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ABSTRACT 
Growing ice particles and mixed phase particles in the atmosphere, such as melting snow or freezing drops, have complex shapes and internal density distributions due to variable environmental conditions encountered during fall. Particle mean density may be expressed as mass spread over an equivalent sphere defined by projected particle extremities, the equivalent for a planar crystal or in terms of an equivalent melted diameter. The variety of particle shapes and sizes present unique problems in characterizing their densities. Different density distributions may be inferred from particle images and measured by particle capture and real time evaporation. Direct measurements of density were made, through the use of a cloudscope, an instrument that captures and sublimes particles while video recording from the rear of an optical surface. Measurements made by a high-resolution instrument have uncertainties of (0.01 g cm-3. Densities of atmospheric particles are measured from the tropical upper troposphere in both Pacific and Atlantic environments and range from 0.03 to 0.91 g cm-3 with an average of 0.41 g cm-3. There is evidence of riming of faceted atmospheric particles through exposure of residual facets following evaporation. Many particles showed variable densities, with a low density outer shell surrounding a higher density inner core.

1. Introduction
Atmospheric particles come in a variety of shapes and sizes, from the regular geometrical shapes defined by lattice growth, to irregular shapes produced through aggregation and riming. It is insufficient to assume these particles have a density in the proximity of solid ice (0.92 g cm-3 to sufficient accuracy) or even a constant density. Consider a faceted ice crystal with a high degree of geometrical symmetry. As the crystal moves through the atmosphere encountering different environmental conditions, it may become hollow, grow dendritic arms, or rime and aggregate with other particles. The density of atmospheric particles is specified as the mass of an incrementally small sphere of size such that uniformity may be assumed and ignoring any uncertainties arising from the statistics of molecular processes of growth or evaporation. In practice, water drops have a density influenced by solute concentration and temperature; ice particles have a density influenced by the presence of air, either as inclusions or as bubbles formed by rejection of air from solution during solidification.
Atmospheric processes result in a wide range of possible particle densities. The lowest extreme density can be defined by the geometrical distribution of mass such as a frozen spherical shell or bubble having density less than 0.001 g cm-3, while at the other extreme solid ice is formed when air is excluded by slow freezing of a droplet spreading on impact on an ice surface or by growth of a solid faceted crystal from the vapor. Some geometries intrinsically exhibit low density behavior such as a bullet rosette or dendrite with a six narrow pronged array as shown in Fig. 1. In reality, the actual densities of particles are dispersed between these two extremes. For example, a conical graupel particle grows by accretion of droplets at its base as it falls in a fixed orientation, so that the apex, possibly beginning as a 0.92 g cm-3 density frozen drop, becomes “fluffy” by frost growth from the vapor or low density droplet accretion and increases in density toward the bottom as its fall velocity increases and the growth conditions change.
Particle density is required to calculate many atmospheric quantities. A particle falling at a terminal velocity has an associated drag force due to a difference in velocity between the particle and the fluid and is dependent through a drag coefficient on the fluid properties as well as the shape and density of the falling particle. Once the terminal velocity and particle mass are known, other quantities may be calculated, such as the mixing ratio and precipitation rates. The vertical mass flux (measured relative to updrafts and downdrafts), important for aircraft where supercooled water can freeze on aircraft wings causing loss of aerodynamic lift, also can be calculated (Hallett and Isaac 2002, 2009). Understanding the density of particles also plays a key role in characterizing electromagnetic wave interactions, within the atmosphere, as realized in 1871 by Lord Rayleigh (Strutt 1871) as he studied the relationship between particles and refraction in the atmosphere. Electromagnetic interactions, particularly in the radar portion of the spectrum, are critical as a tool in understanding atmospheric processes (Um and McFarquhar 2007). The optical properties of any cloud are a function, among other things, of the concentration of particles and their density. In general, electromagnetic radiation interacts more strongly with solid particles than with low density particles (McFarquhar et al. 2002; Yang et al. 2008). 
We address the question of the density of a particle, as having a volume of a sphere for three dimensional (3D) examples and a circle for two dimensional (2D) examples, defined by points on an outer periphery. Further, direct measurement of densities has been obtained from the cloudscope, an instrument that collects particles on a heated optical flat mounted normal to the airstream, the rate of change of particle area through evaporation being inversely related to density (Hallett et al. 1998; Meyers and Hallett 2001). Particles fall conveniently into two categories; those with a uniform density and those showing differing densities at various locations. Typical non-uniform density particles show evidence of low density growth on the periphery of a high density growth center. 
2. Definition of density
Complex, non-symmetrical crystals such as rimed or aggregate particles create difficulty in defining density. One solution is to use an increasingly complex bounding volume to describe the crystal. This approach leads to the von Koch snowflake paradox where finer detail reveals increasing complexity, and requiring even finer detail (von Koch 1904, 1906; Mandelbrot 1982), the perimeter of a snowflake approaching infinity as finer and finer detail is revealed. In the physical world, a lower limit of such detail is defined by molecular dimensions, or more realistically the unit cell comprising the ice crystal lattice. 

Symmetrical crystals offer a simplified solution of fitting a representative geometrical shape to the crystal. Considering an idealized general polygon with equal sides b as an ice crystal prism, the density is:
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where n is the number of sides, b is the length of one outer side, and h is the thickness of the crystal. Early solutions fit the basic measurements of the crystal into such equations with equal sides (Ryan et. al. 1976) with n = 6 giving the ideal hexagonal prism. Plates grown under conditions existing in the earth’s atmosphere often exhibit sides with unequal lengths and display complex geometries, most likely resulting from changing the stacking order of packing (Hallett et al. 2002; Bailey and Hallett 2004). As an alternative, geometric approximations of density use parameterizations for particles with idealized branches (Wang 1983). 
Riming occurs as an ice crystal encounters supercooled drops, which freeze on contact. The density of rime is related to the surface temperature (Ts) of the accreted ice, the radius of the supercooled drop (a), the impact velocity (Uimp), and its deformation on impact (Macklin 1962). For deposit temperatures ranging between -5 and -20(C, impact speeds between 2 and 12 m sec-1, drop radii between 11 and 32 (m, and for the liquid water content of the cloud between 1 and 7 g m-3, the density relation is:
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where A = 0.110 and B = 0.76 are found experimentally. The ultimate shape of the frozen drop is determined by its temperature and impact velocity with three possible outcomes: (1) the drop will freeze in a spherical shape, (2) the drop spreads out and eventually freezes as a near hemisphere, and (3) the drop spreads out and freezes as a cap (Brownscombe and Hallett 1967). The most simple case, as freezing multiple spheres, allows the density to be approximated by closely packed spheres, giving a density of 0.67 g cm-3, assuming spheres with a material density of 0.92 g cm-3 (if the density of the sphere is 1 g cm-3, the packing density is 0.74 g cm-3). Randomly packed spheres of ice yield a lower density of 0.57 g cm-3 (Pruppacher and Klett 1997). A simple example is illustrated with close packed spheres, as oranges, where small spaces exist between the oranges lowering the average density to less than an individual orange. Should the oranges be dumped randomly into the box, large spaces between some of the oranges and small spaces between a few oranges, further reduce the density. Placing smaller spheres, as grapes, in the spaces between the oranges increases the overall density, leading to a series converging until reaching a molecular level. 

Empirical power series with two variables may approximate density as ( = aDn (see for example, Arnott et al. 1994). An obvious problem with such relationships is the ambiguity in classifying crystal type, and defining D from an arbitrary point where a stellar crystal changes from narrow arms to broad arms. In addition, crystals will have encountered unique environmental conditions (temperature, supersaturation, droplet accretion, and size) resulting in different growth geometries and giving a wide spread of values of the coefficients a and n, significantly reducing the utility of this relationship.
In practice, the density of a particle may be found by many different techniques, requiring a measurement of particle dimension with an estimation of mass or applying the dimensions to a relationship developed from non-related data. Alternatively, a definition may be made from an optical viewpoint, relating the mass of a sphere to a projected area to serve as a convenient measure of optical transfer path and provides a measure De, (equivalent diameter) in terms of ice-water content (Stephens 1990; Mitchell 2002). This assumes a uniformity of ice density, as will be shown to be only justified in special cases, as opposed to an expected uniformity of water density for liquid drops when the size spectrum alone is to be specified. These considerations apply either in one dimension (1D) as in the growth of a column, needle, linear crystal or rime (Dong and Hallett 1989), in 2D as in the growth of a flat dendrite or in 3D as in the growth of a spatial dendrite or bullet rosette. The mean density of the particle depends on an assumed outer geometry as a simple circle, sphere, or a spheroidal shape with appropriate symmetry. In practice, the local density of the particle depends on the location related to the site and direction of growth and must be assigned a convenient reference, such as a centroid with 6 fold or other symmetry and averaged over a series of narrow annuli or thin shells for the entire particle. 
a. Effective diameter
First studies of geometries of ice crystals in the atmosphere began applying descriptors such as shape, thickness and diameter (see for example Ono 1969; Auer 1970). Ice crystals exhibiting a basic cylindrical shape – such as columns, bullets and needles – are approximated using a cylindrical volume (Platt 1997). There are two categories for defining equivalent diameter (Wyser 1998; McFarquhar and Heymsfield 1998) with the simplest equivalent diameter being parameterized using liquid water content (Boudala et al. 2002). The ice content may be derived from spectra of images of particle shapes and temperature, but requires a density to be specified completely. 
The effective diameter, for spherical particles such as liquid water droplets, can be defined uniquely where both the ratio of volume to projected area and the mean scattering particle cross section are identical. The simplest definition is where the ratio of volume-to-projected area and the mean cross section are equivalent (Han et al. 1998). Other systems define only an equivalent volume or cross section for a sphere (Ebert and Curry 1992; McFarquhar and Heymsfield 1996; Rolland et al. 2000). Still other systems seek to account for common ice crystal habits, by fitting a representative volume, or aspect ratio to the crystal. For non-spherical particles such as dendrites, aggregate and rimed particles, these two quantities cannot be identical because of variations in the cross section and the concept of effective diameter breaks down, lacking physical reality. 
b. Density of two dimensional crystals
It is clear that neither highly symmetric crystals nor irregular particles have a constant density throughout their structure. Gaps greatly reduce the density of a particle, from that of the material ice. For example, flat dendrites do not have a constant density throughout the crystal but change with location depending on the growth history. Figures 1 through 5 (crystals from Bentley and Humphreys 1962) depict an area proportional to a planar density annulus plotted against radial distance. The planar areas are found by subdividing the crystal images into rings of equal area, counting pixels that contained ice, and scaling the pixel areas. 
The simplest configuration (Fig. 1) depicts a dendrite with narrow arms extending from a well defined center and a decreasing density due to the increase in spacing between the arms toward the periphery. The solid dendrite center (r = 0), represents a density approaching ice, 0.92 g cm-3 and is shown as point A (Fig. 2). This also depicts a more complex dendrite with plate growth on the arms with more complex shapes and density variation outward (Figs. 3, 4, and 5).
The local area is assumed to be density 0 (black) or normalized to 1 (white, as solid crystal), the crystal having uniform thickness in the direction of viewing. The central regions of all hexagonal crystals are usually a simple solid ice hexagonal prism. Moving outward along a radius from the center, a varying amount of ice area is encountered beyond the hexagon until it vanishes at r = Rmax, about 250 µm. Depending on the growth history of the crystal, the local density decreases monotonically (Fig. 3) or alternates (Fig. 2). Since the density is defined as the local area of crystal related to the area of an ice disk extending to the periphery, the mean density represents the scale of openness of the structure. The radial variation of the distribution of ice density is related to the observed area evaporation rate 
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, as a measure of the local ice density, determined by its original conditions of growth from the vapor (Appendix). A comparable analysis is applicable to an evaporating column (possibly hollow) viewed from its top or side. The graphs were constructed by measurement of the area at the intersection of each crystal part with annuli centered in the hexagon. It is clear that the hexagonal crystal arms and side branches often are not quite symmetrical, resulting from irregularities during growth, adding further to the complexity.
c. Density of three dimensional crystals
A 3D polycrystal presents a further complication from the 2D spatial dendrites. Consider a bullet rosette divided by equal volume spherical shells. The shells may encompass portions of three separate regions of interest, Fig. 6: (1) a pyramidal section that is in the center of the crystal; (2) a column, starting from the pyramid column interface to the point where a sphere touches the top of the column; and (3) the top most edges on the column. Integrating to find the enclosed volume for successive concentric spherical shells results in Fig. 7, for four differently numbered bullet rosettes. The third region, where the bullet terminates at the upper edges of the column, in this case is small and is neglected. Similar to the areas found in the 2D cases, a bullet rosette shows a rapid decrease in the bounded volume, tapering off toward the outer edge of the crystal. The decrease is much more rapid in the pyramidal region than in the columnar region. The individual bullets may be hollow with an arbitrary angle for onset of the internal cavity, leading to further complexity. 
3. Aircraft measurement of ice particle density

Measurement of the density of atmospheric ice particles makes use of the cloudscope. This instrument incorporates a forward facing optical flat maintained at the dynamic temperature, upon which particles impact and are video recorded. The result is the ability to measure the density of atmospheric ice particles by way of sublimation and melting of the particle (Hallett et al. 1998; Hallett and Isaac 2009). 

A substance undergoing a phase change, sublimation in the present case, absorbs latent heat, provided by conduction from the much larger optical flat of the instrument. The temperature on the surface of the ice particle is assumed to be the dynamic temperature at the stagnation point on the optical flat of the cloudscope, sufficiently close to the temperature rapidly reached by any impacted ice particle of much smaller size. In practice, it may be necessary to heat the surface above its stagnation temperature (measured directly by a sensing element in the window) to increase evaporation rate and prevent complete icing of the optics leading to an increased temperature and ice vapor pressure (see Appendix).
The most representative volume for aggregates and rimed particles is conveniently assumed as that of a sphere or hemisphere, since a low density particle impacting on the window of the cloudscope collapses on impact. The density of such particles is related to their radius and may be assumed constant over a sufficiently small interval and given by: 
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where k is the coefficient of thermal conductivity of air, T∞ is the ambient temperature, Ts is the temperature of the surface, 
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 is the slope of the change in projected area of the particle, and Ls (Ts) is the latent heat of sublimation. These quantities are found using imaging software and flight data.


a. Density measurements

The NASA Kwajalein Experiment (KWAJEX 1999) was a field operation campaign based at the Kwajalein Atoll in the Marshall Islands to support the joint U.S. – Japan Tropical Rainfall Measuring Mission (TRMM) satellite, in orbit since November 1997, to map precipitation in the tropics (Kingsmill et al. 2004). The cloudscope was flown on the NASA DC-8 with ambient temperature ranging between ‑20(C and -60(C at an airspeed of approximately 200 m s-1 at altitudes in the neighborhood of 10,000 m, using a high-resolution cloudscope. This comprised a long working distance video camera with microscope for imaging and recording 10 μm size particles. A vertical illuminator in line with the microscope tube provided illumination when ambient lighting was insufficient. The ice particle density data analyzed in the KWAJEX project covered four different days, comprising sixteen hours of collected video in the field. A summary of the KWAJEX analyzed particles is listed in Table 1 with the smallest densities being 0.033 g cm-3 and the largest 0.92 g cm-3. The largest is very near that of solid ice, while the smallest is something like styrofoam. Similar data was collected in project CAMEX-3 (1998). The project covered three hurricanes – Bonnie, Danielle, and Earl – as an interagency effort to measure hurricane dynamics at high altitude in Atlantic storms. Electrical noise from the aircraft, seen as coherent interference patterns on the recorded videotape, was processed digitally with the NIH Image and Scion freeware and filtered using a Fast Fourier Transform. 
Figure 8 depicts a particle with two densities imaged by the cloudscope, with the outer shell at a low density (ρ = 0.05 g cm-3), while the core is more dense (ρ = 0.25 g cm-3), but still much less than the density of solid ice (ρ = 0.92 g cm-3). Figure 9 shows the change in density. In contrast, Fig. 10 shows the images of a subliming particle with a uniform density (ρ = 0.781 g cm-3), which is much closer to that of solid ice. A graphical representation of uniform density is shown in Fig. 11, the scatter of points showing the uncertainty of the measured density. Figures 12 and 13 compare the spread of ice density measured by complete evaporation of ice images on the cloudscope for short periods in Atlantic and Pacific situations. No significant difference is implied between these two sets of data. Although the data are sparse, these results dramatically illustrate the spread of particle density.   
A fifth of the particles measured showed at least two different densities which were dependent upon the radius, interpreted as a particle with a fluffy low density exterior and a higher density interior. The presence of multiple densities clearly is not an artifact of the particle impacting upon the cloudscope because the shape of the curve indicates a sharp change from one density to the next; a density artifact due to collapse would be expected to show a continuous change in the slope for a spherical particle. Further, the existence of a core particle can be seen as the material on the periphery sublimes, revealing a dense inner particle. For example, a low density sphere that is collapsed against a hard surface would show a gradual increase in density toward a central point as in Fig. 8. 
There is evidence that the process of riming has occurred on the surface of some of the particles as shown in Fig. 14, suggesting that the particles first formed and then fell through a volume of supercooled droplets freezing as they contacted the core particle. Rime formed on a particle can be denser, near solid ice if the temperature is near 0°C or less dense at lower temperature and growth rate. Given that KWAJEX data were taken at temperatures between -35°C and -60°C, lower density rime is only expected at temperatures above -40°C, the expected limit of supercooled water and the ability to have a low density. It is of interest that of the 255 particles analyzed no residual nuclei (> 1 µm) remained after evaporation, implying a lack of such nuclei when the ice particles formed or were collected subsequently by scavenging. 
4. Conclusions

Although the data for the discussions are sparse, they are based on sound physical principles and provide indication of the way in which knowledge of ice density should be utilized in a modeling context from the viewpoint of introducing a paradigm for ice in the atmosphere. Direct measurements of ice particle density are combined with simulation of ice particle geometry in 1D, 2D, and 3D particle dimensions. This provides a rationale for characterizing mass concentration in the atmosphere over a wide range of particle density and suggests modeling techniques and high resolution instrument development for aircraft deployment utilizing control of the instrument response time and operating conditions. 

Densities in the measurements ranged from 0.03 g cm-3 up to 0.91 g cm-3, with an  average of 0.41 ±0.22 g cm-3 with an uncertainty for particle diameters > 1 µm to within 0.01 g cm-3. The upper limit for the density of solid ice is 0.92 g cm-3, and a lower limit of 0.03 g cm-3. A wide variety of particle shapes were found such as columns, rimed columns, bullet rosettes, needle (extreme ‘c’ axis growth), and graupel particles resulting from supercooled drop accretion. 
Even this small set of data illustrates that the potential exists for a wide spread of particle properties, knowledge necessary for characterization of atmospheric processes involving the ice phase universally. Any model needs to take this into account to provide a realistic assessment tool. As a research tool, the cloudscope provides direct measurement of particle diameter and particle density and leads to more useful insight into any estimate of effective diameter. 
APPENDIX


Using the analogy between the vapor field around a particle and the electrostatic potential around a charged conductor of the same geometry and size, the rate of change in mass m is given by
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where D is the diffusion coefficient of water in the air, (( the ambient vapor density, and (s is the vapor density at the surface of the particle, approximated by the sapphire window temperature. 

The rate of heat loss may be written in terms of the thermal conductivity of air (k).
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where T( is the aircraft measurement of ambient temperature and Ts is measured directly.

The closest representative volume for most aggregates and rimed particles is that of a sphere. When a particle impacts on the window of the cloudscope one side collapses resulting in a hemisphere. Therefore, with the assumption of spherical symmetry yielding the mass for a hemisphere:
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It is assumed that the ice density is constant
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 over the time dt. Since in practice the density of particles is dependent upon the radius, we need only to choose a small enough time interval justifying the density to be constant. Thus, the rate of change in the mass of the hemisphere
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The projected area of a hemisphere on the window is A = ( r2. The rate of change of the area is
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where 
[image: image13.wmf]dt

dA

is obtained directly from the imaging software for each particle from impaction until complete evaporation.
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Figure 1.
Radius dependent of ice area on a stellar crystal with narrow arms and a solid plate center. The effective area of ice falls rapidly with radius from the inner plate and increases slightly with additional growth near the crystal tips.

Figure 2.
Plot similar to Fig. 1, shows a plate interior of constant density (A); a deficit of ice between side arms (B); extensive side arm grown (C); a bounding circle through newly grown dendrite tips (D).

Figure 3.
A highly branched closely spaced arm dendrite showing high density until half way out beyond which freshly grown dendrite branches result in density falling to low values.

Figure 4.
Large plate surrounded by sector plates showing more uniform ice area coverage.

Figure 5.
Similar to Fig. 4 with distinct gaps between outer plates each with a narrow tip growth.

Figure 6.
A bullet rosette divided into three regions for area integration.

Figure 7.
Bounded volume for a spherical bullet rosette related to radius having a central solid sphere and differing number of bullets.

Figure 8.
A particle with two different densities, a fluffy outer shell and a solid inner sphere.

Figure 9.
Sublimating particle shown in Fig. 8 with an outer low density and a higher density core.

Figure 10.
A sublimating particle with a uniform density.

Figure 11.
Sublimating particle from Fig. 10 showing a uniform density.

Figure 12.
CAMEX density distribution of time segments 10:59:51 to 11:00:00 (NASA DC8) 980414.
Figure 13.
KWAJEX density distribution for the time segment 5:07:40, tape 990730_DC8_SFCS2.

Figure 14.
A rimed column, with rime sublimating first before leaving the inner column.
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Fig. 1. Radius dependent of ice area on a stellar crystal with narrow arms and a solid plate center. The effective area of ice falls rapidly with radius from the inner plate and increases slightly with additional growth near the crystal tips.
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Fig. 2. Plot similar to Fig. 1, shows a plate interior of constant density (A); a deficit of ice between side arms (B); extensive side arm grown (C); a bounding circle through newly grown dendrite tips (D).
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Fig. 3. A highly branched closely spaced arm dendrite showing high density until half way out beyond which freshly grown dendrite branches result in density falling to low values.
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Fig. 4. Large plate surrounded by sector plates showing more uniform ice area coverage.
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Fig. 5.  Similar to Fig. 4 with distinct gaps between outer plates each with a narrow tip growth.
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Fig. 6.  A bullet rosette divided into three regions for area integration.
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Fig. 7. Bounded volume for a spherical bullet rosette related to radius having a central solid sphere and differing number of bullets.
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Fig. 8. A particle with two different densities, a fluffy outer shell and a solid inner sphere.
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Fig. 9. Sublimating particle shown in Fig. 8 with an outer low density and a higher density core.
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Fig. 10. A sublimating particle with a uniform density.
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Fig. 11. Sublimating particle from Fig. 10 showing a uniform density.
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Fig. 12. CAMEX density distribution of time segments 10:59:51 to 11:00:00 (NASA DC8) 980414.
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Fig. 13. KWAJEX density distribution for the time segment 5:07:40, tape 990730_DC8_SFCS2
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Fig. 14. A rimed column, with rime sublimating first before leaving the inner column.

Table 1.  A summary of the KWAJEX particle densities.   * Denotes the data collected with a large format cloudscope window diameter 3 cm; other data from standard cloudscope diameter 3 mm.
	Initial Time
	Elapsed Time
	Average Density
	Standard Deviation
	Density High Volume
	Density Low Volume
	Number of Particles

	KWAJEX
	
	
	
	
	
	

	3:07:55
	1 hr 20 min
	0.340
	0.247
	0.911
	0.060
	47

	4:42:22
	1 hr 35 min
	0.208
	0.113
	0.500
	0.033
	52

	3:48:08
	1 hr 10 min
	0.553
	0.210
	0.910
	0.056
	60

	5:27:15
	52 min
	0.325
	0.199
	0.718
	0.105
	11

	10:38:02
	1 hr 32 min
	0.456
	0.273
	0.913
	0.110
	63

	21:22:24
	-------
	0.170
	-------
	------
	------
	1

	22:30:57
	1 hr 42 min
	0.351
	0.193
	0.673
	0.181
	9

	00:40:22
	47 min
	0.632
	0.152
	0.878
	0.357
	14

	3:45:17*
	1 min
	0.450
	0.199
	0.881
	0.106
	98
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