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Abstract:
We present a critique of Emanuel’s steady state hurricane model, which is a precursor to his theory for hurricane potential intensity.
We show that a major deficiency of the theory is the tacit assumption of gradient wind balance in the boundary layer, a layer that
owes its existence to gradient wind imbalance in the radial momentum equation. If a more complete boundary layer formulation
is included using the gradient wind profiles obtained from Emanuel’s theory, the tangential wind speed in the boundary layer
becomes supergradient, invalidating the assumption of gradient wind balance. We show that the degree to which the tangential
wind is supergradient depends on the assumed boundary layer depth. The full boundary-layer solutions require a knowledge of the
tangential wind profile above the boundary layer in the outer region where there is subsidence into the layer and they depend on the
breadth of this profile. This effect is not considered in Emanuel’s theory. We argue that a more complete theory for the steady state
hurricane would require the radial pressure gradient above the boundary layer to be prescribed or determined independently of the
boundary layer.
The issues raised herein highlight a fundamental problem with Emanuel’s theory for potential intensity, since that theory makes
the same assumptions as in the steady state hurricane model. Our current findings together with recent studies examining intense
hurricanes suggest a way forward towards a more consistent theory for hurricane potential intensity.
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1 Introduction

In the first of what has turned out to be a series of very
influential papers, Emanuel (1986, henceforth E86) pre-
sented a steady axisymmetric model for a mature hurri-
cane. We consider this paper to be an important milestone
in tropical cyclone research in that it re-focussed atten-
tion on the importance of the radial gradient of sea sur-
face moisture fluxes in the storm-scale energetics. The
hurricane model described therein was a prelude to the
development of an axisymmetric theory for the potential
intensity (PI) of a tropical cyclone, which we refer to as
EPI-Theory (Emanuel 1988, Emanuel 1995, Bister and
Emanuel 1998). Since its inception, EPI-theory has been
called upon by many researchers as a standard for com-
parison with the intensity attained in numerical models
(e.g., Frank and Ritchie 2001, Persing and Montgomery
2003) or assessments of possible changes in the intensity
of hurricanes as a result of global warming (e.g., Knut-
son and Tuleya 2004, Emanuel 2005, Bengtsson et al.
2007). At the present time it appears to be the only such
theory of merit for these applications (Camp and Mont-
gomery 2001). Even so, there are indications that the the-
ory is deficient. For example, Persing and Montgomery
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(2003) have shown that high-resolution numerical models
have a tendency to produce ”superintense” storms, super-
intense meaning that they significantly exceed the inten-
sity predicted by EPI-theory. Moreover, the calculated
potential intensity depends sensitively on the assumed
relative humidity at the radius of maximum tangential
wind speed, which Emanuel generally takes to be 80%.
In this paper we draw attention to a fundamental inconsis-
tency of the hurricane model and of EPI-theory, namely
the assumption of gradient wind balance in the bound-
ary layer, both inside and outside the radius of maximum
tangential wind speed. The consequences of this assump-
tion for Emanuel’s hurricane model and EPI-theory are
discussed below and a way forward is sketched.

This paper is organized as follows. Section 2 pro-
vides a brief review of the E86 hurricane model, with
the details relegated to an appendix. Section 3 reviews a
more complete model for the boundary layer, based on the
work of Smith (2003) and Smith and Vogl (2008; hence-
forth SV08), and examines the approximations made by
Emanuel in terms of this model. Solutions of the more
complete boundary-layer model with Emanuel’s gradient
wind balance at the top of the layer are presented and
discussed in Section 4. Shown also in this section is the
dependence of the boundary-layer flow on the depth of
the layer and on the breadth of the gradient wind profile
at its top. Section 5 discusses some implications of the
calculations and Section 6 presents the conclusions.
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2 R. K. SMITH, M. T. MONTGOMERY AND S. VOGL

Figure 1. Schematic diagram of Emanuel’s 1986 model for a mature
hurricane. The boundary layer is assumed to have constant depth h
and is divided into three regions as shown: the eye (Region I), the
eyewall (Region II) and outside the eyewall (Region III) where spiral
rainbands and shallow convection emanate into the vortex above.
The absolute angular momentum per unit mass, M , and equivalent
potential temperature, θe of an air parcel are conserved after the
parcel leaves the boundary layer and ascends in the eyewall cloud.
The precise values of these quantities depend on the radius at which
the parcel exits the boundary layer. The model assumes that the
radius of maximum tangential wind speed, rm, is located at the outer
edge of the eyewall cloud, whereas recent observations (e.g. Marks

et al. 2008, Fig. 3) indicate it is closer to the inner edge.

2 The E86 model in brief

In the E86 model, the hurricane vortex is assumed to be
steady and circularly symmetric about its axis of rotation.
The boundary layer is taken to have uniform depth, h, and
is divided into three regions as shown in Fig. 1. Regions
I and II encompass the eye and eyewall, respectively,
while Region III refers to that beyond the radius, rm, of
maximum tangential wind speed, vm, at the top of the
boundary layer†. E86 takes the outer radius of Region II
to be rm on the basis that precipitation-driven downdrafts
may be important outside this radius. The tangential
wind field above the boundary layer is assumed to be in
thermal wind balance and air parcels flowing upwards
and outwards into the upper troposphere are assumed
to conserve their absolute angular momentum, M , and
saturation moist entropy, s∗ (calculated reversibly). These
surfaces are assumed to flare out in the upper troposphere.
Here, s∗, defined by:

s∗ = cp ln θe
∗, (1)

where θ∗e is the reversible saturation equivalent potential
temperature and cp denotes the specific heat at constant
pressure of dry air. Because the saturation vapour pressure
of moist air is a unique function of temperature both s∗

and θ∗e are state variables. E86 then integrates the thermal
wind equation upwards along these surfaces from radius r

†Contrary to Emanuel’s assumption in this figure, observations show
that rm is located well inside the outer edge of the eyewall (e.g. Marks
et al. 2008, Fig. 3). The significance of this discrepancy will become
clearer in Section 5

to some large radius rout (>> r) to obtain a relationship
between the radial rates of change of M and s∗ at the
top of the boundary layer, z = h (see Eq. (23) in the
appendix). This equation may be further integrated with
respect to radius to obtain a relationship between θ∗

e and
the logarithm of the Exner function at the top of the
boundary layer, assuming gradient wind balance prevails
at this height:

TB − T̄out

TB
ln
(

θ∗e
θ∗eo

)
= ln

(πo

π

)
− 1

2

(
r
∂ ln π

∂r

)

+
1
4

f2

cpTB
(r2

o − r2) at z = h, (2)

where TB is the temperature at z = h, Tout is the tempera-
ture on the s∗ surface at rout and T̄out is an average of this
temperature weighted with the saturation moist entropy of
the outflow angular momentum surfaces (see Eq. (27)), π
is the Exner function, f is the Coriolis parameter and the
subscript ’o’ denotes a value at some large radius r = ro.
So as not to distract from the main presentation, the details
herein are given in the appendix.

The flow in Regions I and II is fully determined
by a simple slab formulation for the boundary layer
from which a second functional relationship is obtained
between M and s∗ (see Eq. (28)). The two relationships,
Eqs. (23) and (28), lead inter alia to an expression for the
tangential wind speed, V , at z = h in Region II. In this
region the Rossby number is large compared to unity and
the Coriolis term may be neglected, giving

μV 2 =
Ck

CD
cp(TB − Tout)(ln θ∗es − ln θ∗e), at z = h,

(3)
where θ∗es is the saturation equivalent potential tempera-
ture at the sea surface temperature, Ck and CD are sea
surface exchange coefficients for enthalpy and momen-
tum, and μ = Vs/V , where Vs is the magnitude of the
near surface wind. Equation (3) states that in Region II,
V is determined locally by the thermodynamic disequi-
librium between the air in the boundary layer and the sea
surface and the temperature difference between the top of
the boundary layer and the outflow temperature.

E86’s boundary layer formulation in Regions I and II
expresses a balance between radial advection and surface
gain or loss of azimuthal momentum and specific entropy.
In the derivation of (3), the radial velocity is eliminated so
that the formula for V 2 is not explicitly dependent on the
radial component of velocity in the boundary layer.

Equations (2) and (3) lead essentially to an expres-
sion for the pressure as a function of radius (actually the
logarithm of the Exner function) at the top of the bound-
ary layer in Regions I and II (see E86, Eqs. (41) and (45)).
On the basis that precipitation-driven downdrafts tend to
offset the moistening of inflowing boundary layer parcels
in Region III, Emanuel assumes that the relative humid-
ity at the top of the surface layer has a constant value of
80% all the way inwards to rm, an assumption that is not
borne out by observations (see e.g. Fig. 4d of Montgomery
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HURRICANE MODEL AND POTENTIAL INTENSITY 3

et al. 2006). These assumptions lead to a second equation
relating the equivalent potential temperature to the loga-
rithm of the Exner function and the relative humidity at
the top of the surface layer (see Eq.(31)). This equation,
when combined with Eq. (2) gives an expression for the
logarithm of the Exner function at z = h in Region III
(E86, Eq. (39)). With the assumption of gradient wind bal-
ance at z = h, the resulting two equations for pressure and
θ∗e(z = h) completely determine the tangential wind speed
at the top of the boundary layer at all radii.

Note that the tangential wind speed at the top of
Region III is obtained only from thermodynamic consid-
erations in the boundary layer: the dynamics of the bound-
ary layer are completely ignored. It will be argued below
that the tacit assumption of gradient wind balance in the
boundary layer in Regions I and II and the neglect of
boundary-layer dynamics in Region III represent a fun-
damental limitation of Emanuel’s theory and leads to an
inconsistency with important ramifications.

3 The boundary-layer

To put E86’s assumptions regarding the boundary layer in
perspective, we review first the simple, but more complete
model of the boundary layer of a steady axisymmetric
hurricane-like vortex on an f -plane developed by Smith
(2003) and SV08. We examine then the consequences of
assuming gradient wind balance in the layer.

3.1 A slab model for the boundary-layer

The boundary layer in SV08 is assumed‡ again to have
uniform depth, h, and constant density. In a cylindrical
coordinate system (r, φ, z), the vertically-integrated equa-
tions expressing the local budgets of radial momentum,
azimuthal momentum, heat or moisture, and mass conti-
nuity can be written in the following form:

ub
dub

dr
=

wh− + wsc

h
ub −

(v2
gr − v2

b )
r

− f(vgr − vb)

−CD

h
(u2

b + v2
b )

1
2 ub, (4)

ub
dvb

dr
=

wh− + wsc

h
(vb − vgr) − (

vb

r
+ f)ub

−CD

h
(u2

b + v2
b )

1
2 vb, (5)

ub
dχb

dr
=

wh− + wsc

h
(χb − χh+)

+
Cχ

h
(u2

b + v2
b )

1
2 (χs − χb) − χ̇b, (6)

dub

dr
= −ub

r
− wh

h
, (7)

‡SV08 considered also the variable depth case, but for simplicity the
focus here is on the constant depth boundary layer assumed by E86.

where ub and vb are the radial and azimuthal components
of wind speed in the boundary layer, vgr(r) and wh are
the tangential wind speed and vertical velocity at the
top of the boundary layer, wh− = 1

2 (wh − |wh|), χb is
a scalar quantity, which could be the dry static energy,
the specific humidity, or the specific entropy, f is the
Coriolis parameter, CD is the surface drag coefficient,
Cχ is the surface transfer coefficient for χb, χh+ is the
value of χ just above the boundary layer, and χs is the
value of χ at the sea surface. The terms involving wsc

represent turbulent fluxes at the top of the boundary layer
(coming from rainbands, shallow convection, or smaller-
scale turbulent structures) and the term χ̇b represents the
effects of radiative cooling and dissipative heating when
χb is taken to be the dry static energy. Consistent with the
slab boundary layer formulation, the quantities ub, vb and
χb are assumed to be independent of depth. Note that wh−
is nonzero only when wh < 0, in which case it is equal to
wh. Thus the terms involving wh− represent the transport
of properties from above the boundary layer that may be
different from those inside the boundary layer. For the
calculations presented in Sections 4.1 and 4.2 we take CD

to be a constant, equal to 2.0 × 10−3, the value use by E86.
For those in Section 4.3 we follow SV08 and take CD =
CD0 + CD1|ub|, where CD0 = 0.7 × 10−3 and CD1 =
6.5 × 10−5 for wind speeds less than 20 m s−1 and CD =
2.0 × 10−3, a constant, for larger wind speeds. These
values are based on our interpretation of Fig. 5 from Black
et al. (2007). In the calculations described in Section 4, we
consider only dynamical effects, so that a value for Cχ is
not required.

Substitution of Eq. (7) into Eq. (4) gives an expres-
sion for wh:

wh =
h

1 + α

[
1
ub

(
v2

gr − v2
b

r
+ f(vgr − vb)

+
CD

h
(u2

b + v2
b )

1
2 ub

)
− ub

r

]
,

(8)

where α is zero if the expression in square brackets is
positive and unity if it is negative. With this expression for
wh, Eqs. (4) - (8) form a system of ordinary differential
equations that may be integrated radially inwards from
some large radius R to find ub, vb and χb as functions of
r, given values of these quantities at r = R as well as the
radial profile vgr(r).

3.2 E86’s approximations for the boundary-layer

Emanuel writes Eq. (5) in terms of the absolute angular
momentum in the boundary layer, Mb = rvb + 1

2fr2, and
approximates this equation in Region II, where wh > 0, as

ub
dMb

dr
= −CD

h
rv2

b , (9)

Here it is assumed that wsc = 0 and that ub << vb in
the drag term. Note that in general, knowledge of ub is
required for the determination of Mb. However, Emanuel
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4 R. K. SMITH, M. T. MONTGOMERY AND S. VOGL

does not use the radial momentum equation§ to determine
ub, as his main focus is to obtain an expression relating
the specific entropy, sb, to Mb (see Eq. 28). In the region
where wh > 0 the equation for the specific entropy is:

ub
dsb

dr
=

Ck

h
vb(s∗s − sb), (10)

where s∗s is the saturation specific humidity at the sea
surface and again it is assumed that wsc = 0 and the total
wind speed has been approximated by the tangential wind
speed.

E86’s assumption that air leaving the boundary layer
conserves its absolute angular momentum implies that
vgr = vb where wh > 0. The assumption also that vgr is in
gradient wind balance implies that vb is in gradient wind
balance. This is a rather strong assumption for the bound-
ary layer in the inner core of a rapidly-rotating vortex
and although it has been made by previous authors (e.g.
Ooyama 1969), we are not aware of any rigorous justifica-
tion for it. In fact it is not supported by a scale analysis of
the boundary-layer equations (e.g. Smith 1968). Ooyama
was certainly aware of the limitations of the assumption
and wrote in an unpublished manuscript in 1968 ” ... it
appears that the weakest hypothesis in [his] original model
is the use of the balance approximation in the boundary
layer”. In this manuscript, Ooyama went on to show that
the solutions in a calculation with a more complete bound-
ary layer formulation were more realistic than those with
a balanced boundary-layer formulation. Indeed it is pre-
cisely the lack of gradient wind balance in the boundary
layer that gives rise to the ”frictionally-driven” inflow in
the layer.

While inflow is theoretically possible in a boundary
layer that is in approximate gradient wind balance, the
balance assumption can be justified only if the radial
acceleration and radial friction terms are small compared
with the degree of imbalance between the radial pressure
and the sum of the centrifugal and Coriolis forces. In such
a ”balanced” formulation, the radial flow is determined by
the (sic) tangential momentum equation and is such that
the Coriolis force acting upon it is just sufficient to balance
the frictional torque in the azimuthal direction. With
Emanuel’s assumption that the total wind speed in the
friction term in Eq. (5) can be reasonably approximated
by vgr, the equation predicts that

ub = −cvgr, (11)

where c = Cdvgr/(hζa), and ζa = ζ + f and ζ are the
absolute vorticity and relative vorticity of the gradient
wind, vgr, respectively. Other processes could contribute
also to radial motion in a boundary layer that is closely in
gradient wind balance. One example is a radial buoyancy
gradient above the boundary layer associated with moist
convective processes (see e.g. Smith 2000, Smith et al.
2005).

§In fact, E86 uses Eq. (9) to determine ub having obtained the radial
pressure distribution through his Eqs. (39) and (41) and having assumed
gradient wind balance to obtain vb.

In the next section we examine solutions of the
dynamical component of the full boundary layer equations
(4), (5) and (7) with the gradient wind speed vgr obtained
by E86. We show that these solutions are inconsistent
with the assumption in the E86 model that vgr = vb where
wh > 0. We show further that the lack of any dynamical
constraint in the boundary layer in Region III other than
the tacit assumption of gradient wind balance is another
major deficiency of the theory.

4 Calculations

4.1 The E86 gradient wind profile

Figure 2 shows calculations of the full boundary layer
equations of Section 3.1, taking the gradient wind speed
profile vgr(r) and other parameters the same as those
obtained by E86. In particular f = 6.83 × 10−5 s−1, cor-
responding with a latitude of 28oN , h = 1000 m, CD =
2.0 × 10−3, Ts = 27o C, TB = 27o C and T̄out = −67o C.
The radial profile of vgr is obtained by solving the gradi-
ent wind equation with the pressure profile derived from
the coupled expressions for ln π and θe

∗ in E86, namely
Eqs. (39) and (41), using the parameter values detailed in
that paper. The integration in the full boundary layer cal-
culation starts at a radius¶ of 375 km, where the gradient
wind speed (only 1.73 m s−1) is small enough to justify
the neglect of the nonlinear acceleration terms in the equa-
tions (see Smith 2003, Section 4). Figure 2a compares the
full solution for the tangential wind speed in the bound-
ary layer, vb, with the imposed gradient wind speed vgr . It
compares also the full solution for the radial wind speed,
ub, with that obtained from Eq. (11) based on the balance
assumption that vgr = vb as made by E86, and assuming
that wsc = 0. We designate the balanced solution for ub

as uE and that for the corresponding vertical motion at
the top of the boundary layer as wE . We calculate the
latter from the continuity equation (7) using centered dif-
ferences. The profiles of vertical velocity at the top of the
boundary layer in the full solution, wh, is compared with
that in the balanced solution in Fig. 2b. It is worth noting
at this point that this balanced solution agrees closely with
that shown by E86 in his Fig. 12.

In the full and balanced calculations, the radial wind
component increases inwards to a certain radius and then
decreases. However, there are significant quantitative dif-
ferences in the profiles. In the balanced solution, the max-
imum inflow of about 12 m s−1 occurs at a comparatively
large radius (130 km), while in the full solution it occurs
at 52 km, a little outside the radius of maximum gradi-
ent wind speed (35.8 km). These differences occur despite
the fact that beyond 100 km in radius, vb is at most 18%
smaller than vgr , showing that the degree of gradient wind
imbalance is important. The decline in uE from such a
large radius is a result of the decline in the parameter c
with decreasing radius (Fig. 2c), which is larger than the

¶Note that beyond a radius of 400 km, the tangential wind in Emanuel’s
calculation is anticyclonic and just inside this radius, at about 396 km,
the profile is inertially-unstable.
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HURRICANE MODEL AND POTENTIAL INTENSITY 5

Figure 2. (a) Radial profiles of boundary layer radial (ub) and tangential (vb) wind components and the total wind speed
√

(ub
2 + vb

2)
(denoted vv) from the full boundary layer solution, and the tangential wind speed above the boundary layer (vgr) as obtained by E86 (solid
curve). [Units m s−1] For plotting convenience the sign of ub has been reversed. The profile of vgr is indicated by the unmarked solid
curve. (b) Corresponding radial profiles of vertical velocity at the top of the boundary layer (wh) and that in the balanced solution (wE).
[Units cm s−1] The thin vertical line in (a) and (b) marks the radius of maximum vgr , the boundary between Regions II and III in Fig.
1. (c) Radial profiles of the coefficient c in Eq. (11). (d) Radial profiles of the three terms on the right-hand-side of the radial momentum

equation, Eq. (4), and their sum for the full solution.

rate at which vgr increases. The discontinuity in uE at
r = rm is a result of the discontinuity of the relative vor-
ticity ζ at this radius, which leads to a discontinuity in c.
As expected there are correspondingly large differences in
the profiles of vertical velocity at the top of the boundary
layer (panel b). In particular, the change from descent at
large radii to ascent at small radii occurs at a much smaller
radius in the full calculation: 107 km compared with 230
km.

Of particular significance is the difference between
vb and vgr in the inner core region, near the radius
of maximum gradient wind speed. Here the tangential
wind in the boundary layer becomes supergradient (i.e.
vb exceeds vgr), which is inconsistent with Emanuel’s
assumption that vgr is equal to vb at radii where wh > 0.
In other words, Emanuel’s calculated potential intensity
(i.e. vm) is exceeded when a more complete boundary

layer formulation is used. The occurrence of supergradient
winds is a reflection of the strong radial inflow which
advects absolute angular momentum at a rate larger than it
can be removed locally by the frictional torque (SV08). As
soon as the tangential wind speed becomes supergradient,
all forces in the radial momentum equation act outwards
and lead to a rapid deceleration of the inflow. In the full
boundary-layer solution, the radial flow becomes zero at
some finite radius and the boundary-layer model becomes
singular at this radius. In reality we would expect the
inflow to be expelled upwards before this radius, carrying
its horizontal momentum with it. If the upflow remains
out of balance we would expect it to flow outwards
immediately above the inflow layer, a behaviour which is
shown by full numerical solutions (e.g. Montgomery et al.
2001).

Panel (d) of Fig. 2 shows the radial variation of the
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6 R. K. SMITH, M. T. MONTGOMERY AND S. VOGL

force terms in the radial momentum equation, Eq. (4).
The term representing the downward transport of radial
momentum, that proportional to wh−, is non-zero only
in the outer region and is small compared with the other
terms. At larger radii, the net inward force (the differ-
ence between the inward pressure gradient and outward
centrifugal and Coriolis forces) is larger in magnitude
than the outward frictional force. Moreover, the inward
radial acceleration, which is equal to the net total radially-
inward force, is particularly large at radii less than 150
km.

4.2 Dependence on boundary layer depth

The gradient wind profile vgr obtained in Emanuel’s the-
ory is independent of the assumed boundary-layer depth‖.
However, this depth has a significant influence on the
full boundary-layer solution because the effective drag
in the boundary later is inversely proportional to the
depth (SV08). For this reason we repeated the foregoing
boundary-layer calculations for a boundary-layer depth
of 600 m. These calculations are shown in Fig. 3. The
increased effective friction leads to a larger reduction of
the tangential wind speed in the boundary layer than in
the earlier calculation and therefore to a larger net inward
force and a larger inward acceleration. Consequently the
maximum inflow is considerably larger than before (36 m
s−1 instead of 19 m s−1) and occurs at a smaller radius
(32 km instead of 52 km). On the other hand, the balanced
solution changes only in magnitude and not in shape,
whereupon the maximum occurs at 130 km as before.
This result follows directly from Eq. (11) because the
decreased depth simply increases the coefficient c by a
constant factor at all radii and the gradient wind profile
is the same. The fact that the maximum tangential wind
speed in the boundary layer in this calculation is consid-
erably higher than in the previous one implies that the
potential intensity of the steady vortex is sensitive to the
boundary layer depth, an important point not emphasized
in E86 and his subsequent papers∗∗

4.3 Dependence on vortex size

Given the importance of the radial acceleration in the
boundary layer as demonstrated above, the inclusion of
boundary-layer dynamics in Region III of Emanuel’s
model may be expected to have important consequences
for the tangential wind maximum also. We illustrate these
consequences by a third set of calculations to empha-
size the dependence of the maximum boundary-layer wind
speed on the vortex size. These calculations are based on

‖Note that the depth cancels in applying E86’s boundary layer formula-
tion to derive Eq. (28) in the appendix.
∗∗Whereas the E86 model and the more complete boundary layer model
furnish nonnegligible but modest differences in the maximum tangential
wind (∼10-20%), it should be remembered that the boundary layer
model used here precludes any thermodynamic and dynamic feedbacks
between the boundary layer and interior flow. For several reasons, this
feedback is thought to be quantitatively significant (see Sec. 5 for more).

Figure 3. Legend as for Fig. 2a, but for a boundary layer depth of
600 m.

solutions of the full boundary layer equations with the dif-
ferent profiles of gradient wind speed shown in Fig. 4.
These profiles are defined in Smith (2003) and are iner-
tially stable for the value of f used earlier. The solutions
for these profiles are shown in Fig. 5 for a boundary layer
depth of 800 m, a radially-varying drag coeffcient CD as
discussed in Section 3.1, and with wsc = −5.7 cm s−1, the
value used in SV08. Note that there is a clear dependence
of the solution on storm size, as might be characterized,
for example, by the radius of gale-force winds (17 m s−1)
above the boundary layer. As the storm size decreases, the
radius of maximum inflow decreases and the maximum
inflow increases. Moreover, the radius at which the ver-
tical velocity changes sign decreases (figure not shown).
To the extent that the intensity is controlled by boundary-
layer dynamics, these solutions show a clear dependence
on the size of the outer circulation so that the potential
intensity of midget storms may be expected to be different
from that of broad storms. These solutions highlight the
dependence of the flow at all radii in the boundary layer
on the size of the vortex above.

5 Discussion

Using the gradient wind profile predicted by Emanuel’s
steady state hurricane model in conjunction with a more
complete formulation of the boundary layer generally
leads to the occurrence of supergradient winds in the
boundary layer in the high wind region of the vor-
tex. These are inconsistent with a key assumption in
Emanuel’s derivation of the gradient wind profile that
requires it to be equal to that in the boundary layer where
the flow is upwards out of the boundary layer. Moreover,
the degree to which the boundary layer winds are super-
gradient increases as the boundary layer depth decreases.
In reality, the vertical advection of the supergradient winds
out of the boundary layer would lead to outflow until
a radius is achieved at which the pressure gradient is

Copyright c© 2008 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 134: 1–11 (2008)
DOI: 10.1002/qj



HURRICANE MODEL AND POTENTIAL INTENSITY 7

Figure 5. Radial profiles of the radially-inward (a) and tangential (b) components of wind speed in the boundary layer for the four vortex
profiles shown in Fig. 4.

Figure 4. Four radial profiles of tangential wind speed, vgr(r), at
the top of the boundary layer used for the calculations shown in Fig.
5. The thin horizontal line indicates the radius of gale force winds

(17 m s−1).

matched to that which can be sustained by the mass distri-
bution. Of course, this effect cannot be captured by a one
layer model, but, it is significant that calculations in which
the boundary layer is allowed to adjust to an outer flow do
show such behaviour (e.g. Montgomery et al. 2001).

The dependence of the radius at which subsidence at
large radii changes to ascent, rup, as well as the predicted
radial profiles of ub, vb and wh on the tangential wind
profile above the boundary layer where there is subsidence
into it shows that the dynamics of the boundary layer in
Region III of Fig. 1 cannot be ignored.

The foregoing considerations suggest an alternative
subdivision of the boundary layer to that in Fig. 1. This
alternative is sketched in Fig. 5 and is based on whether
the top of the boundary layer is an inflow boundary
(Region B, r > rup) or an outflow boundary (Region

A, r < rup). In Region B the boundary layer is directly
influenced by the vortex above through the radial pressure
gradient at the top of the layer and through the downward
advection of free vortex properties such as moisture, heat
and momentum. Except possibly through the occurrence
of moist convection, there is no essential feedback to
the free vortex††. However, in Region A, boundary layer
properties are advected into the free vortex and have a
profound influence on its structure. We may think of the
boundary layer flow in Region B as producing an inward
radial jet at r = rup, the strength of which depends on
the gradient wind profile at larger radii as well as the
boundary-layer depth. The boundary layer dynamics in
Region A determine the fate of this jet, but the details
depend inter alia on the radial pressure gradient at the top
of the boundary layer, i.e. there is a substantial two-way
feedback between the boundary layer and the free vortex
in this region. These details depend also on the boundary
layer depth. The radial pressure gradient in the boundary
layer is probably still determined in large measure by
the mass distribution in the free vortex, with possible
exceptions in localized regions near where inflow turns
to upflow and possibly outflow (see below). However the
free vortex can be expected to be strongly influenced by
the radial distribution of mass, momentum and moisture
that leave the boundary layer.

The foregoing calculations described here, supported
by those of SV08, show that the tangential winds tend to
become supergradient in the inner core and, as a result, the
radial flow rapidly decelerates until the tangential com-
ponent becomes subgradient again, or the radial wind
becomes zero (a point at which the boundary layer equa-
tions in a one layer model become singular and a more

††An important exception arises with the occurence of spiral rainbands
and the corresponding formation of one or more secondary eyewalls
(Houze et al. 2007, Terwey and Montgomery 2008). These asymmetric
processes, their coupling to the boundary layer and the free axisymmet-
ric vortex are not yet well understood and consequently lie beyond the
scope of the present model.
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sophisticated technique beyond the scope of this study is
required for matching the solutions inside and outside this
radius). In either case the flow out of the boundary layer
increases markedly. If the winds carried upwards retain
their supergradient character they will surely flow with a
significant component outwards until they have come into
gradient wind adjustment with the mass field aloft. At this
point they would be expected to turn upwards into the eye-
wall. While parts of this scenario are speculative at this
stage, the foregoing ideas would explain the observations
of a skirt of moderate to high radar reflectivity adjacent
to the main eyewall (e.g. Aberson et al. 2006, Figs. 5-7;
Marks et al. 2008, Fig. 3) but still within the ’visible’ eye
defined by the upper-tropospheric boundary of clear and
cloudy air seen in high resolution satellite imagery (e.g.
Bell and Montgomery 2008, Fig. 2) and they are consis-
tent with the calculations of Montgomery et al. (2001) and
Persing and Montgomery (2003).

Within the context of the axisymmetric model
the thermodynamic consequences of the over-
shoot/adjustment region have been demonstrated to
be nontrivial as moist air near the surface and interior to
the maximum tangential wind (including the outer part
of the ’eye’) can be drawn into the main eyewall above
the shallow inflow layer. This low-level air generally
possesses higher equivalent potential temperature than
air found at the radius of maximum wind due to a lower
surface pressure and nonzero surface winds and con-
tributes additional heat and local buoyancy to the eyewall
(Persing and Montgomery 2003, Cram et al. 2007). The
net result is an enhancement of the radial gradient of
equivalent potential temperature above the inflow layer
that supports strong tangential winds in accordance with
axisymmetric thermal wind balance above the boundary
layer (Montgomery et al. 2006, Appendix). In light of
these findings, together with the recognition that shear
instability and coherent vortex sub-structures bordering
the eye and eyewall will contribute to the aforementioned
adjustment process (Schubert et al. 1999, Montgomery
et al. 2002, Braun et al. 2006), we believe that both the
initial vortex structure and interactions between the eye
and eyewall region are important elements of intense
storms and should be accounted for in hurricane intensity
theory.

Note that much of the foregoing discussion was based
on the assumption that the main dynamical processes
in tropical cyclones are axisymmetric. However, recent
calculations by Nguyen et al. (2008) have highlighted the
importance of asymmetric processes in the intensification
of these storms. A comprehensive synthesis of these
findings with the insights obtained here is a goal for future
work.

6 Conclusions

We have shown that the tacit assumption of gradient
wind balance in the boundary layer is a major deficiency
of Emanuel’s steady-state hurricane model and also, by

implication, his theory for the potential intensity of hurri-
canes. Although the vertically integrated tangential wind
in the boundary layer is usually no more than fifteen to
twenty percent less than its gradient wind counterpart, a
fact that makes gradient wind balance a seemingly defen-
sible zero-order approximation locally, we have shown
that the global consequences of this simplification on
the inner-core structure of intense storms are nontrivial.
Indeed, the boundary layer owes its existence to gra-
dient wind imbalance that results from a reduction of
the tangential wind speed by friction. When such imbal-
ance is allowed for by the inclusion of a nontrivial radial
momentum equation in the theory, the boundary layer flow
depends on the tangential wind structure above the bound-
ary layer, a feature that must be taken into account in an
improved theory for hurricane potential intensity.

We conclude that it is not permissible to make the
gradient balance assumption in the inner region and that
in a realistic model of a hurricane, the radial pressure
gradient above the boundary layer must be prescribed or
determined independently of the boundary layer. Never-
theless, even in this case, the solutions show a mismatch
between the predicted mean winds in the boundary layer
and those prescribed above where the flow is out of the
layer. This mismatch suggests that the outflow jet found
above the inflow layer in full numerical solutions for the
boundary layer together with the flow above it is a means
by which the flow exiting the boundary layer adjusts to the
radial pressure gradient associated with the vortex above
the boundary layer. The implication would be that a more
complete formulation of the (steady) boundary layer in the
inner core region of a tropical cyclone using a slab-type
formulation would require at least two layers including
one to represent the outflow jet. This layer is required to
allow the radial and tangential wind fields to adjust to the
radial pressure gradient implied by the mass distribution
in the free troposphere. Such a formulation would appear
to be a necessary component of a more consistent and
accurate theory for hurricane potential intensity and such
a theory must take into account the vortex size and the
boundary layer depth.
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Figure 6. Modified conceptual model of the hurricane inner-core
region motivated by the findings herein together with recent obser-
vational and modeling studies. Air subsides into the boundary layer
for r > rup and ascends out of the boundary layer for r < rup. The
frictionally-induced net pressure gradient in the outer region pro-
duces a radially inward jet at r = rup. The subsequent evolution of
this jet depends on the bulk radial pressure gradient that can be sus-
tained by the mass distribution at the top of the boundary layer. The
jet eventually generates supergradient tangential winds whereafter
the radial flow rapidly decelerates and turns upwards and outwards.
When the outflow has adjusted to the radial pressure gradient that is
sustained by the mass field, the flow turns upwards into the eyewall

clouds. See Sections 5 and 6 for further details.

8 Appendix: Derivation of Eq. (3)

In pressure coordinates, the gradient wind equation and
hydrostatic equation may be written as:

g

(
∂z

∂r

)
p

=
M2

r3
− 1

4rf2 (12)

and

g

(
∂z

∂p

)
r

= −α, (13)

where α is the specific volume, p is the pressure, z is
the height of a pressure surface and g is the acceleration
due to gravity. Eliminating the geopotential height of
the pressure surface, gz, gives an alternative form of the
thermal wind equation:

1
r3

(
∂M2

∂p

)
r

= −
(

∂α

∂r

)
p

. (14)

Since s∗ is a state variable, α can be regarded as a function
of p and s∗. Then with a little manipulation (14) becomes
the thermal wind equation:

1
r3

(
∂M2

∂p

)
r

= −
(

∂α

∂s∗
)

p

(
∂s∗

∂r

)
p

. (15)

E86 invokes one of the Maxwell relations for moist
saturated air in the form(

∂α

∂s∗

)
p

=
(

∂T

∂p

)
s∗

, (16)

so that Eq. (15) becomes

1
r3

(
∂M2

∂p

)
r

= −
(

∂T

∂p

)
s∗

(
∂s∗

∂r

)
p

. (17)

With the assumption that M and s∗ surfaces coincide, i.e.
M = M(s∗), Eq. (17) becomes

2M

r3

(
∂M

∂p

)
r

= −
(

∂T

∂p

)
s∗

ds∗

dM

(
∂M

∂r

)
p

. (18)

Note that (∂T/∂p)s∗ is just the temperature lapse rate as a
function of pressure along a moist adiabat. Now along an
M surface, (

∂M

∂r

)
p

dr +
(

∂M

∂p

)
r

dp = 0, (19)

so that the slope of an M surface in (r, p) space is(
dr

dp

)
M

= −
(

∂M

∂p

)
r

/

(
∂M

∂r

)
p

. (20)

Combining Eq. (18) and (20), the thermal wind equation
(Eq. (17)) becomes

1
2

(
dr−2

dp

)
M

= − 1
2M

(
∂T

∂p

)
s∗

ds∗

dM
, (21)

which may be integrated upwards along the M (or s∗)
surface starting from the top of the boundary layer z = h
to an outer radius rout to give

1
r2

|M − 1
r2
out

|M = − 1
M

ds∗

dM
[T − Tout(s∗, pout)], (22)

Assuming that rout >> r, and using the chain rule,
Eq. (22) gives

− [TB − Tout(s∗, pout)]
∂s∗

∂r
=

1
2r2

∂M2

∂r
, at z = h.

(23)
where TB is the temperature at the top of the boundary
layer and Tout is the outflow temperature along the M
(or s∗) surface at rout. Using the Exner function, π =
(p/po)κ, instead of pressure, the gradient wind equation
(12) takes the form

M2 = r3

[
cpTB

(
∂ ln π

∂r

)
z

+
1
4
rf2

]
. (24)

In the expression for π, κ = R/cp, where R is the specific
gas constant and po is a constant pressure, taken by E86 to
be 1015 mb. Substituting Eq. (24) into (23) results in

− TB − Tout(s∗, pout)
TB

∂ ln θ∗e
∂r

=
∂ ln π

∂r

+
1
2

∂

∂r

(
r
∂ ln π

∂r

)
+

1
2

rf2

cpTB
, at z = h, (25)

where it is assumed that θe = θ∗e at z = h. This equation
is integrated with respect to radius from r to some large
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radius r = ro, where it is assumed that ln π/πo and its
radial derivative vanish, πo being the value of π at z =
h and r = ro. Remembering that TB is assumed to be
constant, the result is:

− ln θ∗eo + ln θ∗e +
1

TB

∫ ro

r

Tout(s∗, pout)
∂ ln θe

∂r
dr

= ln πo − ln π +
1
2

(
r
∂ ln π

∂r

)
o

− 1
2

(
r
∂ ln π

∂r

)

+
1
4

f2

cpTB
(r2

o − r2), at z = h. (26)

Emanuel defines

T̄out =
1

ln(θ∗e/θ∗eo)

∫ ln θ∗
e

ln θeo

Toutd ln θ∗e , (27)

which is an average outflow temperature weighted with
the saturation moist entropy of the outflow angular
momentum surfaces. Remember that θ∗

e along angular
momentum surfaces is taken equal to the equivalent poten-
tial temperature, θe, where the surfaces meet the top of the
boundary layer. Then (23) gives Eq. (2).

It is at this point that boundary layer considerations
are invoked. Assuming a slab boundary layer model with
uniform depth as described in Section 3.2, E86 derives a
further relationship between the specific moist entropy of
the boundary layer, s, and M by effectively dividing Eq.
(10) by Eq. (9). We recognize here that the near-surface
wind may be different from that at the top of the boundary
layer. Thus following E86, but allowing for a reduced
surface wind, we obtain

ds∗

dM

∣∣∣∣
z=h

=
τs

τM

∣∣∣∣
z=0

(28)

where τs = −cpCk|Vs|(ln θe − ln θ∗es) and τM =
−CD|Vs|rVs are the surface fluxes of enthalpy and
momentum expressed by standard aerodynamic formulae,
and |Vs| is the magnitude of the near surface horizontal
velocity. Other quantities are defined in Section 2. In
the derivation of Eq. (28) it is assumed that the specific
entropy, s, and the equivalent potential temperature, θe,
are uniform across the boundary layer and that the air at
the top of the subcloud layer is saturated so that sb = s∗

and θe = θ∗e . This equation can then be blended with Eq.
(22) above. Equation (23) then gives

ln θ∗e = ln θ∗es − μ
CD

Ck

1
cp(TB − Tout)

(
V 2 +

1
2
rfV

)
,

at z = h, (29)

where M has been expressed in terms of the tangential
wind speed V at z = h. In Region II, rf << V so that the
second term in parentheses on the right of Eq. (29) can
be neglected compared with V 2 and the equation may be
written as

μV 2 =
Ck

CD
cp(TB − Tout)(ln θ∗es − ln θ∗e), at z = h.

(30)

where μ = Vs/V . Equation (30) is Eq. (3) in Section 3.1
and is a cornerstone of the current EPI-Theory (Emanuel
1995, Bister and Emanuel 1998).

A further important relationship in Emanuel’s theory
is that between θ∗e and the pressure and humidity at the top
of the surface layer, which may be written

ln
θ∗e
θ∗ea

= − ln
πs

πa

(
1 +

Lq∗aRHs

RTs

)
+

Lq∗a
RTs

(RH − RHa)s at z = h, (31)

where L is the latent heat of vapourization, q is the water
vapour mixing ratio, RH is the relative humidity, and T is
the absolute temperature. As above, a subscript ’s’ denotes
a value at the top of the surface layer and a superscript ’*’
denotes a saturation value. This equation is the same as
Eq. (25) in E86 if one assumes that the reference pressure
in the definition of the Exner function is pa rather than
1000 mb as is usual.
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