1995082711-LPS

Mission Summary 950827I Iris (NOAA-43RF) Tropical Cyclogenesis Experiment

Scientific Crew:

Lead Project Scientist Radar Scientist Dropwindsonde Scientists Workstation Willoughby Marks Franklin Griffin, Leighton

Planning:

N43RF's flight on 27AUG95 was part of a two-plane genesis (actually regenesis) mission in tropical storm, formerly hurricane, Iris. The melting level was unusually low so we operated at the 570 mb isobaric level where we still encountered some ice at temperatures only a degree or so above 0°C. The planned flight track was a figure four with the legs oriented along the cardinal compass directions and diagonal legs in the southeast and northwest quadrants. Intended ODW drops were at the ends of the radial legs and at the center of the southeast diagonal. The forecast center point used in flight planning was 15.5° N and 62.5° W.

Operations:

We left Barbados at 1603 UT on 27AUG95 and headed northwest toward the forecast center position. In flight we received a revised position for the center 16.1° N 62.1° W and redirected our course toward that point. At 1706 UT, we found the center at 16.8° N, 62.8° W. The strongest winds were about 40 kt 15 nmi east of the center. As we approached that position a depression in the undercast containing a well-marked low-level circulation center as indicated by streaks of stratocumulus. Although we were under an anvil, only the north quadrant of the depression evidenced convection in the form of a rainshaft and some cloud extending from the undercast to the anvil. The radar showed a disorganized cluster of cells around the center with no indication of an eye. From the center we continued east of the center along 17.7° N to 56.5° W, beyond the boundary of the convection in the southwesterly flow, where we dispensed a dropsonde and turned onto the southwestward (upwind) diagonal leg that ended at 12.5° N 61.5° W. On this leg--which was characterized by abundant, but not notably vigorous convection in southerly flow--we dispensed an ODW at the midpoint, near Barbados, and at the endpoint. From the southernmost point we turned north toward the center, which we reached at 2049 UT near 17.3° N, 61.7° W, continued to the north point 21.5° N, 61.5° W, deployed a dropsonde, and turned toward the southwest. The radar showed a narrow band of convection arcing from the north around the east side and extending far south from the center. Because of clearance problems we were not able to go as far to the west as we had planned. The westernmost point and final dropsonde was at 17.8° N, 64.2° W, not yet in the dry air on the west side of Iris. The final leg of the pattern was eastward to the center, reached at 2319 UT near 17.5° N, 62.0° W. During the approach to the center, we encountered 45 kt winds 20 nmi out on the east side. As we departed toward SSE, we observed 55 kt winds 40 nmi from the center. The convection had wrapped around the center to enclose an area of lower reflectivity that suggested an eye. From the center we flew southeastward to landing at Barbados at 0036 on 28 August.

Equipment:

The aircraft, instrumentation, and dropsondes worked superbly.

Critique:

This mission was designed for developing tropical waves. The purpose of the flight was to examine Iris' dissipation, but in the event it proved to be a useful baseline for subsequent flights that documented Iris' recovery of hurricane strength. The big disappointment was the inability to fly far enough to the west to place the westernmost point in dry air outside the circulation.

Willoughby

Hurricane Research Division

AOML/NOAA 4301 Rickenbacker Causeway Miami, FL 33149 USA

TEL: (305) 361-4407, FAX: (305) 361-4402 Internet: WILLOUGHBY@OCEAN.AOML.ERL.GOV

15 September 1995

To: F. D. Marks

From: H. E. Willoughby

Subject: Flight 950827I (Iris)

Planning: N43RF's flight on 27AUG95 was part of a two-plane genesis (actually regenesis) mission in tropical storm, formerly hurricane, Iris. The melting level was unusually low so we operated at the 570 mb isobaric level where we still encountered some ice at temperatures only a degree or so above 0°C. The planned flight track was a figure four with the legs oriented along the cardinal compass directions and diagonal legs in the southeast and northwest quadrants. Intended ODW drops were at the ends of the radial legs and at the center of the southeast diagonal. The forecast center point used in flight planning was 15.5° N and 62.5° W.

Operations: We left Barbados at 1603 UT on 27AUG95 and headed northwest toward the forecast center position. In flight we received a revised position for the center 16.1° N 62.1° W and redirected our course toward that point. At 1706 UT, we found the center at 16.8° N, 62.8° W. The strongest winds were about 40 kt 15 nmi east of the center. As we approached that position a depression in the undercast containing a well-marked low-level circulation center as indicated by streaks of stratocumulus. Although we were under an anvil, only the north quadrant of the depression evidenced convection in the form of a rainshaft and some cloud extending from the undercast to the anvil. The radar showed a disorganized cluster of cells around the center with no indication of an eye. From the center we continued east of the center along 17.7° N to 56.5° W, beyond the boundary of the convection in the southwesterly flow, where we dispensed a dropsonde and turned onto the southwestward (upwind) diagonal leg that ended at 12.5° N 61.5° W. On this leg-which was characterized by abundant, but not notably vigorous convection in southerly flow—we dispensed an ODW at the midpoint, near Barbados, and at the endpoint. From the southernmost point we turned north toward the center, which we reached at 2049 UT near 17.3° N, 61.7° W, continued to the north point 21.5° N, 61.5° W, deployed a dropsonde, and turned toward the southwest. The radar showed a narrow band of convection arcing from the north around the east side and extending far south from the center. Because of clearance problems we were not able to go as far to the west as we had planned. The westernmost point and final dropsonde was at 17.8° N. 64.2° W, not yet in the dry air on the west side of Iris. The final leg of the pattern was eastward to the center, reached at 2319 UT near 17.5° N, 62.0° W. During the approach to the center, we encountered 45 kt winds 20 nmi out on the east side. As we departed toward SSE, we observed 55 kt winds 40 nmi from the center. The convection had wrapped around the center to enclose an area of lower reflectivity that suggested an eye. From the center we flew southeastward to landing at Barbados at 0036 on 28 August.

Equipment: The aircraft, instrumentation, and dropsondes worked superbly.

Critique: This mission was designed for developing tropical waves. The purpose of the flight was to examine Iris' dissipation, but in the event it proved to be a useful baseline for subsequent flights that documented Iris' recovery of hurricane strength. The big disappointment was the inability to fly far enough to the west to place the westernmost point in dry air outside the circulation.

E.2 Lead Project Scientist (On-Board)

E.2.1 Preflight

- A A
 - 1. Participate in general mission briefing.
 - 2. Determine specific mission and flight requirements for assigned aircraft.
 - Determine from CARCAH or field program director whether aircraft has operational fix responsibility and discuss with OAO flight director/meteorologist and CARCAH unless briefed otherwise by field program director.
 - 4. Contact HRD members of crew to:
 - a. Assure availability for mission.
 - b. Arrange ground transportation schedule when deployed.
 - c. Determine equipment status.
- 40
- 5. Meet with OAO flight crew at least 90 minutes before takeoff, provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
- 6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E.2.2 In-Flight

- Confirm from OAO flight director/meteorologist that satellite data link is operative (information).
- Confirm camera mode of operation.
 - Confirm data recording rate.
 - Complete Form E-2.

E.2.3 Postflight

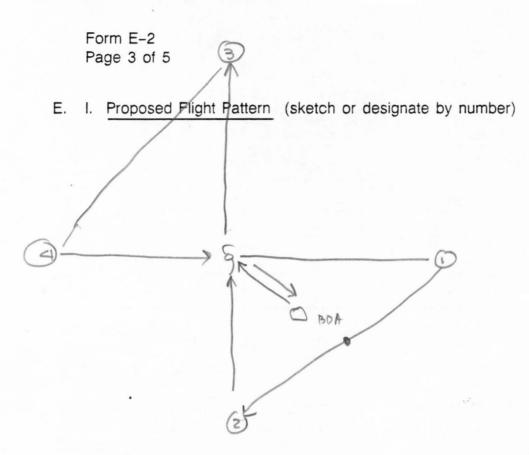
- Debrief scientific crew.
- Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to the appropriate HRD operations center (MGOC or FGOC).
- Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the OAO flight director.]
- 4. Obtain a copy of the 10-s flight listing from the OAO flight director. Turn in with completed forms.
- 5. Determine next mission status, if any, and brief crews as necessary.
 - Notify the appropriate operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.

Form E-2 Page 1 of 5

On-Board Lead Project Scientist Check List

	HRD	{D		OAO			
Function	Particip	ant	Fund	ction	Part	cipant	
ead Proj. Sci.	KILLOU	GHINT	Flight	Director	DAMIA	NO	
Cloud Physics			Pilots		KENNE	DY/PU	97
Radar	MATZKS	2	Naviga	ator			
Doppler	CULIFE	art	Sys. Engr.		LYNICH		
Photographer			Data -	Fech.			
Omegasonde	FIZANIK	111	El. Tech.				
AXBT/AXCP			Other				
OBSERVER	RIKSM	ITN					
Take-Off	Location		Landing		Locatio	n	
	BAR	X -					
Past and Foreca	ast Storm Loca	ations					
Date/Time	Latitude	Longitu	de	MSLP	Ma	x. Wind	
27/1800	15.5	62.5		FCST			
27/1000	16-09	62-09		1002		15	
	a statement						

AT TUIZNS, CENTER OF SE DIAGONAL, MAYBE CENTER. RECOVER BARBADOS

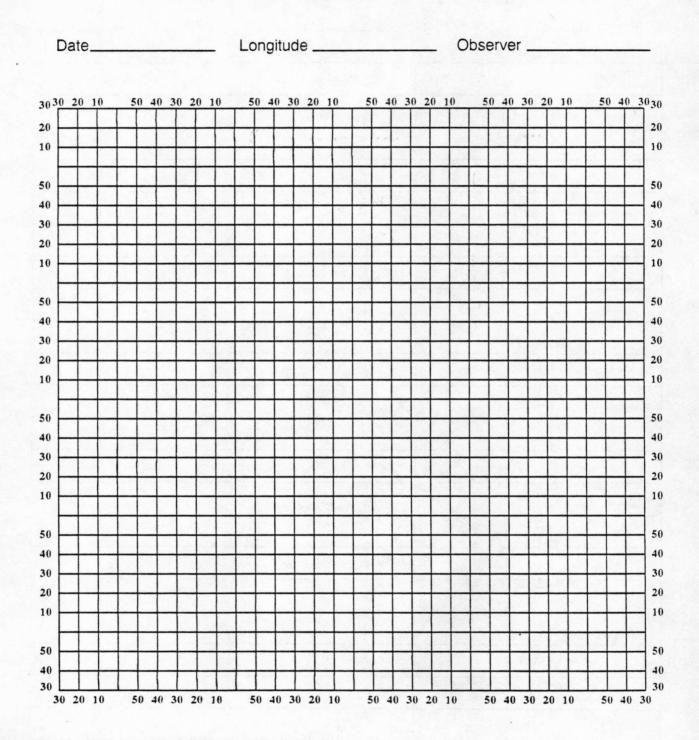

Form E-2 Page 2 of 5

3

D. Equipment Status

Equipment	Pre-Flight	In-Flight	Post-Flight
Aircraft	1	1	A
Radar	1	<u> </u>	<u> </u>
Cloud physics	<u> </u>	er .	
Data system		1	- <u>-1</u>
Omegasondes		- 11	1
AXBT/AXCP	NOB		1
Doppler			1
Photography		<u>n</u>	

REMARKS:


E. II. Actual Flight Pattern

Form E-2 Page 4 of 5

1

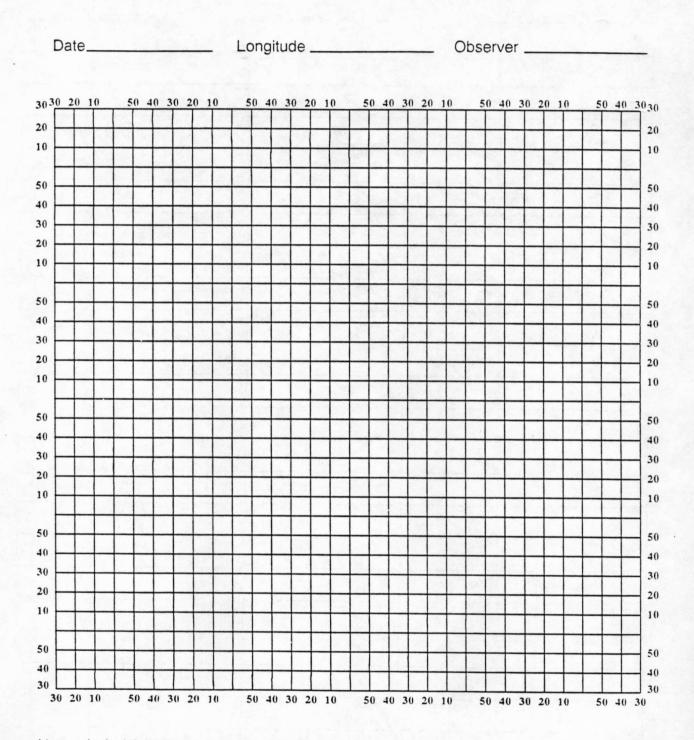
Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes of ϕ and λ .

Note: Label full degrees according to location of flight area.

Form E-2 Page 5 of 5

Lead Project Scientist Event Log


			LPS	
Time	Event	Position	Comments	

1

Form E-2 Page 4 of 5

Hurricane Recco Plotting Chart

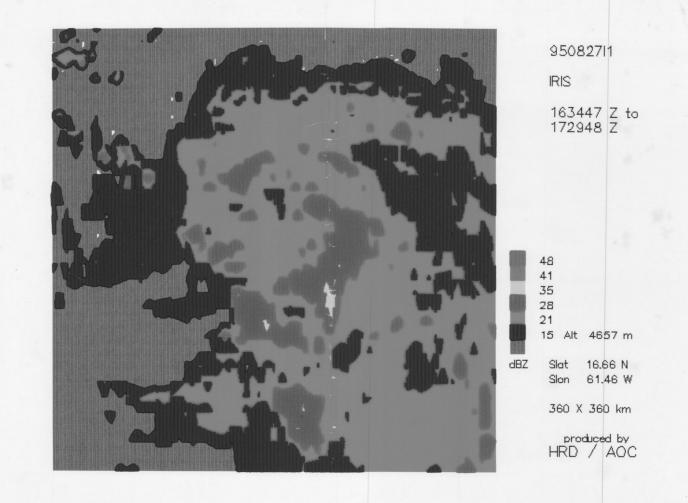
True at 25° Latitude, in Degrees and Minutes of φ and $\lambda.$

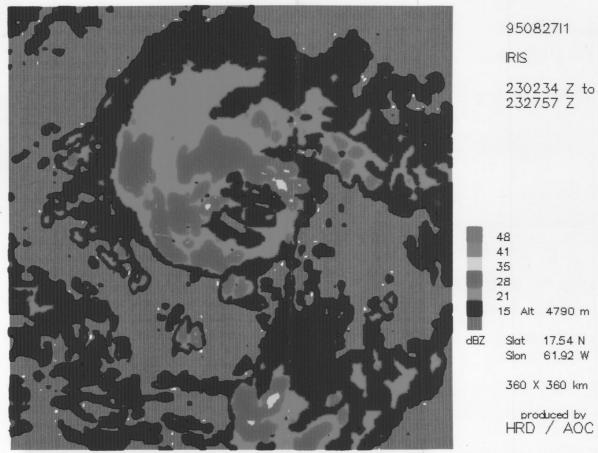
Note: Label full degrees according to location of flight area.

Form E-2 Page 5 of 5

15 3.4 65 100 1000

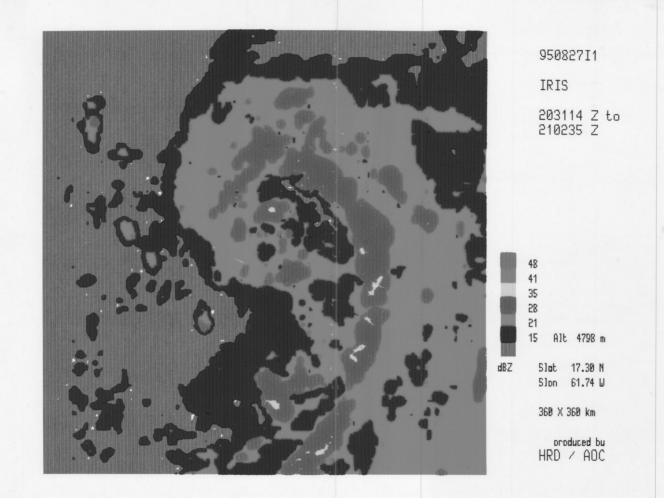
50 200


Lead Project Scientist Event Log


Date 27 AUG 95

Flight 9508271

LPS WILLOUGHISY


Time	Event	Position	Comments	
27/1603	TO	BDA		
1630	1 e	61-00	WIND 250/20	
1706	67	16-48	TIZAK 040 - + (1)	
1817	DROP 1 AT 1618	16-45	CONVECTION - A D	6000
1906	DIZOP2	13-58	NEAR BDA	6000
1946	DROP3 (3)	12-31 61-30	TRAK N-05	GOOD
2049	6	61-40	MISSEDGTOE	
2144	DIZOP'4	21-30	TURN SW-PG	G0012
2240		CE PROBLE	ms!	
2244	TURNE Sprops	17-48		
2319	6	17-33 62-61	MEAD FOR ADAMS BDA	
0236	RECOVER	RDA	8536m	1
				1
		A		1
			and the second second	1
				1
				1
				-

230234 Z to 232757 Z

15 Alt 4790 m Slat 17.54 N Slon 61.92 W 360 X 360 km

