

GRADUATE SCHOOL OF OCEANOGRAPHY

Improving NOAA's HWRF Prediction System through New Advancements in the Ocean Model Component and Air-Sea-Wave Coupling

Isaac Ginis, Biju Thomas, Brandon Reichl Tetsu Hara, and Austen Blair University of Rhode Island

HFIP funded project

Special thanks to our collaborators at EMC, GFDL, DTC, and University of Delaware

Outline

- Global expansion of HWRF-MPIPOM coupling
- Implementation of flexible ocean initialization
- Increased vertical resolution and implementation of KPP mixing scheme
- 2015 C_d formulation in HWRF
- Developing physics modules for HWRF air-seawave coupling

Expanding HWRF-MPIPOM ocean coupling capabilities to all ocean basins

MPIPOM-TC is Message Passing Interface Princeton Ocean Model for Tropical Cyclones, created at the University of Rhode Island.

MPIPOM Flexible Initialization Options

- 1. Feature-based modifications to GDEM monthly temperature (*T*) and salinity (*S*) climatology with assimilated daily GFS SST (FB)
- 2. Navy Ocean Data Assimilation daily *T* and *S* fields (NCODA)
- HYbrid Coordinate Ocean Model global daily product (HYCOM)
- 4. NCEP Global Real-Time Ocean Forecast System (RTOFS)

MPIPOM North Indian Domain: Ocean Response to Cyclone Phailin with FB initialization: 2013100600-1400

MPIPOM North Indian Domain: Ocean Response to Cyclone Phailin with NCODA initialization: 2013100600-1400

Case study: Hurricane Edouard (2014), TCVitals-based Winds

Evaluation of Ocean Initialization Options: Sea Surface Temperature

September 12, 2014 (pre-storm)

-54

E. Lon

-52

22 -60

-50

-48

-56

-54

E. Lon

-58

-52

-50

22 **•** -60

-58

-56

-52

-54

E. Lon

-50

-48

22

-58

-56

-48

Evaluation of Ocean Initialization Options: Comparison with AXBTs

Evaluation of Ocean Initialization Options: Comparison with AXBTs

MPIPOM: Increased number of sigma levels

 New higher resolution (60 level) MPIPOM implemented to test sensitivity to upper ocean vertical resolution

MPIPOM physics upgrade: KPP mixing parameterization (KPP-df)

Vertical turbulent mixing is parameterized from the shear.

MomentumTemperature
$$\overline{w'u'}(z) = -K\left(\frac{\partial \overline{u}}{\partial z}\right)$$
 $\overline{w'\theta'}(z) = -K\left(\frac{\partial \overline{\theta}}{\partial z}\right)$

The K-Parameter Profile (KPP) model is used to determine K. •

$$K(z) = hWG(z)$$

h	- Mixing layer depth
W	 Turbulent velocity scale
G (z) -	Non-dimensional shape-function

h is determined from bulk Richardson number criteria ($Ri_c = 0.3$)

$$Ri_b(z) = \frac{(B^r - B(z))|z|}{(U^r - U(z))^2 + (V^r - V(z))^2 + V_t^2(z)} < Ri_c$$

- B- BuoyancyU/V- currents (X/Y)
 - unresolved turbulent shear

Hurricane Edouard 09/15 12Z: KPP vs. M-Y

- 60 level noticeably smoother than 23 level
- KPP-df (Ri_c=0.3) produces up to 0.5° C more cooling than M-Y

13

Hurricane Edouard 09/15 12Z: Sensitivity to Resolution

- KPP: less cooling for 60 levels by up to 0.2°
- M-Y: Impact of increased vertical resolution is small

The 2015 HWRF surface physics upgrade: C_d formulation is based on direct measurements and theoretical analysis at high winds

Edson et al, 2013 Soloviev et al, 2014 x 10⁻³ a)COARE 3.0 parameterization C_{D10N} x 1000 two-phase parameterization unified parameterization 4.5 field data (dropwindsondes)¹¹ field data (dropwindsondes)¹² Buoy CBLAST field data (dropwindsondes)¹⁹ MBL ASIS 3.5 field data (angular momentum)¹³ RASEX field data (upper ocean current)¹⁴ ¹⁵ 25% higher than Ü_{10N} (m/s) C₁₀ CBLAST at 23 m/s 2.5 2.5 C_{D10N} x 1000 1.5 Average 0.5 COARE 3.5 COARE 3.0 L&P (1981 15 20 20 30 50 80 0 10 40 60 70 90 Ü_{10N} (m/s) U₁₀, ms⁻¹

15

New C_d formulation implemented in 2015 Operational HWRF

Impact of Physics, Resolution & New GFS, (H215 vs H15Z & H214)

NATL Intensity Error Forecasts 2011-2014

Developing HWRF air-sea interface module (ASIM) with explicit wave coupling

Motivation: air-sea fluxes and turbulent mixing above/below sea surface are significantly modified by surface waves in high wind conditions.

Image courtesy of Fabrice Veron

Wave-dependent physics in HWRF

- Atmospheric model: air-sea fluxes depend on sea state
- Wave model: forced by sea state dependent wind forcing
- Ocean model: forced by sea state dependent wind stress modified by growing or decaying wave fields and Coriolis-Stokes effect. Turbulent mixing is modified by the Stokes drift (Langmiur turbulence).

Examples of sea state dependent C_d in WW3-MPIPOM coupled model (wind is prescribed)

Hurricane Edouard, Coupled WW3-MPIPOM forced by TCVitals-based Winds

Hurricane Edouard, MPIPOM forced by TCVitals-based Winds: C_d Bulk

Hurricane Edouard, Coupled WW3-MPIPOM forced by TCVitals-based Winds:

Hurricane Edouard: HWRF forecast U₁₀ winds

Hurricane Edouard, Coupled HWRF-WW3: Significant Wave Height

Wave dependent surface boundary conditions in the ocean model

$$\bar{\tau}_{t\alpha} = \tau_{air\alpha} - \frac{\partial}{\partial t} M_{\alpha} - \frac{\partial}{\partial x_{\beta}} MF_{\alpha\beta} - \tau_{s\alpha} \quad at \quad z = \hat{\eta}$$
Wind stress Wave momentum budget Coriolis-Stokes
$$M_{\alpha} = \int_{-\infty}^{\hat{\eta}} u_{s\alpha} dz \quad MF_{\alpha\beta} = \int_{-\infty}^{\hat{\eta}} S_{\alpha\beta} dz \quad \tau_{s\alpha} = -\int_{-\infty}^{\hat{\eta}} \varepsilon_{\alpha\beta z} f u_{s\beta} dz$$

 $u_{s \alpha}$: Stokes drift $S_{\alpha \beta}$:Radiation stress

Hurricane Edouard, Coupled WW3-MPIPOM: Effect of wave dependent surface boundary conditions

Modification of KPP mixing to include wave dependent Langmuir turbulence

The mean profile of the LES results and the 1-d column model w/ KPP results can be compared to evaluate performance of KPP

WAVEWATCH III simulation

The wind field and Stokes drift are used to force LES model and 1-d model with KPP mixing model.

Large Eddy Simulation (LES) Model

32

LES simulations

KPP-df vs LES-LT

- KPP-df does a reasonable job predicting the sea surface temperature, but does not do well predicting the current.

KPP-nw vs LES-nw

- First we remove the implicit wave (Langmuir turbulence) effect from KPP-df by retuning the critical Richardson number (0.235) against LES-nw.

KPP modification, Lagrangian shear (KPP-Lag)

- Using the Lagrangian current (Eulerian + Stokes drift) in place of the Eulerian current in the KPP model.

 $\theta_{\partial \mathbf{U}_{\mathbf{h}}/\partial z} =$ Lagrangian shear

KPP-LT: Enhancing turbulent velocity scale in KPP based on LES

37

KPP-LT vs LES-LT

- Using the Lagrangian current and the enhancement to the turbulent velocity scale together provide a good match to LES-LT results.

Coupled WW3-MPIPOM with KPP-LT vs. KPP-df mixing

Hurricane Edouard 09/15 12Z: Currents

- KPP-LT has ~0.5 m/s lower surface current magnitude than KPP-df

Coupled WW3-MPIPOM with KPP-LT vs. KPP-df mixing

Hurricane Edouard 09/15 12Z: Sea Surface Temperature

• KPP-LT and KPP-df produce simular surface cooling.

Summary

- MPIPOM is updated with new capabilities: computational domain is designed to be relocatable to regions around the world with flexible initial condition modules.
- Vertical resolution is increased in the upper ocean and KPP mixing scheme is implemented.
- Evaluation of different initialization conditions and ocean response is conducted against AXTB measurements in Hurricane Edouard (2014).
- A new drag coefficient formulation is implemented in the 2015 operational HWRF.
- The HWRF air-sea-wave coupling framework and wave-dependent physics modules are being developed and tested. The near-real time evaluation will begin later this year.

Publications 2014-15

- Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. *J. Geophys. Res. Oceans*, **119**, 30-51.

- Rabe, T. J., T. Kukulka, I. Ginis, T. Hara, B. G. Reichl, E. A. D'Asaro, R. R. Harcourt, and P. Sullivan, 2015: Langmuir turbulence under hurricane Gustav (2008). *Journal of Physical Oceanography*, **45**, 657–677.

- Reichl, B. G, D. Wang, T. Hara, I. Ginis, T. Kukulka, 2015: Langmuir turbulence parameterization in tropical cyclone conditions, *Journal of Physical Oceanography,* in review.

- Yablonsky, R. M., I. Ginis, B. Thomas, 2015: Ocean modeling with flexible initialization for improved coupled tropical cyclone-ocean prediction, *Environmental Modelling & Software*, **67**, 26-30.

- Yablonsky, R. M., I. Ginis, B. Thomas, V. Tallapragada, D. Sheinin, and L. Bernardet, 2015: Description and analysis of the ocean component of NOAA's operational Hurricane Weather Research and Forecasting (HWRF) Model. J. Atmos. Oceanic Technol., 32, 144–163.