Hurricanes and offshore wind farms

Mark Powell NOAA-AOML-HRD

NOAA's Atlantic Oceanographic and Meteorological Laboratories

AOML Virginia Key, Miami FL

Hurricane Research Physical Oceanography Ocean Chemistry

Center for Ocean-Atmospheric Prediction Studies

Outline:

Impacts on wind farms

Risk Modeling

Design conditions

Field Program

Super Typhoons have damaged wind farms in China and Japan

Saomai 2006

Maemi 2003

Photo: Ishisaki (From Eqecat Brochure)

Active yaw controls failed or could not keep up with turbulence from complex terrain

Hurricane Sandy

Gibara wind farm in Holguin Cuba

Hurricane Sandy 0730 UTC 25 OCT 2012 Max 1-min sustained surface winds (kt) Valid for marine exposure over water, open terrain exposure over land Analysis based on SFMR_AFRC from 0006 = 1345z; SHIP from 0300 = 0900z; OSCAT2 from 0410 = 0413z; ADOS from 8249 - 88532;

8738 z position interpolated from 0600 ATCF_CARQ; milp = 954.0 mb

Observed Max. Surface Wind: 88 Ms, 18 nm SW of center based on 6417 2 SIMR_ARC Analyzed Max. Wind: 74 kts; 12 nm SW of center

Jersey Atlantic wind Farm (Five 1.5 MW turbines)

Still cleve to center of store

Antendary dies TOT Max Gold - The Max Sect tot Max God

perpindicular to mean

livel winds now

Impacts

- Wind farms can withstand hurricanes provided yaw controls remain active
- Turbine resistance to hurricanes based on risk and design conditions

• Return Period Winds

- On site station data not sufficient to determine return periods
- Short records and gaps in historical data prevent extreme wind climate assessment
- Modeling needed to simulate longer period wind records

M. Powell, NOAA WPA Webinar 7-17-2013

"In the most vulnerable areas now being considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period"

Exaggerating? Quantifying the hurricane risk to offshore wind turbines

Stephen Rose^a, Paulina Jaramillo^{a,1}, Mitchell J. Small^{a,b}, Iris Grossmann^a, and Jay Apt^{a,c}

*Department of Engineering and Public Policy; *Department of Civil and Environmental Engineering; and 'Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

Edited by William C. Clark, Harvard University, Cambridge, MA, and approved January 10, 2012 (received for review July 19, 2011)

VS

Mark D. Powell^{a,1} and Steven Cocke^b ^aNational Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratories, Hurricane Research Division, Miami, FL 33149; and ^bCenter for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32310

LETTER

Hurricane wind fields needed to assess risk to offshore wind farms

In their paper in PNAS, Rose et al. (1) applied a statistical model to estimate hurricane wind losses to wind turbines over a 20-y typical wind farm lifetime. They combined a county annual landfall frequency probability density function with a generalized extreme value (GEV) fit of maximum wind speeds to model the expected 20-y losses attributable to hurricane activity at four hypothetical offshore wind farm sites.

We found one error and three major flaws in this approach, which lead to an order of magnitude overestimation of risk:

Fig. 2. Scatterplot of maximum landfall winds at wind farm locations (y axis) compared with the peak life cycle wind speed for the same hurricane while in the northwest Gulf of Mexico.

4

- Collect **peak** intensity of every hurricane in box 1851-2008
- fit peak intensity data to Generalized Extreme Value distribution
- Fit annual GLS landfall frequency distribution with Poisson distribution
- Simulate thousands of years of activity
- Each landfall strikes entire (county sized) wind farm with peak intensity

50 Turbine farm offshore Galveston (no yaw control): "Likely" (30% chance) loss of 24 turbines over 20 years

An engineering model computes the wind loading on a turbine mast and whether it buckles or not

Powell and Cocke:

- Replaying all storms affecting Galveston 1900-2010:
 - Loss of two turbines per 20 years (no yaw control)

Integrated Kinetic Energy: for Winds > TS force 96 TJ, for Winds > Hurricane Force 36 TJ Destructive Potential Rating(0-6) Wind: 3.1 , Surge/Waves: 4.8

Observed Max. Surface Wind: 90 kts, 52 nm NE of center based on 2024 z SFMR_AFRC Analyzed Max. Wind: 90 kts, 48 nm NE of center

Destructive Potential Rating(0-6) Wind: 2.9 , Surge/Waves: 4.1 Observed Max. Surface Wind: 88 kts, 28 nm NE of center based on 0623 z SFMR_AFRC

Analyzed Max. Wind: 88 kts, 31 nm NE of center

Stochastic models are available to assess risk

Florida's Public Hurricane Loss Model

exposure.

Risk

- Stochastic modeling based on observed tropical cyclone climate
- Lifecycle of each hurricane modeled
- Thousands of years simulated
- Winds from each event used to estimate return periods and losses

- Design Conditions
 - Current Standards
 - IEC 61 400-3
 - DNV-RP-C205
 - API RP 2A-WSD

Wind and Oil/Gasbased standards

- Reference Norwegian sea data for wind profile and turbulence assessments
- Froya location (63 N) data applicable to hurricane areas?
- Winds in Froya study did not reach hurricane conditions

Standards

- IEC 61400-3 12.3 Assessment of wind conditions, DNV-RP-C205
 - IEC: "The roughness of the sea surface increases with wind speed and thus the turbulence intensity will increase as a function of wind speed."
- ABS: Offshore Wind Turbine Installations, API RP 2A-WSD
 - Profile Power law (Alpha 0.14) implies constant roughness with wind speed (equivalent to open terrain over land),
 - "For strong wind conditions, such as a hurricane" Profile log law (Froya) has no roughness dependence
 - Turbulence intensity increase with wind speed, no roughness dependence

Design Conditions: What's a hurricane really like?

Photo provided by Michael Black, AOML

M. Powell, NOAA WPA Webinar 7-17-2013

M. Powell Guest Lecture MET 5534

Hurricane Bonnie Waves

Scanning radar Altimeter

Storm moving NW

Bold lines are wave direction, length: wave length width: sig. wave ht.

Wright et al., 2000

Photo provided by Michael Black, AOML

In extreme winds the sea state completely changes: an emulsion (sea in air and air in sea)

Roughness (friction) properties change

Turbines designs need to be based on actual hurricane conditions

GPS sonde probes sample near-surface wind conditions

M. Powell, NOAA WPA Webinar 7-17-2013

Wednesday, July 17, 13

GPS Sonde Trajectories

Radar images courtesy of Michael Black, AOML

Thousands of sondes in hurricanes over the past decade

Open ocean mean wind profiles

Wind profiles exhibit less shear in extreme winds Roughness levels off and then decreases with wind speed

Wednesday, July 17, 13

Extrapolate from Surface: winds 14% too high Extrapolate from 100 m downward, Power law 13%, Froya 30% too low

Turbulence intensity in Hurricane Bob (1991)

Wind farms will be in coastal waters Do open ocean conditions still apply?

Offshore Wind Farm	Location	State or Federal			
Baronyx	Offshore Cameron County near Port Isabel, TX (Rio Grande N and S)	State			
Fisherman's Energy	Atlantic City, NJ (3 miles offshore)	State			
Dominion Virginia Power	Virginia Beach	Federal			
Statoil North America (Hywind Maine)	Boothbay Harbor	State			
University of Maine (DeepCwind)	Monhegan Island	State			
Deepwater Wind	Block Island (5 mi SE)	State			
Cape Wind	Nantucket Sound (Horseshoe shoal)	State			
Maryland Wind Energy Area	See Fig. 1	Federal			
Rhode Island Wind Energy Area	See Fig. 1	Federal			
New Jersey Wind Energy area	See Fig. 1	Federal			
Maryland Wind Energy Area	See Fig. 1	Federal			
Virginia Wind Energy Area	See Fig. 1	Federal			
Delaware	See Fig. 1	Federal			
North Carolina	See Fig. 1	Federal			
South Carolina	See Fig. 1	Federal			
Georgia	Lease request for a MET mast off Tybee Island	Federal			

Listing of DOE funded demonstration projects and other offshore wind developments planned or projected in state and federal waters

M. Powell, NOAA WPA Webinar 7-17-2013

DOE-NOAA partnership to Collect data on coastal hurricane design conditions

Schematic of NOAA P3 "piggyback" flight pattern showing hypothetical wind farm fly-by with expendable launches at a 2 km interval for 20 km.

Photo: Dong Energy "Gunfleet Sands 1" farm off SE England.

Collect wave, wind field, and oceanic data

Scanning radar altimeter: Directional wave spectrum, significant wave height, individual wave imaging

H*Wind wind fields from real-time measurements

Subsurface current profiles from AXCPs

Expendables (Ex) and aircraft (A/C) measurement systems required for conducting offshore wind farm experiment

Observing system	Measurement	Number	Туре
GPS sonde	Pressure, Temperature, Humidity, Velocity	4-10	Ex
AXBT	Ocean temperature profile	2-4	Ex
AXCP	Ocean current profile	2-4	Ex
Stepped Frequency Microwave Radiometer (SFMR)	Surface wind speed rain rate	8-10 hour missions	A/C
NOAA wide-swath radar altimeter	wave height and directional wave spectrum	8-10 hour missions	A/C
Airborne Doppler radar	3D wind velocity, rain rate	8-10 hour missions	A/C
Lower fuselage radar	reflectivity	8-10 hour missions	A/C
H*Wind	Analysis of surface wind field	8-10 hour missions	All available observations

A comprehensive observational framework will help inform design conditions to help make sure offshore wind farms withstand hurricanes

Thanks!

Photo: Eranti Engineering Oy <u>http://www.erantiengineering.fi/pilot-wind-turbine.htm</u>

Extra Slides

- Sites: Galveston, NC, NJ, MA
- We examine Galveston
- Reproduce their results
- Run a simple wind model on all 1900-2010 Hurdat tracks within 200 km of GLS
- Record max wind at each location for each storm
- Compute losses using damage curve from PNAS paper

Fig. 1. Cumulative distribution function of the expected number of turbine towers buckled by a single storm as a function of wind speed. This models a hurricane with a TI of 9% in a 50-turbine wind farm of NREL 5-MW turbines

(although their loss can cause other structural damage). To illustrate the risk to a wind farm from hurricane force wind speeds, we calculate the expected number of turbine towers that buckle in a 50-turbine wind farm as a function of maximum sustained (10min mean) wind speed, assuming that turbines cannot yaw during

- Gulf of Mexico hurricane landfall intensities 1979-2008
- More realistic than max box intensities since offshore wind farms will be close to shore

	1382			WEATHE	R AND FORE	CASTING		VOLUME 25
WEATHER AND FORECASTING	VOLUME 25 TABLE 1. Intensity data (kt) for U.S. Gulf coast landfalling hurricanes (1979–2008). NA indicates that the system did not continuously have a tropical cyclone center over the Gulf from that time until landfall.							
	Hurric	Lar cane a	ndfall time and date	Intensity at landfall	Intensity 12 h before landfall	Intensity 24 h before landfall	Intensity 36 h before landfall	Intensity 48 h before landfall
	Ike	0700 UT	C 13 Sep 2008	95	91	90	85	85
	Gustav	v 1500 UT	C 1 Sep 2008	90	95	98	115	NA
Tropical Cyclone Intensity Change before U.S. Gulf Coast Landfall	Dolly	1820 UT	C 23 Jul 2008	75	71	60	46	45
	Humb	erto 0700 UT	°C 13 Sep 2007	80	47	NA	NA	NA
EDWARD N. RAPPAPORT AND JAMES L. FRANKLIN	Wilma	1030 UT	°C 24 Oct 2005	105	94	85	NA	NA
NO Additional Wester Service National Renders Control Minut Florida	Rita	0740 UT	C 24 Sep 2005	100	109	115	124	151
NOAA/National Weather Service/National Hurricane Center, Miami, Florida	Katrin	ia 1110 UT	°C 29 Aug 2005	110	142	142	100	99
Assessed D. Comments opening	Denni	s 1930 U'I	C 10 Jul 2005	105	124	94	76	NA
ANDREA B. SCHUMACHER	Cindy	0300 UT	C 6 Jul 2005	65	53	33	28	NA
Colorado State University/CIRA, Fort Collins, Colorado	Ivan1	0650 UT	C 16 Sep 2004	105	114	119	120	138
	Charle	ry 1945 UT	C 13 Aug 2004	130	102	NA	NA	NA
MARK DEMARIA	Claude	ette 1530 UT	C 15 Jul 2003	80	0.3	38	22	50
	Lilli	1300 U 1	C 3 Oct 2002	30	122	112	92	NA
NOAA/NESDIS/Center for Satellite Applications and Research, Fort Collins, Colorado	Pret	2000 UT	C 15 Oct 1999	100	175	120	00	65
	Georg	1130.117	C 28 Sep 1008	90	05	05	00	00
LYNN K. SHAY	Earl	0600 UT	C 3 Sep 1998	20	85	50	50	40
RSMAS/MPO, University of Miami, Miami, Florida	Danny	0900 117	C 18 Jul 1997	65	53	35	30	NA
Romport O, Ouversity of stand, stand, Fortun	Opal	2200 UT	C 4 Oct 1995	100	130	95	78	68
ETHAN I GIDNEY	Erin	1600 UT	C 3 Aug 1995	75	68	NA	NA	NA
ETHAN J. OBNET	Andre	w 0830 UT	C 26 Aug 1992	105	120	115	115	NA
I. M. Systems Group, NOAA/National Climatic Data Center, Asheville, North Carolina	Jerry	0030 UT	°C 16 Oct 1989	75	60	55	55	55
	Chantz	al 1300 UT	C1 Aug 1989	70	66	51	31	21
(Manuscript received 21 October 2009, in final form 28 May 2010)	Floren	ce 0200 UT	°C 10 Sep 1988	70	58	50	45	45
	Bonnie	e 1000 UT	°C 26 Jun 1986	75	68	53	43	28
Deculs 0% change Humissness would	Kate	2230 UT	°C 21 Nov 1985	85	96	105	103	84
Result: 0/0 chance Hurricanes would	Juan2	1130 UT	C 29 Oct 1985	65	75	NA	NA	NA
	Juan1	1430 UT	C 28 Oct 1985	75	67	57	47	37
collapse 25 or more turbines over a 20	Elena	1300 UT	C 2 Sep 1985	100	109	106	96	90
conapse 25 of more tarbines over a 20	Danny	1630 UT	C 15 Aug 1985	80	74	58	43	30
	Alicia	0700 01	C 18 Aug 1983	100	91	71	61	51
year period avg. 6 per year	Allen	0000 U1	C 10 Aug 1980	100	125	155	130	130
	Bob	1200 UT	C 13 Sep 1979	65	65	50	30	20

But this is still an overestimate!

0

- Results: PNAS paper overestimated hurricane risk by an order of magnitude
 - Wind farm site peak wind speeds are ~ 64% of "peak-in-box" intensity
 - For historical storms 1900-2010: Two turbines destroyed per 20 y compared to 24/20y if storms landfall at "peak-in-box" intensity

• Limitations

- Error in their GEV fit (10 min vs 1 min)
- Assume each storm landfalls at peak "box" intensity
- Pre 1900 data (and GEV fits) are generally not used for risk modeling (e.g FL Commission)
- Did not consider that hurricane winds vary spatially

Charlie Neumann, 1952 Hurricane season Navy recon squadron, JAX 400-600 ft (120-180 m)

