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Outflow (“Exhaust”)

Vipay = maximum intensity

k- enthalpy
T, - SST

T, - outflow temperature
Cp - drag coefficient (momentum)

Ck - enthalpy exchange coefficient
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» Observational studies (e.g, Zhang et al. 2008; Bell et al. 2012) found that C,/C, can be statistically
significantly smaller than 0.75 for surface wind speed of 20-70 m/s, indicating that other processes than
surface turbulent transfer are important for hurricane intensity.
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Boundary-layer height scales in hurricanes based on dropsonde composites
(Zhang et al. 2011)
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FiG. 14. Conceptual model of the HBL transition across the coastal interface for Hurricane
Irene. The dark blue line represents the height of the pre-existing HBL that results from HBL
dynamics over the open ocean. The magenta curve represents the growth of the internal
boundary layer response to the surface roughness discontinuity at the coast. The tangential
wind Vi, 1s shown via the color-filled contours according to the legend. The line contours
according to the legend indicate the approximate value of the mean state of the coast-relative
normalized wind Vy,m. The mean flow is directed from right to left (toward the coast).

(Alford et al. 2020)
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MMS simulations of
Hurricane Bob (1991)

=» Skillful prediction of
intensity change requires
an accurate
representation of the
boundary layer.



Sensitivity of storm intensity to PBL schemes in
iIdealized HWRF simulations
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Table 1. Summary of the main differences in different versions of the planetary boundary layer (PBL)
schemes in Hurricane Weather Research and Forecasting model (HWREF). GFS denotes Global Forecast

System and EDMF denotes eddy diffusivity and mass flux.

(Zzhang et al. 2020)
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HWRF Version  Year PBL Scheme Alpha Parameter Referred to as
Number

3.3a 2011 GFS 1.0 0.5 PBL11
3.4a 2012 GFS 0.5 0.25 PBL12
3.5a 2013 e _ ) i o
12 6a 2014 GFS 0.7 Varies with Rossby number PBL13-14
3.7a 2015 GFS Varies with wind speed Varies with Rossby number PBL15
3.84 2016

3.9 2017 Gpsppmp  Varleswithwindspeed g 4o with Rossby number PBL16-19
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Impact of vertical turbulent mixing on hurricane forecasts
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» The radial inflow is stronger for the case with smaller vertical diffusion in the boundary layer.

> As this radial inflow travels past the radius of maximum wind (RMW), its greater inertia will carry it
further inward, leading to a stronger azimuthal wind maximum in the boundary layer.

» Furthermore, the base of the eyewall updraft will be at smaller radius, which further favors intensity
due to the greater inertial stability there.



r/ RMW

Hurricane intensification and Boundary layer recovery
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» The entropy (depicted by ©e) in the boundary layer is lower in the high-Km forecast than in the low-Km forecast before
the onset of rapid intensification.

» Surface enthalpy fluxes are enough to recover the low-entropy air from the upshear-left quadrant to the downshear-
right quadrant in the low-Km forecast, but they are not enough for boundary layer recovery in the high-Km forecast.

(Zhang and Rogers 2019) 11



Impacts of horizontal turbulent mixing on Hurricane Forecasts
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(Zhang and Marks 2015; Zhang et al. 2018)
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» The horizontal mixing length (Lh) was reduced in H216 to be close to
observational estimates given by Zhang and Montgomery (2012).



Challenges and Gaps

1. Direct observations of turbulent fluxes in the boundary layer of the eyewall region
2. Collocated observations of flux, wave, current and sea spray in the hurricane-force wind regime
3. In-situ observations of the hurricane boundary-layer rolls

4. Continuous observations of the boundary-layer structure before and during hurricane rapid
intensification

5. Observations of the boundary-layer thermodynamic structure in hurricanes over land
6. Definition of the hurricane boundary layer height

7. Effects of entrainment on hurricane intensity change

8. Effects of scale-aware PBL schemes on hurricane intensity in the gray zone

9. Effects of boundary-layer processes on hurricane intensity during landfalls

10. Effects of dissipative heating on hurricane intensity

11. Diurnal variation of the hurricane boundary-layer structure

13



Conduct Hurricane Ocean Survey and Boundary Layer Experiments with advanced technologies

Near-term possibilities

(Saildrones, Gliders, Uncrewed aircraft, IRsondes,etc.) to collect more observations at the air-

sea interface

https://www.aoml.noaa.gov/wp-content/uploads/2021/04/2021HFP EarlyStage Science HBL.pdf

https://www.aoml.noaa.gov/wp-content/uploads/2021/04/2021HFP OceanSurvey Science.pdf

https://www.aoml.noaa.gov/wp-content/uploads/2021/04/2021HFP

MatureStage Science RICO SUAVE.pdf
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F1G. 1. A schematic of the (left) IRsonde appearance and (right)
inside view of the sensors of the IRsonde.

(Zhang et al. 2017)
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Fig. 6. Summary of all wind speed data collected during Coyote sUAS
flights in 2017-18 (colored dots, m s™') as a function of time and height
above sea level (ASL). Flights 1-4 and 7 were typical “stepped descent”

flight patterns, while flights 5-6 were “glider” flights.


https://www.aoml.noaa.gov/wp-content/uploads/2021/04/2021HFP_EarlyStage_Science_HBL.pdf
https://www.aoml.noaa.gov/wp-content/uploads/2021/04/2021HFP_OceanSurvey_Science.pdf
https://www.aoml.noaa.gov/wp-content/uploads/2021/04/2021HFP_MatureStage_Science_RICO_SUAVE.pdf

Near-term possibilities

Use Large Eddy Simulation v25 ] v35
(LES) data for model | I s -' =—LES= 10
evaluation in the absence of
or as a complement to
turbulence observations
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Note that this method still
requires observations to
assess the validity of the LES.
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(Chen et al. 2021 in review; Zhang and Drennan 2012)
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