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[1] The concept of ocean biogeochemical provinces is based on the observation that large
ocean regions are characterized by coherent physical forcing and environmental
conditions, which are eventually representative of macroscale ocean ecosystems.
Biogeochemical models of the global ocean focus on simulating the coupling between
prevalent physical conditions and the biogeochemical processes with the assumption that
biological properties respond coherently to physics and therefore should produce such
provinces as an emergent property. In this paper, we quantitatively assess the emergence
of a reference set of predefined biogeochemical provinces in the available global data
sets and propose a province‐based approach to the evaluation of one of the most
comprehensive models of ocean biogeochemistry. Multivariate statistical tools were
applied to model and observation data, verifying the existence, distinctiveness and reliability
of the predefined provinces and quantifying the correlation of model results with
observations at the global scale. The analysis of similarity between provinces shows that they
are statistically separable in data and model output and therefore can be used as reliable
metrics. The analyses indicate that provinces can be more easily distinguished in terms of
their environmental features rather than using chlorophyll concentration. The
characterization of provinces by means of chlorophyll values shows a significant overlap
in both the Sea‐viewing Wide Field‐of‐view Sensor (SeaWiFS) data and the model. It is
likely this is related to the choice of province boundaries based on coarse‐resolution
mapped data, which are not necessarily the same as those derivable from high‐resolution
satellite data. We also demonstrated through cluster analysis that the long‐term time
series data collected at Joint Global Ocean Flux Study (JGOFS) stations are
representative of environmental conditions of the respective province and can thus be
used to evaluate model results extracted from that province. The method shows promise
for helping to overcome problems with model verification due to under sampling of
most ocean biogeochemical variables but also gives indications that unsupervised
clustering may be required when more spatially resolved data and models are available.
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1. Introduction

[2] Over the last 15 years, Ocean Biogeochemistry Gen-
eral Circulation Models (OBGCM) have demonstrated a
capability to reproduce the major spatial features of global
ocean biogeochemistry such as oligotrophic gyres and
upwelling regions [e.g., Six and Maier‐Reimer, 1996;

Aumont et al., 2003; Gregg et al., 2003; Moore et al., 2004;
Le Quéré et al., 2005; Vichi et al., 2007b]. Notwithstanding
the different degree of complexity of the various models,
ranging from those with simple implicit representations of
biology to the explicit realization of several dynamic
plankton functional types (PFT), most of these models show
phytoplankton biomass distributions which roughly corre-
spond to the chlorophyll distribution observed from space.
This kind of comparison (defined hereafter as face validity)
is done at the level of a bulk property of the marine eco-
system and tells us very little about the intrinsic capability of
the model to simulate the biogeochemical features of each
single region. Further visual comparisons involving satel-
lite‐derived phytoplankton type distributions at the global
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scale have been attempted (e.g., Vichi et al. [2007b] used
data from Alvain et al. [2005]), though a direct comparison
with relevant ecosystem properties such as PFT fractionated
production, rates of nutrient regeneration, etc. is still lacking
[Anderson, 2005].
[3] Historically there has been a lack of objective, quan-

titative comparison between biogeochemical model results
and observations. This can partly be attributed to a lack of
(or ease of access to) global data and partly to a cultural
acceptance that a subjective visual comparison, especially
with global ocean models, is acceptable. A recent set of
works on model validation and assessment (see Lynch et al.
[2009] and papers in the “Skill Assessment for Coupled
Biological/Physical Models of Marine Systems” special
issue) has pointed out the necessity to move beyond face
validity, and analyze whether and where these models have
skill, from which we may infer reliability when these models
are used to make projections of the future. Vichi and Masina
[2009] presented an assessment of the PELAGOS model
(Pelagic biogeochemistry for Global Ocean Simulations
[Vichi et al., 2007a]) using some of the proposed objective
measures [Friedrichs et al., 2009; Stow et al., 2009; Doney
et al., 2009]. The assessment used existing data in the public
domain, focusing on large‐scale data sets such as satellite‐
derived chlorophyll concentration, and long‐term time series
of variables that allow a description of the transformation of
organic matter (mainly primary and bacterial production).
[4] This is, however, a limited assessment for models

like PELAGOS, which incorporate many functional para-
meterizations derived from specific laboratory experiments
and require comparisons with in situ observations to be
considered generally valid. The question is, therefore, how
do we overcome the undersampling of ocean biogeochemical
properties and use the available data as efficiently as possible
for the assessment of biological parameterizations? Mea-
suring biological data at the global scale is a challenge and it
is not expected in the near future to have more than the
following data types available: (1) long‐term station time
series at single point locations in the ocean, (2) single rea-
lizations (casts) at different times and locations (usually
organized in transects), and (3) long‐term time series of
global coverage, satellite‐derived products.
[5] Such data can be used as is or in combination, by

means of gridding and merging techniques, to provide
global, objectively analyzed maps. This latter method allows
direct comparison with model results through visual com-
parison of maps (or difference maps) and via computed
means, taken as representative of an entire region of interest.
The questions arise, therefore: (1) How much information
can be extracted from this evaluation approach? (2) How
can we assess model validity at the level of ecosystem
functioning when only limited data is available from most
ocean regions?
[6] This issue is related to the determination of correlation

length scales for large‐scale biological data, which cannot
currently be resolved by means of extensive surveys of the
global ocean, so needs to be approached by different
methodologies that combine sparse observations with more
qualitative information. There have been several attempts at
providing a conceptual spatial classification of the marine
environment, based mainly on either the distribution of
distinct pelagic or benthic taxonomic groups (e.g., the

Ocean Biogeographic Information System [Costello and
Vanden Berghe, 2006; Arvanitidis et al., 2009]) or the spa-
tial variability of physical properties, such as temperature,
salinity, mixing state and empirically derived chlorophyll
concentration and primary production estimates [Longhurst,
1995; Longhurst et al., 1995; Sathyendranath et al., 1995].
Longhurst’s [2007] partition of the oceans into four major
biomes (polar, westerlies, trade winds, tropical), realized as
∼50 ocean provinces (regional expressions of the different
biomes), remains the most comprehensive and widely
accepted classification of the pelagic ocean.
[7] The concept of biogeochemical provinces is based on

the observation that large ocean regions are characterized by
coherent physical forcing and biological conditions at the
seasonal scale, which are representative of macroscale ocean
ecosystems [Longhurst, 1995, 2007; Hardman‐Mountford
et al., 2008]. The boundaries between provinces are gener-
ally persistent but are also spatially and temporally variable,
because they are linked to physical properties (e.g., fronts)
which are known to change position seasonally and inter-
annually. The boundaries of Longhurst’s provinces were
selected subjectively and intuitively on the basis of clima-
tological data (monthly data of mixed layer depth, solar
irradiance penetration and chlorophyll concentrations from
the Coastal Zone Color Scanner) and common knowledge
on the biological properties extracted from scattered data in
the existing literature. To overcome this subjective limita-
tion, Longhurst [2007] suggested to further refine province
definitions by (1) comparing the distribution of individual
biota between provinces, (2) testing statistically different
conditions in adjacent provinces, and (3) using analytical
techniques to partition a relevant global data set.
[8] Examples of the third suggestion are now available in

the recent literature. Devred et al. [2007] used ocean color
radiometry data to partition the Northwest Atlantic according
to statistically coherent provinces and used these dynamical
boundaries as new regions over which to extrapolate the data
collected at point stations. Hardman‐Mountford et al. [2008]
have applied a range of multivariate statistics to a satellite‐
derived chlorophyll concentration climatology to provide an
objective classification of the ocean into several macroscale
biomes associated with trophic status (eutrophic, mesotro-
phic, oligotrophic). By means of multivariate analysis they
demonstrated that the majority of the spatiotemporal vari-
ance in satellite‐derived chlorophyll data was explained by
an overwhelmingly dominant spatial structure with almost
no seasonal variability. The existence of persistent spatial
structures was used as the basis for a supervised hierarchical
classification of these biomes, in order to provide provinces
which have properties consistent with ecological systems.
The results of this approach are, to a large extent, visually
compatible with Longhurst’s [2007] subjective partitioning.
Devred et al. [2007] report similar results for bulk observa-
tions and physical variables. However, in the case of primary
production data, they found a significant difference between
the mean values computed over their ecological provinces
and the static ones defined by Longhurst.
[9] Similarly, Gregr and Bodtker [2007] have applied

adaptive classification algorithms to selected physical vari-
ables from a general circulation model output in order to
partition the northern Pacific into significant distinct regions.
They identified contiguous oceanic regions which could be
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related to known water masses, also finding significant cor-
respondence with the spatial distribution of satellite‐observed
chlorophyll concentration.
[10] The approach proposed in this work stems from the

widely held premise that most of the subjectively defined
biogeochemical provinces have a physical coherence and
correspond to real ecological structure. Hardman‐Mountford
et al. [2008] have tested this hypothesis to some degree but
only using satellite‐derived chlorophyll concentration. Our
aim in this study is to assess whether biogeochemical pro-
vinces emerge as system properties from the available global
data sets with the prospect that in future they may be used as
operational units for model evaluation. The method involves
the application of multivariate statistical analyses [e.g., Allen
et al., 2007] to global ocean data and it is based on a super-
vised classification of ocean regions taking Longhurst’s
[2007] province layout as an example. The following spe-
cific questions are investigated:
[11] 1. Can we statistically separate Longhurst pro-

vinces in the model and in gridded objectively analyzed
observations?
[12] 2. Are the relationships between provinces (in terms

of similarity/dissimilarity) the same in the model and in the
data?
[13] 3. Are station field data (selected as typical of a

specific province) representative of the entire province at the
seasonal scale?
[14] This will be done by objectively verifying whether

the physical and biological properties extracted from each
predefined province represent an identifiable entity both
in the model and in the observations. If these regions
are physically coherent and statistically separable in both
data and model output, it becomes possible to undertake a
province‐based assessment of model behavior and to com-
pare model results with observations at the province level.
This implies a reduction of the amount of data to be
explored for information extraction and an increase in the
utility value of biologically relevant information that can
only be collected at point sources.

2. Methods

2.1. Biogeochemical Model

[15] The global ocean biogeochemical model used in this
study is PELAGOS (Pelagic biogeochemistry for Global
Ocean Simulations [Vichi et al., 2007a, 2007b]), which is a
coupling between the OPA (Océan Parallélisé) general cir-
culation model [Madec et al., 1999] and the global ocean
version of the Biogeochemical Flux Model (BFM, http://
bfm.cmcc.it). The model grid is the irregular ORCA2 con-
figuration [Madec and Imbard, 1996] with a grid mesh
varying from 0.5 to 2 degrees. The biogeochemical model is
a multiple nutrient; multiple plankton functional group
model described in terms of biomass of carbon and the
major macro and micronutrients. The model is fully detailed
by Vichi et al. [2007a]. The climatological features of the
model have been analyzed by Vichi et al. [2007b], and the
interannual simulation (1958–2001) used in this work has
been analyzed by Vichi and Masina [2009]. In this paper we
focus on the period of the simulation when satellite ocean
color data from the Sea‐viewing Wide Field‐of‐view Sensor
(SeaWiFS) are also available (1998–2001).

2.2. Observational Data

[16] Observational data used in this work consist of a
selection of gridded products and station data publicly
available to the scientific community.
[17] Temperature and salinity climatologies for the world

ocean have been taken from the Levitus data set [Levitus
et al., 1998]. Global maps of nutrient data were obtained
from the World Ocean Atlas 2001 data set [Conkright et al.,
2002]. The data consist of optimally interpolated monthly
climatological fields of nitrate, phosphate and silicate at
selected depths (see Conkright et al. [2002] for details on the
methodology). The 1 × 1 degree maps of both physical and
chemical properties have been further interpolated on the
ORCA2 model grid with a nearest‐neighbor procedure.
[18] Mixed layer depth data have been obtained from the

global ocean analysis performed by de Boyer Montégut et al.
[2004] according to a 0.2°C temperature criterion. The
interpolated data on the ORCA2 model grid have been
directly obtained from de Boyer Montégut’s Web site (http://
www.locean‐ipsl.upmc.fr/∼cdblod/mld.html).
[19] Monthly composites of global satellite‐derived chlo-

rophyll concentration (level 3 products), obtained from visi-
ble spectral radiometer (ocean color) data from SeaWiFS on
board the OrbView‐2 satellite, were obtained from NASA.
The composites were spatially interpolated and averaged over
the time period January 1998 to December 2001 to produce
climatological means for each month that match the model
grid and the temporal resolution.
[20] As an example of station data we used the Joint Global

Ocean Flux Study (JGOFS) data set, which was already
employed by Ducklow [2003] to overview the questions of
biogeochemical provinces and by Vichi et al. [2007b] and
Vichi and Masina [2009] as model validation sites. The
JGOFS data set comprises three long‐term (at least 10 years)
station time series (Bermuda Atlantic Time series Study,
BATS; Hawaii Ocean Time series, HOT; Station PAPA,
STNP), one medium‐term station on the Kerguelen Plateau
(KERFIX) and several process studies from the North
Atlantic Bloom Experiment (NABE), equatorial Pacific
(EQPAC), Arabian Sea (ARAB), the Antarctic Polar Front
Zone (APFZ) and the Ross Sea (ROSS).

2.3. Multivariate Statistical Analyses

[21] Differences between samples extracted from province
pairs were tested for statistical significance using analysis of
similarities (ANOSIM [Clarke and Green, 1988]). The
ANOSIM statistic (R) compares the similarity of ranked
variables within a province with the average rank of dif-
ferent provinces. Due to the kind of the data sets used,
which may contain both physical and biological informa-
tion, the similarity/dissimilarity between multivariate com-
binations of data (known as the resemblance matrix) is
expressed as normalized Euclidean distances.
[22] TheANOSIM test is scaled to vary between −1 and +1.

A value of +1 indicates that the similarity between all samples
within one province is higher than similarities between pro-
vinces. The suggested arbitrary thresholds are: >0.75 total
separation; 0.75–0.5 weak overlap; 0.5–0.25 overlap but
some separation; <0.25 no separation. A level of significance
is also computed by performing 1000 random permutation
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and estimating the p value (P) that the R value is obtained by
chance.
[23] Nonmetric multidimensional scaling ordination (MDS)

was used to visualize in a two‐dimensional space the proxi-
mities between provinces according to the extracted multi-
variate set of variables. MDS is a powerful statistical tool that
creates a spatial ordination of the data which carefully main-
tains the similarities or dissimilarities between the objects
[Borg and Groenen, 2005]. In our case, the objects are the
provinces, characterized by a multivariate combination of
station data or means and variances of the major biogeo-
chemical properties (see section 2.5). The realized 2‐D repre-
sentation is obtained through theminimization of a stress index
[Borg and Groenen, 2005], which compares the relative dis-
tances of objects in the original and downscaled data set.

[24] Groups of similar provinces were also identified by
hierarchical group‐average clustering. This method starts
from a similarity matrix and creates a dendrogram that
shows the levels (on the y axis) at which samples or group of
samples are considered separated. Groups within the den-
drogram were separated with two different methods: (1) by
taking slices at arbitrary distances in the dendrogram and (2)
by applying the SIMPROF analysis [Clarke and Gorley,
2006]. The latter tests the significance of each split in the
dendrogram by means of a statistic applied to a sample of
the possible permutations of the variable values involved in
that split. The null hypothesis is that there is no structure in
the cluster configuration. The results of both groupings can
be visualized in the MDS space to show the difference in the
resulting classifications.
[25] The Spearman rank correlation coefficient (r) has

been used to quantify the difference between model and data
by using the respective resemblance matrices (a Mantel test,
implemented in the PRIMER software as the RELATE test
statistic [Somerfield et al., 2002; Clarke and Gorley, 2006]).
The investigated relationship is therefore considered in
terms of similarity, e.g., whether province 1 and 5 are
closest both in the model and in the data. The value of r
ranges between −1 and +1, where 0 means there is no match
between the similarity matrices. The test is built by means of
random permutation of the (symmetric) data resemblance
matrix and the probability of obtaining a correlation larger
than the actual r is computed. One thousand permutations
are used as default.
[26] Numerical computations and visualizations were per-

formedwith PRIMERv. 6 [Clarke andWarwick, 2001;Clarke
and Gorley, 2006] and MATLAB. The ANOSIM MATLAB
implementation is provided by D. L. Jones (Users manual for
FATHOM: A MATLAB toolbox for multivariate ecological
and oceanographic data analysis, 2002, available at http://
www.rsmas.miami.edu/personal/djones/).

2.4. Longhurst Provinces in the Model Domain

[27] The name and definition of provinces listed in Table
1 are derived from Longhurst [2007]. Longhurst’s provinces
have been mapped on the model grid as shown in Figure 1
by assigning a unique province number to each ocean grid
point. The resolution of the model has limited skill in cap-
turing the physical dynamics of coastal biomes [see Vichi
et al., 2007b; Vichi and Masina, 2009]; therefore, most
of the coastal provinces have been discarded, only consid-
ering all of the open ocean provinces, for a total of 38 regions
out of the ∼50 originally proposed by Longhurst. Some
coastal provinces have been retained (e.g., the Mauritanian‐
Moroccan upwelling, CNRY, and the NE Atlantic Shelves)
as examples to test the performance of the model in these
areas. The position of major physical boundaries which are
known to be related to horizontal resolution issues, such as
the western boundary currents (Gulf Stream and Kuroshio)
and the extent of the Pacific Equatorial Divergence (PEQD)
into the Western Pacific Warm Pool (WARM), was deter-
mined subjectively from the mean annual position of the
physical features in the model results.

2.5. Model and Data Sampling Strategy

[28] The analysis considers two groups of variables: envi-
ronmental and biological. Environmental variables (ENV

Table 1. Description of the 38 Longhurst Provinces Defined in
the Model Domaina

Number Name Description Biome

1 BPLR Boreal Polar Province Polar
2 ARCT Atlantic Arctic Province Polar
3 SARC Atlantic Subarctic Province Polar
4 NADR North Atlantic Drift Province Westerlies
5 GFST Gulf Stream Province Westerlies
6 NASW N Atlantic Subtropical Gyral

Province (W)
Westerlies

7 NATR N Atlantic Tropical Gyral Province Trades
8 WTRA Western Tropical Atlantic Province Trades
9 ETRA Eastern Tropical Atlantic Province Trades
10 SATL South Atlantic Gyral Province Trades
11 NECS NE Atlantic Shelves Province Coastal
12 CNRY Canary Coastal Province Coastal
15 NWCS NW Atlantic Shelves Province Coastal
16 MEDI Mediterranean Sea,

Black Sea Province
Westerlies

17 CARB Caribbean Province Trades
18 NASE North Atlantic Subtropical Gyral

Province (E)
Westerlies

21 FKLD SW Atlantic Shelves Province Coastal
30 MONS Indian Monsoon Gyres Province Trades
31 ISSG Indian South Subtropical

Gyre Province
Trades

32 EAFR East Africa Coastal Province Coastal
33 REDS Red Sea, Persian Gulf Province Coastal
34 ARAB NW Arabian Upwelling Province Coastal
50 BERS North Pacific Epicontinental Province Polar
51 PSAE Pacific Subarctic Gyres

Province (East)
Westerlies

53 KURO Kuroshio Current Province Westerlies
54 NPPF North Pacific Polar Front Province Westerlies
56 NPSW North Pacific Subtropical

Gyre Province (West)
Westerlies

59 SPSG South Pacific Subtropical
Gyre Province

Westerlies

60 NPTG North Pacific Tropical Gyre Province Trades
61 PNEC North Pacific Equatorial

Countercurrent Province
Trades

62 PEQD Pacific Equatorial Divergence
Province

Trades

63 WARM West Pacific Warm Pool Province Trades
64 ARCH Archipelagic Deep Basins Province Trades
70 SUND Sunda Coastal
80 SSTC South Subtropical Convergence

Province
Westerlies

81 SANT Subantarctic Province Westerlies
82 ANTA Antarctic Province Polar
83 APLR Austral Polar Province Polar

aThe numbers (the same as by Longhurst [2007]) are used to identify
provinces and biomes in Figures 1–9.
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data set) are considered to be the physical and hydro-
chemical indicators of the state of the water masses. The
physical variables available both in the observations and in
the model are: sea surface temperature, salinity and mixed
layer depth. Photosynthetically Available Radiation (PAR)
data were also used by Longhurst in his classification, but it
was not used here as the physical model is forced by this
surface information and it was preferred to use derived
variables only. Hydrochemical properties are also consid-
ered environmental variables because of their potential
bottom‐up control on the living functional groups. However,
it must be considered that the actual concentration is the
final result of both hydrodynamic processes and uptake/
remineralization by biota. The hydrochemical properties
available in the model and in the observations are the surface
concentrations of phosphate, nitrate and silicate. The term
surface indicates here the first level of the model (5 m) and

the first level of observational data sets (0 m in the World
Ocean Atlas).
[29] The only observable biological variable that is avail-

able at the global scale is total chlorophyll concentration
derived from satellite data (section 2.2). In the model,
satellite‐like total chlorophyll is derived as described by
Vichi et al. [2007b] by considering the vertically integrated
chlorophyll concentration and the related attenuation
coefficient (CHL data set). Further biological variables are
available from the model output (BIO data set): particu-
larly we considered surface concentrations of chlorophyll
and carbon content of each phytoplankton group and car-
bon biomass of heterotrophs. Phytoplankton chlorophyll
and carbon concentrations are considered separately since
PELAGOS computes variable ratios of these two variables
[Vichi et al., 2007a].
[30] Model and observation data sets are distinguished by

adding the suffix “‐mod” or “‐obs,” respectively, to the data

Table 2. Summary of Variables for Each Data Set Used in the Analyses

Name Variable Depth

ENV‐obs and ENV‐mod Temperature surface
Salinity surface
Mixed layer depth ‐
Phosphate concentration surface
Nitrate concentration surface
Silicate concentration surface

BIO‐mod Diatoms carbon and chlorophyll concentration surface
Flagellates carbon and chlorophyll concentration surface
Picophytoplankton carbon and chlorophyll concentration surface
Bacteria carbon concentration surface
Hetrotrophic nanoflagellates carbon concentration surface
Microzooplankton carbon concentration surface
Mesozooplankton carbon concentration surface

CHL‐mod Sum of phytoplankton chlorophyll concentration integral over optical depth
CHL‐obs Total satellite‐derived chlorophyll ‐

Figure 1. Location, names, and numbering of selected Longhurst’s [2007] provinces on the model grid.
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set names. A summary of the data sets used in the analyses
is given in Table 2. The target temporal window is the
seasonal scale and monthly means of the relevant variables
over the 4 year period 1998–2001. All global data sets are
interpolated onto the model grid with a nearest neighbor
interpolation.
[31] Different strategies have been used to extract model

properties from the given set of provinces. (1) Fixed sampling
refers to the random extraction of a constant number of sta-
tions from each province; this is done by randomly selecting a
given number of grid points from the ones that have been
assigned to a certain province (section 2.4). (2) Bulk sampling
refers to the computation of mean values and standard de-
viations as measures of the variability within each province;
descriptive statistics consider the spatial standard deviation of
the grid point means across time for each province and the
temporal standard deviation over the year of the province
spatial mean. (3) Area‐weighted sampling, in which the
number of extracted samples is proportional to the surface
area of the province, with a given minimum of samples from
the smallest province. In this case, the largest province named
Southern Pacific Subtropical Gyre (SPSG, province 59, see
Figure 1 and Table 1), has 136 randomly distributed samples
and the smallest (like the coastal Canary province 12, CNRY)
have the fixed minimum of 10.

3. A Province‐Based Analysis
of Physical‐Chemical Variables

3.1. Partitioning

[32] The statistical separation between the provinces was
assessed with the ANOSIM test (section 2.3) [Clarke and
Green, 1988] by comparing samples extracted from the
model output and observations. Each sample consists of the
annual mean and standard deviation of the monthly values.

[33] The dependency on the sampling procedure was first
analyzed. The data set combining biological and environ-
mental data from the model (BIO_ENV‐mod) was sub-
sampled with a progressively increasing number of points
(fixed sampling) and the ANOSIM test was performed
(Figure 2). The global R value (section 2.3) converges when
the number of extracted points is above 16. The two‐point
sampling is indicative of the results that one may obtain by
characterizing a province with one station (although at least
two points are needed for the ANOSIM test to work). The
global R value is lower in this case as it is intuitively more
difficult to separate provinces on the basis of one single
extraction. The area‐weighted random sampling, which in-
creases the number of samples in the largest provinces, gives
a global R value comparable to the two‐point sampling. This
implies that a nonuniform sampling tends to bias the results.
Therefore, the fixed sampling scheme with 16 randomly
extracted points from each province was adopted in the
following results.
[34] The two‐dimensional MDS structure of the 16‐point

sampling from each province is shown in Figure 3 for the
ENV‐obs and ENV‐mod (normalized) data sets. These or-
dinations give hints at similar clustering of samples for
certain provinces both in the observations and in the model.
For instance, province 83 (Austral Polar, Table 1) has the
largest scattering and all the trades/tropical provinces are
clustered together. It is, however, difficult to assert whether
the provinces are statistically different from each other on
the basis of the intraprovince differences, and analysis of
similarity is therefore needed.
[35] The results from the ANOSIM test are listed in

Table 2 where the global R statistic (section 2.3) is reported
for all the data sets and combinations. Almost all of the
analyzed province pairs were statistically separable (P <
0.01) for any considered data set. The global R values and

Figure 2. Dependence of the global R statistics from the number of samples randomly extracted from
each region. The dashed line indicates the global R value of the area‐weighted sampling.
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Figure 3. MDS ordination of the multivariate samples extracted from (a) observations and (b) model
data with the 16‐point fixed sampling. The symbols indicate the province number where the sample
was extracted from.
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the percentage of statistically separable provinces for the
environmental data (ENV‐obs) and model output (ENV‐
mod) are very similar; global R values were 0.59 and 0.60 for
observations and model, respectively, suggesting overall
separation with some overlap of the provinces. Only 5% out
of the possible 703 province pairs are not distinguishable on
the basis of the extracted random samples and close to 50%
of the pairs are totally separate. We notice here and discuss
further in section 6 that the addition of biological variables to
the environmental data set (ENV_BIO‐mod in Table 2) re-
duces the global R value to 0.57 (P < 0.001) because the
predefined set of provinces is less separate by considering the
BIO‐mod data set only.
[36] ANOSIM was also performed on the tropical pro-

vinces 7, 8, 9, 10, 17, 30, 31, 60, 61, 62, 63, 64 classified as
trades in Table 1 (Table 3). The global separation index R
for the environmental data sets is lower than the one for all
the provinces. There is a very small fraction of completely
separated provinces both in the observations and in model
results, and most of the province pairs fall in the range of
0.5–0.75 that indicates overlap. It illustrates that physical
conditions are more similar at tropical‐equatorial latitudes,
even between provinces that belong to different oceans. It is,
however, interesting to note that the R index increases when
biological model data are added to the analysis, while it
decreased in the global analysis that included the temperate
and polar regions. This indicates that contrasting trophic
structures are possible in the model, even if the physical and
environmental conditions are more similar.
[37] The global analysis indicates that the chosen partition

is largely composed of statistically separable provinces in
both observations and model and that for the model this
separation is more robust on the basis of the seasonal
characteristics of the physical and hydrochemical variables
rather than the biological variables.

3.2. Assessment

[38] A corollary of the previous results is that the 16
samples of environmental data are representative of each
province’s physical‐chemical conditions because they are
statistically less different from each other than the differ-
ences between provinces. Any overlaps between provinces

are likely related to the superimposition of subjective,
fixed boundaries, but the high level of similarity between
intraprovince station properties is common to both the
observations and the model output. Nonetheless, the two
cannot be compared by a visual inspection of Figure 3, so
a more objective measure is needed.
[39] Data and models can be related to each other by

means of a Spearman rank correlation coefficient (r) on the
elements of the normalized resemblance matrices derived
from each data set (equivalent to the RELATE test of Clarke
and Gorley [2006, section 2.3]). To account for the variation
due to the random extraction of the samples from each
province, the computation of r was done on a set of 1000
different samplings of both observation and model data sets.
The distribution of the coefficient perfectly fits a normal
shape with mean and standard deviation 0.64 ± 0.02. The
significance of this number against the null hypothesis that
there is no relationship between the two matrices is always
very high (P < 0.001).
[40] However, it is important to point out that the obser-

vation data set used as reference for this test is itself defined
as a random extraction of samples from each province.
Therefore, there is an associated uncertainty in the reference
data set, and the expected value for a perfect fit cannot be
r = 1. It is possible to estimate a reference correlation
value from the distribution of autocorrelation coefficients
between several random extractions all done from the
reference ENV‐obs data set. The resulting value of 0.7 can
be compared with the value obtained above with the ran-
dom correlation test (Figure 4). The two means are of
course statistically different (otherwise the model would be
perfect) but the closeness indicates that the correlation in
terms of province characterization between model and data
is very good.

3.3. Significance

[41] As discussed by Hardman‐Mountford et al. [2008],
one property of systems is hierarchical organization, which
in ecosystem terms implies that biomes can be further
subdivided into classes with distinctive properties (i.e.,
provinces). We can test this hierarchical grouping by
checking whether the predefined provinces are indeed

Table 3. Results of the ANOSIM Test Performed on the Observations (ENV‐obs) and ENV, BIO, and ALL Model Data by Extracting
16 Random Samples From Each Provincea

Global R P < 0.01 >0.75 0.50–0.75 0.25–0.50 <0.25

Data Set (Global)
ENV‐obs 0.59(0.003) 0.98 0.47 0.27 0.19 0.05
ENV‐mod 0.60(0.003) 0.98 0.46 0.31 0.18 0.04
BIO‐mod 0.52(0.004) 0.93 0.37 0.25 0.22 0.09
ENV_BIO‐mod 0.57(0.003) 0.98 0.48 0.29 0.18 0.04

Data Set (Tropics)
ENV‐obs 0.43 0.97 0.08 0.32 0.48 0.09
ENV‐mod 0.39 0.92 0.03 0.27 0.44 0.18
BIO‐mod 0.42 0.92 0.26 0.20 0.35 0.12
ENV_BIO‐mod 0.44 0.95 0.24 0.17 0.39 0.15

aThe global R value is estimated as the mean and standard error (in parentheses) of 12 repeated ANOSIM computations for each data set. P < 0.01 entries
report the fraction of province pairs with significant resemblance and the remaining entries are the fractions of significant pairs which fall within arbitrary
separation thresholds [Clarke and Green, 1988] (>0.75 totally separate; 0.75–0.5 weak overlap; 0.5–0.25 overlap but some separation; <0.25 no sepa-
ration). The tropics data set presents the results of the same analyses performed over the subset of provinces belonging to Longhurst’s [2007] trades biome.
Global R values are given for one single sampling.
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arranged into larger biomes, either in the model or the
observations.
[42] Figure 3 is a homomorphic projection of model and

observation data that is, however, difficult to interpret in
terms of biomes. It is possible to improve this description
and gain further insights into data and model biogeography
by analyzing, using a two‐dimensional MDS ordination, the
multivariate bulk properties of each predefined province. As
explained in section 2.5, to account for the spatial and
temporal variability within each province, both standard
deviations are considered as additional variables of the
multivariate bulk data sets.
[43] This analysis was done on the ENV data set only,

because it allows the comparison between observations and
model data. Figure 5a shows that there is a discrepancy in
the observations between the groups identified by either the
MDS or the hierarchical cluster analysis (here shown with an
arbitrary choice of distance isolines) and the classification of
provinces according to Longhurst’s [2007] biomes (Table 1).
In particular, at the scale of the mapped observations it is not
possible to separate the coastal biome provinces because they
are scattered in almost all the other groups. Longhurst clas-
sifies the subtropical Pacific gyres (NW province 56 and
south province 59, Figure 1 and Table 1) as belonging to the
westerlies biome. Our analysis based on the seasonal mul-
tivariate observations described in section 2.2 indicates that
their characteristics are more similar to the trades regime
provinces.
[44] The unsupervised grouping identified by the

SIMPROF analysis (Figure 5b, see section 2.3) reveals in
fact a different classification than Longhurst’s [2007], indi-
cating that there is a statistically significant separation also
between provinces that intuitively belong to the same biome.
For instance, the western boundary currents are well sepa-
rated from the other provinces of the westerlies biome, as

also occurs for other groups such as the North Atlantic
provinces, the upwelling regions and the Southern Ocean
provinces, which are divided into polar front and Antarctica
(provinces 21, 51 and 80–81). Some provinces (indicated
with their acronyms in the legend of Figure 5b) cannot be
grouped into common biomes on the basis of the available
environmental data. This may imply either that they are
characterized by physical‐chemical properties that are so
different as to become a separated biome or that their
classification into larger biomes requires additional biolog-
ical information (as, e.g., done subjectively by Longhurst
[2007]). Additionally, as also pointed out by Hardman‐
Mountford et al. [2008], the trades biome is too “wide.”
One single biome cannot account for the environmental
seasonal variability found in tropical provinces, upwelling
provinces (mostly equatorial) and especially the southern
subtropical gyre provinces (SATL‐SPSG, Figure 5b).
[45] The same MDS analysis applied to the model

(Figure 6) shows a smaller number of groups which are
more difficult to link to the Longhurst biomes. In contrast
with the observations, the MDS and hierarchical clustering
give similar classification, and the number of significant
clusters is lower according to the SIMPROF test. The
North Atlantic Provinces are grouped together as in the
observations and the same is true for the Antarctic frontal
provinces (80 and 20), although the mean properties of the
sub‐Antarctic province SANT (81) are more similar to the
North Atlantic cluster. This evidences a model bias in
province 81, which is due to an enhanced early stratifica-
tion during springtime that renders this province more
similar to the characteristics of the North Atlantic [Vichi
and Masina, 2009]. The other large cluster can be further
separated into equatorial and subtropical gyre regions, with
more similarity between the southern hemisphere subtrop-
ical gyres (provinces 59 and 10). On the basis of the mean
bulk properties and their spatial and temporal variations,
the model has less skill in separating the northern Indian
provinces from the Mediterranean and also from the Kur-
oshio (53), which is surprisingly distant from the Gulf
Stream province (5). These provinces are characterized by
well‐known coastal or mesoscale processes. It is thus more
likely that the coarse resolution of the model hinders the
development of distinct physical‐chemical features.

4. Chlorophyll‐Derived Provinces

[46] Chlorophyll observations were deliberately not used
in the previous analyses based on the assumption that bot-
tom‐up control by physical drivers defines the biogeo-
chemical provinces [Longhurst, 2007]. In section 3 we have
seen that there are consistent bottom‐up physical and hy-
drochemical features characterizing the set of predefined
provinces, supporting this assumption in both observations
and model. It is therefore interesting to analyze whether the
chlorophyll signal is also characteristic in each province,
which might also imply that there is a direct connection
between bottom‐up forcings and the ecosystem (although
here the ecosystem is limited to phytoplankton and to
chlorophyll concentration as a proxy for biomass). We have
thus repeated all the province‐based analyses presented
above on the mapped chlorophyll data (model and Sea-
WiFS, section 2), after log transformation to equally account

Figure 4. Empirical distribution of the rank correlation
coefficient values obtained with pairs of random samples
extracted from the biogeochemical provinces of the ENV‐
obs data set. The dashed thick line is the value of r for
the correlation between ENV‐obs and ENV‐mod with the
standard deviation interval (gray dashed lines).
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for extreme values and computation of resemblance matrices
with the Euclidean distance.
[47] Particularly, we checked through fixed random

sampling and the ANOSIM test (section 2.5) whether pro-
vinces are statistically separable in terms of chlorophyll
values from the model and satellite data sets, independently

from the environmental data. The test results are shown in
Table 4. Global R statistics are both lower than 0.5 (0.3) and
less than found with environmental data (0.44, see Table 2),
which implies that the chlorophyll‐based provinces statisti-
cally overlap more than the environmental ones, though
there is still some separation. CHL‐obs is characterized by a

Figure 5. MDS ordinations of the province bulk samples extracted from the observation data set (ENV‐
obs). Labels indicate the province number. (a) Symbols represent the corresponding biome according to
Longhurst’s [2007] classification, and contours are the results of a hierarchical cluster analysis drawn at 3
arbitrary distances. (b) Symbols are the classification obtained from the SIMPROF analysis.
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very small fraction of fully separated province pairs,
whereas this fraction is substantially larger in the model data
(CHL‐mod). If the environmental data are also analyzed
together with the Chl data (ENV_CHL data sets in Table 4),
the separation increases as expected in both data sets,
indicating that chlorophyll concentration alone is not a
sufficient criterion for province separation according to this
predefined layout.
[48] The comparison between the CHL‐obs and CHL‐

mod data sets operated by means of one single fixed sam-
pling extraction and the computation of resemblance
matrices (RELATE test, section 2.3) gives a r value of 0.19
(P > 0.001) which changes to 0.31 (P > 0.001) if the coastal
provinces 11 and 12 with the highest values in CHL‐obs are
removed. This implies that model and data are weakly
related through chlorophyll, yet the matching pattern is
statistically significant at 99% level in the open ocean areas.

It is also interesting to compute the reference r value of
autocorrelation from an empirical distribution of 1000 suc-
cessive fixed random samplings of the CHL‐obs data set (as
done in section 3.2 for the environmental data and shown in
Figure 4). The autocorrelation coefficient with the chloro-
phyll data is lower (0.44 ± 0.03, confirming the large het-
erogeneity within provinces evidenced by the ANOSIM)
and the average correlation between the data sets is 0.27 ±
0.03, still removing the coastal provinces as above.
[49] The clustering of provinces into biomes was also

analyzed as in section 3.3 (Figures 5 and 6) using the bulk
sampling (province means, monthly standard deviation and
spatial annual variability, section 2.5). Interestingly, there is
very little grouping into larger biomes either in the data and
in the model (Figure 7), as it might also be argued by the
marked overlap found in the analysis of similarity (Table 4).
The layout of provinces in satellite data is similar to that

Table 4. Results of the ANOSIM Test Performed on the Chlorophyll Data Sets and on the Environmental Variables
and Chlorophyll Data Setsa

Data Set Global R P < 0.01 >0.75 0.50–0.75 0.25–0.50 <0.25

CHL‐obs 0.31 0.77 0.08 0.21 0.27 0.20
CHL‐mod 0.44 0.83 0.29 0.21 0.23 0.11
ENV_CHL‐obs 0.54 0.98 0.42 0.27 0.21 0.07
ENV_CHL‐mod 0.54 0.97 0.41 0.32 0.19 0.05

aSee Table 3. Chlorophyll data sets alone are model and SeaWiFS observations and the environmental variables and chlorophyll
data sets are 16 random samples from each province are considered.

Figure 6. MDS ordinations of the province bulk samples extracted from the model environmental data
set (ENV‐mod). Labels indicate the province number, the symbols are the groups obtained with the
SIMPROF analysis, and the contours are the results of a hierarchical cluster analysis drawn at three
arbitrary distances.
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found by Hardman‐Mountford et al. [2008], with a gradient
from high chlorophyll concentration in polar and coastal
regions, intermediate in the westerlies, to low chlorophyll in
the trades biome (left to right in Figure 7a). Also the model
shows a similar ordination, although the highest values are
found in Southern ocean provinces and coastal provinces are

scattered in all groups. It is important to remember here that
chlorophyll data from satellite products are biased toward
summer values, whereas this is not true for the model where
monthly data are used. On the one hand, this indicates the
overestimation of model chlorophyll as detailed by Vichi
and Masina [2009], but on the other hand, this indicates

Figure 7. MDS ordinations of the province bulk chlorophyll concentration extracted from (a) satellite
data and (b) model data. Labels indicate the province number, and the symbols represent the correspond-
ing biome according to Longhurst [2007].
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the lower reliability of satellite data at high latitudes, as also
discussed by Hardman‐Mountford et al. [2008].

5. The Usage of Single‐Point Time Series Data for
Province Characterization

[50] In sections 2–4 we have compared gridded data with
model results. In this section, we ask the question of how
useful are time series data for the validation of global ocean
biogeochemical models verifying whether the observed data
can be considered representative of the entire province. The
underlying assumption is that gridded data sets are the best
available spatially resolved description of ocean properties.
[51] We assume, as in section 3.1, that physical features are

the basic expression of the province, and therefore, we limit
the analysis to the environmental variables. Note, however,
that this is not the same analysis done in section 3.2; here we
have applied bulk sampling considering the annual mean and
the temporal standard deviation only (section 2.5). Spatial
variability is neglected as we compare mean province prop-
erties with a single station. The JGOFS sites have also been
added to the data set, considering both the time series and
process study (compare section 2.2). The MDS and hierar-
chical cluster analyses as described above have been per-
formed and, since they are comparable, we discuss here the
results of the cluster analysis only (Figure 8). The permuta-
tion method SIMPROF was also used to derive the signifi-
cance of a branching in the dendrogram and the clusters
identified by red lines are significant at 95% level.
[52] The analysis suggests that no provinces can be

represented by the APFZ and ROSS process study data, as
they are distant from all the other data. This implies that
these JGOFS studies are local and should be used for

colocated comparisons, avoiding any large‐scale extrapo-
lation. This is likely to occur also for KERFIX, which
although has a time series a couple of years longer, it is
located in a frontal zone with high temporal and spatial
variability difficult to be described by coarse resolution
data mapping. KERFIX is in our analysis more related to
the polar biogeochemical provinces defined by Longhurst,
particularly with the sub‐Antarctic province 81 that is
instead classified as westerlies by Longhurst [2007]. The
analysis at this spatial scale indicates that the separation
between the other southern Antarctic provinces is less
significant.
[53] Moving to the tropics, the other process study

EQPAC is also not associated with the other provinces
from the trades biome. The grouping with the Red Sea
province is incidental and probably caused by the common
absence of seasonality that characterize these regions. On
the other hand, Arabian Sea ARAB data span a period of
about 2 years covering an entire seasonal cycle, and
therefore, they are more linked to the characteristics of the
other provinces of tropical upwelling (12, 34 and 62).
[54] BATS is equivalent, in terms of seasonal variability

of the environmental parameters to the subtropical regions
of the North Atlantic (6 and 18). BATS geographically
belongs to the trades biome, even if, given the large seasonal
variability is probably better classified as transitional region
between the trades and westerlies provinces [Brix et al.,
2006]. Model results averaged over province 6 (NASW)
can thus be compared with data from BATS, though it might
be argued that the boundary with province 16 should be
moved eastward to enhance the difference between the
eastern and western sides of the Atlantic.

Figure 8. Cluster analysis of the seasonal variability in environmental variables of provinces and JGOFS
stations. The Longhurst biomes are also given as reference.
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[55] The Pacific has two long‐term monitoring stations,
STNP and HOT. The environmental variables at STNP in
the northwestern Pacific have a similar seasonal cycle as the
mean of province 51 that contains it. Data collected at STNP
can thus be compared at a 95% confidence level with
averages extracted from that province. The same con-
siderations are valid for station Aloha, the Hawaii Ocean
Time series (HOT). HOT is part of the large cluster of
equatorial and intertropical provinces identified in the MDS
analysis of Figure 5a. This implies that there are several
provinces with similar seasonal cycles in the physical and
nutrient variables. In this case, the method indicates that the
province where HOT is located geographically (province
60) is the more similar, although this similarity does not
reach the 95% level of significance.

6. Discussion

[56] For the purpose of this study, Longhurst provinces
are taken as useful reference structures and they are not
considered as permanent biogeographic units of the global
ocean. We recognize that the predefined set of provinces is
arbitrary, as are the boundaries between them, and more
importantly, they are not homogeneous oceanographic units.
This is why we derive them by aggregating mapped data and
model results of higher horizontal resolution than the
province areal extension. In their original conception, bio-
geochemical provinces are regions of the ocean where the
physical processes have similar seasonal dynamics and give
rise to similar biogeochemical processes, and not homoge-
neous units that can be described by zero‐dimensional or
vertical one‐dimensional biogeochemical models.
[57] This is exactly what the ANOSIM test demonstrated;

that the separation between Longhurst’s [2007] provinces,
based on the chosen set of variables, is statistically signifi-
cant, implying that provinces are present in both the global
environmental data sets and the model results. Moreover,

the PELAGOS model has skill in simulating the relation-
ships between the different seasonal variability observed in
each province, as quantified with the rank correlation anal-
ysis of the RELATE test. Therefore, the supervised parti-
tioning of the ocean described by Longhurst has some
relationship with the properties emerging from a compre-
hensive physical‐biogeochemical model of the global ocean.
[58] However, the same analysis of similarity conducted

on the satellite chlorophyll data set resulted in a significantly
smaller separation between provinces, which may suggest
that the province’s founding concept of alignment between
coherent physical properties and biological processes (in this
case exemplified by chlorophyll concentration, the only
globally available data) is not substantiated. This apparent
mismatch may be explained by the different origin of the
data sets used for the analysis. Nutrient and physical data
derive from gridding procedures that imply the usage of
analytical correlation functions that merge the sparse infor-
mation, while chlorophyll concentration fields are interpo-
lated from high‐resolution sensor data. Therefore, in most of
the provinces, chlorophyll gradients are usually stronger
than physical gradients. In addition, as for instance shown in
Figure 9, the same chlorophyll gradients are observed in
provinces that are known to have significantly different
physical properties (as for instance in the eastern and
western part of the northern Pacific subtropical gyre or in
the northern Atlantic, Figure 1).
[59] The separation between the subjectively determined

Longhurst provinces is fixed a priori and does not neces-
sarily coincide with the provinces that can be directly
derived from the SeaWiFS data [e.g., Hardman‐Mountford
et al., 2008]. Hardman‐Mountford et al. [2008], in fact,
found a significant dissimilarity between SeaWiFS data
samples extracted from different putative biomes in the
Pacific Ocean. However, they used samples of relatively
small areal dimension (2° × 2°), and our results suggest that
the averaging procedure within provinces reduces the sep-

Figure 9. Province layout from Figure 1 with superimposed mean annual chlorophyll concentration
from SeaWiFS.
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aration. If the provinces are defined on the basis of the
average chlorophyll value and standard deviations, the
overlap between provinces is usually larger (results not
shown). The usage of a fixed sampling and the comparison
of resemblance matrices partly avoid the averaging bias that
tends to give more weight to the choice of the boundaries.
[60] The analysis of model results only, illustrates an

additional feature of the usage of predefined provinces. As
shown in Table 3, provinces are more significantly separated
in the environmental model data than in the biology, also
when considering other variables besides chlorophyll (such
as bacterial and heterotroph carbon biomass, section 2.5).
We may speculate that, also in real systems, provinces
obtained from considerations on the physical drivers may
not be the same as macroecological province definitions.
Provinces are defined partly by environmental character-
istics, but also by species composition or by a combination
of several ecological factors as for instance trophic inter-
actions [Longhurst, 2007]. This is a possible reason we did
not find a complete hierarchical organization in biomes as
laid out by Longhurst, and some provinces have been
singled out as having peculiar characteristics that do not fit
into larger biomes (Figure 5). It may well be that statisti-
cally different seasonal variability in the physical drivers
may lead to similar macroecological assemblages that are
qualitatively classified as belonging to the same biome,
because the specific ecological and physiological interac-
tions realize a similar functional structure in the biomass
distribution. The converse may also be true: provinces that
are substantially similar in environmental features may host
contrasting biological structures as a result of trophic and
ecological interactions at smaller spatial scales. This is
actually what happens if the ANOSIM is performed on the
tropical provinces only (section 3.1). The dissimilarity
between provinces increases when biological information is
added. This can also partly explain the mismatch between
our classification and Longhurst’s, who actually incorpo-
rated ecological considerations in his analysis. Another
implication is that biogeochemical models with more
detailed trophic structures may be required in tropical regions
in order to capture the observed biogeographic layout.
[61] The above discussion underlines some limitations

of supervised classification methods using predefined
provinces. They have been proven to be a useful concept
for studying the global ocean biological processes [e.g.,
Ducklow, 2003] and, as proposed in this paper, are
valuable for model validation issues. However, supervised
classification suffers from the specific methods used for
the spatial mapping of observations (gridding, averaging)
and cannot completely account for the spatial variability
of observed chlorophyll concentration.
[62] A further step in this approach is therefore to derive the

provinces directly from the model results and then comparing
with the classifications obtained using mapped data sets or
satellite observations [e.g.,Hardman‐Mountford et al., 2008;
Devred et al., 2007; D’Ortenzio and Ribera d’Alcalá, 2009].
An initial example was done by Sarmiento et al. [2004]
defining the regions by means of an empirically derived,
linear combination of physical properties such as SST,
mixed layer depth, etc. Gregr and Bodtker [2007] refined
this method by substituting the interpolation with a multi-
variate adaptive classification algorithm. A likely alternative

would be to use unsupervised neural networks such as Self‐
Organizing Maps [Kohonen, 2001] in a similar way to that
of Allen et al. [2007]. Grid points with similar bulk prop-
erties are likely to be grouped together, defining the
boundaries in a more coherent way which would thus be
dependent on the model dynamics.

7. Conclusions and Recommendations

[63] The approach presented in this paper applies the
concept of biogeochemical provinces as a diagnostic tool for
the analysis and validation of global marine biogeochemis-
try models. It is proposed as a method of overcoming the
limitations to model verification imposed by data scarcity
and the general undersampling of relevant ocean biogeo-
chemical properties. The analysis has shown that intuitive
provinces derived by a priori considerations, are coherently
distinguished in the environmental data (physical and
hydrochemical variables) to a significant degree and that
the same relationships between provinces are found in the
results of the PELAGOS biogeochemistry model. A com-
parison carried out at the level of biogeochemical pro-
vinces demonstrates that the correlation between model
and observations is significant and quite high if provinces
are defined on the basis of a limited number of randomly
extracted stations containing environmental data. The cor-
relation is still significant against satellite chlorophyll data
but much lower.
[64] It is important to note that the spatial and temporal

variability of the real and the simulated systems have to be
considered in the comparison exercise. Comparing model
and observations on the basis of means over a certain
province is less reliable, especially for comparisons against
high‐resolution satellite‐derived chlorophyll data. This
problem is especially relevant at high latitudes, due to the
lack of information on seasonal variability from satellite
sensors, which partly hinders the interpretation of model
skills. On the other hand, long‐term monitoring stations
(BATS, HOT and STNP) appear to be representative of their
respective provinces and thus, in the limit of the currently
available environmental data, can be used as reference data
sets for understanding the provinces themselves.
[65] The application of multivariate techniques (such as

MDS and the related statistical tests for the analysis of
similarity and rank correlation), provides a powerful tool for
the interpretation of model results. We recommend their use
in the validation process of OBGCM and especially in
objective comparisons with data. This implies the use of
multivariate data sets with global ocean coverage, which are
only partly available. The first‐order analysis has to be
forcibly based on bulk properties, because these are cur-
rently the only data with sufficient spatial and temporal
coverage. The new available global products of PFT dis-
tributions [e.g., Sathyendranath et al., 2004; Alvain et al.,
2005, 2008; Uitz et al., 2006; Aiken et al., 2007; Hirata
et al., 2008; Brewin et al., 2010] will provide a substan-
tial aid for the objective validation of the PFT model results.
Additionally, the strength of our approach is that once any
possible province is verified as statistically separate from the
others and characterized by consistent and coherent proper-
ties, other more ecologically relevant information (size‐
fractionated growth rates, biomass flows through PFTs, etc.)
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can be extracted from the model results and compared with
more local data sets [e.g., Bouman et al., 2006; Olguín et al.,
2006; Hirata et al., 2008] and long‐term station data, which
are usually more reliable than sparse observations. This
might help to overcome the mismatch between station data
and large‐scale model results without the need to extrapolate
sparse, low‐frequency measurements.

[66] Acknowledgments. This work was initiated thanks to a short‐
term visiting grant given to M.V. by the EUR‐OCEANS network of excel-
lence funded by the EU FP6 program. M.V. and S.M. were partly funded
by the EU FP7 GreenSeas Project (265294). J.I.A. and N.H.M. were partly
funded by theme 9 of the UK Natural Environment Research Councils
(NERC) Oceans2025 program, the NERC MARQUEST program, the
NERC Centre for Observation of Air‐Sea Interactions and fluxes (CASIX),
and the UK National Centre for Earth Observation (NCEO). SeaWiFS data
used in this publication were produced by the SeaWiFS project at Goddard
Space Flight Center. The data were obtained from the Goddard Earth
Sciences Distributed Active Archive Center under the auspices of NASA.
Use of these data is in accord with the SeaWiFS Research Data Use Terms
and Agreements. M.V. wishes to thank D. L. Jones for making publicly
available his toolbox for multivariate analyses. We thank two anonymous
reviewers for their comments on an early version of the manuscript.

References
Aiken, J., J. R. Fishwick, S. Lavender, R. Barlow, G. F. Moore, H. Sessions,
S. Bernard, J. Ras, and N. J. Hardman‐Mountford (2007), Validation of
MERIS reflectance and chlorophyll during the BENCAL cruise October
2002: Preliminary validation of new demonstration products for phyto-
plankton functional types and photosynthetic parameters, Int. J. Remote
Sens., 28, 497–516, doi:10.1080/01431160600821036.

Allen, J. I., P. J. Somerfield, and F. J. Gilbert (2007), Quantifying uncer-
tainty in high‐resolution coupled hydrodynamic‐ecosystem models,
J. Mar. Syst., 64, 3–14, doi:10.1016/j.jmarsys.2006.02.010.

Alvain, S., C. Moulin, Y. Dandonneau, and F. M. Breon (2005), Remote
sensing of phytoplankton groups in case 1 waters from global SeaWiFS
imagery, Deep Sea Res., Part I, 52, 1989–2004, doi:10.1016/j.
dsr.2005.06.015.

Alvain, S., C. Moulin, Y. Dandonneau, and H. Loisel (2008), Seasonal dis-
tribution and succession of dominant phytoplankton groups in the global
ocean: A satellite view, Global Biogeochem. Cycles, 22, GB3001,
doi:10.1029/2007GB003154.

Anderson, T. R. (2005), Plankton functional type modelling: Running
before we can walk?, J. Plankton Res., 27, 1073–1081.

Arvanitidis, C., et al. (2009), Biological geography of the European
seas: Results from the MacroBen database, Mar. Ecol. Prog. Ser.,
382, 265–278, doi:10.3354/meps07955.

Aumont, O., E. Maier‐Reimer, P. Monfray, and S. Blain (2003), An eco-
system model of the global ocean including Fe, Si, P co‐limitations,
Global Biogeochem. Cycles, 17(2), 1060, doi:10.1029/2001GB001745.

Borg, I., and P. Groenen (2005),Modern Multidimensional Scaling: Theory
and applications, 2nd ed., Springer, New York.

Bouman, H. A., et al. (2006), Oceanographic basis of the global surface dis-
tribution of Prochlorococcus ecotypes, Science, 312, 918–921,
doi:10.1126/science.1122692.

Brewin, R. J. W., S. Sathyendranath, T. Hirata, S. J. Lavender, R. Barciela,
and N. J. Hardman‐Mountford (2010), A three‐component model of phy-
toplankton size class for the Atlantic Ocean, Ecol. Modell., doi:10.1016/j.
ecolmodel.2010.02.014.

Brix, H., N. Gruber, D. M. Karl, and N. R. Bates (2006), On the relation-
ships between primary, net community, and export production in sub-
tropical gyres, Deep Sea Res., Part II, 53(5–7), 698–717, doi:10.1016/
j.dsr2.2006.01.024.

Clarke, K. R., and R. N. Gorley (2006), PRIMER v6: User manual/tutorial,
PRIMER‐E, Plymouth, U. K.

Clarke, K. R., and R. H. Green (1988), Statistical design and analysis for a
biological effects study, Mar. Ecol. Prog. Ser., 46, 213–226,
doi:10.3354/meps046213.

Clarke, K. R., and R. M. Warwick (2001), A further biodiversity index
applicable to species lists: Variation in taxonomic distinctness, Mar.
Ecol. Prog. Ser., 216, 265–278, doi:10.3354/meps216265.

Conkright, M., H. Garcia, T. O’Brien, R. Locarnini, T. Boyer, C. Stephens,
and J. Antonov (2002), World Ocean Atlas 2001, vol. 4, Nutrients,
NOAA Atlas NESDIS, vol. 52, U.S. Govt. Print. Off., Washington, D. C.

Costello, M. J., and E. Vanden Berghe (2006), ‘Ocean biodiversity infor-
matics’: A new era in marine biology research and management, Mar.
Ecol. Prog. Ser., 316, 203–214, doi:10.3354/meps316203.

de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone
(2004), Mixed layer depth over the global ocean: An examination of pro-
file data and a profile‐based climatology, J. Geophys. Res., 109, C12003,
doi:10.1029/2004JC002378.

Devred, E., S. Sathyendranath, and T. Platt (2007), Delineation of ecolog-
ical provinces using ocean colour radiometry,Mar. Ecol. Prog. Ser., 346,
1–13, doi:10.3354/meps07149.

Doney, S. C., I. Lima, J. K. Moore, K. Lindsay, M. J. Behrenfeld, T. K.
Westberry, N. Mahowald, D. M. Glover, and T. Takahashi (2009), Skill
metrics for confronting global upper ocean ecosystem‐biogeochemistry
models against field and remote sensing data, J. Mar. Syst., 76(1–2),
95–112, doi:10.1016/j.jmarsys.2008.05.015.

D’Ortenzio, F., and M. Ribera d’Alcalá (2009), On the trophic regimes
of the Mediterranean Sea: A satellite analysis, Biogeosciences, 6(2),
139–148, doi:10.5194/bg-6-139-2009.

Ducklow, H. W. (2003), Biogeochemical provinces: Towards a JGOFS
synthesis, in Ocean Biogeochemistry, edited by M. J. R. Fasham,
pp. 3–17, Springer, New York.

Friedrichs, M. A., et al. (2009), Assessing the uncertainties of model esti-
mates of primary productivity in the tropical Pacific Ocean, J. Mar. Syst.,
76, 113–133, doi:10.1016/j.jmarsys.2008.05.010.

Gregg, W. W., P. Ginoux, P. S. Schopf, and N. W. Casey (2003), Phyto-
plankton and iron: Validation of a global three‐dimensional ocean biogeo-
chemical model, Deep Sea Res., Part II, 50, 3143–3169, doi:10.1016/j.
dsr2.2003.07.013.

Gregr, E. J., and K. M. Bodtker (2007), Adaptive classification of marine
ecosystems: Identifying biologically meaningful regions in the marine
environment, Deep Sea Res., Part I, 54, 385–402, doi:10.1016/j.
dsr.2006.11.004.

Hardman‐Mountford, N., T. Hirata, K. Richardson, and J. Aiken (2008),
An objective methodology for the classification of ecological pattern into
biomes and provinces for the pelagic ocean, Remote Sens. Environ., 112,
3341–3352, doi:10.1016/j.rse.2008.02.016.

Hirata, T., J. Aiken, N. Hardman‐Mountford, T. J. Smyth, and R. G.
Barlow (2008), An absorption model to determine phytoplankton size
classes from satellite ocean colour, Remote Sens. Environ., 112(6),
3153–3159, doi:10.1016/j.rse.2008.03.011.

Kohonen, T. (2001), Self‐Organizing Maps, Springer Ser. Inf. Sci., vol. 30,
3rd ed., Springer, Berlin.

Le Quéré, C., et al. (2005), Ecosystem dynamics based on plankton func-
tional types for global ocean biogeochemistry models, Global Change
Biol., 11, 2016–2040.

Levitus, S., T. Boyer, M. Conkright, T. O’Brien, J. Antonov, C. Stephens,
L. Stathoplos, D. Johnson, and R. Gelfeld (1998), Introduction, in NOAA
Atlas NESDIS 18, vol. 1, 346 pp., U.S. Gov. Print. Off., Washington,
D. C.

Longhurst, A. R. (1995), Seasonal cycles of pelagic production and con-
sumption, Prog. Oceanogr., 36, 77–167, doi:10.1016/0079-6611(95)
00015-1.

Longhurst, A. R. (2007), Ecological Geography of the Sea, 2nd ed., Aca-
demic, Burlington, Vt.

Longhurst, A., S. Sathyendranath, T. Platt, and C. Caverhill (1995), An
estimate of global primary production in the ocean from satellite radi-
ometer data, J. Plankton Res., 17, 1245–1271, doi:10.1093/plankt/
17.6.1245.

Lynch, D. R., D. J. McGillicuddy Jr., and F. Werner (2009), Skill assess-
ment for coupled biological/physical models of marine systems: Preface,
J. Mar. Syst., 76, 1–3, doi:10.1016/j.jmarsys.2008.05.002.

Madec, G., and M. Imbard (1996), A global ocean mesh to overcome
the North Pole singularity, Clim. Dyn., 12, 381–388, doi:10.1007/
BF00211684.

Madec, G., P. Delecluse, M. Imbard, and C. Levy (1999), OPA8.1 ocean
general circulation model reference manual. Notes du Pole de Modelisa-
tion, Lab. d’Océanogr. Dyn. et de Climatol., Paris. (Available at http://
www.lodyc.jussieu.fr/opa.)

Moore, J. K., S. C. Doney, and K. Lindsay (2004), Upper ocean ecosystem
dynamics and iron cycling in a global three‐dimensional model, Global
Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220.

Olguín, H. F., D. Boltovskoy, C. B. Lange, and F. Brandini (2006), Dis-
tribution of spring phytoplankton (mainly diatoms) in the upper 50 m
of the southwestern Atlantic Ocean (30–61°S), J. Plankton Res., 28,
1107–1128, doi:10.1093/plankt/fbl045.

Sarmiento, J. L., et al. (2004), Response of ocean ecosystems to climate
warming, Global Biogeochem. Cycles, 18, GB3003, doi:10.1029/
2003GB002134.

VICHI ET AL.: MODEL ASSESSMENT OF OCEAN PROVINCES GB2005GB2005

16 of 17



Sathyendranath, S., A. Longhurst, C. M. Caverhill, and T. Platt (1995),
Regionally and seasonally differentiated primary production in the
North Atlantic, Deep Sea Res., Part I, 42, 1773–1802, doi:10.1016/
0967-0637(95)00059-F.

Sathyendranath, S., L. Watts, E. Devred, T. Platt, C. Caverhill, and
H. Maass (2004), Discrimination of diatoms from other phytoplankton
using ocean‐colour data, Mar. Ecol. Prog. Ser., 272, 59–68, doi:10.3354/
meps272059.

Six, K. D., and E. Maier‐Reimer (1996), Effects of plankton dynamics on
seasonal carbon fluxes in an ocean general circulation model, Global
Biogeochem. Cycles, 10, 559–583, doi:10.1029/96GB02561.

Somerfield, P. J., K. R. Clarke, and F. Olsgard (2002), A comparison of the
power of categorical and correlational tests applied to community ecol-
ogy data from gradient studies, J. Anim. Ecol., 71(4), 581–593,
doi:10.1046/j.1365-2656.2002.00624.x.

Stow, C. A., J. Jolliff, D. J. McGillicuddy Jr., S. C. Doney, J. I. Allen,
M. A. M. Friedrichs, K. A. Rose, and P. Wallhead (2009), Skill
assessment for coupled biological/physical models of marine systems,
J. Mar. Syst., 76, 4–15, doi:10.1016/j.jmarsys.2008.03.011.

Uitz, J., H. Claustre, A. Morel, and S. B. Hooker (2006), Vertical distribu-
tion of phytoplankton communities in open ocean: An assessment based

on surface chlorophyll, J. Geophys. Res., 111, C08005, doi:10.1029/
2005JC003207.

Vichi, M., and S. Masina (2009), Skill assessment of the PELAGOS global
ocean biogeochemistry model over the period 1980–2000, Biogeos-
ciences, 6, 2333–2353, doi:10.5194/bg-6-2333-2009.

Vichi, M., N. Pinardi, and S. Masina (2007a), A generalized model of
pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory,
J. Mar. Syst., 64, 89–109, doi:10.1016/j.jmarsys.2006.03.006.

Vichi, M., S. Masina, and A. Navarra (2007b), A generalized model of
pelagic biogeochemistry for the global ocean ecosystem. Part II: Numer-
ical simulations, J, J. Mar. Syst., 64, 110–134, doi:10.1016/j.
jmarsys.2006.03.014.

J. I. Allen and N. J. Hardman‐Mountford, Centre for Coastal Marine
Studies, Plymouth Marine Laboratory, Prospect Place, West Hoe,
Plymouth PL1 3DH, UK.
S. Masina and M. Vichi, Centro Euro‐Mediterraneo per i Cambiamenti

Climatici, Istituto Nazionale di Geofisica e Vulcanologia, Viale Aldo
Moro 44, I‐40127 Bologna, Italy. (marcello.vichi@bo.ingv.it)

VICHI ET AL.: MODEL ASSESSMENT OF OCEAN PROVINCES GB2005GB2005

17 of 17



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


