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a b s t r a c t

The number of interoperable research infrastructures has increased significantly with the growing
awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the
societal benefit areas that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the
environment and managing complex information, from space observations to species records including
their genetic characteristics. But GEOSS goes beyond simple data sharing to encourage the publishing
and combination of models, an approach which can ease the handling of complex multi-disciplinary
questions. It is the purpose of this paper to illustrate these concepts by presenting eHabitat, a basic
Web Processing Service (WPS) for computing the likelihood of finding ecosystems with equal properties
to those specified by a user. Despite the availability of the agreed WPS standard for Web-based geospatial
modeling, few practical implementations exist, making eHabitat a significant addition to the field. On the
other hand, the wide uptake of Web access standards for geospatial data has led to a wealth of data
sources within GEOSS which can be effectively combined using eHabitat. When chained with other
services providing data on climate change, eHabitat can be used for ecological forecasting and becomes
a useful tool for decision-makers assessing different strategies when selecting new areas to protect.
eHabitat can use virtually any kind of thematic data that can be considered as useful when defining
ecosystems and their future persistence under different climatic or development scenarios. The paper
will present the architecture and illustrate the concepts through case studies which forecast the impact
of climate change on protected areas or on the ecological niche of an African bird.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The use of distributed computing technology is revolutionizing
thewaywedealwith information, and international initiatives, such
as theGroup onEarthObservations (GEO), are encouraging different
communities tomake their systems and applications interoperable.
The ORCHESTRA project (Klopfer and Kannellopoulos, 2008), for
example, opened the way for service chaining in the multi-
disciplinary domain of environmental risk management. Biodiver-
sity is one of the societal benefit areas that is likely to benefit most
from this initiative because of the nature of the datasets required
for environmental monitoring and strategy evaluation; they are
huge in their spatio-temporal scope anddimensionality,while at the
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same time they are often documented and managed in a very
fragmented and inconsistent manner.

When we consider ecological modeling, better results have
traditionally been achieved either by improving existing models or
bydevelopingnewones. Chaining interoperablemodel components
is now a third alternative that is particularly interesting because
such a chain can potentially answer more questions than the indi-
vidualmodels alone, allowing users to address complexquestions in
a variety of different contexts. Still, setting up a computing infra-
structure where models can be easily plugged and played remains
a challenge (Service, 2011). The “Model Web” proposed by Geller
and Turner (2007) envisages such an environment of interacting
models and encourages the practical development of a distributed,
multi-disciplinary network of independent, interoperating models
and datastores communicating with each other usingWeb services.
Beyond the simple sharing of information, theModelWeb conceives
increasing access to models and their outputs, and aims to facilitate
greater modelemodel interaction, resulting in a web of interacting
models, databases, and websites (Nativi et al., 2013).
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A first effort in this direction has been described by Best et al.
(2007) with OBIS-SEAMAP,1 the Ocean Biogeographic Information
System - Spatial Ecological Analysis of Megavertebrate Populations,
a spatially referenced online database, aggregating marine
mammal, seabird and sea turtle observation data from across the
globe. Another milestone was the setting up by Nativi et al. (2009)
of an ecological niche modeling framework built around Open-
Modeller2 (Muñoz et al., 2011), a popular tool for ecological niche
modeling. The proposed modeling framework successfully
employed a Service Oriented Architecture (SOA) even though at the
time OpenModeller was still a stand-alone application, by making
the modeling kernel accessible through external interfaces like
SOAP.

Another example of an interoperable biodiversity information
system where models are chained, is the Digital Observatory for
Protected Areas (DOPA)3 that is currently being developed at the
Joint Research Centre of the European Commission in collaboration
with other international organizations, including the Global
Biodiversity Information Facility (GBIF), the UNEP-World Conser-
vation Monitoring Centre (WCMC), Birdlife International and the
Royal Society for the Protection of Birds (RSPB). DOPA is conceived
as a set of distributed databases combinedwith open, interoperable
Web services to provide end-users, from park managers to scien-
tists and decision-makers, with the means to assess the state of
protected areas at the global scale (Dubois et al., 2010). DOPA needs
to easily exchange information with a number of reference spatial
data infrastructures (SDIs) in order to compute the indicators
involved in the assessments, but it must also rely on automated
services for monitoring purposes. Ultimately, when used in
conjunction with other environmental services which can supply
information on phenomena such as predicted climate change,
DOPA should be flexible enough to allow ecological forecasting and
consideration of alternative future scenarios. This last objective has
been partly achieved through the development of eHabitat,4

DOPA’s core modeling service that is made available to the
community by means of a Web Processing Service (WPS). It is the
purpose of this paper to present eHabitat and discuss its use in an
environment of interoperable data and model services.

The largest potential benefit from the Model Web is likely to be
the practical and easy re-use of basic modeling components for
different purposes. We believe that the granularity of the models
expected to interact with each other is a critical factor in any
operational version of the Model Web. A higher granularity is likely
to generate more reusable elementary services, greater control for
the users composing those services and thus, ultimately, more
complex and useful modeling chains. Being a relatively simple
modeling service for ecologists, eHabitat can be chained with other
services and the reusability of its results is assured by wrapping the
statistical modeling with the standardized OGC (Open Geospatial
Consortium) WPS interface.

Version 1.0 of the WPS standard for exposing algorithms on the
Webwas agreed and published by the Open Geospatial Consortium
(OGC) in 2007 (Schut, 2007). Five years on, take-up has been
relatively slow and has been largely confined to a small number of
academic and research institutions who publish discoverable
models and algorithms using the standard (Lopez-Pellicer et al.,
2012). The Web Coverage Service (WCS) and Web Feature Service
(WFS) standards for raster and vector geospatial data (published in
2003 and 2005 respectively) have so far led to a far larger pool of
1 http://seamap.env.duke.edu/.
2 http://openmodeller.sourceforge.net/.
3 http://dopa.jrc.ec.europa.eu/.
4 http://ehabitat.jrc.ec.europa.eu/.
interoperable data sources, though at present many of these are
consumed for cartographic, rather than analytic or modeling
purposes. The models exposed by the eHabitat WPS therefore
represent a significant addition to the available suite of Web-based
models which can be discovered and used to compose scientific
workflows consuming data from many existing distributed sources
across the scientific disciplines. Web-based clients developed for
the service are publicly accessible, to allow straightforward inter-
active use and parameterization of the underlying models. Alter-
natively, the service can be called automatically as part of
a workflow, and such experimental chaining of eHabitat with other
Web-based models such as conservation planning algorithms and
climate simulators is planned and ongoing.

In the following section, the reader will find an introduction to
the use of Mahalanobis distances for modeling habitats before we
describe in Section 3 howwe expose themodel as aWeb Processing
Service (eHabitat). Two case studies are then proposed in Section 4
where we illustrate the use of eHabitat when assessing climate
change impact on a protected area, the UNESCO site of Tassili
n’Ajjer, and on the ecological niche of an African bird, the Black
Harrier (Circus maurus). A discussion will follow in Section 5 on the
use of eHabitat when chained with other web-based modeling
services before the general conclusions of Section 6.

2. A short introduction to similarity modeling using
Mahalanobis distances

The main idea behind eHabitat is to provide a service allowing
end-users to find areas that have similar ecological properties to
a reference location. This approach is typically used for ecological
niche modeling, in which a spatial prediction model for a given
species is computed from a set of environmental parameters, or
‘indicators’ (see e.g. Clark et al., 1993; Knick and Dyer, 1997;
Rotenberry et al., 2006). In this context, Geographic Information
Systems (GIS) have proven to be very useful tools for conservation
because of the ease of handling various thematic layers and using
multi-criteria decision trees for extracting information. A very
common format for thematic data such as temperature is the raster
grid, consisting of discrete pixels, each with ameasured ormodeled
value. The computations in eHabitat are performed using a set of
such raster data. To compute similarity to a reference location for
each pixel of the domain under study, one popular approach is
based on the Mahalanobis distance (Mahalanobis, 1936). The
method is mathematically simple and fairly easy to understand,
performs relatively well compared with most other models (Tsoar
et al., 2007) and is computationally fast compared with more
complex methods such as Phillips et al. (2006). This method has
therefore been used in the examples below, although other
methods can easily be added within our WPS setup.

Numerically, the covariances and the variances of the (ecolog-
ical) variables at a set of reference pixels define how much the
vector of variables at a pixel i can deviate from the average within
these reference pixels and still have a high similarity. For a pixel i
the Mahalanobis distance D is defined as:

D2
i ¼ ðXi �mÞTC�1ðXi �mÞ (1)

where Xi is the vector of indicators from this pixel, m the vector of
the mean values and C�1 the inverse covariance matrix of the indi-
cator variables at the pixels of interest. The use of the inverse of the
covariance matrix makes the Mahalanobis distance independent of
the different scales and units of the measurements. Because of the
use of the inverse covariance matrix, highly correlated indicators
will have less individual effect on Di than uncorrelated indicators
which could be considered to bemore salient in the characterization

http://seamap.env.duke.edu/
http://openmodeller.sourceforge.net/
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http://ehabitat.jrc.ec.europa.eu/


Fig. 1. Use of Mahalanobis distances to compute probabilities of finding areas that are ecologically similar to a reference area, here a protected area in Zambia.

5 http://www.gdal.org.
6 http://owslib.sourceforge.net/.
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of the region of interest. When the indicators used to generate the
meanvector and covariancematrix are normally distributed, thenDi

is distributed approximately according to a c2 distribution with
n � 1 degrees of freedom, and so we can convert Di into probability
values (p-values) for each pixel, ranging from 0.0 representing no
similarity to 1.0 for areas which are identical to the mean of the PA.
This p-value can be seen as the probability that a pixel outside the
investigated area has a similar set of indicators to those found in the
selected area. If the indicators are not normally distributed, the
conversion is still useful as it rescales the unbounded D values to
a 0.0 to 1.0 range. Generallywe cannot assume normality of the data
without further testing, and therefore in the following explanation
we will interpret this p-value as a metric of similarity between that
pixel and the indicators in the reference area.

Fig. 1 illustrates the use of Mahalanobis distances for identifying
similar ecosystems based on 9 thematic maps for the Kafue national
park in Zambia. The symbol m in Eq. (1) above refers to the mean
values of the maps within the park boundaries, whereas C refers to
the covariance of the same values. We can then compute the
similarity between the Kafue national park and the surroundings,
shown in Fig. 1.

3. eHabitat as a Web Processing Service (WPS) for multi-
purpose modeling

In a Model Web context, basic Web services exposing generic
models can offer greater flexibility than complexmodeling services.
Because of the simplicity of the WPS, eHabitat can be re-used for
awide variety of purposes; end-users can simply select their area of
reference and identify their own data sets as input variables which
characterize the phenomenon of interest. In the examples shown
below, habitats defined by biophysical layers are considered, but
there is no theoretical limitation to the number or type of variables
that can be used for computing the similarity. The potential appli-
cations of the Mahalanobis distance model are therefore practically
unlimited, provided that appropriate input data are available. There
is a broad rangeof interdisciplinarypossibilities, ranging fromsocio-
economic modeling and ecological forecasting to the optimization
of environmental monitoring networks. By the same token, the
simpler the service, the easier it is to chain it with other services.We
have therefore implemented the eHabitat WPS as a single and
flexible service that is able to handle different types of input and
perform different tasks depending on the requests. Fig. 2 illustrates
the main components of eHabitat which are further detailed in the
next sections. The WCS provide input data which are processed by
a statistical model (Mahalanobis distances) written in R and made
accessible with a library (PyWPS) written in Python. Boundaries of
the analyzed area can be either defined by the end-users or derived
from a database of polygons representing protected areas.
3.1. Architecture of eHabitat WPS

The first version of eHabitat (eHabitat 1.0) was designed as
a proof of concept to compute, for a given protected area, the
probabilities to find elsewhere similar habitats using only three
predefined thematic maps. However, the need to monitor ecosys-
tems outside of protected areas, whether terrestrial or marine, is
stronger than ever, if only to assess connectivity between protected
areas and the external pressures caused by competition for land
and water. Providing the scientific community with the means to
compute habitat similarities anywhere on the globe, using their
own thematic ingredients, is therefore an interesting option. The
current version of eHabitat (eHabitat 2.0) therefore allows for an
arbitrary number of input indicators along with the definition of an
area of interest, which serves as a bounding box constraint for
further processing (GEO AIP3, 2011). Technically, PyWPS (Cepicky
and Becchi, 2007) was chosen as the WPS implementation. It is
a lightweight Python based server that easily integrates with the
Apache Web server, e.g. using the Common Gateway interface
(CGI). TheWPS serves the habitat modeling as one process which is
also implemented using Python. The process expects several
mandatory and some optional parameters (see Table 1). Using the
Python-bindings for GDAL (Geospatial Data Abstraction Layer)5 and
OWSlib6 the process can ingest and output a variety of different

http://www.gdal.org
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Fig. 2. Design of the architecture of eHabitat 2.0.

Table 1
Mandatory and optional input parameters for the eHabitat process.

Name Card Description Typeb Format

Mandatory parameters
Indicators 1,2,. Multiple WCS/CSW URLs

pointing to indicator
coverages

Complex
Data

Geotiff
NetCDF

SiteIDa 0e1 WDPA site identification
number, resulting in the
reference geometry

LiteralData Integer

SitePolygona 0e1 Well-Known-Text
representation of a user
defined polygon

LiteralData WKT

siteGeometry
URLa

0e1 URL resulting in the
reference geometry

Complex
Data

WFS, KML,
GeoJSON,
GeoRSS, þ

Boundingbox 1 Bounding box defining the
area of interest

Bounding
BoxData

Optional parameters
Forecast 0e1 Enable forecasting, default

false (if true the forecasted
indicators have to be
provided as well)

LiteralData Boolean

numRealisations 0e1 Number of realizations, to
calculate uncertainty

LiteralData Integer
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geospatial data formats (e.g. GeoTIFF, netCDF) as well as different
OGC specifications, like WFS, WCS or Catalog Service for the Web
(CSW). The adoption of interoperable standards for data access and
process execution is actually a key prerequisite for model chaining.

3.2. Model implementation

The computation of the Mahalanobis distances for the provided
indicator datasets is done using the R statistical language (R
Development Core Team, 2012) through an Rpy27 connection.
This makes it easy to call the models from the python process and
to take advantage of existing R implementations of methods such
as the computation of the Mahalanobis distance from a mean
vector and a covariance matrix, and the transformation from
Mahalanobis distances to similarities through the c2 transform. The
package has been written in a flexible way, so that the same func-
tion is used for computation of the current or forecasted similari-
ties, and for different reference geometries such as polygons
(protected areas) or points (classical niche modeling based on
species occurrences) andwith the possibility of weighting locations
according to species density. It can also handle input data that
present no spatial variability within the reference geometry as such
a case will normally lead to a covariance matrix that cannot be
converted) and categorical variables. This problem is often
encountered with projected climate data which are usually
computed on a low resolution grid. When used with high resolu-
tion data, no short scale spatial variability will be found and the
computation of the covariance matrix will lead to numerical errors.
The package is available on request, but we have not planned to
upload it to the R package repository CRAN as it has been partic-
ularly developed for our purposes, and does not offer a substantial
addition to other habitat modeling tools available under R.
7 http://rpy.sourceforge.net/rpy2.html.
3.3. Example operation of eHabitat WPS

The process is initiated by sending a WPS Execute request to the
WPS server. This request describes all the required input parameters
and desired outputs. Indicator datasets have to be referenced in the
request using WCS DescribeCoverage or CSW GetRecordById URLs.
The datasets are accessed using the provided area of interest and the
default spatial resolution of the WCS layer with a GetCoverage
request. All indicator layers that are requested must share similar
a Exactly one of these parameters has to be submitted.
b These types refer to the InputFormChoice data structure (Table 2) as defined in

Schut (2007).

http://rpy.sourceforge.net/rpy2.html
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geospatial properties (coordinate reference system (CRS), resolu-
tion). It is not in the scope of the habitat modeling to provide
resampling or reprojection. The reference geometry fromwhich the
Mahalanobis distances will be computed (i.e. the boundary of
a protected area or the point locations of species observations) is
referenced using either a specific unique identifier for a parkdefined
by the World Database on Protected Areas (WDPA), a WFS GetFea-
ture URL or its Well-Known-Text (WKT) representation. These data
are downloaded and transformed into R data structures before the
computation of theMahalanobis distances can be initiated with the
package written in R.

The results returned from the R code are processed to generate
different output formats depending on the requirements of the
end-users (see Table 2). If the user wants to perform some further
analyses on the results, a GeoTiff, NetCDF (Network Common Data
Format) or OGCWCS reference can be requested. Should the output
be only for visualization purposes, PNG (Portable Network
Graphics) images may be sufficient. For visualization in Web
mapping clients, the user may request the output as an OGC-WMS
reference.

4. Use cases

In the following, we will show some examples on how different
web clients using eHabitat as back-end modeling service can be
designed to answer different research questions.

4.1. Ecological forecasting in the Tassili n’Ajjer

In this subsection, we illustrate how eHabitat can be used for
ecological forecasting by mapping the similarity of the climatic
conditions for different time intervals to those found today in the
Tassili n’Ajjer. The approach used here is following a time-based
model (El-Geresy et al., 2002) where snapshots of the state of
a specific location are captured and predictions made for different
times.

The Tassili n’Ajjer is a UNESCO World Heritage site covering an
area of 72,000 km2 located in the Sahara, in the south-east of
Algeria at the borders of Libya, Niger andMali (Fig. 3). Themodeling
is done with the help of the eHabitat web client, which provides
easy access to a set of current and forecast climate variables. The
three variables are:

� the bio-temperature (the annual average of the temperature
after values below freezing are set to zero);

� the average total annual precipitation;
� the ratio between the annual Potential EvapoTranspiration
(PET) and the total annual precipitation.

These three variables are actually those used by Holdridge
(1947) to define life zones, i.e. areas with matching biological
characteristics. Depending on the relative values of the three
Table 2
Output parameters for the eHabitat process.

Name Description Typea Format

MahalDist Raw similarity data as computed
by the chosen method

Reference Geotiff
NetCDF

layerMahalDist Reference to an OGC-WMS layer
serving the result (GetMap-Request)

Reference OGC-WMS

PNGoutput Rendered image of the result with
country borders background, legend
and scale

Reference PNG

a These types refer to the OutputData data structure (Table 60) and DataType data
structure (Table 46) as defined in Schut (2007).
variables, a site can be approximately classified within one of 38
defined classes (e.g. tropical rain forest, boreal desert, warm
temperate dry forest, etc.). For the case illustrated here, we derived
the three climatic variables from the WorldClim8 database
(Hijmans et al., 2005) which provides gridded maps of current and
future climate variables at different lat-long resolutions, i.e.,
10 min, 5 min, 2.5 min and 30 arc seconds. The dataset for the
current climate is produced by interpolating the records from
climate stations with a spline interpolation method. The forecast
data have been produced by adding the changes from the large
scale global circulation models to high resolution maps of the
current climate (Ramirez and Jarvis, 2010), the results also being
available from the WorldClim database. Note that the PET was
obtained using the equation of Thornthwaite (1948); the equation
is simple and frequently used when dealing with large scale
computations.

Fig. 3 shows a screen capture of a web client designed for
eHabitat where the selected UNESCO site of Tassili n’Ajjer appears
in a dark blue polygon while other protected areas are shown in
a lighter blue. The right menu of the web client shows options of
themodel, i.e. the type of climate changemodel, the environmental
scenario considered, the forecasted dates (today, 2020, 2050 or
2080) and the resolution of the outputs.

By combining the park boundaries of Tassili n’Ajjer, as our
reference area, with the three climatic input maps, one can
compute the vector of means (m) in Eq. (1) of the climatic vari-
ables within the park boundaries for the current conditions
(Fig. 4) or for future dates (Fig. 5). The covariance matrix (C) is
computed from the same variables and Xi is defined here by the
values of the climatic variables for a certain pixel for different
time intervals.

Fig. 4 shows the screen capture of the same web client shown in
Fig. 3 with the outcome of the modeling step using the bioclimatic
conditions found today in the Tassili n’Ajjer. Blue colors show areas
with high similarities with the average conditions found currently
in the UNESCO site, while red and yellow colors show, respectively,
medium and low similarities with current conditions. The results
obtained for the forecasted cases depicted in Fig. 5 are showing the
probabilities to find similar conditions to today for the year 2050
(top) and 2080 (bottom). The upper screen shot shows that the area
of Tassili n’Ajjer will have already lost almost all of its current
properties in 2050 and similar conditions to today’s situation will
be found mainly North-East of the protected area. The situation
depicted for 2080 is even more dramatic as the forecasted habitats
will further shrink in surface and be further fragmented. An
obvious word of caution is needed here as the example selected is
to illustrate the concepts and one should be careful with any
scientific interpretation of the results.

4.2. Ecological forecasting of birds ranges

The example in Section 4.1 used a polygon representing a pro-
tected area as the sampling support from which to derive the
covariance matrix. However, one can equally well use a set of point
data such as georeferenced species observations. In the following
example, we used the eHabitat WPS in conjunction with a Web
client similar to the one described in the previous section, but
which has been enhanced with the option to query spatial occur-
rences of a species. To obtain locations at which a specific species
has been observed, we used services provided by the Global
Biodiversity Information Facility (GBIF) which enables free access to
8 http://www.worldclim.org.

http://www.worldclim.org


Fig. 3. Screen capture of a web client designed for eHabitat showing the selected UNESCO site of Tassili n’Ajjer (dark blue polygon) and, in the right window, the modeling
parameters to be selected by the end-user. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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biodiversity data via the Internet. As of May 2012, its Data Portal9

provides unified access to over 320 million records from some
9000 datasets supplied by hundreds of data publishers. Several
REST-based Web services of GBIF provide means to construct and
submit complex queries from machine to machine. In the case
described here, the Occurrence service10 is accessed via our web
client to return records for a taxon occurring within a particular
geographic bounding box. Output formats for these taxon records
include the international KML (Keyhole Markup Language).

Fig. 6 displays the enhanced web client and a use case
summarizing the possible impact of climate change on an African
bird, the Black Harrier (Circus maurus). Concentrated in the
Western Cape (its core range) in South Africa, the total population is
estimated to be around 1000e1500 individuals and the species is
classified as vulnerable on the red list of endangered species.
Computing Mahalanobis distances using the Holdridge data at the
96 locations where the GBIF reported the bird species, one gets
amap of habitat similarity that can be interpreted as the theoretical
climatic niche for this bird. Looking at the results from the fore-
casted Holdridge data for 2080 (Fig. 6, bottom), one sees a dramatic
loss of today’s climatic niche, which becomes more restricted to
coastal areas. This has particular conservation significance since
coastal areas are usually under high pressure in the competitition
for land.
9 http://www.gbif.org.
10 http://data.gbif.org/ws/rest/occurrence.
5. Theoretical limitations of eHabitat

The modeling approach presented in the above use cases has
a number of limitations. Ecologically, when monitored areas
present a complex set of highly variable environments, such as
a mountain near a lake, or a coastal area, computing Mahalanobis
distances from such heterogeneous environments gives results
which do not make much sense. There are a number of ways to
circumvent these problems, for example by carefully stratifying
the area into more homogeneous environments before launching
a set of separate computations for each environment. While such
a stratification step has not been implemented in the WPS, end-
users are still getting means to detect with eHabitat such hetero-
geneous areas because the variability in the ecological parameters
within the analyzed protected area is displayed. Fig. 4 shows, for
example, some variability in the bioclimatic conditions within the
Tassili n’Ajjer UNESCO site. Environments which exhibit particu-
larly low variability within the assessed region may also create
some numerical challenges for the interpretation of the results.
Nonetheless, these obstacles are intrinsic to the algorithmic
implementation of eHabitat and do not jeopardize the broader
idea of the modeling service as an elementary component
designed to be used and re-used for a variety of use cases. It
can also be seen that the approach can be easily extended to deal
with 3D datasets, increasing the potential for multi-disciplinary
use. This step would allow marine experts, for example, to gain
access to simple web-based applications for modeling marine
environments.

http://www.gbif.org
http://data.gbif.org/ws/rest/occurrence


Fig. 4. Screen capture of a web client designed for eHabitat showing the areas that are similar, from a climatic point of view, to the conditions found today in the Tassili n’Ajjer.

11 http://www.earthobservations.org/geoss.shtml.
12 http://www.earthobservations.org/geoss_call_aip.shtml.
13 http://www.eurogeoss.eu/.
14 http://www.genesis-fp7.eu/.
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6. eHabitat and the Model Web

The relative simplicity of the eHabitat WPS allows its re-use by
other modeling services. This simplicity, however, increases the
granularity of the fundamental elements in an environment based
on the Model Web and, consequently, the difficulty of choosing the
right components to construct a complex modeling workflow. If
there is a proliferation of modular interoperable models and data
services, then each must be very clearly documented so that a user
discovering these resources can compare the available services and
evaluate their fitness for the intended purpose. An example of an
earlier service oriented architecture including the use of geospatial
services facilitating discovery, access, processing and visualization
of geospatial data in a distributed manner can be found in Granell
et al. (2010) where an application to alpine runoff models is
described. A similar framework within which end-users of the
eHabitat WPS can select their own “ingredients” has been
successfully prototyped in the context of the GEOSS AIP (Archi-
tecture Implementation Pilot) initiative and is briefly described in
the next section.

6.1. Enhancing eHabitat WPS with a brokering approach

The Group on Earth Observations (or GEO) is coordinating
international efforts to build a Global Earth Observation System of
Systems (GEOSS) (GEO, 2009). The aim of GEOSS is to build a public
infrastructure to link together existing and planned observing
systems around the world and support the development of new
systems where gaps currently exist.11 The infrastructure that
coordinates access to the systems, applications, models, and
products is the GEOSS Common Infrastructure (GCI). To demon-
strate the added-value of GEOSS and enhance the GCI functional-
ities, the GEOArchitecture and Data Committee (ADC) launched the
GEOSS AIP Initiative.12 In December of 2010, the third phase of
GEOSS AIP (AIP-3) was concluded: it developed scientific scenarios
for several of the societal benefit areas recognized by GEOSS; cross-
disciplinary pilots were also considered, including the Biodiversity
and Climate Changes domain. Due to the multi-disciplinary nature
of this domain, the pilots required a multi-disciplinary infrastruc-
ture to be set up. For GEOSS AIP-3 Biodiversity & Climate Change
pilots, one of the objectives was to continue the successful exper-
imentations developed by GEOSS in the framework of AIP-3 and the
two previous AIP phases (Nativi and Bigagli, 2009). The EC-funded
EuroGEOSS13 (Pearlman et al., 2010) and GENESIS14 projects
developed a scenario in which the eHabitat model utilized
a distributed discovery service (i.e. a Discovery Broker) to access
Biodiversity and Climate Change datasets. In this way, end-users
can select the ‘ingredients’ available on the Internet to model
habitat similarities; an obvious enhancement to the existing
modeling capacity of eHabitat.

http://www.earthobservations.org/geoss.shtml
http://www.earthobservations.org/geoss_call_aip.shtml
http://www.eurogeoss.eu/
http://www.genesis-fp7.eu/


Fig. 5. Screen captures of a web client designed for eHabitat showing the areas that are similar in 2050 (top) and 2080 (bottom), from a climatic point of view, to the conditions
found today in the Tassili n’Ajjer.
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Fig. 6. Screen captures of a web client designed for ecological niche modeling. Red dots, displaying the spatial distribution of the Black Harrier as reported by the GBIF, are overlaid
on the output of the bioclimatic map of similarities derived from the observations. The upper figure shows the current conditions, the one below shows the probabilities of finding
similar conditions in 2080. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The scenario architecture of eHabitat in AIP-3 included the
following advanced components developed by the two EC-funded
projects:

1) the EuroGEOSS Discovery & Access Broker services;
2) the EuroGEOSS/GENESIS Semantic Discovery Broker which

extends the Discovery Broker by underpinning semantically-
enabled queries;

3) WorldClim data served through an OGC WCS interface
(developed by EuroGEOSS) to allow assessment of the impact
of changing climatic variables in protected areas;

The “eHabitat” use scenario is fully detailed in the engineering
report and accessible through the GEO Portal (GEO-AIP3, 2011).

The eHabitat scenario architecture benefits from the SOA
brokering approach by implementing the “Catalogue” service
through a Discovery Broker which is further coupled with another
pair of effective components, the Access Broker and the Semantic
Discovery Broker (Santoro et al., 2012). The broker implements an
extended version of the SOAwhere support for service composition
and management, service orchestration and transaction are
provided. This allows eHabitat to further interact with a plethora of
heterogeneous services and data models characterizing multi-
disciplinary scenarios. The broker also serves to lower the present
GCI entry-barrier by providing users with a homogeneous
discovery framework to heterogeneous resources (biodiversity,
climate change, etc.) through the addition of “expert” brokering
services which hide the heterogeneity of the underlying systems.
This solution prevents the eHabitat user from having to “learn” and
implement a diversity of information technologies which are
sometimes immature and sparsely documented.

7. Conclusions and further considerations

Multi-disciplinary information integration is recognized by the
scientific community as essential for the understanding of complex
issues such as the response of biodiversity to global changes. This
calls for the further development of flexible and scalable systems
allowing integrationwith existing (andheterogeneous) services and
data systems. The Digital Observatory for Protected Areas (DOPA), of
which eHabitat is a component, is an example of such a platform
where observations and models relating to trends in the world’s
ecosystems and species can be integrated. Relying on the dynamic
model infrastructure envisioned in the Model Web, DOPA’s many
benefits include improved means to discover, access, re-use and
chainmodels and datasets for multiple purposes. The eHabitatWPS
described here should illustrate these benefits: differentweb clients
designed for different end-users and use cases can be easily built on
the top of a fundamental modeling service. The versatility of eHa-
bitat allows it to be usedwithin different contexts andworkflows. At
the same time, the benefits of being able to select froma largepool of
fundamental modeling and data services, like the famous Lego
blocks used to construct different toys, calls for well orchestrated
and documented workflows and chains of analytical steps. These
must apply international and disciplinary standards for achieving
interoperability across different disciplinary systems and resources
(i.e. data, services and models). The adoption of an extended SOA
approach (i.e. Brokered SOA) realizes the necessary scalability and
flexibility which should allow interoperability with a set of other
services and data systems. If the adoption of standardWeb services
to publish eHabitat WPS should encourage its use by other
communities, its re-use will largely depend on the development of
new services allowing semantic interoperability.

Another downside of an environment based on numerous
interacting model services is the potential use of a broad range of
data types from uncontrolled sources. eHabitat in the Model Web
would be exposed to many different types and levels of uncer-
tainties and, when chained to other services, eHabitat itself
becomes an additional component which further propagates
uncertainties from a potentially long chain of model services. This
integration of complex resources, such as data and models brings
ever increasing challenges in dealing with uncertainty. For future
developments, we are building on the lessons learnt from the
UncertWeb (www.uncertweb.org) project which promotes and
develops tools and standards for quantifying and communicating
uncertainty in a distributed, interoperable Model Web (Cornford
et al., 2010; Bastin et al., 2013). eHabitat will adopt open source
implementations of encoding standards, service interface profiles,
discovery and chaining mechanisms developed in UncertWeb. Our
first observations have been presented in Skøien et al. (2011a,b).
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