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Abstract

1. Introduction

One of the most significant impacts of landfalling tropical cyclones is the copious amount of rainfall they often produce.  Drowning from inland flooding in landfalling tropical cyclones is the leading cause of death from storms affecting the United States in the past 30 years (Rappaport 2000).  While significant improvements have been made in forecasts of tropical cyclone track (Franklin et al 2003, Aberson 2001) and, to a lesser extent, intensity (DeMaria and Gross 2003; DeMaria et al. 2004), much less attention has been focused on improving forecasts of rainfall (quantitative precipitation forecasting, or QPF) from tropical cyclones.  This is partly due to the fact that little work has been done on developing schemes for validating tropical cyclone (TC) rainfall forecasts.  Standard measures of precipitation forecast skill are difficult to interpret in the context of tropical cyclones due to the strong dependence of rain location and magnitude on the forecasted track of the storm and differences in the spatial and temporal sampling area of observational data compared to model output.  Therefore, a key task in improving TC rainfall forecasts is to develop validation schemes that provide a baseline measure of forecast skill independent of track error and sampling issues.  

Rainfall from landfalling tropical cyclones is dependent on numerous factors, e.g., the track (including translational speed) and intensity of the storm (Shapiro 1983, Lonfat et al. 2004), topography (Lin et al. 2001, Wu and Yen 2002, Cangialosi and Chen 2004), proximity to synoptic features such as frontal boundaries and upper-level troughs (Atallah and Bosart 2003, Bosart and Lackmann 1995), vertical shear of the environmental wind (Jones 2000, Frank and Ritchie 2001, Black et al. 2002, Corbosiero and Molinari 2002, Rogers et al. 2003), environmental humidity (***refs?***), and properties of the underlying surface (***refs?***).  Various TC QPF techniques have been developed to account for these factors.  The simplest technique, known as Kraft’s rule of thumb (***ref?***) consists of dividing a constant value by the translational speed of the storm to estimate the maximum rainfall that will be produced over a given location and time period.  It accounts for the translational speed of the storm, but has no information on the structure of the rainfall field. Another rainfall forecasting scheme, called the Rainfall CLIPER (R-CLIPER), is an empirically derived, climatology-based analytical model that has recently been developed (Marks et al. 2002, DeMaria and Tuleya 2001) to provide a benchmark against which forecasts of rainfall can be compared, similar to the way in which CLIPER and SHIFOR predictions provide the benchmarks for track and intensity forecasts, respectively.  The current operational version of the R-CLIPER is based on a four-year climatology of global TRMM satellite-based tropical cyclone rainfall observations (Marks et al., 2002).  It assumes a circularly symmetric distribution of rainfall and translates this distribution in time.  It captures the dominant signals of translational speed and storm intensity, but it does not incorporate processes that create asymmetries in the rain field.  The most complex forecasting systems for producing TC QPF are three-dimensional regional and global numerical models that produce spatially- and temporally-varying rainfall fields.  The benefit of using numerical models is their ability to depict changes in the structure of tropical cyclones over time and how these changes are reflected in the rain field, both in a storm-relative sense and with accumulated rainfall swaths over a geographical area.  Such models do suffer from deficiencies, however, related to resolution limitations and deficiencies in the representation of the initial state of the atmosphere and physical processes in the model.  

Techniques for validating TC QPF have traditionally used metrics common for QPF in other applications.  Three commonly used methods for validating rainfall are the bias score, the equitable threat score (ETS), and pattern correlation.  The bias score compares the number of forecast grid points (or area) within a geographic region receiving rainfall exceeding a given threshold with the number of observed points (or area) in the same region receiving rainfall exceeding that same threshold, independent of location errors (Ebert et al. 2003).  The ETS reports the ratio of the number of forecast “hits” to the total number of forecast and observed points, where a hit is defined as an occurrence of  the forecasted rain field at a location matching the observed rain field within a given threshold.  For this reason the ETS is dependent on location errors.  Pattern correlation simply correlates the amount and location of forecasted rainfall with observed rainfall, and it is thus dependent on location error.  Several recent studies have used these standard techniques to evaluate TC QPF for various models.  For example, Tuleya et al. (2005) examined the bias score, ETS, and pattern correlations for the operational version of the GFDL hurricane model from 1998 to 2003 as compared with RFC daily rain gauge data.  They found that the GFDL model had a higher pattern correlation than the R-CLIPER model, but still only explained about 30% of the spatial variance and exhibited large case-to-case variability.  The GFDL also had a higher ETS than R-CLIPER, partially because of a low bias from the R-CLIPER for amounts larger than 0.5 inches. 

While these studies provide insight into the performance of TC QPF, there are many aspects of the rainfall field produced in TCs that are not sufficiently addressed by these validation techniques.  A tropical cyclone is a system that dynamically constrains convective development to storm-relative locations that persist for time periods from hours to days.  A model’s ability to reproduce the rainfall fields is thus dependent on its ability to capture these dynamical features (e.g., eyewall, rainband, and stratiform rain) and to accurately predict the track and intensity of the storm.  Furthermore, a great deal of useful information can be obtained from considering the performance of the forecasts for the entire distribution of rainfall, not just peak rainfall amounts or point comparisons with specific rain gauges.  This is particularly important when comparing models of varying resolution to observations based on comparatively small sampling areas such as radar data or rain gauges, since a spatially averaged field always has lower variability than point values (Tustison et al. 2001).  Finally, most traditional validation schemes are run on fixed geographical domains.  As done in Tuleya et al. (2005), limiting the validation domains to areas close to the storm track will narrow the focus of the validation to rainfall that is more directly linked with the storm, making the validation storm-specific.  

The issues raised above highlight several aspects of a rainfall validation scheme that are desirable for TC QPF: 1) accounts for the varying abilities of the models to reproduce elements of the storm (e.g., structure, track, and intensity); 2) accounts for sampling size discrepancies; 3) performs comparisons of the entire rainfall distribution in addition to peak rainfall; 4) focuses on storm-related rainfall.  Only then can objective evaluations of the TC QPF from various models be performed, allowing for the identification of biases in the models and ways to improve them.  In this paper such a validation scheme is developed and presented for forecasts of all U.S. landfalling storms from 1998 to 2004 using the operational Global Forecasting System (GFS), Eta, and GFDL hurricane models, as measured against the benchmark R-CLIPER forecasting scheme.

Section 2 provides a description of the data used, including the storms, the models, and the observations against which the models are validated, and describes the validation algorithms used. Section 3 presents the model TC QPF validations divided into two categories: track-dependent statistics and track-independent statistics, while section 4 provides set of unified TC QPF skill indices that present the validations in track-dependent and track-independent validations.  Section 5 presents the summary and concluding remarks.

2. Methodology

a) Data


The storms used in this study were all U.S. landfalling storms between 1998 and 2004 (Table 1).  A total of 36 storms are included, ranging in intensity from tropical depression (Henri of 2003) to Category 4 strength (Charley of 2004) at landfall.  One forecast from each storm is included in the database.  The cases that were selected had initial times that were always from the last 12 UTC time within 24 hours of landfall, in order to coincide with the storm database used by Tuleya et al. (2005).  Forecast and observed data for each storm were included in the database until advisories from the National Hurricane Center were no longer issued for them.  Figure 1 shows that while the storms in this database took a variety of tracks over the Gulf and Atlantic Coast states, the majority (75%) of the storms made landfall along the Gulf Coast.  The storm tracks passed over a variety of topographies with different translational speeds, and they span a wide spectrum of conditions that can produce many different rainfall distributions.


Rainfall observations were provided by Stage IV hourly 4-km gridded rainfall data (Stage II prior to 2002) provided by the Environmental Modeling Center (EMC) at the National Centers for Environmental Prediction.  The thirteen regional RFCs perform quality control on these data, then send them to EMC where they are combined into a unified analysis.  This data consists of multi-sensor (i.e., rain gauges, radar) rainfall maps covering the entire contiguous United States.  It is available on an hourly basis for all times back to 1998.  

The models used were the real-time configurations of the NCEP operational models used in forecasting hurricanes that can also output QPF data in real time: the GFDL hurricane model, the GFS, and the Eta model.  The GFDL model is a nested, hydrostatic regional model whose current configuraiton runs at 1/6 degree grid length, the GFS is a global model run at 1/2 degree resolution, and the Eta is a limited-area model with a minimum grid length of 12 km.  The R-CLIPER model is run for all storms, using the best-track positions, to provide a benchmark against which the other models are judged.  The R-CLIPER can be run at any resolution; in this case it is run at 4 km grid length.    

All of the forecasts and observations use a land-sea mask, and Canada and Mexico are excluded from the analyses.  For many of the validation statistics (e.g., bias score, ETS, correlation) only those areas within 600 km of the storm track are included.  This restriction is to limit the inclusion of rainfall that is not directly related to the tropical cyclone, such as rainfall from a frontal boundary or mid-latitude cyclone well-removed from the TC.  All of the statistics in this study are for storm total rainfall and include data up to a maximum cutoff forecast time of 72 hours within each forecast.
b) Validation algorithms


A variety of algorithms are used for validating TC QPF here.  Some of them are standard algorithms and some of them are developed here to address the specific issues of track, intensity, and structure errors, sampling size discrepancies, rain distribution vs. peak rainfall comparisons, and storm-related rainfall.  The standard algorithms are the bias score, the ETS, and the pattern correlation method.  The bias score is obtained by the formula (Ebert et al. 2003):
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(1)

where 
F = “false alarms”, or predictions of rain where no rain occurred

H = “hits”, or correct predictions of rain occurrence

M = “misses”, or rain occurrences that were not predicted.

As mentioned in Section 1, the bias score compares the number of grid points (or area) within a forecast receiving rainfall exceeding a given threshold with the number of points (or area) in an observational dataset receiving rainfall exceeding that same threshold, independent of location errors.  A value of 1 means the same number of points (or area) in the forecast exceed the given threshold amount as in the observations.  Values greater than 1 indicate a forecast bias toward greater areal coverage for that rainfall amount than was observed, while values less than 1 indicate a forecast bias toward less areal coverage.  

The equitable threat score (ETS) is obtained by the formula:
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where 
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The ETS counts the number of forecast “hits,” i.e., the number of locations where the forecasted rain field matches the observed rain field within a given threshold.  For this reason the ETS is dependent on location errors.  A value of 1 indicates an exact overlap with the forecasted and observed area receiving rainfall of a given amount, while a value of 0 indicates that there is no overlap in space with forecasted and observed rainfall amounts of a given amount.

Pattern correlation simply correlates the amount and location of forecasted rainfall with observed rainfall, and it is thus dependent on location error.   (***is there an equation for this?***)

New validation techniques have also been developed that account for the various issues discussed above.  These techniques are probability distribution function (PDF) comparisons, track-relative PDF analyses, track-relative mean rainfall swaths, and storm-relative PDF analyses.  The PDF comparisons show the distribution of rain flux as a function of rainfall threshold, where the rain flux is defined as the product of the rain rate in a given grid box times the areal coverage of the grid box.  Using this technique can account for the differences in variability that arise due to averaging scale discrepancies (Tustison et al. 2001), though differences that arise in models due to the ability to resolve different features remain.  Similar to the bias score, this metric is track-independent.  From this calculation the conditional mean rain rate can be determined:
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where    R = rain rate within a given grid box





Δx = grid length





   i = index for all grid boxes where R>0.

Another technique, track-relative PDF analyses, is used to compare rain flux distributions independent of track error and to isolate the ability of the various models to reproduce rain fields at radii normally associated with the eyewall, rainband, and stratiform regions.  Figure 2 shows an example of the swaths over which the track-relative PDFs of storm-total rain flux are calculated.  As can be seen from this schematic, the storm total rain flux amounts are calculated in 100 km swaths.  The innermost 100 km is dominated by rainfall produced in the eyewall region, while distances further from the track are likely a mixture of rainband and stratiform rain.  Another track-relative rainfall validation algorithm, track relative mean rainfall swaths, is also calculated. This algorithm simply plots the conditional mean storm-total rainfall in 20-km swaths centered on the storm track, similar to the radial distributions of mean rain rates calculated from TRMM observations shown in Lonfat et al. (2004).

A final technique, storm-relative PDF analyses, is used to quantify the impact of track error on standard track-dependent validation algorithms such as the ETS and pattern correlations.  Storm-relative analyses are calculated by shifting the 6-hour forecasted rainfall pattern by a distance equal to the difference in position of the forecasted vs. the observed storm location.  These shifted rainfall analyses are then summed over the lifetime of the storm, producing storm-total shifted rainfall analyses (***is this right???***) Figure 3 shows an example of a shifted  Eta 6-hour rainfall field for Tropical Storm Bill of 2003.  Figure 3a shows the Eta forecasted rainfall field and Fig. 3b shows the observed (Stage IV) field during the same time period.  The white line in Fig. 3 denotes the best track position of Bill, while the red line is the Eta forecasted track.  Figure 3c shows the resultant 6-hour rainfall field after the field is shifted by an amount equivalent to the forecast track error.  As can be seen from Fig. 3d, shifting the rainfall field results in a threefold increase in the correlations for this storm during the 24-30 h time period, indicating a significant contribution of track error in this case.  (***is this interpretation correct???***)

3. Validation of TC QPF

a) Track-dependent statistics

b) Track-independent statistics

4. TC QPF Skill Indices

5. Summary and concluding remarks
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Figure 1.
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Figure 2.
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Figure 3.
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