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Abstract 
 

 In this study a commonly used and relatively sophisticated microphysical 

parameterization scheme used in high-resolution tropical cyclone simulations is compared to 

airborne radar and microphysical probe data collected from storms over many years, including as 

a part of the NASA Third Convection and Moisture Experiment (CAMEX III).  Statistics of 

vertical motion, reflectivity, and hydrometeor concentrations are compared for the two datasets 

(observations versus simulations) to identify possible deficiencies in the microphysical scheme 

and areas for improvement to the scheme.  Such improvements can potentially lead to better 

forecasts of tropical cyclone intensity and rainfall. 

 Comparisons of the two populations show that the model reproduces many of the gross 

features seen in the observations, though notable differences are evident.  The general 

distribution of vertical motion is similar between the observations and simulations, with the 

strongest up- and downdrafts comprising a small percentage of the overall population in both 

datasets, but the magnitudes of vertical motion are weaker in the simulations.  The model 

produces reflectivities that are much larger than observed, and correlations between vertical 

motion and hydrometeor concentration and reflectivity show a much stronger relationship in the 

model than what is observed. 

 These comparisons show that there are several areas of deficiency that may reflect 

problems with the parameterization, such as with the production, conversion, and fallout of 

frozen hydrometeors.  Future investigations will test proposed changes in the parameterizations 

of these processes with the goal of improving the statistics in the simulations.  The comparison 

technique presented here provides a reliable method for testing simulations against observations, 

and it provides a framework for conducting comparisons using other observational platforms. 

  



 

1. Introduction 

There are many factors that determine a tropical cyclone’s intensity and rainfall, such as the 

magnitude and direction of vertical shear affecting the storm core, upper oceanic temperature structure, 

and low- and mid-level environmental relative humidity.  Ultimately, though, intensity and rainfall are 

dependent on the magnitude and distribution of the release of latent heat within the core of the storm 

(Willoughby 1995).  Despite the recognition of this importance, improving our understanding and 

forecasting of intensity and rainfall remains an elusive goal for the operational and research 

communities, as evidenced by the fact that forecasts of intensity have shown virtually no improvement 

over the past 20 years.  Furthermore, the importance of improving tropical cyclone rainfall forecasts is 

underscored by the fact that drowning due to inland flooding from tropical cyclones is the leading 

killer from landfalling storm in the United States over the past 30 years (Rappaport 2000). 

High-resolution (grid length ≈ 1 km) numerical models have been used as a tool to investigate 

the processes important in determining tropical cyclone intensity and rainfall.  Such high resolution 

obviates the need for the parameterization of deep convection, a traditional source of uncertainty in 

determining latent heating profiles.  While convective parameterization is avoided using high 

resolution, the parameterization of microphysical processes such as hydrometeor production, 

conversion, and fallout, is still necessary at this resolution.  The dependence of these microphysical 

processes on the rainwater, ice and graupel distributions thus assumes great importance in determining 

latent heating distributions and, ultimately, tropical cyclone intensity and rainfall.   

 As a result of this sensitivity to the microphysical processes, the success of numerical 

simulations of tropical cyclones is, to some extent, dependent on how these processes are 

parameterized in the model.  Such parameterizations range in complexity from a simple removal of 

supersaturation to spectral ice schemes that explicitly predict the size spectra of ice particles (Hall 

1980; Farley and Orville 1986).  Most schemes used in mesoscale and cloud-scale models today are 

bulk microphysical schemes that use two or three categories to describe the presence of ice.  They are 

called “bulk” schemes because they assume a time-invariant size distribution for each species in the 

scheme.  Schemes with two ice categories, called two-class ice schemes, have separate prognostic 

 



equations for cloud ice and precipitating ice, usually taken to be snow (Cotton et al. 1982; Hsie et al. 

1984).  More sophisticated three-class ice schemes have prognostic equations for cloud ice, snow, and 

a third class of ice that is formulated to be either hail (Lin et al. 1983) or graupel (Rutledge and Hobbs 

1984).  A four-class ice scheme has also been formulated (Ferrier 1994) that has separate equations for 

cloud ice, snow, graupel, and hail.  The benefit of this scheme is that it is applicable to a wide range of 

environments, from mid-latitude continental convection to tropical squall lines (Ferrier et al. 1995). 

The sensitivity of simulations of deep convection to the type of microphysical scheme used has 

been shown by a number of studies. Using the fourth-generation Penn State/NCAR hydrostatic 

mesoscale model MM4, Zhang (1989) investigated the sensitivity of simulations of a midlatitude 

mesoscale convective system and associated mid-level mesoscale vortex using parameterizations using 

no ice phase and using a two-class ice scheme.  He found that freezing and deposition in the upper 

levels were important processes in causing the rapid development of the mid-tropospheric warm core 

vortex, while subcloud-layer melting weakened the concentration of cyclonic vorticity in the lower 

levels.  McCumber et al. (1991) used a NASA three-dimensional non-hydrostatic cloud model to 

compare simulations using no ice scheme, a two-class ice scheme, and a three-class ice scheme.  They 

found that three-class ice schemes produced better results than two-class ice schemes, with the optimal 

mix of bulk ice hydrometeors for tropical convection being cloud ice, snow, and graupel.  In a 

simulation of an idealized tropical cyclone using an axisymmetric, nonhydrostatic model, Lord et al. 

(1984) found that inclusion of a three-class ice scheme produced significant differences in the structure 

and evolution of the simulated storm when compared with a run with no ice.  The simulation with ice 

processes had a much slower intensification rate initially, though it eventually reached an intensity 

higher than the run with no ice.  Further, the simulation with ice processes had much more detailed 

mesoscale structure than the no-ice run, with pronounced mesoscale downdrafts forming below the 

melting level.  These downdrafts caused low-level convergence that triggered the formation of banded 

features outside the eyewall, similar to those observed by Willoughby et al. (1984). 

With the advent of more computing power, high-resolution, nonhydrostatic, three-dimensional 

models of tropical cyclones have become more widely used.  Researchers have conducted simulations 
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of Hurricanes Andrew of 1992 (Liu et al. 1997; Zhang et al. 2000), Bob of 1991 (Braun et al. 1999), 

Bonnie of 1998 (Rogers et al. 2003), and Floyd of 1999 (Tenerelli and Chen 2002) using the fifth-

generation Penn State/NCAR nonhydrostatic mesoscale model MM5, with structures similar to those 

observed.  These simulations use either two- or three-class ice microphysics schemes.  A commonly 

seen bias in high-resolution tropical cyclone simulations is the tendency of simulations to produce 

reflectivities that are too large when compared with airborne and ground-based radar images  (e.g., Liu 

et al. 1997, Rogers et al. 2003).  An example of this bias is shown in Figure 1, which shows a 

comparison of a lower fuselage (LF) WP-3D radar sweep from Hurricane Floyd taken at 22:59 UTC 

13 September 1999 with reflectivity produced by a 1.67-km MM5 simulation of Hurricane Floyd from 

23:00 UTC 13 September 1999.  Both the LF radar sweep and the simulation indicate a nearly closed 

eyewall and multiple rainbands extending out from the southeastern side of the storm.  However, the 

model produces reflectivities that are much larger in both the eyewall and the rainband regions than the 

radar composite.  Maximum reflectivities from the radar are 33 dBZ in isolated locations, with very 

tiny patches of reflectivity greater than 39 dBZ evident in the eyewall.  In contrast, the entire eyewall 

and numerous portions of the rainbands in the Floyd simulation are enclosed by a 41 dBZ contour, and 

many locations within the eyewall and rainbands exceed 48 dBZ.   

 Many studies have been performed to investigate the structure of tropical cyclones from radar 

and microphysical measurements (e.g., Marks and Houze 1987; Black and Hallett 1986; Black 1990; 

Black et al. 1996).  Very little work has been done, however, in performing detailed, rigorous 

comparisons between models and these observational datasets.  In this study high-resolution 

simulations of Hurricanes Bonnie (Rogers et al. 2003) and Floyd (Tenerelli and Chen 2002) are 

compared with observations from nine different storms in order to evaluate the ability of the models to 

reproduce the statistics of the distributions of vertical motion, reflectivity, and hydrometeor mixing 

ratio seen in the data.  The observations used in the intercomparisons are tail-mounted vertical 

incidence Doppler radar data (to provide vertical motion and reflectivity), microphysics probe data (to 

provide hydrometeor concentrations), and flight-level data (to provide vertical motion at flight level).  

Since convective processes occur on very small temporal and spatial scales, it is quite difficult to have 
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model output and observations at precisely the same location, and at the same time, in the life cycle of 

any such small-scale feature.  The technique of comparing the statistical properties (e.g., means, 

standard deviations, probability distribution functions, and correlations) of the distribution of relevant 

parameters in both the models and the observations reduces the need for a precise temporal and spatial 

match, and it allows for a more comprehensive and robust evaluation of the microphysical 

parameterization scheme to be performed. This study provides a comprehensive comparison between 

high-resolution simulations of tropical cyclones and observations from a variety of storms, in order to 

provide a more robust measure of the performance of the microphysical scheme in the model and 

identify possible areas for improvement. 

 In this paper section 2 provides a description of the methodology employed in the comparisons, 

including a summary of the model parameters and data analysis techniques.  Section 3 presents the 

results from the comparisons, and section 4 discusses the implications of the results of these 

comparisons for the microphysical parameterization scheme used here.  Section 5 provides concluding 

remarks.   

 

2. Methodology 

a) Model description 

(1) MODEL CONFIGURATIONS AND SIMULATIONS 

 The numerical model used in this study was the fifth generation Penn State University/NCAR 

nonhydrostatic mesoscale model (MM5, Grell et al., 1994).  The MM5 is a fully nonlinear, 

nonhydrostatic mesoscale model that has a well-demonstrated ability to simulate tropical cyclones 

(e.g., Liu et al., 1997; Karyampudi et al., 1998; Braun and Tao 2000; Braun 2002; Rogers et al. 2003; 

Tenerelli and Chen 2002).  A detailed description of the model equations and coordinates is given by 

Grell et al. (1994).  Briefly, the model uses a reference-state pressure to define a σ-coordinate.  The 

perturbation from this reference state is then the predicted variable rather than the full pressure.  The 

model variables are pressure perturbation, horizontal and vertical wind components, temperature, 
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specific humidity, and depending on the choice of microphysical parameterization scheme, cloud 

water, cloud ice, rainwater, snow, and graupel. 

A unique aspect of these simulations is the use of a vortex-following nested-grid that allows for 

long integrations with very high grid resolution in the inner core region of hurricanes (Tenerelli and 

Chen 2004). The simulations presented here use four domains, with grid lengths of 45, 15, 5, and 1.67 

km. The inner domains move automatically with the storm, with the location of the domain based on 

the location of the 500 hPa geopotential minimum associated with the storm.  High-resolution (30 

second) terrain and land-use data are used in the simulations.  Because the location of the inner meshes 

are not known in advance of running the simulations, it is not possible to generate in advance high-

resolution terrain and land-use files for each of the mesh locations.  Therefore the model was modified 

so that elevation and land use data are read and placed on the fine meshes each time they are initialized 

or moved.  There are 28 vertical levels in the model, with vertical resolution maximized in the lowest 

100 hPa (roughly 50 m spacing) and the spacing between levels increasing with increasing height (up 

to a maximum spacing of about 900 m).   

The model initial and lateral boundary conditions for the outer-most domain during integration 

are from the National Center for Environmental Prediction Aviation (AVN, now the Global 

Forecasting System) model one-degree analysis fields. Sea-surface temperatures are enhanced by 

incorporating 9-km AVHRR Pathfinder SST into the SST field.  For the two outer meshes (45 and 15 

km), the Kain-Fritsch convective parameterization scheme is used (Kain and Fritsch 1993).  This 

scheme includes a relatively sophisticated cloud model that determines entrainment and detrainment 

rates as a function of the local environment and includes the effects of downdrafts.   Modifications to 

the Kain-Fritsch scheme include the detrainment of 30% of hydrometeors to the resolvable grid and a 

higher vertical velocity threshold for the initiation of convective clouds, which is more suitable for 

tropical oceanic conditions. On the inner two meshes, the deepest and strongest convective towers are 

explicitly resolved, so no convective parameterization scheme is used for those meshes.  The 

Blackadar boundary layer parameterization scheme, which simulates the vertical mixing of 

temperature, water vapor, momentum, and cloud water, is used on all meshes (Zhang and Anthes 
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1982), and a simple radiation scheme that allows for the impact of clouds on shortwave and longwave 

radiation is used (Dudhia 1989).  The Blackadar scheme is modified for these runs to include the 

modification based on Pagowski and Moore (2001) in which different roughness scales for temperature 

zt and moisture zq are used.  This configuration of the model has been used successfully to simulate 

Hurricane Bonnie of 1998 (Rogers et al. 2003), Hurricane Georges of 1998 (Orndorff et al. 2002), and 

Hurricane Floyd of 1999 (Tenerelli and Chen 2002). 

For the comparisons presented here, high-resolution multi-day simulations of Hurricanes 

Bonnie and Floyd are used.  Hurricane Bonnie was a storm that encountered significant shear for parts 

of its lifetime, limiting its development to a Category 2 with a minimum central pressure of 954 hPa in 

the western Atlantic (Pasch et al. 2001, Rogers et al. 2003).  Hurricane Floyd experienced a favorable 

environment for intensification and nearly reached Category 5 strength over the warm waters just 

northeast of the Caribbean Sea (Lawrence et al. 2001).  The simulation of Hurricane Bonnie is a five-

day simulation, with the highest-resolution 1.67-km domain used for the final two days of the 

simulation.  The simulation of Hurricane Floyd is a seven-day simulation, with the 1.67-km domain 

used for the final 4.5 days of the simulation.  These simulations reproduced the track and intensity of 

both storms reasonably well (Fig. 2).  Hourly output during a 24-h period for each simulation was used 

to generate the database with which to perform the comparison with observations.  The 24-h time 

period chosen in each simulation was the time when the simulated intensity was closest to the observed 

intensity and the simulated storm was in approximate steady state.  

(2) MICROPHYSICAL PARAMETERIZATION SCHEME 

 The microphysical parameterization scheme used in these simulations is the Tao-Simpson (Tao 

and Simpson 1993) cloud microphysics scheme for all four meshes.  The Tao-Simpson scheme, which 

was modified from Lin et al. (1983), is a bulk three-class ice scheme that contains prognostic equations 

for cloud water (ice), rainwater (snow), and hail/graupel, and it allows for the generation of 

supercooled water.  This scheme includes the processes of condensation/evaporation, freezing/melting, 

sublimation/deposition, autoconversion (i.e., aggregation) of cloud water (ice, snow) to form rainwater 

(snow, hail/graupel), collection by rainwater (snow), and accretion. 
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 Nonprecipitating particles (i.e., cloud water and ice) are assumed to have monodisperse 

distributions, while all other particles are assumed to have Marshall-Palmer type distributions 

(Marshall and Palmer, 1948): 
          (1) dDeNDN Dλ−= 0)(

 where N = number of particles for a given diameter range  
 D = diameter of particles (m) 
 N0 = intercept parameter (m-4) 
 λ = slope parameter (m-1) 

 
Values of the intercept and slope parameters are predefined, and they are dependent on the species, 

with the largest values of the intercept parameter associated with rain and the smallest associated with 

snow.  Precipitation fall speeds (Vm) in the scheme are calculated by: 

∫
∫=

dDDNDm

dDDNDmDV
Vm )()(

)()()(
     (2) 

where V(D) is the terminal velocity of an individual particle (parameterized empirically from 

observations), m(D) represents the hydrometeor mass, and N(D) is the number density (defined by Eq. 

1).  Reflectivity in the model is calculated using the total mass content of individual constituent species 

and adding their reflectivity values together to yield a total reflectivity value (Braun and Houze 1994, 

Fovell and Ogura 1988): 
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 where Ze = equivalent reflectivity (mm6) 
  α  = ratio of backscattering coefficients for the reflecting particles 
    and water (taken as 1 for rain and 0.213 for precipitating ice) 
 κ = conversion factor from m3 to mm6m-3 (equal to 1018) 
  ρx = density of particle (kg m-3; frozen or liquid depending on type of particle 
    being considered) 
  ρw = density of water (kg m-3) 
 ρ = density of air (kg m-3) 
 qx = mixing ratio of species x (i.e., rain, snow, graupel; kg kg-1) 
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Equation (3) can be rewritten as 
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From this relationship it can be seen that the reflectivity calculated in the model is dependent on the 

assumed intercept parameter (N0), assumed particle density (ρx), and simulated mixing ratio (qx) for 

each species. 

b) Description of observing platforms 

(1) VERTICAL INCIDENCE (VI) RADAR 

Vertical motions are calculated using data recorded from Doppler radar systems on each of the 

two NOAA WP-3D research aircraft.  The 3.2-cm Doppler radar is mounted on the tail of the aircraft 

and scans in a vertical plane normal to the aircraft track.  The radar system records reflectivity data that 

describe the precipitation structure in a vertical plane along the flight track and radial velocities of 

precipitation particles, toward and away from the aircraft.  When the antenna is at vertical incidence 

(VI), the Doppler velocities are the vertical motions of precipitation particles relative to the aircraft.  

 The WP-3D flies at typical ground speeds of ~125 m s -1, so that VI Doppler data are available 

at intervals of ~750 m along the flight track.  In the horizontal, the radial leg lengths (penetrations into 

or exits out of the eye) vary from 60 to 125 km in length, depending on the flight pattern flown for a 

particular research mission.  In the vertical, the VI data are averaged in 300 m intervals (bins) that 

extend from just above the sea surface to a height of 15 km.  To calculate the vertical winds, the 

hydrometeor fallspeeds and the vertical motions of the aircraft are removed from the raw Doppler 

radial velocities.  The particle fallspeeds are determined with bulk formulae using radar reflectivity as 

a function of height.  The aircraft motions are calculated using a combination of inertial navigation 

equipment and radar altimetry.  These procedures follow the methodology of Black et al. (1996), in 

which a subset of the VI data described here were used in a statistical study of vertical velocities and 

radar reflectivity.  A summary of the storm names and intensities, and radial leg information for the VI 
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data used in this study, is in Table 1.  Observations from nine storms, comprising 233 radial legs, were 

included in the observational database.  The storms that were simulated, Hurricanes Bonnie and Floyd, 

were not available to be added to the VI database because the tail radar was operating in Fore/Aft 

Scanning Mode (F/AST)1 during those storms.  

(2) MICROPHYSICS PROBE 

Particle image data from Hurricane Bonnie obtained with the NASA DC-8 aircraft were 

obtained with the Particle Measuring Systems (PMS) optical array probe OAP model 2D-P mono 

probe. This probe has a 32-element photosensitive array, measures particles of 0.2 – 6.4 mm in 

diameter, and has been discussed in many publications (e.g, Black and Hallett (1986)). These data 

were cleaned of image artifacts using the methods described by Black and Hallett (1986). The 2D-P 

data were averaged for 6 s. At the DC-8 airspeed of ~ 205 m/s, this corresponds to a sample length of 

~1.2 km.  In order to build a stable size distribution, at least 100 or more particle images must be 

obtained. 

c) Evaluation techniques 

(1) STATISTICAL COMPARISON METHODOLOGY 

 Despite the importance of performing rigorous comparisons between observed and model-

produced microphysical properties, only a cursory comparison of gross features between modeled and 

observed fields has been reported in the literature.  Convective processes occur on very small temporal 

and spatial scales, so it is quite difficult to have model output and observations at precisely the same 

location, and at the same time, in the life cycle of any such small-scale feature.  The technique of 

comparing the statistical properties of the distribution of relevant parameters in both the models and 

the observations precludes the need for a precise temporal and spatial match, and it allows for a more 

comprehensive and robust evaluation of the microphysical parameterization scheme to be performed.  

 One method for comparing model output and observations is to create contoured frequency by 

altitude diagrams (CFADs; Yuter and Houze 1994).  These diagrams essentially plot the variation of  

_________________________________________________________________________________ 
1F/AST is a technique for deducing horizontal wind fields by having the radar antenna alternate between angles up to 20 
degrees from perpendicular to the aircraft heading, so there were no radar beams at vertical incidence during those storms 
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probability distribution functions with height.  They provide valuable information about the 

distributions of parameters, rather than just the means.  This technique was used to study the detailed 

temporal evolution of vertical motion and reflectivity in a midlatitude mesoscale convective system 

(Yuter and Houze 1994) and the statistical properties of vertical motion and reflectivity from a 

multitude of tropical cyclones (Black et al. 1996).   

For this study the VI observations are used to create the CFADs for comparison with the model 

output, since only the VI data provide the coverage in the vertical necessary to produce the CFADs.  

To calculate the CFADs the model output from the 1.67-km grid is interpolated to a cylindrical grid 

with a radial resolution of 1.67 km, an azimuthal resolution of 5 degrees, and a vertical resolution of 

300 m.  The VI data are interpolated to a cylindrical grid with the same azimuthal and vertical 

resolution, but with a radial resolution of 1.5 km.  Depending on the ground speed of the aircraft, the 

resolution of the raw VI data is around 0.75 km, so values of reflectivity and vertical motion from 

adjacent measurements from the tail radar are averaged together to produce a resolution of 1.5 km.  

The result is a cylindrical grid with dimensions (r,λ,z) of 165x72x50, covering a region of nearly 250 

km radius.  Observations from the radar data normally extend out to about 150 km, so the outer radii 

are considered as missing data.  The centers of the storms are available from flight-level data for the 

radar observations and are defined as the location of minimum wind speed at 1.5 km for the 

simulations.  Each flight typically contains 5-15 radial legs, normally taken along different azimuths 

(azimuths are defined from north).  Each of the legs within a given flight is assigned to a specific 

azimuth in the cylindrical grid, with the remaining azimuths assigned missing values.  The result is an 

equivalent cylindrical grid of VI radar observations for each flight that can be processed in the same 

manner as the simulations. 

(2) SEPARATION INTO EYEWALL, RAINBAND, AND STRATIFORM REGIONS 

As a part of the comparisons, each of the radials in the cylindrical grids was divided into 

eyewall, rainband, and stratiform regions, as was done in Black et al. (1996).  Unlike the technique in 

Black et al. (1996) which was based on manually evaluating reflectivity patterns from tail and lower-

fuselage radar, this technique is an objective algorithm based on reflectivity and vertical motion fields.  
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The algorithm uses the reflectivity fields to first define candidate eyewall, rainband, and stratiform 

regions, and then it uses the vertical motion fields to identify the eyewall and rainband zones within 

each candidate region.  Appendix A provides a detailed description of the classification algorithm.   

Figure 3 provides examples of the sorting algorithm for two different storms: Hurricane Olivia 

(1994) from the VI data and the simulation of Floyd (1999).  As can be seen from the figure, the 

scheme does a reasonably good job of differentiating among eyewall, rainband, and stratiform regions, 

even for storms as different as these.  Statistics from the stratification of both the radar and simulation 

datasets are presented in Table 2.  There are significantly more data points from the simulations than 

the observations, since the data is taken hourly over a 24-h time period at all 72 azimuths for each 

simulation, while only 5-15 azimuths in the observations contain data from each flight.  However, the 

3500 points in the radar dataset represents our best estimate of the observed statistics, and it is not felt 

that the discrepancy in data coverage impacts any inferences made in comparing the two datasets.  For 

both the observations and the simulations, eyewall and stratiform regions comprise the bulk of the 

data.  Stratiform regions comprise the majority of points (63% of all points in the observations, 48% in 

the simulations), while eyewall regions are the second most represented area (24% of all points in the 

observations, 19% in the simulations).   When normalized by area, the preponderance of stratiform 

points was even more pronounced (69% of total area for observations and 55% for simulations).  This 

reflects the fact that the stratiform regions are typically located radially outward of the eyewall regions, 

so they span a larger area per unit radial and azimuthal span.  The eyewall areal coverage is 16% for 

the observations and 15% for the simulations, and the rainband areal coverage is 5% for the 

observations and 11% for the simulations.   

 

3. Results 

a) Mean profiles 

 Profiles of mean vertical motion and reflectivity for the observed and simulated eyewall, 

rainband, and stratiform regions are shown in Figure 4.  The observed mean eyewall vertical motion 

shows relative maxima of about 2 m s-1 at 5 km and in the upper troposphere at 12.5 km, while a 
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relative minimum of about 0.3 m s-1 is located at about 1.5 km and another minimum of 1 m s-1 is 

located in the 6-9 km layer.  This upper-level minimum, which is above the melting level, has been 

seen in other observations of oceanic and tropical cyclone convection  (Black et al. 1996, Jorgensen et 

al. 1994, Jorgensen and LeMone 1989).  It has been hypothesized that it is caused by water loading and 

entrainment effects above the melting level that reduce updraft magnitudes.  The maximum in the 

upper troposphere is likely caused by updrafts losing their hydrometeors and reaching a maximum as 

water loading effects are reduced (Black et al. 1996), and the sharp drop above the maximum occurs as 

the eyewall updrafts encounter the tropopause.  The observed rainband profile shows downward 

motion below 3 km followed by a sharp peak in upward motion at the melting level.  The sharp spike 

in upward motion in the rainband region is likely attributable to uncertainties in the fall speed 

estimation used to derive the vertical motion, which can be as large as 2 m s-1 in the melting layers of 

convective regions (Black et al. 1996).  The upward motion then decreases sharply, remaining constant 

with height at about 1.2 m  s-1 up to 15 km.  The magnitude of the upward motion above the melting 

level is comparable to that of the eyewall.  The observed stratiform region shows a similar pattern to 

the rainband region, though the low-level vertical motion is near zero, rather than downward, and the 

midlevel upward motion peak is not as pronounced. 

 By contrast to the observed vertical motion profiles, the simulated vertical motion profiles 

show much less detail.  The simulated eyewall vertical motion is upward throughout the entire 

troposphere.  There is no peak in upward motion at the melting level (which is no surprise because 

there is no error in fall speed estimation), but the upward motion does increase steadily with increasing 

height, reaching a maximum of about 1 m s-1 at 10 km.  The magnitudes of the eyewall vertical motion 

are slightly less than the observed upward motion, though magnitudes are comparable at 10 km.  

Differences between the observed and the simulated eyewall vertical motions are significant at the 

99% confidence level in the 3-6 km layer and 12-13.5 km layer.  The simulated rainband region has 

weaker vertical motion than the observed rainband region, but there is no downward motion in the 

lower troposphere and no upward motion spike at the melting level.  The stratiform profile in the 

model is nearly zero from the surface up to 10 km, after which point it increases to 0.3 m s-1 in the 
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upper troposphere.  Differences between the observed and simulated vertical motions are significant at 

the 99% confidence level over nearly the entire troposphere in the rainband and stratiform regions. 

The observed mean eyewall reflectivity profile (Fig. 4b) shows a structure similar to that seen 

in Black et al. (1996) for the VI data.  Mean reflectivity is around 35 dBZ in the lower troposphere, 

and it increases to a maximum greater than 40 dBZ near the melting level at 4.5 km.  Above the 

melting layer, the reflectivity drops sharply, but then shows a secondary peak near 7.5 km.  This 

secondary peak, seen only in the eyewall region, is likely caused by an accumulation of graupel and 

snow at the top of vigorous updrafts in the eyewall.  Above this secondary peak, the reflectivity 

continues its sharp drop, resulting in a value of 18 dBZ in the upper troposphere near 15 km.  Values of 

reflectivity for the rainband and stratiform regions are lower than the eyewall in the observations, with 

mean reflectivities of around 30 dBZ in the lower troposphere dropping to about 10 dBZ at 15 km.   

The simulations show the bias toward high reflectivity discussed previously.  Simulated mean 

eyewall reflectivities are much higher than observed, with low-level values approaching 48 dBZ.  

There is no peak in mean reflectivity at the melting level, only a quicker decrease with height between 

4 and 5 km.  Above this level the reflectivity continues to decrease, but not as rapidly as the observed 

reflectivity.  Above 12 km the reflectivity does begin to decrease rapidly, but it remains significantly 

greater than the observed reflectivity all the way up to 15 km.  Differences between the observed and 

simulated reflectivity are significant at the 99% confidence level at all levels in all three regions.  The 

high reflectivity bias seen in the model values could be at least partially attributable to the way in 

which reflectivity is calculated in the model (see Section 2).  Further discussion of this possibility is 

provided in Section 4. 

 The vertical motion data was then separated into updraft and downdraft subsamples (Fig.5).  

The observed eyewall mean updrafts are slightly stronger than the rainband updrafts (at about 2-2.5 m 

s-1 in the mid- to upper-troposphere), while the observed stratiform updrafts range between 1 and 2 m 

s-1 at the same levels.  Downdrafts in the observations are much stronger in the eyewall region than in 

the rainband region above the melting level.  Below the melting level, downdrafts are about the same 

magnitude.  In the observed stratiform regions, mean downdrafts remain at nearly 1 m s-1 throughout 
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the depth of the troposphere.  The upward motion in all regions of the observations increases in the 

upper troposphere.  This was hypothesized in Black et al. (1996) to occur as the updrafts lose their 

hydrometeors and water loading effects are reduced.  It could also be partially attributable to the fact 

that at higher altitudes the radar is capable of measuring fewer points, since there are fewer scatterers 

at those levels to produce a measurable radar return. 

In the simulations, mean updrafts are strongest in the eyewall region and weakest in the 

stratiform region, similar to the observations.  Values of the mean simulated eyewall and stratiform 

updrafts are about 30-50% less than the mean observed eyewall and stratiform updrafts, respectively, 

while they are about identical for the rainband updrafts.  In contrast to the observations, the mean 

eyewall downward motion in the simulations is significantly weaker than the mean upward motion, 

while in the stratiform region the downward and upward motions are of a comparable magnitude.  

Another significant difference between the simulations and the observations is that in the simulations 

the upward motion decreases in the upper troposphere for all regions, while in the observations the 

upward motion increases with increasing height.  Differences between the observations and 

simulations are significant at the 99% confidence level for both updrafts and downdrafts over the entire 

troposphere for the eyewall and stratiform regions, and over portions of the troposphere for the 

rainband region. 

b) Distributions 

 While profiles of mean values can yield valuable information regarding the mean structure of a 

given variable, they do not show the distributions of variables and how those distributions vary with 

height.  Such information can be gleaned by examining contoured frequency by altitude diagrams 

(CFADs; see section 2c).  Figure 6 shows CFADs of vertical motion for the observations and 

simulations sorted into eyewall, rainband, and stratiform regions.  As in Black et al. (1996), the 

majority of vertical motions are weak (|w| < 2 m s-1), but a small fraction (1-2%) of up- and downdrafts 

exceed 6 m s-1.  The observed distributions of vertical motion are the broadest for the eyewall region 

and the narrowest for the stratiform region.  Values of observed vertical motion in the eyewall range 

from –6 to 9 m s-1 below the melting level.  The distributions are fairly constant with height below the 
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melting level, but they broaden with height above, indicating strong up- and downdrafts aloft for the 

extreme events (from –12 m s-1 to 12 m s-1 ) at 13 km.  The maximum frequency (i.e., mode) of 

observed vertical motions is slightly negative in the lowest 2 km, but it becomes near zero or slightly 

positive above there.  Above 9 km the mode of vertical motion is clearly upward, reflecting the loss of 

hydrometeors and reduction in water loading in the upper levels, similar to what was seen in the 

observed mean eyewall updraft profile in Fig. 5a.  The observed rainband and stratiform CFADs (Figs. 

6c and e) are narrower than the observed eyewall CFAD.  They both also show a pronounced 

narrowing above the melting level, and the modal rainband vertical motion below the melting level is 

about –1.5 m s-1, suggesting that at least some of the rainband sample in the observational database 

contains strong stratiform precipitation.  Modal vertical motions in both regions become positive above 

10-11 km.  The sharp kink in the rainband vertical motion distribution at the melting level (4 km) is 

likely at least partially attributable to fall speed estimation errors that are magnified by the relatively 

smaller number of data points in the rainband region (cf. Table 2).  Unlike the eyewall region, the 

distribution of observed vertical motion above the melting level is nearly constant with height in the 

rainband regions. 

 In contrast to the observations, the simulated vertical motion CFADs show a narrower 

distribution of vertical velocities.  The majority of simulated up- and downdrafts are weak, similar to 

the observations, but values of the maxima are less than the observed values.  In the eyewall (Fig. 6b), 

values in the lower troposphere range from –3 to 4 m s-1.  The range of upward motions increases with 

increasing height up to the melting level at 5-6 km, at which point the top 1% of points have upward 

motion of about 8 m s-1.  Above the melting level the maximum values decrease, but then there is 

another relative maximum at about 10 km.  Above 10 km, the distribution narrows, in contrast to the 

observed distributions.  The modal values in the eyewall are about zero in the lowest 2 km and become 

negative up until 8 km, above which it becomes slightly positive.  As in the observations, the rainband 

distribution is narrower than the eyewall, and the stratiform distribution is narrower than the rainband.  

The simulated rainband distribution shows a similar pattern to the eyewall, with increasing maximum 

upward motions up to the melting level, followed by a drop off and a secondary maximum at 10 km, 
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and decreasing upward motion above that.  An inspection of CFADs of simulated snow and graupel 

mixing ratios in the rainband region (Fig. 7) indicates that this secondary maximum of upward motion 

at 10 km is associated with a sharp decrease in graupel and a maximum in snow, suggesting that the 

secondary peak is related to a decrease in water loading as the graupel particles fall from the updrafts 

between 7 and 9 km.  The stratiform distribution of vertical velocity (Fig. 6f) is very compact, with 

values ranging between about –3 and 3 m s-1 for nearly the entire depth of the troposphere.  The 

distribution of vertical motion is nearly constant with height in the stratiform region.  In both the 

stratiform and rainband regions the modal vertical motion is slightly negative from the surface to 12-13 

km, where it becomes zero.  In all three regions the downdrafts never exceed 5 m s-1. 

 The observed reflectivity CFADs (Fig. 8) show differences across the three regions.  The 

eyewall CFAD is the most broadly distributed, with peak values around 45 dBZ in the lowest 2 km and 

values as high as 30 dBZ at 12 km for the top 1% of points.  In all three regions, the distribution shows 

a slight decrease in reflectivity with height in the lowest 1-2 km, and then the values increase with 

height up to the melting level as warm rain processes cause an increase in hydrometeor mixing ratios.  

Also in all three regions, the distributions show a maximum in reflectivity at the melting level, 

followed by a sharp drop-off above the melting level.  The rate of decrease is higher for the stratiform 

region than for the eyewall because the eyewall contains stronger updrafts that can transport 

hydrometeors to higher levels before they fall out (Black et al. 1996).  The modal values of reflectivity 

are different for the three regions as well, with values of 30 dBZ in the lower troposphere in the 

eyewall region, 25 dBZ in the rainband region, and 20-25 dBZ in the stratiform region.   

In the simulations (Figs. 8b,d, and f), the eyewall CFAD shows the broadest distribution of 

reflectivity, similar to the observations.  The high reflectivity bias commonly seen in simulations is 

clear in these figures, as values approach 60 dBZ for the top 1% of points and the mode in the lowest 3 

km is around 40-45 dBZ for the eyewall, 40 dBZ for the rainband, and 25-30 dBZ for the stratiform 

region.  At 6.5 km in the eyewall, the 45 dBZ value comprises nearly 15% of the points in the 

simulations, but it comprises only 0.7% of the points in the observations.  The values of reflectivity in 

the top 20% of the distribution remain nearly constant or decrease slightly with height below the 
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melting level.  This slope is seen in the other two regions as well, and it is in contrast to the 

observations, which show an increase in height between about 2 km and the melting level.  Also for all 

three regions in the simulations, there is no maximum in reflectivity at the melting level.  This is likely 

just due to the fact that the model does not account for frozen aggregates with liquid water coating the 

surface, which is the cause of most bright bands in radar observations.  A significant difference 

between the CFADs of observed and simulated reflectivity is the fact that the decrease with height of 

reflectivity above 5 km is much smaller in the simulations than in the observations.  The ramifications 

of this difference are discussed later. 

 A comparison of the distributions of hydrometeors taken from PMS probe measurements and 

flight-level vertical motions from flights into Hurricane Bonnie on the NASA DC-8 on 26 August 

1998 with the simulation of Hurricane Bonnie (Fig. 9) show other notable differences between the 

observations and the simulation.  The portions of the flight patterns selected for the comparisons were 

when the DC-8 was flying well above the melting level (about 10 km, or temperature ranges between –

20 and –25 ˚C).  The flight consisted of passes through both cloudy and clear air.  The vertical motion 

PDF (Fig. 9a) is generally similar for both the model and the flight-level data.  Similar to the CFADs 

of vertical motion (cf. Fig. 6), the majority of the values of vertical motion are near zero in both the 

flight-level data and the simulation.  There are more occurrences of stronger simulated vertical motions 

for this sample, however.  Peak values of vertical motion for the flight-level data range between –1.2 

and 1.5 m s-1, while in the simulation there is a small number of points (~1%) with vertical motions 

greater than 1.5 m s-1.   

While the PDFs of vertical motion are generally similar for the observations and the simulation, 

there are more significant differences in the distribution of ice mixing ratios (Fig. 9b).  The distribution 

of ice particles at 9.9 km from the 2D-C probe on the DC-8 shows the majority of values (75%) are 

less than 0.1 g kg-1.  About 7.5% of all values are ≥ 0.2 g kg-1, but there are no values greater than 0.4 g 

kg-1.  In the simulation of Bonnie, there is a smaller percentage of values that are less than 0.1 g kg-1, 

but nearly 23% of the values are ≥ 0.2 g kg-1.  In addition, some outliers are as large as 0.55 g kg-1.  
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This discrepancy is consistent with the high bias seen in the simulated reflectivity fields in this and 

other studies. 

c) Correlations 

 A scatter plot of flight-level vertical motion and probe measurements of hydrometeor mixing 

ratio for a portion of the flight track used in Fig. 9 is compared with a scatter plot from an equivalent 

“flight-level” measurement from the model (Fig 10).  The subsample of the flight track used in the 

observations was taken through a line of mixed convective and stratiform rain.  An equivalent 

measurement from the model was taken through a similar feature at a similar time in the simulation.  

As indicated by the linear regression lines fit to each distribution, there is virtually no relationship 

between observed vertical motion and mixing ratio at 9.9 km.  The percent of variance explained by 

the regression line (r2) is less than 1%.   In the model, however, there is a much stronger relationship.  

Values of cloud ice mixing ratio are less than 0.4 g kg-1 for updrafts weaker than 0.5 m s-1, and they 

show a steadily increasing value for increasing updraft strengths. The value of r2 for this regression is 

about 58%.  A Student’s t-test calculation was performed to determine the level of statistical 

signficance at which the correlation coefficient (r) can be considered to be nonzero.  The correlation 

coefficient in the observed distribution is nonzero only at the α=0.5 significance level, compared with 

the distribution in the simulation, which is nonzero at the α=0.002 level, indicating a much higher 

confidence in the strength of the relationship in the simulation.   

 A comparison similar to that done in Fig. 10 was performed for vertical motion and reflectivity 

from the radar dataset and the simulations of both Bonnie and Floyd (Fig. 11).  Comparing an 

independent dataset with the simulations will test the robustness of the relationships shown in Fig. 10.  

Furthermore, the sampling volume for the flight-level vertical motion and the probe measurements is 

quite small, so definitive conclusions on the relationships between vertical motion and hydrometeor 

mixing ratio based solely on these fields are dubious. From the radar data (Fig. 11a), there is a fair 

amount of scatter between observed reflectivity and vertical motion at 9.9 km.  Two separate linear 

regression lines were calculated in each of the figures shown in Fig. 11: one for vertical motions 

greater than 1.5 m s-1 and one for vertical motions less than -1.5 m s-1.  The slopes (% variance 
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explained) of the regression line for the updrafts is 0.784 (9%) and for the downdrafts it is –0.5354 

(2%), respectively.  By contrast, the slopes (% variance explained) of the regression lines for the 

updrafts and downdrafts for the simulations are 1.6255 (22%) and –3.033 (2%), respectively, 

indicative of a stronger relationship between vertical motion and reflectivity in the simulations.   

A similar scatter plot was constructed at 3.6 km, which was below the melting level with 

temperatures ranging between 6 and 10 ˚C. The same contrast between the observations and the 

simulations is evident at 3.6 km (Fig. 11c,d), where the slopes of the regression lines for the updrafts 

(downdrafts) for the observations are 0.1806 (-0.5366) and for the simulations they are 1.68 (-7.1604).    

The amount of variance explained in the updrafts (downdrafts) in the observations is 0.1% (0.4%) and 

in the simulations it is 18% (10%).  In addition to the stronger relationship between reflectivity and 

vertical motion seen in the simulations from these scatter plots, the high bias in simulated reflectivity 

relative to the observations is seen by comparing the y-intercepts of the regression equations.  For the 

observations, the y-intercept for the updraft regression equation at 9.9 km is about 14 dBZ, while for 

the simulations it is about 27 dBZ.   At 3.6 km, the y-intercept for the observations is 32 dBZ, while 

for the simulations it is 42 dBZ.  Student’s t-test comparisons of the correlation coefficients for these 

distributions, similar to what was calculated for the microphysical probe measurements (cf. Fig. 10), 

were calculated for the distributions in Fig. 11.  For the observations, the only distribution that had a 

nonzero value of r significant at less than the 0.05 level was the observed updraft distribution at 9.9 km 

(the other distributions were significant at the 0.2 level or greater).  In contrast, the simulation has 

nonzero values of r significant at less than or equal to the 0.005 level for updrafts at 9.9 km and both 

updrafts and downdrafts at 3.6 km. 

Figure 12 shows comparisons of the mean reflectivity within a vertical velocity bin as a 

function of height.  Similar to the scatter plots in Fig. 11, there is a suggestion of a weak relationship 

between observed reflectivity and vertical motion.  Between 3 and 5 km altitude, observed reflectivity 

values increase slowly as upward motion increases from 0 to 9 m s-1 (e.g., increasing from 37 dBZ for 

the 0 m s-1 bin to 47 dBZ for the 6 m s-1 bin at the 4-km level).  Above the melting level, between 7 

and 12 km altitude, there is again a weak relationship between vertical motion and reflectivity, for both 
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up- and downdrafts.  As in the flight-level data, the relationship between vertical motion and 

reflectivity is much stronger for the simulations.  The slope of the relationship is very pronounced for 

the weak vertical motions (i.e., between –2 and 2 m s-1), but there is a noticeable slope even for the 

vertical motion values exceeding 9 m s-1.  The differences in the strength of the relationship between 

the observed and simulated reflectivity shown in Figs. 11 and 12 are consistent with the differences in 

the probe data. 

 

4. Discussion 

a) Summary of comparisons 

The comparisons presented here show that the model reproduces many of the gross features 

seen in the observations.  For example, profiles of both observations and simulations show increasing 

vertical motion and decreasing reflectivity with height above the melting level, the upward motion is 

strongest and the distributions of vertical motion and reflectivity are broadest in the eyewall and 

weakest and narrowest in the stratiform regions, and the majority of the vertical motion is weak in all 

regions.  Despite these similarities, there are many significant differences between the observations 

and the simulations that suggest notable biases in the simulations: 

- Magnitudes of simulated mean vertical motion are lower than the observations, and magnitudes 

of simulated mean reflectivity are higher than the observations throughout the troposphere; 

- Mean updrafts and downdrafts are weaker in simulations than in the observations; 

- Reflectivity decreases much more slowly with height above the 0˚C level in the simulations than 

it does in the observations; 

- There is no increase in reflectivity with height below the 0˚C level in the simulations; 

- Distributions of vertical motion and reflectivity are narrower for the simulations than for the 

observations; 

- Modal and maximum vertical motions are lower in simulations, reflectivities are higher in 

simulations; 
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- Distribution of simulated vertical motion narrows with height in the upper troposphere, in 

contrast to the observed vertical motion, which broadens with height; 

- Slope of decrease of reflectivity above the melting level for top 10% of distribution of points in 

simulation much smaller than in observations; 

- Correlation between vertical motion and hydrometeor mixing ratio/reflectivity is much stronger 

in simulations than in the observations; 

b) Relevance to microphysical scheme 

Before considering the possibility that differences between the observations and simulations are 

attributable to deficiencies in the microphysical scheme, it is first necessary to consider other sources 

of differences between the datasets.  For example, the vertical motions in the model are consistently 

weaker than the observations.  This could be partially due to the fact that the resolution of the model is 

coarser than the effective resolution of the radar data (1.67 km grid length for the model vs. 1.5 km for 

the VI radar beam).  While this may explain some of the differences in the magnitudes of the vertical 

motion values, it is not a sufficient explanation for the vertical variation in the vertical motion field, 

nor does it explain differences in the relationships between the vertical motions and hydrometeor 

mixing ratios and reflectivities.  

Another marked difference is between the magnitude of the radar reflectivities calculated from 

the model and those measured by the radar.  As discussed in Section 2, the reflectivity in the model is 

calculated using the total mass content of each individual constituent (precipitating) species and adding 

their reflectivity values together to yield a total reflectivity value.  The relationship expressed in 

Section 2 (see Eq. 4) is essentially a Z-M relationship of the form 

     Z = aMb.      (6) 

For the model calculations used here, the value of b is 1.75, while the value of the a parameter ranges 

from 1228 for snow to 20417 for rain.   When there is a mixture of particle types at a grid point, the 

effective Z-M relation is a mixture of the constituent Z-M curves.  Figure 13 shows the Z-M relations 

used for each constituent species in the model compared with Z-M relations determined empirically 

from probe measurements in various hurricanes (Willis and Jorgensen 1982, Black 1990).  In Fig. 13a 
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there is also a curve obtained by plotting calculated Z vs. M for regions in the Bonnie simulation 

between –3 and –8 ˚C for three different times during the simulation.  At the altitudes in Fig. 13a there 

is a mixture of snow and graupel, and the fitted Z-M relation varies between each of these species.  

Thus the effective Z-M relation used in these calculations can be significantly different from the 

prescribed value when there is a mixture of species.  The observed Z-M relations shown in Fig. 13a 

were determined from measurements taken between –3 and –8 ˚C in two storms, Hurricanes Norbert 

and Irene (Black 1990).  The Z-M relations used in the model are significantly different from those 

determined from Black (1990), especially when compared against a more stratiform storm, Norbert 

(Black 1990).  Values of reflectivity in the relationship used in the model are consistently higher for 

higher values of water content.  Figure 13b shows a comparison between the model Z-M relation for 

rain and measurements collected in three hurricanes, Anita (1977), Frederic (1979), and David (1979).  

From this comparison differences are again seen between the relation used in the model and that 

determined from observations, with higher values of reflectivity seen in the model for the higher water 

contents. 

 To test the significance of using a different model Z-M relation in explaining the bias in the 

model-derived reflectivity, model reflectivities are recalculated using the empirically-derived relations 

(see Fig. 13) from Willis and Jorgensen (1982) for levels below the melting level and Black (1990) for 

levels above the melting level.  Figure 14 shows reflectivity profiles for all points from the Floyd and 

Bonnie simulations using these alternate Z-M relations, as well as the reflectivity for all points in the 

VI database.  Using different relations does produce significant differences in the reflectivity profiles 

above the melting level.  Using different ice relations, the reflectivity is reduced by nearly 10 dBZ 

above the melting level when using a relation characteristic of a convective storm and 15 dBZ when 

using a relation taken from a stratiform storm.  In both of these modified profiles, however, the 

reflectivity decrease with height above 7.5 km is still less than the observed decrease with height.  

Using the different rain relation does reduce the reflectivity about 2-3 dBZ, but this value is still much 

higher than the observed reflectivity.  It must also be emphasized that using a different Z-M relation 

implicitly means using different assumptions regarding intercept parameter and particle density (cf. Eq. 
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5).  In order to gain a true understanding of the impact of varying these parameters, they must also be 

changed in the scheme itself and the simulation must be re-run using these new values.   

Despite the sources of biases in the simulation discussed above (i.e., resolution differences, Z-

M relation differences), many of the differences between the observations and the simulations are 

likely attributable to biases in the microphysical parameterization scheme.  One of the most apparent 

biases suggested by these results is that water loading is too prominent a factor in the simulations.  

This is supported by several differences between the simulations and the observations: the simulations 

consistently underdevelop the strongest vertical velocities and overdevelop the highest reflectivities, in 

all regions; the correlation between vertical motion and reflectivity and vertical motion and 

hydrometeor concentration is much stronger in the simulations than in the observations; the reflectivity 

decreases much more slowly with height above the melting level in the simulations than in the 

observations; the downdraft profiles in the simulations are not reproduced well (e.g., in the differences 

between convective vs. non-convective storms), and the distribution of simulated vertical motion 

narrows with height in the upper troposphere, in contrast to the observed vertical motion, which 

broadens with height.  The likely culprit for the water loading problem is an underestimate of 

hydrometeor fall speed.  When fall speeds are underestimated, hydrometeors reside in a model layer 

longer than they should, resulting in increased water loading, reduced updrafts, enhanced reflectivity, 

and a decrease of reflectivity with height that is too slow for a given updraft magnitude. 

 Another bias evident from the comparisons is that the there is too much hydrometeor mass .  

This bias likely stems from the fact that either the production terms of rain and frozen precipitating 

particles are too strong or the conversion terms are too weak (or some combination of both).  This 

possibility is evidenced by the fact that the vertical velocities are too weak in the simulations and the 

reflectivity decreases too slowly with height above the melting level.  The production of the frozen 

precipitating particles, graupel and snow, may be the source of the problem here.  The overproduction 

of these species, combined with lower fall speeds for snow, leads to weaker updrafts through water 

loading and reflectivities that are too high and that extend over too great a vertical distance.  
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Furthermore, the melting of graupel (and to some extent snow) as it falls would cause higher rain mass 

contents and reflectivities below the melting level when graupel is overproduced. 

 Many of the biases summarized above may arise from the fact that many of the relationships 

and assumptions underlying microphysical parameterization schemes were derived from clouds that 

were not associated with tropical cyclones.  For example, the drop size distributions for the various 

species should be investigated to determine if they need to be modified to be appropriate for tropical 

cyclone environments.  This is not a straightforward task, however, since size distributions are highly 

variable from case to case, and they can even vary across different locations within the same storm.  To 

illustrate this point, Figure 15 shows size distributions from PMS monoprobe data from a single flight 

into Hurricane Emily of 1987 (Black et al. 1995).  The size distributions shown here were taken by 

averaging the distributions during the times that the aircraft was in either the eyewall or the stratiform 

regions of the storm.  For this calculation “eyewall” was defined as when the aircraft was within three 

minutes of the center of the storm and the magnitude of the flight-level vertical motion was > 2 m s-1, 

while “stratiform” was defined as all times when the aircraft was at least two minutes outside of the 

eyewall and the flight-level vertical motion was less than 2 m s-1.  As can be seen by Fig. 15, there are 

notable differences in the size distributions in the eyewall compared with the stratiform areas of the 

storm.  There are more particles in the eyewall region of the storm, a difference reflected in the 

different intercept parameters (N0) of the two size distributions (differences significant at the 99.5% 

confidence level).  Such spatial variability illustrates the complexity of applying bulk parameterization 

schemes to tropical cyclone environments and other environments with similar variability.   

 Many aspects of the production and conversion terms in the parameterization scheme have also 

been identified as possible deficiencies.  For example, the autoconversion of cloud water to rain water 

and cloud ice to snow and graupel is one area that could be modified to produce schemes that are 

capable of responding to differing air masses (e.g., Tripoli and Cotton 1980).  Another possible 

modification is to have separate classes for graupel and hail (Ferrier 1994, Ferrier et al. 1995), and to 

make the generation of graupel dependent on updraft magnitude and liquid water content.  The 

parameterization of vapor deposition should include new measurements of saturation vapor pressure 
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with respect to supercooled water (Fukuta and Gramada 2000), the freezing of rain to form graupel 

should be made to be dependent on the ice nucleation process, and the high temperature dependence of 

the aggregation of cloud ice should be investigated.   

 The changes discussed above will be tested in the model, and their impact on the vertical 

motion, hydrometeor mixing ratio, and reflectivity statistics from the simulations will be tested against 

the observations using the techniques presented here.  These results will be the subject of an upcoming 

paper. 

 

5. Concluding remarks 

The biases indicated by the comparisons between simulations and observations shown here can 

have important implications for the ability of high-resolution simulations to better predict tropical 

cyclone intensity and rainfall.  Accurate distributions of hydrometeors and their linkages with the 

vertical velocity field are crucial for obtaining accurate distributions of condensation, evaporation, 

freezing, melting, deposition, and sublimation in time and space.  Since latent heating is the major 

source of energy for a tropical cyclone, improvements in prescribing their distributions will lead to 

improvements in tropical cyclone intensity and rainfall prediction.  In addition to improving intensity 

and rainfall predictions, improving the distribution of latent heating can lead to better forecasts of 

storm structure.  Many simulations of tropical cyclones have storms whose wind and rain fields are too 

broad.  Some of this is likely due to resolution limitations, but some is also probably because the 

strength of the secondary circulation is too weak.  By increasing the mean vertical motion in the 

eyewall, the strength of the cyclone’s secondary circulation will be enhanced.  The stronger radial 

inflow may lead to smaller, more compact storms and more accurate wind and rain fields in the 

simulations.  Of course it could also lead to more intense storms, which may or may not be a desirable 

result.  Such relationships are quite complex, and they require further investigation. 

Many of the biases revealed by these comparisons arise because the microphysical 

parameterization scheme is a bin microphysics scheme.  Such a scheme requires certain assumptions, 

such as those regarding size distributions and fall speeds, that may play a significant role in 
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determining the relationship between vertical motion and hydrometeor mixing ratio.  More 

sophisticated schemes that predict more variables explicitly, such as double-moment schemes and 

spectral schemes, may alleviate some of the uncertainties mentioned here, but they have other 

assumptions in their formulations and they are much more costly and time-consuming to run. 

The value of the comparison techniques shown here is twofold.  First, because the comparisons 

are statistical in nature, they do not require a precise matching of features between the observations 

and the simulations.  This is advantageous, since it is beyond the realm of predictability to be able to 

exactly reproduce the timing and location of vertical motion maxima/minima and convective and 

stratiform features.  Second, this technique is adaptable to a variety of model configurations and 

observational platforms.  Future work will involve implementing improvements to the existing 

microphysical parameterization scheme based on the biases illustrated here and testing these 

improvements using the framework provided here.  Other microphysical schemes, such as double-

moment and spectral schemes, can be tested as well.  In this sense these evaluation techniques can be 

used to compare not only parameterization schemes to observations, but also different parameterization 

schemes to each other.  Additional observational platforms, such as TRMM PR reflectivity fields and 

NASA EDOP vertical velocity and reflectivity fields from the NASA ER-2 aircraft, can also be 

compared with the high-resolution simulations. 

Current operational models, such as the GFS and the Geophysical Fluid Dynamics Laboratory 

model, do not explicitly account for hydrometeors in their model.  Rather, they use a simple removal of 

supersaturation and they parameterize the evaporation of falling rain.  The techniques used to evaluate 

the scheme shown here nevertheless can easily be used to evaluate the schemes in these operational 

models to highlight areas in need of improvement.  While adding complexity to the operational 

schemes may be impractical due to computational efficiency limitations and operational constraints 

(and may actually add little to improve the forecasts), advances in computing power will enable more 

complex schemes to be implemented in the future, if needed.  Furthermore, as the Weather Research 

and Forecast (WRF) model becomes operational in the next couple of years, the possibility of 
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implementing more sophisticated physical parameterizations will increase.  Such improvements hold 

the potential of improving our forecasting of tropical cyclone intensity and rainfall. 

 

Acknowledgements 

 Our thanks go to many people who helped in the preparation of this manuscript.  Frank Marks 

and Paul Willis of HRD provided many helpful comments and suggestions to improve the work, as did 

Chris Landsea and Shirley Murillo, also of HRD.  Scott Braun of NASA/GSFC also provided helpful 

suggestions and stimulating discussions about the use of microphysical parameterization schemes in 

hurricane environments.  Our thanks also go to Tim Marchok of NOAA/GFDL, who provided 

information about microphysical parameterizations used in the operational models, and to Nancy 

Griffin of HRD who provided radar images to us.  Finally, Joe Tenerelli of RSMAS/University of 

Miami was very helpful in providing assistance with the simulations. 

 This work was partially supported by NOAA base funds and by a grant from NASA, Grant 

number S-44774-X, as a part of the CAMEX-IV field program.  Computing resources were provided 

by funding from the Office of Naval Research.  This research was carried out (in part) under the 

auspices of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a joint institute of 

the University of Miami and NOAA, cooperative agreement #NA67RJ0149. 

 

References 

Black, M.L., R.W. Burpee, and F.D. Marks, Jr., 1996: Vertical motion characteristics of tropical 

cyclones determined with airborne Doppler radial velocities.  J. Atmos. Sci., 53, 1887-1909. 

Black, R.A., 1990:  Radar reflectivity-ice water content relationships for use above the melting level in 

hurricanes.  J. Appl. Meteor., 29, 955-961. 

Black, R.A., and J. Hallett, 1986:  Observations of the distribution of ice in hurricanes.  J. Atmos. Sci., 

43, 802-822. 

 27



Braun, S.A., and R.A. Houze, 1994: The transition zone and secondary maximum of radar reflectivity 

behind a midlatitude squall line: Results retrieved from Doppler radar data.  J. Atmos. Sci., 51, 

2733-2755. 

Braun, S.A. and W.-K. Tao, 2000:  Sensitivity of high-resolution simulations of Hurricane Bob (1991) 

to planetary boundary layer parameterizations.  Mon. Wea. Rev., 128, 3941-3961. 

Braun, S.A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and 

eyewall buoyancy.  Mon. Wea. Rev., 130, 1573-1592. 

Cotton, W.R., M.S. Stephens, T. Nehrkorn, and G.J. Tripoli, 1982:  The Colorado State University 

three-dimensional cloud-mesoscale model –1982.  Part II: An ice-phase parameterization.  J. 

Rech. Atmos., 16, 295-320.  

Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment 

using a mesoscale two-dimensional model.  J. Atmos. Sci., 46, 3077-3107. 

Farley, R.D., and H.D. Orville, 1986:  Numerical modeling of hailstorms and hailstone growth.  Part I: 

Preliminary mdoel verification and sensitivity tests.  J. Climate Appl. Meteor., 25, 2014-2035. 

Ferrier, B.S., 1994:  A double-moment multiple-phase four-class bulk ice scheme.  Part I: Description.  

J. Atmos. Sci., 51, 249-280. 

Ferrier, B.S., W.-K. Tao, and J. Simpson, 1995:  A double-moment multiple-phase four-class bulk ice 

scheme.  Part II: Simulations of convective storms in different large-scale environments and 

comparisons with other bulk parameterizations.  J. Atmos. Sci., 52, 1001-1033. 

Fovell, R.G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions.  

J. Atmos. Sci., 45, 3846-3879. 

Fukuta, N. and C.M. Gramada, 2003: Vapor pressure measurement of supercooled water.  J. Atmos. 

Sci., 60, 1871-1875. 

Grell, G.A., J. Dudhia, and D.R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR 

Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, 138 pp. 

Hall, W.D., 1980:  A detailed microphysical model within a two-dimensional dynamic framework:  

Model description and preliminary results.  J. Atmos. Sci., 37, 2486-2507. 

 28



Hsie, E.-Y., Anthes, R.A., and D. Keyser, 1984:  Numerical simulation of frontogenesis in a moist 

atmosphere.  J. Atmos. Sci., 41, 2581-2594. 

Jorgensen, D.P., and M.A. LeMone, 1989: Vertical velocity characteristics of oceanic convection.  J. 

Atmos. Sci., 46, 621-640. 

Jorgensen, D.P., T.J. Matejka, D. Johnson, and M.A. LeMone, 1994: A TOGA-COARE squall line 

seen by multiple airborne Doppler radars.  Preprints, Sixth Conf. On Mesoscale Processes, 

Portland, OR, Amer. Meteor. Soc., 25-28. 

Kain, J.S., and J.M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-

Fritsch scheme.  The Representation of Cumulus Convection in Numerical Models, Meteorl. 

Monogr., No. 46, Amer. Meteor. Soc., 165-170. 

Karyampudi, V. M., G.S. Lai, and J. Manobianco, 1998: Impact of Initial Conditions, Rainfall 

Assimilation, and Cumulus Parameterization on Simulations of Hurricane Florence (1988). Mon. 

Wea. Rev., 126, 3077–3101. 

Lawrence, M.B., L.A. Avila, J.L. Beven, J.L. Franklin, J.L. Guiney, and R.J. Pasch, 2001: Atlantic 

Hurricane Season of 1999. Mon. Wea. Rev. 129, 3057–3084. 

Lin, Y.-L., R.D. Farley, and H.D. Orville, 1983:  Bulk parameterization of the snow field in a cloud 

model.  J. Climate Appl. Meteor., 22, 1065-1092. 

Liu, Y., D.-L. Zhang, and M.K. Yau, 1997:  A multiscale numerical study of Hurricane Andrew 

(1992).  Part I: Explicit simulation and verification.  Mon. Wea. Rev., 125, 3073-3093. 

Lord, S.J., H.E. Willoughby, and J.M. Piotrowicz, 1984:  Role of a parameterized ice-phase 

microphysics in an axisymmetric nonhydrostatic tropical cyclone model.  J. Atmos. Sci., 41, 

2836-2848. 

McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991:  Comparison of ice-phase 

microphysical parameterization schemes using numerical simulation of tropical convection.  J. 

Appl. Meteor., 30, 985-1004. 

Marks, F.D., and R.A. Houze, Jr., 1987:  Inner core structure of Hurricane Alicia from airborne 

Doppler radar observations.  J. Atmos. Sci., 44, 1296-1317. 

 29



Marshall, J.S., and W. McK. Palmer, 1948: The distribution of raindrops with size.  J. Meteor., 5, 165-

166. 

Orndorff, C., S.S. Chen, and J.E. Tenerelli, 2002:  Precipitation and landmass interaction during 

Hurricane Georges (1998) landfall at Puerto Rico.  Preprints, Twenty-fifth Conference on 

Hurricanes and Tropical Meteorology, 29 April – 3 May 2002, San Diego, CA, 297-298. 

Pagowski, M., and G.W.K. Moore, 2001:  A numerical study of an extreme cold-air outbreak over the 

Labrador Sea: Sea ice, air-sea interaction, and development of polar lows.  Mon. Wea. Rev., 129, 

47-72. 

Pasch, R.J., L.A. Avila, and J.L. Guiney, 2001: Atlantic Hurricane Season of 1998.  Mon. Wea. Rev., 

129, 3085-3123. 

Rappaport, E.N., 2000: Loss of life in the United States associated with recent Atlantic tropical 

cyclones. Bull. of Amer. Met. Soc., 81, 2065–2074. 

Rogers, R.F., S.S. Chen, J.E. Tenerelli, and H.E. Willoughby, 2003: A numerical study of the impact 

of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998).  Mon. Wea. Rev., 131, 

1577-1599. 

Rutledge, S.A., and P.V. Hobbs, 1984:  The mesoscale and microscale structure and organization of 

clouds and precipitation in midlatitude cyclones.  Part XII: A diagnostic modeling study of 

precipitation development in narrow cold-frontal rainbands.  J. Atmos. Sci., 41, 2949-2972. 

Tao, W.-K., and J. Simpson, 1993:  The Goddard cumulus ensemble model.  Part I: Model description.  

Terr. Atmos. Oceanic Sci., 4, 35-72. 

Tenerelli, J.E., and S.S. Chen, 2002:  Intensity change and eyewall replacement in Hurricane Floyd 

(1999).  Preprints, Twenty-fifth Conference on Hurricanes and Tropical Meteorology, 29 April – 

3 May 2002, San Diego, CA, 168-169. 

Tripoli, G.J., and W.R. Cotton, 1980: A numerical investigation of several factors contributing to the 

observed variable intensity of deep convection over South Florida.  J. Appl. Meteor., 19, 1037-

1063. 

 30



Willoughby, H.E., F.D. Marks, and R.J. Feinberg, 1984: Stationary and moving convective bands in 

hurricanes.  J. Atmos. Sci., 41, 3189-3211. 

Willoughby, H.E., 1995: Mature structure and evolution, from “Global Perspectives on Tropical 

Cyclones,” Ed. R.E. Elsberry, WMO/TD-No. 693. 

Yuter, S.E., and R.A. Houze, Jr., 1994: Three-dimensional kinematic and microphysical evolution of 

Florida cumulonimbus.  Part III: Vertical mass transport, mass divergence, and synthesis.  Mon. 

Wea. Rev., 123, 1964-1983. 

Zhang, D.-L., and R.A. Anthes, 1982: A high-resolution model of the planetary boundary layer – 

sensitivity tests and comparisons with SESAME-79 data.  J. Appl. Meteor., 21, 1594-1609. 

Zhang, D.-L., 1989:  The effect of parameterized ice microphysics on the simulation of vortex 

circulation with a mesoscale hydrostatic model.  Tellus, 41A, 132-147. 

Zhang, D.-L., Y. Liu, and M.K. Yau, 2000:  A multiscale numerical study of Hurricane Andrew 

(1992).  Part III: Dynamically-induced vertical motion.  Mon. Wea. Rev., 128, 3772-3788. 

Zhu, T., D.-L. Zhang, and F. Weng, 2000:  Numerical simulation of Hurricane Bonnie (1998) using the 

advanced microwave sounding unit derived winds.  Preprints, Twenty- fourth Conference on 

Hurricanes and Tropical Meteorology, 29 May – 2 June 2000, Ft. Lauderdale, FL, 460-461. 

 

 31



Appendix A: Classification algorithm for Eyewall, Rainband, and Stratiform regions 

 

Reflectivity is first averaged in two layers, the 0.5–4 km layer (lower-level reflectivity) and the 

6-10 km layer (upper-level reflectivity).  The eyewall candidate region is identified first.  Starting from 

the center of the grid (i.e., the center of the simulated or observed storm), the upper-level reflectivity is 

evaluated until the first instance where it exceeds 30 dBZ.  From this point, the upper-level reflectivity 

is evaluated for an additional 15 km.  The maximum upper-level reflectivity within this radial band is 

flagged (rupmax).  The lower-level reflectivity is then evaluated in a 20-km radial band centered on the 

flagged point, and the maximum low-level reflectivity is saved and the radius corresponding to that 

value is flagged (rlowmax).  Moving radially outward from rupmax, the upper-level reflectivity is evaluated 

until it falls below 70% of the value at rupmax.  Additionally, the lower-level reflectivity is evaluated 

until it falls below 70% of the value at rlowmax.  The maximum of these two radii is defined as the outer 

edge of the eyewall candidate region.  Moving radially inward from rlowmax, the lower-level reflectivity 

is evaluated until it falls below 15 dBZ.  This radius is defined as the inner edge of the eyewall 

candidate region.   

 Moving radially outward from the eyewall, the rainband candidate regions are next identified.  

This technique uses nearly the same algorithm as the eyewall determination, with a few minor 

differences: 1) the initial reflectivity used to flag a possible rainband is 25 dBZ instead of 30 dBZ; 2) 

only one test is performed to identify the outer edge of the rainband; 3) because of weaker radial 

gradients in reflectivity at larger radii, the threshold value to identify the outer edge of a rainband is 

75% instead of 70% of the maximum upper-level reflectivity; and 4) the criterion for defining the inner 

edge of a rainband is when the low-level reflectivity falls below 75% of the maximum lower-level 

reflectivity (rather than a 15 dBZ threshold for the eyewall inner edge).   

To identify a stratiform region, all locations that are neither eyewall nor rainband, but where 

the lower-level reflectivity exceeds 15 dBZ, are considered stratiform regions.  All other regions are 

considered “other”, unless the lower-level reflectivity is below 2 dBZ, in which case it is considered to 

be missing.  Because of the high bias of simulated reflectivities when compared to observations (cf., 
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for example, Fig. 1), the thresholds used to define a potential eyewall and rainband (30 dBZ and 25 

dBZ, respectively) are reduced by 5 dBZ for the observed data.  Figure A1 provides a schematic of the 

definition of the candidate regions.   

 With the candidate regions identified from the reflectivity fields (Fig. A1), the vertical motion 

fields are next used to identify the actual eyewall, rainband, and stratiform regions.  To preserve radial 

contiguity, values of the absolute value of vertical motion in the layer between 4 and 10 km are 

averaged over a 5-km radial distance.  If the running mean of vertical motion anywhere within a 5 km 

distance of the location being considered is greater then 1.5 m s-1 within a candidate eyewall (or 

rainband) region, then that location is identified as part of the eyewall (or rainband).  The value of 1.5 

m s-1 is chosen because that value was found in Black et al. (1996) to define the boundaries of coherent 

up- and downdrafts in their VI dataset.  If no region within 5 km is greater than 1.5 m s-1, that location 

is considered stratiform. 

 33



List of Tables 

 

Table 1. Name of hurricane, date of flight, intensity information during flight, number (n) of radial 

legs, average length of radial legs, and the maximum and minimum w from Doppler data during flight. 

 

Table 2.  Characteristics of regions in VI and model data. 

 34



List of Figures 

 

Figure 1.  Comparison of reflectivities from (a) P-3 lower fuselage radar at 4261 m and (b) MM5 

simulation at 600 hPa for Hurricane Floyd on 13 September 1999 (note difference in scales of 

reflectivity between (a) and (b)). 

 

Figure 2.  Plot of observed and simulated (a) track and (b)intensity of Hurricanes Bonnie and Floyd.  In 

both (a) and (b) the solid line is the observed value while the dashed line is the simulated value.  

Vertical bars in (b) bracket times used in simulations. 

 

Figure 3.  Examples of regime identification scheme for radar observations of Hurricane Olivia (1994) 

and simulation of Hurricane Floyd (1999).  Plan view radar images are indicated in (a) and (b), radius-

height cross sections are indicated in (c) and (d). Areas identified as eyewall, rainband, and stratiform 

are identified (note difference in scales of reflectivity between (a) and (b)). 
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78 

85/09/01 
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952 

-16 

60 

                                               Minimum  Maximum                        Mean                                  
                                                 Surface       Wind         Radial           Leg            Doppler Data 
                               Date          Pressure      Speed          Legs         Length     Max. w       Min. w 
        Storm           yr/mo/da         (mb)         (m s-1)          (n)            (km)          (m s-1)        (m s-1) 

14 

  
+ Black et al. (1994) also analyzed these data 
* Both NOAA WP-3D aircraft flew concurrently 

64 

Table 1. Name of hurricane, date of flight, intensity information during flight, number (n) of 
radial legs, average length of radial legs, and the maximum and minimum w from Doppler 
data during flight. 

-17 22 93 32 65 924 94/09/25 Olivia* 

-18 19 92 28 55 949 94/09/24 Olivia* 

8 60 945 91/09/23 Jimena 

-05 10 94 14 50 959 90/08/31 Gustav 

-08 11 87 12 50 958 90/08/30 Gustav* 

-13 21 92 30 40 960 90/08/29 Gustav* 

-19 21 111 06 50 965 90/08/27 Gustav 

-15 15 103 10 65 934 90/09/21 Hugo 

-12 12 102 03 45 957  89/09/19 Hugo 

-13 12 105 06 50 955 89/09/18 Hugo 

-18 24 107 12 65 930 89/09/17 Hugo 

-11 14 96 12 60 937 89/09/03 Gabrielle 

-16 26 96 10 75 892 88/09/14 Gilbert 

-19 24 65 18 65 957 87/09/22 Emily+ 

-21 24 97 04 70 919 85/09/24 Gloria 

-07 13 73 14 60 954 85/09/02 Elena 

-11 13 
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VI data 

Model data 

Number of 
occurrences

Percentage of total
(%) 

Contribution to 
area (%) 

Eyewall 

Rainband 

Stratiform 

Other 

Eyewall 

Rainband 

Stratiform 

Other 

11.2

68.6

4.7 

15.5

9.9

62.7

3.9

23.5

352

2231

137

836

19.4

55.1

10.7

14.8

25.4

48.0

8.0

18.6

67,760

127,761

21,273

49,384

Table 2.  Characteristics of regions in VI and model data. 
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Figure 4.  Profiles of Doppler-derived (a, c, and e) and simulated (b, d, and f) mean vertical motion 
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levels where differences are significant at the 99% confidence level. 
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Figure 10.  Scatter plots of flight-level vertical motion (m s-1) and hydrometeor concentrations (g kg-1) 
at 9.9 km for (a) observations and (b) simulation of Bonnie
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Figure 11.  Scatter plots of Doppler-derived vertical motion (m s-1) and reflectivity (dBZ) for all 
storms  
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Figure 12.  Mean eyewall reflectivity (shading, dbZ) stratified by Doppler-derived vertical motion 
bins for all storms. 
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Figure 13.  Comparisons of Z-M relations for (a) ice and (b) rain from simulations and 
from observed hurricane cases 
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Figure A1.  Schematic showing identification of candidate eyewall, rainband, and stratiform 
regions based on reflectivity. 
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