimate;
for others it will not.

A third alternative, if it is possible to associate succes-
sive vocalizations from individual animals within the sensor
array �such as when calls are uniquely identifiable or density
is very low�, and if it can be determined when animals are so
close to a sensor that no calls will be missed, is to use the cue
rate from vocalizations produced by these animals. However,
for species that can pass by a sensor without producing any
cues, this will inevitably lead to an overestimate of cue rate.

D. False positive proportion

To be recorded as a cue, a sound must go through a
two-stage process: it must be �i� detected as being potentially
relevant and �ii� classified as the correct type of sound. Be-
cause of the volume of data involved, both stages are typi-
cally performed by computer algorithms.

If a sound of interest, i.e., a vocalization by an animal
from the target species within distance w of a sensor, is not
detected, or is detected but incorrectly classified, it is re-
ferred to as a “false negative.” �In statistics, this is also
known as a type II error, considering the combined detection
and classification process to be a statistical test.� The detec-
tion function, via the estimated detection probability, corrects
for this type of error.

On the other hand, it is possible for a sound that is not a
vocalization from the target species to be detected and clas-
sified as a cue, creating a “false positive” �or a type I error�.
The proportion of sounds classified as cues that do not come
from the target species is the false positive proportion, and
this must be estimated. As with the previous components,
there are multiple ways to achieve this.

The most direct approach is to take a sample of the
sounds classified as cues and manually check what propor-
tion are false positives. This is the approach taken in the case
study, and relies on the human operator to make correct clas-
sifications. If a human operator cannot be considered reli-
able, an alternative is to use some performance statistics of
the detector/classifier, for example, on data where animals
were known to be vocalizing because they were tagged or
being observed from a nearby boat, and predict the average

false positive proportion under the conditions of the survey
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being analyzed. This requires knowledge of all the variables
that affect the false positive proportion, and their distribution
both for the dataset where the performance characteristics
were tested and for the dataset for which density is being
estimated. This seems hard to implement as it implicitly re-
quires one to know the total number of positive and negative
sounds �i.e., whale clicks versus sounds from other sources�.
Hence the first approach is to be preferred wherever it is
feasible.

Note in general, one cannot generalize to other scenarios
the proportion of false positives in a given place and time. In
particular, if the relative abundance of species contributing to
false positives changes, the false positive proportion will
change accordingly.

III. CASE STUDY: BLAINVILLE’S BEAKED WHALES
AT AUTEC

The proposed methods are illustrated here with a de-
tailed case study: the estimation of average density of Blain-
ville’s beaked whales, Md, at the AUTEC underwater track-
ing range during a 6 day period in spring 2005. The
inference made is restricted to the time periods, during these
6 days, for which recordings were available �see below for
details�.

Beaked whales are considered difficult to survey using
visual methods, since they make long, deep dives and are
relatively difficult to sight even for the short periods of time
they are at the surface �Barlow et al., 2006; Barlow and
Gisiner, 2006�. However, they make regular high-frequency
echolocation clicks during the deeper part of their dives
�Johnson et al., 2004� which, although highly directional
�Zimmer et al., 2005�, can be detected by both surface-and
bottom-mounted hydrophones, with the latter likely to have
better detection ranges �Zimmer et al., 2008�. Md have pre-
viously been detected up to 6500 m slant range from the
AUTEC hydrophones �Ward et al., 2008�.

AUTEC is an instrumented US Navy testing range lo-
cated in the Tongue of the Ocean, Bahamas. It contains a
wide-baseline array of 93 cabled hydrophones, mounted
4–5 m off the sea floor at depths between 1.3 and 2 km, and
with an upward, roughly hemispherical beam pattern. For the
data presented in this study, 82 hydrophones were digitally
recorded at 96 kHz �Fig. 1�: 68 wideband hydrophones
spaced 4 km apart with a usable bandwidth from
50 Hz to 45 kHz, and 14 hydrophones spaced 1.8 km apart
with a bandwidth from 8 to 50 kHz �bandwidth and spacing
values are approximate�. Previous research utilizing this
hardware has demonstrated the presence of Md at AUTEC,
developed suitable automated detectors and estimated ap-
proximate animal density �Moretti et al., 2006; DiMarzio
et al., 2008; Ward et al., 2008�.

The processed data and metadata used in this paper were
submitted to the Ocean Biogeographic Information System
and are accessible via http://seamap.env.duke.edu/.

A. Case study data and data processing

Two sets of data were used in the case study. The first

�the “primary dataset”� was a set of recordings taken on 82
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hydrophones during 6 days in spring 2005 �between 17:03
GMT, 26 April and 08:32 GMT, 2 May 2005�. These were
processed to extract detections of Md foraging clicks �the
cues�, and the number of detections was used as the basis for
estimating average density of Md over the 6 day period. For
operational reasons the data were divided into 12 sets, and
entire sets �2, 5, 7, and 11�, as well as some scattered min-
utes, were not used. These periods were removed from the
analysis for various reasons �e.g., problems with acoustic
recordings, system tests being conducted over the range,
etc.�.

Traditional hyperbolic localization techniques used to
obtain the position of sound sources such as whales require a
click to be detected on at least four hydrophones. However,
previous studies have observed that the combination of Md
narrow beam width and AUTEC’s wide hydrophone base-
lines result in clicks often not being detected on more than
one or two hydrophones simultaneously �Ward et al. 2008�;
hence detection function and cue rate estimation methods
based on localizing Md at AUTEC were considered infea-
sible. Therefore, a second dataset was required to obtain
these quantities. This �the “auxiliary dataset”� comes from
acoustic tagging studies carried out in October 2006 and
August–September 2007 in which five whales were fitted
with digital acoustic tag �DTag� acoustic recording tags
�Johnson and Tyack, 2003� which remained attached for a
total of 21 deep dives �Table I�. The tag data were used to
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FIG. 1. The spatial layout of the AUTEC hydrophones that were recording
during the collection of the primary survey data, represented by small
crosses. Also shown as dots �perceived as solid lines� are the locations of the
tagged Blainville’s beaked whales when each click recorded on the DTag
was produced.
estimate the cue rate. A subset of the data was further pro-
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cessed to estimate the location of the whales at each click
event, and these clicks were matched with clicks received on
surrounding AUTEC hydrophones to enable estimation of
the detection function.

A brief description follows of the processing required to
extract detections from the main dataset, and to extract click
rates, locations, and associations with AUTEC hydrophones
from the auxiliary dataset.

1. Processing of primary dataset

Clicks were detected using a multi-stage fast Fourier
transform �FFT�-based energy detector �Morrissey et al.,
2006�, using data digitally recorded from the range hydro-
phones at a 96 kHz sampling rate. A 2048-point FFT with
50% overlap was used. This provides a 46.875 Hz frequency
resolution and a 10.67 ms time resolution. During the first
stage, an adaptive threshold was run in each bin of the FFT.
If energy above threshold was detected, the bin was set to a
“1” and a detection report was generated. During the second
stage, detections are classified based on the frequency distri-
bution of the detected signal. Detections are classified as
beaked whale clicks by evaluating the ratio of bins above
threshold to the total number of bins within the frequency
band of 24–48 kHz �Morrissey et al., 2006; Ward et al.,
2008�. Additionally, a second check is performed by exam-
ining the number of bins set outside the 24–48 kHz “beaked
whale band.” If this exceeds 10%, then the detection is re-
classified as a dolphin as they are more likely to have sig-
nificant spectral energy below 24 kHz.

The detection reports classified as beaked whales were
then summed into a final output consisting of the number of
beaked whale clicks per minute for each hydrophone over
the recording period.

2. Processing of auxiliary dataset

Additionally, DTag �Johnson and Tyack, 2003� data,
both positional and acoustic, were available for five whales,
in a total of 21 �Table I� deep dives. The tag records continu-
ously from a built-in hydrophone and suite of sensors that
convey information on positional data: animal depth, head-
ing, pitch, and roll. The sensors sample the orientation of the
animal in three dimensions with sufficient resolution to cap-
ture individual fluke strokes �Johnson and Tyack, 2003�. The
speed from the pressure sensor, heading, and pitch angle

TABLE I. Details about the tagged whales used in case study analysis: Tag
ID, date the animal was tagged, number of dives while animal was tagged,
and number of dives with data available for estimating the detection func-
tion g�y�.

Tag Date Number of Dives Dives for g�y�

Md296 23 Oct 2006 3 3
Md227 15 Aug 2007 6 0
Md245 2 Sep 2007 4 3
Md248a 5 Sep 2007 4 4
Md248b 5 Sep 2007 4 3

Total 21 13
were used to reconstruct a three-dimensional “pseudotrack”
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for each animal during the period the tag was attached
�Johnson and Tyack, 2003�. These data were used for the
estimation of click rates, and also for simulation of click
characteristics involved in the estimation of the mean detec-
tion probability �see below�.

For the estimation of the detection function, further data
processing was required. For four whales and a total of 13 of
the deep dives, these DTag data were associated with
matched filter detections from the surrounding hydrophones,
localized, and the pseudotrack georeferenced �i.e., absolute
rather than relative coordinates obtained; see Ward et al.,
2008 for further details�. Once georeferenced, the DTag ac-
celerometer and magnetometer data for each click within the
georeferenced portion of the dive were used to calculate the
spatial relationship between the whale and each hydrophone
in the whale orientation frame �see Johnson and Tyack, 2003;
Ward et al., 2008, for further details�. An indicator of detec-
tion �1—detected; 0—not detected� could then be generated
for each click produced at each surrounding hydrophone �us-
ing the same FFT-based detector as in the primary survey
click count data�, as well as a set of corresponding click
characteristics in the frame of the whale �namely, slant dis-
tance, vertical, and horizontal off-axis angles with respect to
the whale’s orientation�.

B. Case study density estimation methods

1. Estimating probability of detection

As stated earlier, the conventional distance sampling ap-
proach of estimating average detection probability using de-
tection distances could not be used due to the difficulty in
easily localizing Md clicks using the wide-baseline hydro-
phone array at AUTEC. Hence auxiliary data from the tag-
ging study were used, where for each click produced by a
tagged whale, it was known which of the surrounding hydro-
phones detected the click.

If tags had been applied to a large random sample of
animals from the population present at AUTEC during the
6 day period of interest, then the average proportion of clicks
that were detected would be an unbiased estimator of the
average detection probability required. However, the tags
were applied in a different time period, and the sample size
of tags was not large. For both of these reasons, a more
complex approach was required, where the probability of
detection was modeled as a function of covariates thought to
influence detectability, and the fitted relationship then used to
estimate average detection probability during the 6 day pe-
riod.

The modeling approach used was a generalized additive
model �GAM, Wood, 2006�, with a binomial response and
logistic link function, to model the probability of detecting a
Md click as a function of available covariates. The dependent
variable used was the outcome of the detection and classifi-
cation process �i.e., detected and classified as a cue/not de-
tected or not classified as a cue� for each click produced by
the tagged whale at each hydrophone within 8 km of the
location of the whale �at the moment of the first click in the
corresponding dive�. The explanatory variables considered

were the slant whale-hydrophone distance and the horizontal
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�hoa� and vertical �voa� off-axis angles, measured on the
frame of the whale, with respect to the hydrophone �e.g., a
0,0 angle pair corresponds to a whale pointing straight at the
hydrophone�. For slant distance, a cubic regression spline
basis was used, while for the off-axis angles a two-
dimensional tensor product based smooth was used, to incor-
porate interactions between the horizontal and vertical
angles. The largest detection distance for a click was at
around 6.5 km, and the model was fitted truncating all data
for which distance was larger than 8 km. The maximum de-
grees of freedom for the smooth of slant distance were set to
4 as, a priori, a relatively smooth decreasing function of
distance was expected. The models were implemented using
the library mgcv in R version 2.8.0 �R Development Core
Team, 2008�.

Given the fitted detection function model, there are, in
general, two approaches for using this model to predict av-
erage probability of detection for the primary dataset. If the
values of the covariates used in the model are also known for
each detection in the primary dataset, then detection prob-
ability can be predicted conditional on these values and an
average taken. However, if the covariate values for each de-
tected click in the primary dataset are not known, but the
distribution of the covariate values is known, then its effect
can be integrated out of the model, giving the correct average
detection probability. This is the approach taken in conven-
tional distance sampling with the distance covariate �Eq.
�6��.

In the current study, the values of slant distance and
orientation were not known for any of the clicks in the pri-
mary dataset. Hence, a simulation approach was used to ap-
proximate the distribution of these covariates, based on the
motion data from the DTags in the auxiliary dataset. The
underlying assumptions were as follows: �i� the paths re-
corded in the 21 DTag dives from the auxiliary dataset are
representative of the paths during the primary survey period,
and �ii� the initial position of dives is random with respect to
hydrophone position during the primary survey period. To
implement the simulation, the following procedure was re-
peated many times:

�1� Generate the hypothetical location of the first click in a
deep dive �xi ,yi�; locations were generated randomly in a
buffer area of 8 km around AUTEC.

�2� Sample a dive from the 21 DTag dives available and
select the data corresponding to the position of the whale
in space �x ,y ,z location, pitch, heading and roll� at each
click event.

�3� Relocate that dive such that the first click is at �xi ,yi�.
�4� For each click event, obtain the slant distance, hoa and

voa with respect to all hydrophones closer than a dis-
tance of 8 km to the whale position.

In practice, instead of sampling each click event, only
every 100th click was sampled as this was found to increase
the speed of convergence of the algorithm to the true distri-
bution of the covariate values. With this refinement, the dis-
tributions stabilized after 1000 simulated dives.
Given the above samples from the distribution of cova-
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riates, the detection function model fitted earlier was used to
estimate detection probability for each click, and the mean of
this was taken as an estimate of average detection probabil-

ity, P̂.

To estimate the variance in P̂ a nonparametric bootstrap
procedure was implemented �e.g., Efron and Tibshirani,
1993�. In each of 250 bootstrap replicates, a sample of dives
was taken with replacement from the set of 13 dives from
which the original detection function had been estimated, the
GAM was refitted to this bootstrap resample, and the new

fitted model used to produce a new estimate of P̂. The em-
pirical variance obtained over these bootstrap estimates is an

estimate of the original variance of P̂ �see pp. 82–83 of
Buckland et al., 2001, for further details in a similar con-
text�. This approach assumes that the dives are statistically
independent.

2. Estimating cue production rate

The cue production rate �mean number of clicks per
whale per second� was estimated using the DTag data. To
avoid bias, the periods used for estimating the cue rate were
restricted to complete deep-dive cycles �from the start of a
deep dive to the start of the next�, for which both sound and
positional data were available, in a total of 21 deep dives
from five whales.

The mean click rate was estimated as a weighted mean
of click rate per deep-dive cycle, weighted by deep-dive
cycle time length. The variance of this weighted mean was
estimated using Cochran’s approximation as recommended
by Gatz and Smith �1995�.

3. Estimating false positive proportion

To estimate the proportion of false positives in the main
dataset, a sample of 30 systematically spaced 10 min periods
was selected for analysis. For each of the 10 min sample
periods, all hydrophones with detections were manually ex-
amined using a binary spectrogram display program �Moretti
et al., 2006�. One of the sample periods was corrupted due to
a system test being conducted by range technicians, and was
removed from further analysis.

Experienced analysts classified the clicks and assigned
click counts into one of the following seven categories: Md,
delphinid, sperm whale, boat, pinger, other �which could in-
clude other beaked whale species�, or “mixed” �i.e., when, in
a given minute, Md clicks and other sound sources were not
unambiguously distinguishable�. Hence the false positive
proportion might be between two extreme values, depending
on whether all or none of the mixed detections is considered
Md clicks. For the density estimates presented here both are
used, leading to upper and lower bounds for density, with the
best estimate of density likely lying somewhere in between
these. The false positive proportion was estimated as the
weighted mean of the proportion of false positives by sample
period, with total number of clicks detected by sample period
as weights. The variance of this weighted mean was esti-
mated using the same procedure as described for the mean

click rate variance.
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C. Case study results

After removing minutes with problems, click counts
were available for 4961 min in the primary dataset �Fig. 2�.

Pooled over the 82 recording hydrophones, a total of
2 940 521 sounds classified as being beaked whale clicks
were detected. Considering hydrophones as independent spa-
tial replicates, the standard deviation of the total number of
sounds was 161 373, resulting in a CV of 5.5%.

The estimated click rate was 0.407 �clicks/second�, with
a standard error of 0.040, resulting in a CV of 9.8%.

Overall, of the 160 302 sounds detected and considered
to be beaked whale clicks during the sample periods used for
the false positive proportion estimation, only 78 450 �corre-
sponding to slightly under 50%� were unambiguously iden-
tified as Md clicks. The complement of the proportion of
false positives, 1− ĉ, was estimated to be 0.549 �se=0.011,
CV=1.99%� or 0.489 �se=0.011, CV=2.29%�, depending on
whether the mixed clicks are considered to be all or none
from Md.

The estimated detection function is shown in Fig. 3. The
maximum distance at which a click was detected was
6504 m. The estimated mean detection probability for clicks
produced within 8 km of the hydrophones �clicks outside
this buffer are assumed to have 0 detection probability� was
0.032, with an associated CV of 15.9%.

Using Eq. �3� the estimated Md density at AUTEC over
the recording period was 25.3 or 22.5 animals per 1000 km2

�with respectively 19.5% and 19.6% CV’s�, depending on the
ĉ used. Assuming a log-normal distribution for the density
estimate, the respective 95% confidence intervals for density
are 17.3–36.9 and 15.4–32.9. Note that the contribution of n,
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FIG. 2. Click counts per minute, summed over the 82 recording hydro-
phones, for the 6 day period of the primary dataset. Time is indexed as
minutes since recording started. For operational reasons the data were di-
vided into sets, and some sets �2, 5, 7 and 11� were not used. A standard
lowess smooth of click counts over time is shown for the sets used. The
small black vertical dashes �“�”� are scattered minutes within the 8 sets used
which were faulty and hence removed from the data. The sample periods
used for the estimation of the false positive proportion are represented by
“ *”. The limits of each day and set are represented by dotted and dashed
lines, respectively.
1−c, P, and r to the overall variance estimate on density is
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at 0
respectively, 8, 1, 66, and 25%.

IV. DISCUSSION

A. Assessment of case study

1. Comparison with previous work on beaked whales

The case study provided estimates of Md density at AU-
TEC over a short time period of 6 days. Although true den-
sity is not known with certainty, the estimates obtained are
consistent with other sources. The vast majority of confirmed
beaked whale sightings in the Northern Bahamas are for Md
�Claridge, 2006�, but the presence of Cuvier’s beaked whale
�Ziphius cavirostris� and Gervais’s Beaked Whale �Mesopl-
odon europaeus� have recently been noted at the range.1

Clicks potentially from other species were treated as false
positives, and hence the density estimate presented is valid
for Md only.

Using a method based on isolating and counting groups
of diving whales over a fixed time period, Moretti et al.
�2006� obtained estimates of beaked whales at AUTEC using
the same primary dataset as analyzed in this paper. Despite
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strong assumptions about animal movement and an indepen-
dent estimate of mean group size, the reported density esti-
mates of 22.0 or 30.0 �depending on the estimate for mean
group size used� Md per 1000 km2 are consistent with the
estimates obtained here. �Following a more recent, unpub-
lished, revision of the their estimation process, the area cov-
ered by the survey was revised, leading to point estimates of
25.4 or 34.7 Md per 1000 km2.�

The estimated detection function model �Fig. 3� was
consistent with what was expected a priori: a decreasing
function of distance and a decreasing function of the off-axis
angles. This reflects the intuitive notions that the further
away and off-axis a Md click is, the harder it is to detect.
This also represents further evidence for the high direction-
ality of beaked whale clicks, as has been demonstrated for
Cuvier’s beaked whale �Zimmer et al., 2005�.

The detection of a click seems to be slightly more likely
if “below” the whale �negative voa� than “above” the whale
�positive voa�: an observation that deserves further investi-
gation in characterizing the Md beam pattern.

At first sight, our results could seem to contradict those
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equation to model the maximum detection range of Cuvier’s
beaked whale clicks using a shallow hydrophone in the
Mediterranean sea, and predicted a maximum detection
range of 4 km. The pertinent parameters utilized were source
level of 200 dB re 1 �Pa at 1 m, 40 kHz center frequency
and processing bandwidth, depth of 0 m, spectral noise level
of 30 dB re 1 �Pa2 Hz−1, absorption coefficient of
9.5 dB km−1, and receiver threshold of 14 dB. The deeper
hydrophones at AUTEC reduce transmission loss and mask-
ing noise, and the processing bandwidth at AUTEC was
smaller. In addition, there is justification for assuming a
higher maximum source level, since the measurements on
which the 200 dB level is based is thought to be an under-
estimation �Zimmer et al., 2005�, and since source levels are
known to vary considerably within and between individuals
�Zimmer et al., 2008�. Johnson et al. �2006� reported center
and −10 dB frequencies for Md measured at close range us-
ing acoustic tags of 38.3 and 26.6 kHz, and hence source
levels of 210 and 200 dB re 1 �Pa at 1 m at these two fre-
quencies are plausible. Other pertinent parameters are
24 kHz processing bandwidth, depth of 1300 m �approxi-
mately mid-way between whale and hydrophone�, spectral
noise level of 26 dB re 1 �Pa2 Hz−1, absorption coefficients
of 8.9 and 5.1 dB km−1 at the two frequencies, and receiver
threshold of 14 dB. These parameters provide maximum de-
tection ranges of 5.7 km at 38.3 kHz and 7.6 km at
26.6 kHz. The largest observed detection range of a tagged
animal in the case study was 6504 m; the above simplistic
modeling exercise �e.g., assuming only spherical spreading�
suggests that while the high frequency components of the
click will be lost at such ranges, sufficient energy remains at
lower frequencies to trigger the detector used. Supporting
this, the mean received center frequency for clicks detected
at 6.5 km range or greater was 29.7 kHz.

2. Assessment of detection probability estimation

Average detection probability was estimated in the case
study using a sample of tagged whales for which it could be
determined whether cues produced by the whale were de-
tected on surrounding AUTEC hydrophones. However, the
simple proportion of these cues detected could not be used
directly to estimate average detection probability during the
primary survey period for two reasons. First, the sample size
was small �four whales over 13 dives�, so it is unlikely that
the distribution of potentially important covariates in the
sample, such as distance from hydrophone, was representa-
tive of that over the 6 days of the primary survey. Second,
the auxiliary �tag� data were collected at a different time
period, when detection conditions were likely different.

The general solution to this problem is to construct a
model that includes all the variables that affect detectability
and for which the distribution of that variable differs be-
tween the auxiliary and the primary datasets. Model selection
techniques could be used to select among a suite of candidate
variables. Average detectability is then estimated for the cor-
rect values of these variables at the time of the primary sur-
vey. This approach requires that data are available on the
variables affecting detectability both at the time of the aux-

iliary and primary surveys.
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In the case study, because of the small sample size of
tags, it was felt that variables indexing the whale’s orienta-
tion and position relative to the hydrophones may differ be-
tween auxiliary and primary data. Both orientation and posi-
tion were thought a priori to have an important influence on
detectability. Since orientation and position were not known
for cues received in the primary survey, a simulation ap-
proach was used to estimate the distribution of these vari-
ables during the primary survey. The simulation assumed
that a whale’s initial position was random with respect to
hydrophone horizontal distance �because in the simulation
whales were initially located at random within the AUTEC
range�, and that the dive behavior of the 21 dives from five
whales for which data were available in the auxiliary dataset
reflected the behavior of whales during the primary survey.
The assumption that whale location is random relative to
hydrophone seems largely reasonable, given that there were
a large number of hydrophones throughout the study area.
However, one may expect slightly fewer whales than pre-
dicted at larger horizontal distances, because some of the
edge hydrophones cover areas that are too shallow for Md to
dive in. Nevertheless, the overall influence of these “edge
effects” is likely small.

There is no evidence against the assumption that the
diving behavior recorded on the 21 dives is representative of
that for whales in the primary survey, although this is cur-
rently untestable. Baird et al. �2008� reported no evidence of
a tag-on effect, very similar dive times, and absence of diur-
nal patterns in dive cycles for Md �with tag durations of up
to 72 h�.

There are three possibly important variables affecting
the detection function that were not considered in the case
study. The first is potential differences between hydrophones,
since it is possible �but not likely� that the distribution of
sensitivities of hydrophones used in the auxiliary dataset is
not representative of the 82 recording during the primary
survey. The second relates to vertical directivity in the hy-
drophones, as raised by a reviewer. However, a preliminary
analysis of the data revealed that including the vertical angle
in the model produced inconsistent results. This is likely be-
cause most of the clicks within detection range are made
within a narrow band of possible vertical angles with respect
to the hydrophones, so any effect of vertical directivity was
too negligible to estimate. Even if a strong effect existed, the
results of the model reported here would have integrated it
implicitly, provided the distribution of vertical angles in the
DTag data was representative of the distribution in the 6 day
dataset. The third, and potentially more important, is differ-
ences in ambient noise conditions, since tags can only be
applied during calm weather. For example, mean wind speed,
recorded at a location close to the AUTEC range, was 6.1 kn
�range 1.1–13.8� during the 13 deep dives used for estimat-
ing the detection function, but 12.4 kn �range 2.5–20.8� dur-
ing the primary survey period. Higher wind speed could re-
duce detectability, and hence the current estimate of average
detection probability could be an overestimate. However the
extent of the effect given the depth of the hydrophones re-
mains to be determined. One potential approach would be to

include variables such as wind speed, or ambient noise mea-
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sured at the hydrophone, in the empirical detection function
modeling. However, predicting detection probability for the
primary survey period would then mean extrapolating sig-
nificantly outside the range of the data since maximum wind
speed was significantly higher in the primary survey period.
An alternative would be to analytically model the effect of
increased noise on the detection algorithm, but this is un-
likely to be as robust as an empirical approach. A more at-
tractive alternative is to take sound samples from the hydro-
phones during the primary survey period when no clicks
were present and under a range of known wind speeds, use
these to contaminate the hydrophone sound files used in the
auxiliary study, and thereby empirically study the effect of
increased noise on detectability. These approaches will be
the subject of a future study.

The detection function was estimated considering only
direct path detections. If multi-path detections were included
in the click counts in the primary data set, then detection
probability could have been underestimated and density cor-
respondingly overestimated. While this is unlikely to have
occurred, it might be worth to be investigated further.

It would have been better to have the primary dataset
and the auxiliary dataset from the same time period. How-
ever, this was not possible because there were not readily
available sound recordings for the entire range for the days in
which there were DTags. Additionally, placement of DTags
corresponded to events considerably spread in time and
therefore the mean density estimated over these time periods
would be less meaningful.

The method used to estimate probability of detection in
the auxiliary dataset assumes that there are no false associa-
tions between clicks produced by the whale carrying the tag
and clicks detected at the hydrophones. Conceivably, espe-
cially if there were other animals around the tagged whale, it
is possible that some clicks produced by other animals were
wrongly associated with detected clicks on the hydrophone.
If this happened, one would overestimate the probability of
detecting a click, leading to an underestimation of density.
However, this false association seems unlikely: of all clicks
detected at more than 4 km, 94.8% were at both hoa and voa
of less than 30°; if these were false associations, one would
expect that these correspond to a random sample of off-axis
angles, rather than to mostly on-axis clicks. Another check
would be to compare the received sound intensity at different
frequencies within the 24–48 kHz range for the long-range
detections to those predicted from a model of sound produc-
tion and propagation.

3. Assessment of cue production rate estimation

The auxiliary dataset was also used in estimating click
production rate, and hence the assumption is required that
average click production rate during the time of the auxiliary
survey is equal to that in the primary survey. Information
reported in Baird et al. �2008� and Tyack et al. �2006� about
the constancy of deep-dive cycles was fundamental to be
confident that a single dive rate was adequate for both day
and night periods.

Whenever the cue-count approach proposed here is

used, there will be the requirement for an unbiased estimate
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of average cue production rate to convert cue density into
animal density. The application of these methods therefore
requires further fundamental research in this area, such as
evaluation of cue rates and changes in cue rate as a function
of time of day �e.g., Baumgartner and Fratantoni, 2008�, year
�e.g., Whitehead and Weilgart, 1990�, or any other covariates
�e.g., group size, season, bottom depth, geographic location,
etc�. Douglas et al. �2005� report that differences in world-
wide vocal production �for sperm whales� means that esti-
mates of abundance that are based on cue rates need to be
based on data from the population of interest, rather than
from another population or some global average.

Note that it is not sufficient to have estimates of the click
rate �or inter-click interval� of diving whales from only dur-
ing vocal parts of their dives—a quantity that is relatively
easily obtained from hydrophone data. This will grossly
overestimate the required cue production rate, since it ig-
nores the silent time spent between dives. For animals that
can spend long periods of time silent, long-term tags or �if
feasible� focal follows from the surface are the only options,
unless individuals can be tracked through individually recog-
nizable vocalizations.

If cue rate is density dependent, these methods become
harder to implement, and it becomes more important to esti-
mate cue rate during the primary survey. If cue rate depends
on local group size, then it is important to also estimate cue
rate during the primary survey. Failing that, it is still possible
to estimate mean cue rate provided one has estimates of the
relationship between cue rate and group size, and also the
distribution of group sizes during the primary survey.

4. Assessment of false positive proportion estimation

In studies where a manual analysis of the data provides
a reliable “gold standard,” false positive proportion is the
easiest component to estimate. The variance of this compo-
nent is also easily controllable by taking additional random
samples for manual analysis until it is down to an acceptable
level. In the case study, the contribution to the overall vari-
ance �around 1%� from this component was very small. This
does not account for variance due to the specific human op-
erator, and if this is believed to be a considerable source of
variation one might consider having different operators re-
peating the task to quantify it. Here such a procedure was not
deemed necessary.

Despite the method being general, it must be noted that
values estimated under a given scenario are valid only under
that scenario: the number of false positives is dependent on
the number of sound sources producing false positives. As an
example, everything else being the same, in an area where
dolphins �a major source of false positives for the FFT de-
tector used� were much more abundant than at AUTEC, one
would expect a much larger proportion of false positives than
what was found here.

About half of the sounds recorded as beaked whale
clicks were estimated to be false positives in the case study.
Such a high proportion was unexpected, although a fair pro-
portion of false positives was expected a priori. This empha-
sizes the importance of accounting for false positives as part

of density estimation. A second important lesson is that a
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high false positive proportion is not necessarily a barrier to
reliable density estimation: it is less important what the char-
acteristics of the detector/classifier are than being able to
accurately determine them. This is in contrast to other appli-
cations of cetacean detectors—for example, as part of a harm
mitigation system—where a large number of false positives
would lead to mitigation measures being triggered far more
often than required.

The inability to unambiguously classify a proportion of
the detected clicks led to increased uncertainty in the re-
ported density estimates, with estimates changing by about
10% depending on how mixed clicks are accounted for.

B. Alternative approaches

1. Alternative methods for estimating P in a cue-
counting framework

In the case study, the detection function was estimated
based on the auxiliary tagging data. However, sound propa-
gation modeling approaches like those used by Zimmer et al.
�2008� or Stafford et al. �2007� might be alternatively used to
obtain the detection function. Alternatively, one could imple-
ment broadcasting trials, by mimicking the animal’s sound,
to empirically estimate the detection function. This would
naturally require a comprehensive understanding of the
sound production and sound characteristics for the species
under study. Ideally, multiple approaches would be used as a
way to test the robustness of the results. In all of these cases,
the detection function will have to be assumed to be repre-
sentative of the detection function during the sampling pe-
riod.

The advantages of using conventional distance sampling
methods as described in Buckland et al. �2001� are as fol-
lows: �i� that the detection function is based on the distances
to the detected cues, hence there is no need for additional
data from tagging studies, and �ii� the detection function is
necessarily valid for the conditions under which the data
were collected.

For beaked whales at AUTEC such an approach would
be hard to implement, because a given click is often not
detected on more than one or two hydrophones, but in a
setting where acoustic localization of cues is more feasible
such an approach is recommended. Alternative methods of
obtaining distances, such as using received sound levels or
multi-path detections, may prove useful. Nonetheless, under
such a setting there are two fundamental assumptions to es-
timate the detection function which were not required for the
case study: �i� the probability of detecting a cue at distance
zero must be 1 �or at least known� and �ii� the distribution of
distances of all cues, detected or not, pooled across hydro-
phones, must be triangular �see Buckland et al., 2001�. There
is an additional shortcoming for the use of conventional dis-
tance sampling methods: the distances required are those to
the actual cues �i.e., excluding false positives�; alternatively
the detection function must be the same for true and false
positives. The former seems hard to achieve, and the latter
might be unreasonable under some scenarios.

As was described previously, had tags been applied to a

large random sample of animals, then P could simply be
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estimated from the proportion of detected clicks, therefore
avoiding the complex modeling exercise presented here. For
the data at hand, such an estimate would be 0.036 �CV of
0.155�, which is similar to the results from the GAM ap-
proach. Nevertheless, the simpler approach cannot be recom-
mended in general for such a small number of dives because
the assumptions underlying it are much more restrictive.
Rather than having to be representative of the spread of the
covariates included in a detection function model, the pro-
portion of clicks detected by dive would have to be repre-
sentative of the average P.

2. Alternative frameworks for estimating density from
fixed passive acoustics

The framework presented here focused on estimating
density from an analysis of cues, but other approaches can be
envisaged based on detecting animals or groups of animals,
and the potential for further research in this area is enor-
mous. If animals can be located based on their vocalizations
then the use of an approach similar to the “snapshot” point
transect method �Buckland, 2006� could be envisaged. The
method could be applied directly if animals could be located
using single hydrophone data �e.g., Tiemann et al., 2004�; if
multiple hydrophones were required for localization then ad-
ditional development would be needed to account for the
dependencies between hydrophones necessary to generate a
distance. A major advantage of such an approach would be
that it does not require an estimate of cue rate, and so is
potentially feasible without any auxiliary data. Similar ap-
proaches could be used if groups could be isolated and lo-
calized, but additional information on mean group size
would be required.

A disadvantage of snapshot type methods is that they
require the counts to be discretized into intervals separated in
time, so as to introduce statistical independence between
samples. Alternative methods that explicitly account for the
continuous nature of data acquisition but require information
about animal movement exist in the historical literature �e.g.,
Skellam, 1958�; however these need further development to
account for issues such as imperfect detection.

In situations, such as for Md at AUTEC, where groups
of diving animals can be isolated acoustically, even if not
accurately localized, then there is the potential to use a cue
counting approach based on counting group dive starts rather
than individual clicks. At AUTEC, the probability of detect-
ing a group dive start is 1, so there is no need to estimate the
component P in Eq. �3�. Similarly, false positives are rela-
tively simple to identify. The cue rate required is the rate of
dive initiations, and this could be obtained from time-depth-
recording tags, or by tracking focal groups. Hence, such an
approach seems potentially feasible and is the subject of on-
going research.

If detections of cues, animals, or groups on multiple
hydrophones can be associated, then alternative density esti-
mation methods may be possible that are based on mark-
recapture, rather than distance sampling methods. Especially
noteworthy are spatially explicit mark-recapture methods
�Efford et al., 2008�. Mark-recapture methods have the ad-

vantage, over conventional distance sampling methods, of
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not having to assume that the true distribution of animals
with respect to samplers is known �Sec. II B�, which is un-
realistic if a small number of hydrophones is used. However,
mark-recapture methods have their own assumptions, and it
is not easy a priori to decide which will be more adequate in
general.

V. CONCLUSIONS

The framework that has been laid out here is applicable
to any study where the key components can be estimated:
average detection probability, cue rate, and false positive
proportion. Although the case study involved an array of 82
hydrophones over a relatively restricted area and time period,
the same methods can be used on a far smaller number of
hydrophones �with some loss of precision, obviously�, or hy-
drophones distributed over a much larger area and sampling
a longer time period.

Passive acoustic methods are potentially most useful for
species that are poorly covered by visual methods but that
produce loud, distinctive, predictable vocalizations. Towed
acoustic �and visual� methods tend to be better where the
goal is wide spatial coverage but narrow temporal coverage;
fixed acoustic methods tend to be better where density esti-
mates over long time periods are required. However, the op-
timal modality depends on many factors, including the study
goals, target species, and current technology �the last of
which is evolving rapidly�. Optimal survey design is an im-
portant future research field, in terms of �i� optimal modality
for a given situation, �ii� the trade-off between efforts on
primary and auxiliary surveys �if required�, and �iii� the
number and placement of sensors.

Although the focus of this paper has been on estimating
cetacean abundance using underwater acoustic data, there is
no conceptual extra step required for implementing it with
sound recording devices in terrestrial environments. Potential
examples include forest surveys of songbirds, territorial
monkey species such as gibbons, and elephants �e.g., Payne
et al., 2003�. Fixed passive acoustics methods are potentially
invaluable for monitoring density over time at multiple sites
without requiring a large amount of human resources, and for
this reason will probably become common practice in the
future.

Regarding monitoring of cetaceans, to date most studies
have used acoustic data as an index of abundance over time
or space �e.g., Stafford et al., 2007�. This requires strong
�and largely untestable� assumptions that the factors relating
number of calls detected to density remain constant �see
Anderson, 2001, 2003, for a discussion of these issues�.
Here, such approaches are improved upon by allowing esti-
mation of these factors, leading to inferences about density.

Mellinger et al. �2007b� urged the need for the develop-
ment of statistical methods for estimating cetacean popula-
tions acoustically. This paper shows that the foundations for
such methods are laid, and hopes to contribute to their wide-

spread use.
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