19 890905H1 - AXBT

E.4 Air-Sea Interaction Scientist (On-board)

The on-board Air-Sea Interaction Scientist (ASIS) is responsible for data collection from airborne expendable bathythermographs (AXBT's), airborne expendable current profilers (AXCP's), and sea surface temperature radiometers (if these systems are used on the mission). Detailed calibration and instrument operation procedures are contained in the air-sea interaction (ASI) manual supplied to each operator. General supplementary procedures follow. (Check off and initial.)

E.4.1 Preflight

- Determine the status of equipment and report results to the onboard Lead Project Scientist (LPS).
- Confirm mission and pattern selection from the on-board LPS.
- 3. Select the mode of operation for instruments after consultation with the HRD/ASIS and the on-board LPS.
 - 4. Complete appropriate preflight checklists as specified in the ASI manual and as directed from the on-board LPS.

E.4.2 In-Flight

 Operate the instruments as specified in the ASI manual and as directed by the HRD/ASIS unless superseded by directions from the on-board LPS.

E.4.3 Postflight

- Complete summary checklist forms and all other appropriate checklist forms.
- 2. Brief the on-board LPS on equipment status and turn in completed checklists to the LPS.
 - 3. Debrief as necessary at the appropriate operations center (FGOC or MGOC).
 - Determine the status of future missions and notify appropriate operations center (FGOC or MGOC) as to where you can be contacted.

Flight _____

																Number
(1)	Probes dropped	•	•		•	•	•	•	•	•	•	•	•	•	•	
(2)	Failures	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	
(3)	Failures with no signal	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	
(4)	Failures with sea surface ter but terminated above thermoc					•	•	•	•	•	•	•	•	•	•	
(5)	Probes which terminated above but below thermocline				•	•	•	•	•	•	•	•	•	•	•	
(6)	Probes used by channel no .	•	•	СН1	2	•	•	•	•	•	•	•	•	•	•	
		•	•	CHI	4	•	•	•	•	•	•	•	•	•	•	
		•	•	СНЈ	6	•	•	•	•	•	•	•	•	•	•	
		•	•	СН_	_	•	•	•	•	•	•	•	•	•	·	
		N	OT	ES												

Flight No. Takeoff time_____ Storm_____ AXBT/AXCP Contract No. _______

Page

ω

•

.

AXBT AND AXCP CHECK SHEET

AXCP/ AXBTØ/ Type	Chan- nel≇	Lot f	Predicted Drop Time (HIP045S)	Actual Drop Time (HHMMSS)	L	icted at Min	Lo	icted ng Min	La	t	Act Lo Deg		Surfa Temp AXBT	MLD (m)	Comments
								*	-					_	
•								1							
												-			
										-		-			
												-		 	
										-		_			

*Type M=Magnavox H=Hermes S=Sippicar

AXCP LOG

Flight Number: 890905H	
Storm Name: Gabrielle	
Storm Direction/Speed: 305/11	
Takeoff Time: 17/62	
Landing Time:	

Leg #	Out/In	RA m	PMIN mb	VMAX m/s	RMAX km	Time PMIN	Time VMAX	Time End Pass	fω
		6158						C	
								1	1
									1

500 mb

Leg/ Drop No.	Tube No.	Channel No.			(bt) Ground Speed	Predicted Drop Time	Actual Drop Time	Latitude	Longitude	Status Good Ba		Comments	RH= 20-307
1		16			(LAS)		181711	21,620	631.0	/	28,1	RD = 22, 2	dry Th = - 22
2		16			50)		200435	28594	6458.8	1	N.G.	1-S list on	
3		14			(200)		205935	28507	69594	1	28.4	$^{\prime\prime}\mathrm{RD}=2\mathrm{I},$	3 morst TD =- 1
4		16			(200)		2227	21 48	6821	L	4		
-								6					
	Drop No. 1 2	Drop Tube No. No. / 2	Drop No.Tube No.Channel No.116216314	Drop No.Tube No.Channel No.Probe Slow116216314	Drop No. Tube No. Channel No. Probe Slow Probe Reg. 1 1/6	Drop No. Tube No. Channel No. Probe Type Slow Ground Reg. 1 1/6 (145) 2 1/6 (145) 3 1/4 (100)	Drop No. Tube No. Channel No. Probe Type Slow Ground Reg. Predicted Drop Time 1 16 208 2 16 268 3 14 200	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drop No.Tube No.Channel SlowProbe SpeedGround SpeedPredicted Drop TimeActual Drop TimeLatitudeLongitudeStatus GoodBadComments11618/70121.00062.31.0028.1RD = 22.22165620043528.59.464.58.8N.G5Latitude31499.0020.593528.59.769.59.628.418.028.418.0

#1 SIZMR cal ~ 18002 - SFMR reading low ~ Conts minual sfewind & 20lst - lots of white caps #2 SPMR cal 1901 12.0 mm/s 1904 10.5 #thm/s 4 photos &# #1 85mm, #2 50 mm of sea #3. 85mm, #4 28 mm Form E-Page 3