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Bottom Line Up Front 
• Identification of similar features among specific class of 

sheared tropical cyclones (TC) which undergo rapid 
intensification (RI; 30 kt / 24 hr-1) in deep-layer (200-850 mb) 
vertical wind shear values (VWS) greater than 5 m s-1 
– Satellite: Convective envelopes appearing with 4- to 8-hour 

periodicity, upshear arcs, upshear clearing, downshear-left outflow 
jet 

– Reanalysis: Upper-level anticyclonic forcing 
• Favored in Northern Eastern Pacific basin due to climatological set up 

– Modeling: Can be replicated given correct environmental set up 
– Outflow blocks the environment; effects felt 1000 km upshear 



Introduction 
• Climatologically, based on the Statistical Hurricane Intensity 

Prediction System (SHIPS) the average deep-layer (200-850 
hPa) shear value (SHDC) for RI is basin-dependent (Kaplan et 
al. 2010; hence KDK) and generally light: 
– Eastern North Pacific (EPAC): μ = 3.9 m s-1, σ = 1.5 m s-1 
– Northern Atlantic (NATL): μ = 5.1 m s-1, σ = 2.0 m s-1 

– Follow-on studies have tweaked these numbers (Rozoff et al. 2015; 
Kaplan et al. 2015) 

• Generally, shear is greater in NATL 



Introduction (cont’d) 

• Focus of this talk will be on those TCs identified (so far) which 
undergo RI (or at least continue to strengthen) in SHDC values 
+1σ to +5σ greater than RI climatology and share similar 
satellite features 



The List 

The Originals 
• 1997 EPAC Guillermo 
• 2008 EPAC Hernan 
• 2008 EPAC Norbert 
• 2012 EPAC Fabio* 
• 2015 EPAC Hilda 
• 2015 NATL Joaquin 

The New Ones 
• 2012 EPAC Daniel 
• 2014 EPAC Marie (?) 
• 2016 EPAC Blas 
• 2016 EPAC Darby* 
• 2016 NATL Matthew 

* Technically, did not meet RI requirements 





Intensity v. Shear 

• Gray boxes isolate time period 
from best-track genesis time to 
appearance of the eye in 
geostationary satellite infrared 
(IR) imagery for each 

• Average shear: 
– SHDC (vort removed): 7.3 m s-1 
– SHRD (annulus): 7.8 m s-1 

– 7.5 m s-1 



Large-Scale Predictors 
• Shear is never the whole story 
• To streamline synoptic 

discussion, focus on three “large-
scale” RI predictors (KDK): 
– SHDC: Deep-layer shear, vortex 

removed 
– RHLO: Average relative humidity, 

700-850 mb, 200-800 km radius 
– D200: 200 mb divergence, 1000 km 

radius 

• RHLO is ~climatological average 
• SHDC is 2-3σ greater than D200 

 



“Classic” RI 

• Lots of possibilities 
– 2005 EPAC Wilma 
– 2009 EPAC Rick 
– 2012 EPAC Emilia 
– 2015 EPAC Patricia 

• Low shear, high divergence 
– Flipped relationship from previous 

six 



Geostationary Satellite Imagery 
• GOES 8, 9, 11, 12, 13, and 15 data are used 
• Infrared (IR) and Water Vapor (WV) channels 

– IR 
• 10.20 to 11.20 μm 
• 4 km effective grid spacing 

– WV 
• 6.50 to 7.00 μm for GOES-8 to GOES-11 (late 2011) 
• 5.77 to 7.33 μm for GOES-12+ 
• 8 km effective grid spacing for GOES-8 to GOES-11; 4 km thereafter 

• Interpolated to polar coordinates around storm center 
– Best track (HURDAT2) or ARCHER (Wimmers and Velden 2016) 



2008 EPAC Hernan 

• Prototype case 
– Visually, the easiest to see the 

phenomena 

• Shear pointing west-southwest, 
mostly consistent 

• Repeating cloud structures of 
similar shape, then eye appears 
– Convective envelope 
– Confined within -70 °C isotherm 



2008 EPAC Hernan (cont’d) 



Areal Coverage – Periodicity 

• Compute area within -70 °C contour within 200 km 
• Filter using low-pass filter 

– Windowed-sinc 
• Blackman-Nuttall window (Nuttall 1981) 

– Cutoff frequency (fc) of 12.5 hr 

• Filter using band-pass filter 
– Faster than 12.5 hr, slower than 2.5 hr 

• Normalize by low-pass maximum 

( ) ( ) 0 1 2 3
1 2 4 6sinc 2 cos cos cos

2 1 1 1c
N t t tF t f t f t a a a a

N N N
π π π −         = ∗ − − + −         − − −         



Normalized Area: Hernan 

Eye 



Guillermo 



Normalized Area: Guillermo (5.5 hr cutoff) 



Convective Envelope 

• In each of the six, a convective 
envelope can be identified 
– Periodicity between 4 and 8 hours 
– Encapsulated inside -70 °C 

isotherm 
– “Embedded center” 
– Coldest temperatures below -80 °C 
– Oblong-D shape with tail 
– Broadest side angled towards 

upshear semicircle 

 



Water Vapor 

• Two key identifiers 
– Upshear arcs 

• -40 to -55 °C; 20-30 km in width 
• Appear to be tied to envelopes 

– Upshear warming/clearing 
• WV imagery gets progressively 

warmer/drier 
• N.B.: WV weighting function is 

maximized at 300 mb 
– Upper-tropospheric response 



Upshear arcs (WV)  

• All arcs are separated by a warm 
gap 

• Consistently upshear 
– Red arrows = shear directions 

 

 



Outflow Jets 

• Atmospheric Motion Vectors 
(AMVs; Velden et al. 1997) 
indicate outflow jets located 
downshear-left 

• Windspeeds of 50-70 knots (25-
35 m s-1) 

Hernan 

Joaquin 



200-mb winds, ERA-Interim 

• Final component that links all six 
together 

• All six TCs are being sheared by 
upper-level anticyclones 
– Location relative to TC doesn’t 

appear to matter 
• Four are north of TC (Guillermo, 

Hernan, Fabio, Hilda) 
• One is east (Norbert) 
• One is west (Joaquin) 



Upper-level anticyclones (ULAC) 
• Why does this matter? 
• ULACs, compared to their 

cyclonic counterparts, are much 
more shallow in the vertical 
(Hoskins et al. 1985; Wirth 2001) 

• Studies have shown/alluded to 
this being less detrimental to a 
TC’s development (Elsberry and 
Jeffries 1996; Finocchio et al. 
2016) An
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Trough 



Observations Summary 
• Environmental set-up 

– Shear: 7.5 m s-1 

– Winds confined to upper levels of troposphere 
– SSTs: 28 °C (in bonus slides) 

• Markers 
– Intense convection with 4 to 8-hour periodicity 
– Upshear arcs 
– Oblong-D-with-tail cloud shape 

• Confined within -70 °C isotherm 
– Downshear-left outflow jet 
– Upshear drying/warming 



Idealized Modeling 
• Slightly modified CM1 (Bryan 

and Fritsch 2002) 
– Added cosine Coriolis terms 
– Anelastic mass balance to 

background wind 
• 27.5 °C SSTs 
• Dunion Moist Tropical sounding 
• Deep-layer shear equivalent: 13 

km minus 1.5 km 
– CM1 is height coordinate model 

• Three shear profiles + control 
(no shear) 

• 2-km dx, dy; 100-m -> 750-m dz 



Idealized Modeling: IC 



Idealized Modeling: Intensity Evolution 

• Control develops (of course) 
• Cosine-7.5 and Gaussian-11.5 do 

not develop 
• Gaussian-7.5 does 

– Multiple segments, as opposed to 
control 

– Also has “late” RI 
• Intensification halts for 10-hour  

period before abrupt intensification 

– RMW shrinks, then expands, then 
shrinks again, then expands again 



Idealized Modeling: Markers 

• Synthetic satellite imagery from 
Community Radiative Transfer 
Model (CRTM; Grasso et al. 2008) 
– Left column: sheared 
– Right column: control 

• Requirements 
– Oblong-D shape in IR, upshear-angled 
– Thin upshear arcs in WV 
– Downshear-left outflow jet 
– Periodic convection… 

 



Tilt Evolution 

• Can’t talk to about this behavior 
without talking about the tilt 

• Calculated multiple different 
ways 
– Storm wobbles out of phase with 

itself 
• PVV120: PV-Vorticity centroid hybrid, 

120x120 km weighting area 
 

 



Tilt Evolution (cont’d) 

• In a 2-D sense, there are two 
important parts of the tilt 
– Realignment 

• Days 

– Wobble 
• Hours 

• Method: PVV120 



Idealized Modeling: Convection 
• Assumption 

– Periodicity of clouds is tied to 
underlying convection 

• Define convection as Total 
Condensed Water of the Column 
(TCWC) 
 
 
 

• At right, storm-relative radial 
sums of TCWC per azimuth in 
time 
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Idealized Modeling: Convection (Cont’d) 

• At right, Gauss-7.5 TCWC with 
mid-level tilt considerations 
– White crosses are smoothed angle 

of 6-km center 
– Red line is smoothed magnitude of 

6-km tilt 
• Convection and mid-level center 

are locked together, regardless 
of magnitude 
– Increased CCW tilt movement is 

co-located with incr. convection 
– T hree convective envelopes 

• Approx. 6-8 hours apart 

E N W S E 



Tilt Angle within Envelope 

• All center finding methods are 
oriented upshear-left up to 6 
km 

• Bend back downshear above 
that 



Why “Envelope?” 

• Meant in a wave-analysis type 
sense 
– Individual cells moving through a 

larger packet 
– Phase speed and group speed 

differences 

• At right, azimuthal cross section 
through envelope 

W
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Why “Envelope?” 

• Meant in a wave-analysis type 
sense 
– Individual cells moving through a 

larger packet 
– Phase speed and group speed 

differences 

• At right, azimuthal cross section 
through envelope 
– Envelope frame 
– Individual updraft 
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Upper-Level Effects 

• Tilt envelope localizes 
convection 

• Positively buoyant updrafts all 
the way to the top (13 km) 
– Rising through tilt-induced vortex-

scale cold anomaly 

• Erodes environmental forcing 

This is upshear 
radial wind  



12.5 km tilt-
relative 
(MAVWBS) 
winds (ms-1), 
2.5-hour 
running mean 
 
Gray rings = 
100 km 
interval 



“Local” Deep-Layer Shear 

• TC Outflow blocks/diverts the 
environment 

• Shear calculated in 200-km circle 
is reduced by half 

• Note that it increases again late 
in the simulation 
– Cap on intensification 



Vertical Structure of the Block 
• Outflow of the TC blocks the 

environment 
• What is the vertical structure of 

this blocking 
– i.e., why does the depth of the 

environmental wind matter? 

• Launch trajectories from 
environment (48-96 hours) 
– From 10 km to 14 km height, 

upwind of TC, spaced 5 km apart 
meridionally, 0.5 km vertically 

• 120 parcels per level 



Trajectories 
• 10.5 km 

– Entrainment 

• 12.0 km 
– Some blocking 
– Deflection evident on southern 

side 

• 13.0 km 
– Very few entrained (4/120) 
– Mostly deflection 

• 14.0 km 
– All are deflected/reflected 
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Vertical Structure 

• Upshear/Downshear dichotomy 
• In Control (bottom panel), 

outflow moistens 11 km and up 
within 500 km 
– Drying/sinking from 250 km 

outwards 

• Upshear, sinking/drying is closer 
to vortex core 
– Also starts from higher in 

environment 

 



The Outflow Jet 

• Trajectories are diverted to the left 
– Some entrained parcels are ejected into jet 
– The block appears to force leftward (southward) movement 

• Two parts 
– Vortex Part 
– Environment Part 



Outflow Jet: Vortex Part 

• Environmental flow creates 
region of negative absolute 
angular momentum (AAM) 
on left-of-shear side 

• From ensuing convection, 
AAM minimum back builds to 
upshear, increases in 
magnitude 

• Locally, inertially unstable 

0M r∂ ∂ ≈



Outflow Jet: Environmental Part 

• Slightly more complicated – requires more prep work 
• Perform Helmholtz (ψ-χ) Decomposition 

– Since background winds are constant by initialization, they are 
completely filtered out 

– (Almost) all changes in the flow are a result of the TC 
• Spurious convection, effects small 

• How far away does the environment “know” about the TC? 



Outflow Jet: Environmental Part (cont’d) 
• In figure, ~12.5 km Cartesian winds + density, upshear: 

– Rotational, Divergent, and Total 
– Environment 

forced to the 
left 

• Environment 
“knows” about 
TC 1000 km away 
– Bow wave 
– Forced by lower 

density air 
– Subtle sinking 

starts as well 
 

Farthest 
influence 
of outflow 



About those WV Arcs… 

• Morrison microphysics 
• Morrison et al. (2012) 
• CRTM is picking up on 

number concentration 
• Zonal cross section 

indicates arcs are 1.5-km 
deep under tropopause 
• N2 >= 2 (10-4 s-1) 
• They are the outer 

bounds of the upshear 
radial outflow 



Tying This Together (Summary) 

• Given the correct environmental wind set-up, with moderately 
strong environmental winds confined to near the tropopause, 
a TC can progress on an atypical path to RI 
– Shear produces tilt 
– Shear depth allows mid-level center to return upshear 
– Tilt wobble linked to enhanced convection 
– Outflow of enhanced convection blocks the environmental flow 



Upper Level Trough 

48 



Upper Level Trough 

49 



Upper Level Ridge 

50 



Upper Level Ridge 

51 



Summary (cont’d) 

• Arcs in WV imagery provide visual guidance of outflow push 
back 

• Upshear sinking is also associated with this block 
– Warmer/dryer signature in WV imagery 

• To explain WV imagery… 



Distance from arc to 
nearest cloud upshear 
is ~6° longitude. 
Bow wave in CM1 was 
~700 km from 
interface. 

Arcs are extent of 
outflow. 
Drying/warming 
beyond that is 
environmental air 
forced downwards at 
and upwind of 
interface. 





That’s all for now. 
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