Modeling and Data Assimilation
systems of the future



Trends in NWP modeling

A\ Polyhedral global grids (cube, icoshadedron) for scalability
WSpectral and lat/lon dycores

A\ Global (variable resolution) models
WRegional (nested) models

A\ Cloud-permitting” non-hydrostatic global models (still with
parameterized shallow convection).

W Hydrostatic models with parameterized deep convection

AMEnsembles with stochastic physics.
W Deterministic forecast systems.



Trends in Data Assimilation

AENnKF, “weak-constraint” 4DVar, hybrid “incremental” 4DVar/EnKF
(freely evolving B).

V”Incremental” 4DVar, 3DVar (depending on specified B).

A\Direct assimilation of satellite radiances.
W Assimilation of retrievals.

A Online, adaptive bias correction.
WV Offline bias correction.

M Accounting for model error in B.
A Assimilation of observations influenced by clouds/precip
A Non-gaussian observation errors and priors.



Spherical Polyhedral Grids

e Spectral models can’t scale to 100,000’s of cores.

e |at/lon grids have singularity at pole, filtering kills scalability.

e Solution: grids based on platonic solids (cube, icosahedron)
inscribed on the unit sphere.
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Figure 2. Planar and spherical versions of the five platonic solids: the tetrahedron,
hexahedron (cube), octahedron, dodecahedron, and icosahedron.




Model Days/Wall Clock Day

Cubed Sphere (GFDL, NASA,

GFDL C2000L32 (~4.5 km) on IBM Blue Gene

Performance on IBM:BG/P ot Held-Suarez Test Case with Non-Hydrostatic
Cubed-Sphere Atmospheric Dynamical Core (C2000, Levels=32)
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» Super linear scaling below
10,000 cores

* Maximum scalability with pure
MPI: 1.5 million cores

 Scalability can be even higher
with MPI-OpenMP hybrid
programming



lcosahedral Grids (NCAR MPAS, ESRL
FIM/NIM, CSU, Japan)

12 “problem” points instead of 8 on cubed sphere, 1 in
lat/lon (good, since singularities are weaker). However,
grid is completely unstructured (cubed sphere still has

cartesian structure).

NICAM 7km hurricane simulation




Global models with variable resolution
avoid boundary conditions (nesting)

Cubed Sphere with conformal transformation

(GFDL model) NCAR MPAS w/nonuniform Voronoi tesselation




Total JJA Precipitation (2000-2008)

TRMM JJA Total Precipitation (mm/day)
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Importance of Flow-Dependent Background Errors

Hurricane Fred 00Z 9 Sep

Single ob increments for
850 hPa uob 1 m/s
different than background.

Analysis "knows " where
the hurricane is.

Solid contours: 850 hPa
background geopotential height.
Colors: wind speed increment
Arrows: vector wind increment
Blue triangle: hurrican center.
Blue circle: location of ob.

u850 S of center
fg= 13.6 ob= 6.59
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Global statistics, GFS/EnKF vs. NCEP

T254 GFS/EnKF vs. T190 NCEP Operational

(195) (172) (153) (144) (122) (104) (90) (75) (58) (47)
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At most every lead, GFS/EnKF is statistically significantly better than NCEP operational ens.,
which uses (a) older GFS model, lower resolution; (b) ETR perturbations around GSI control,
and (c) vortex relocation. 10



Global statistics, GFS/EnKF vs. ECMWF

(ensemble statistics, 5 June to 21 Sep 2010; all basins together)

T254 GFS/EnKF vs. 7639 ECMWF operational

(187) (165) (148) (140) (120) (105) (86) (77) (60) (46)
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GFS/EnKF competitive despite lower resolution (T254 vs. ECMWF’s T639)

11



EnKF VS 4DVar

 evolves covariances continously in ¢ evolves covariances from an initial
time, in a low dim. space. P° over a 6-12 h window in a high-
Localization required to increase dim. space (TLM).

rank of sample estimate.

* cov. evolution with full NL model.  « cov. evolution with simplified linear
pert. model.

e Full (potentially nonlinear) H e Linearized H used in inner loop
applied to each ensemble member. iteration, full nonlinear H only applied
to nonlinear control trajectory.

e Model error accounted for in » model error for accounted for in
ensemble (inflation, stochastic initial P (strong constraint) or model
physics). error covariance matrix (weak

constraint).



Hybrid Var/[EnKF (Mark Buehner Env Canada)

Northern extra-tropics Southern extra-tropics
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EnKF performance nearly identical to operational 4DVar (but
using EnKF P® benefits 4DVar in SH).



pressure (hPa)

GSIl 3DVar vs 3DVar Hybrid vs EnKF

Vector Wind (left) and Temp (right) O-F (2009123012-2010013012)

All insitu: Global All insitu: Global

0

0

200 200

400

aool [/

600 600 F------- A ......... , ......... ......... , .........

800

8001 ... ......... e
e—e GSI3DVar | . § §

e—e EnKF
o o GSIHybndé

|

.0 3.5 4.0 4.5 5.0 8 10 12 14 16 18 20 22
magnitude (mps) magnitude (K)

100% i




“Weak-constraint” 4DVar

* Allows for longer windows by relaxing

assumption that model is perfect (strong
constraint).

— Allows assimilation to “forget” initial static B.
— Ensemble not needed for flow dependence.
— BUT model error covariance must be specified.

* Being developed at ECMWEF (alongside
ensemble/VAR hybrid).



Stochastic Physics

impact on ensemble TC forecasts

w/out stochastic convection With stochastic convection
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From Snyder, Pu and Reynolds (2011) MWR (early online release)



Summary

* Global cloud permitting, variable resolution
models on spherical polyhedral grids are coming.

* Data assimilation systems with fully flow-

dependent background error covariances are
here.

* Important challenges:

— Reducing model errors (esp. in convection dominated
regimes).

— Representation of model error (in model and DA).

— Dealing with non-gaussian backgrounds (clouds,
hydrometeors, precip).



Hybrid 4DVar/EnkF
Env. Canada (Buehner et al MWR 2010)
‘4D-Va‘1r with IBnmcl

3D-Var with Bnmc
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EnKF increment more similar to 4DVar than 3DVar, especially
when EnKF P® used at beginning of 4DVar window.



