
1 Theory of the Hadley circulation

1.1 Angular momentum conservation: implications
We will begin our attempts to understand the �big picture�of the struc-
ture of the atmosphere by asking about what theory predicts if we ig-
nore eddies and assume that the atmosphere and its circulation are two-
dimensional. Of course, in reality the atmosphere is full of eddies but, as
we�ll see, we can get a handle on some important, and relevant, concepts
by ignoring them in the �rst instance. Later in the class, we will come
to assess the impact of the eddies.
The 2D governing equation of zonal motion can be written
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where a is the Earth radius, ' is latitude, m = 
a2 cos2 ' + ua cos'
is the absolute angular momentum1 (about the rotation axis) per unit
mass, and G represents frictional and other torques. If G = 0, m is
conserved, a simple statement of angular momentum conservation for
axisymmetric �ow. If G represents friction, we may write2

G = r � (��rm) :

The continuity equation is

@�

@t
+r � (�u) = 0 ;

whence we can rewrite (1) as

@

@t
(�m) = �r � (Fadv + Ffric)

where the advective �ux is

Fadv = �um

1The absolute zonal velocity about the rotation axis is u + 
r, where 
 is the
earth�s rotation rate, u the zonal velocity and r = a cos'. So the angular momentum
per unit mass is

m = r (u+
r) = 
a2 cos2 '+ ua cos' :

2This is not generally true (i.e., viscous di¤usion in latitude does not homogenize
angular momentum) but since vertical scales � horizontal scales, only the vertical
components matter, in which case
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and the frictional �ux is

Ffric = ���rm :

Now, suppose in steady state there is an extremum of m somewhere
other than at the surface, as illustrated (for the case of a maximum)
in Fig. 1. Consider �rst the mass budget within the shaded area A

Figure 1: Extremum of m.

enclosed by the contour C on which m =M0; integrating the continuity
equationZZ
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�u � n dl = 0 ;

where n is the unti normal out of C. In steady state, therefore,I
C
�u � n dl = 0 ; (2)

which simply states that there is no net mass �ux into or out of the
shaded region if the mass within the region is constant. Now, consider
the angular momentum budget; the net advective �ux of m across C isI

C
Fadv � n dl =

I
C
�u � nm dl :

But, since m is constant on C,I
C
�u � nm dl =M0

I
C
�u � n dl = 0 ,
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by (2): the net advective �ux of m across a contour of m is exactly zero.
However, the net frictional �ux out of the shaded region isI

C
Ffric � n dl = �

I
C
��n � rm dl > 0 ;

since along the contour n � rm < 0, by de�nition (the contour encloses
a maximum), and the downgradient viscous �uxes must tend to reduce
the maximum im m. So there is a viscous loss of m which � no matter
how small viscosity is � cannot be balanced by advection if there is
an extremum of m anywhere except on a lower boundary (where there
can be viscous forces on the boundary to give balance). This leads to
Hide�s theorem: in steady state, there can be no extrema of angular
momentum except at the lower boundary.

The second important conclusion we can draw, more directly, from
(1) is that in steady �ow, if friction is negligible, G = 0 and hence

u � rm = 0 : (3)

This simply states that, since there is no frictional �ux, the advective
�ux must be nondivergent. Put another way, in an inviscid steady state,
there can be no �ow crossing angular momentum contours. Thus has
simple and important implications.

1.2 The Held-Hou theory for equatorial symmetry
[The original paper on this is: I. M. Held & A.Y. Hou, J. Atmos. Sci.,
37, 515-533, 1980.]
Consider the steady response of an axisymmetric, Boussinesq, spheri-

cal atmosphere, inviscid except near its lower boundary, to axisymmetric
thermal forcing. The domain is illustrated in Fig. 2; we assume a rigid
no-slip lower boundary on z = 0: a rigid stress-free boundary on z = H:

The eastward and northward momentum eqs., with vertical viscosity,
are
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(The �rst of these � the zonal equation of motion � can be derived
directly from the angular momentum budget (1). The second is just
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Figure 2: The domain.

the usual northward component of the equation of motion on a ro-
tating sphere, with the Coriolis term and the added centrifugal term:
the centrifugal acceleration in a direction normal to the rotation axis is
u2=r = u2= (a cos'), and its northward component is � sin' times this.)
The continuity equation for 2D �ow on the sphere is3

r � u = 1

acos'

@

@'
(v cos') +

@w

@z
= 0 . (5)

Hydrostatic balance: in the Boussinesq approximation, � = p=RT '
(p=RT0) (1� T 0=T0), where T = T0 + T

0 and T0 is a uniform reference
temperature. So �0 = p=RT0 and �0=�0 = �T 0=T0, and buoyancy is
b = gT 0=T0. Hence the hydrostatic equation is
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T 0

T0
. (6)

This system is subjected to a simple Newtonian representation of dia-
batic e¤ects, to mimic the latitudinal gradient of solar �ux; T is simply
relaxed toward a �radiative equilibrium�temperature4 Te ('; z) at a rate
�:
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3The divergence operator in spherical geometry (�; '; z) is

r � u = 1
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4So Te('; z) is the temperature the atmosphere would have in a steady state with
no �uid motions to transport heat.
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where the static stability is S = @T=@z + g=cp.
We will assume nonlinear balance5. In this context, this amounts

to assuming that the zonal velocity is much greater than the meridional
components (this can be justi�ed a posteriori), so juj >> jvj, and juj >>
jwjL=H. Also, we assume j@v=@tj << max[f juj, juj2=a] (in any case, we
are going to consider steady solutions), and neglect the viscous term on
v. Then the second of (4) gives the nonlinear balance condition

2
 sin' u+
tan '

a
u2 = �1

a

@�

@'
. (8)

This just geostrophic balance in the northward direction, with the addi-
tion of the centrifugal term (and, since we cannot assume small Rossby
number in the tropics, we have no basis to neglect the latter.) Using
hydrostatic balance gives the nonlinear thermal wind relation
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Now, neglect viscosity � in (4) � except at the lower boundary �
and consider the steady balances. We have seen from (3) that u�rm = 0
in such circumstances; therefore, on the model top, z = H, where w = 0,
EITHER:

(i) v = 0; ! w = 0; ! Q = 0; ! T = Te� this is the thermal
equilibrium (TE) regime! no meridional circulation! no diabatic
heating, OR

(ii) @m=@' = 0 on the top boundary � this is the angular momen-
tum conserving (AMC) regime, in which there can be a nonzero
meridional circulation and hence T 6= Te.

Which is the the correct inviscid limit? The AMC regime cannot go
all the way to the poles, since constant m = 
a2cos2'+ua cos' implies
u!1 at the poles. But can the TE regime exist everywhere? Suppose
it does� look at the TE solution. T = Te, so u = ue('; z) where
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Take a separable Te distribution of the form Te = T00(z)+To �(')Z(z);
assume u = 0 on z = 0; then

2
 sin' ue +
tan '
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2 = �g

a
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0

Z(z0)dz0 .

5This is just equivalent to the usual balance assumption that the nondivergent
�ow >>irrotational �ow. The nondivergent �ow is (u; 0) (since @u=@� = 0); the
irrotational �ow is (0; v) (since @v=@� = 0).
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So the TE solution is untenable if:

(i) if @�=@' is nonzero at equator: this would give u!1 there.

(ii) invoking Hide�s theorem, the TE solution is unreachable if the
absolute angular momentum m = 
a2 cos2 ' + uea cos' has any
extrema away from the bottom. It turns out that this constraint is
violated if Te has any latitudinal curvature at the equator. Specif-
ically, suppose Te is a maximum on the equator (setting Z > 0, for
de�niteness) then � has a maximum on the equator, so �'(0) = 0.
Writing �''(' = 0) = �
 (where 
 > 0) then, near the equator.,
d�=d' ' �
 '. Hence, near ' = 0;

2
 ue +
1

a
ue
2 =

g

a



Z z

0

Z(z0)dz0

so

ue = �
a�
�

2a2 + g


Z z

0

Z(z0)dz0
�1=2

:

The physically reasonable solution has the + sign6. This solution
has westerlies on the equator, increasing with z. This implies a
maximum of m on the equator, which is untenable: if Te has this
kind of distribution (with negative curvature at the equator) then
the inviscid TE solution constitutes a singular limit.

So, in summary, we must have the AMC solution in low latitudes
(if Te maximum there with nonzero @2Te=@'2), and the TE solution in
high latitudes. We need to match the solutions to get the full inviscid
solution.

1.2.1 Solution for the cell boundaries [G]

In both TE and AMC regions, integrate (9) in the vertical, and assume
u('; 0) << u(';H) (because of surface drag), whence

2
 sin' u(';H) +
tan '

a
u2(';H) = � gH

aT0

d

d'
hT i ;

where

hT i = 1

H

Z H

0

T dz

6The minus sign gives, in the limit 
 ! 0, u = �2
a: relative to inertial space,
the atmosphere rotates at the same speed as the solid planet, but in the opposite
direction! It seems safe to reject this solution as unphysical.
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Figure 3: Schematic. AMC region is shaded, TE unshaded. (Note that
the edges of the Hadley cell do not need to be vertical.)

is the vertically averaged temperature. In the AMC region,m = constant =
M0, say, along the top streamline, whence

u(';H) = um =
1

a cos'
(M0 � 
a2 cos2 ') :

For cases symmetric about the equator, expect the meridional circulation
to look as shown in Fig. 3, with two cells, one on either side of the
equator. In the rising branch, the dividing streamline �ow comes up
out of boundary layer at the equator where we assume u = 0; if m is
conserved in the updraft, then must have M0 = 
a

2. Then

um = 
a
sin2 '

cos '
.

In the AMC region, u(';H) = um and T = Tm where

gH

aT0

d

d'
hTmi=�2
 sin' um �

tan '

a
um

2

=�1
2

2a

d

d'

�
sin4 '

cos2 '

�
.

So

hTmi (')� hTmi (0) = �

2a2

2gH
T0
sin4 '

cos2 '
(10)
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in the AMC region. Thus, the structure of hTmi across the AMC cell is
dictated entirelyby the dynamics of amgular momentum conservation,
and is independet of the structure of the structure of Te.
In the TE regime, T = Te. Since � must be continuous in latitude

and

hT i = 1

H

Z H

0

T dz =
T0
gH

Z H

0

@�

@z
dz =

T0
gH

[� (';H)� � ('; 0)] ;

hT i must be continuous across the edge of the cells at ' = 'h where

< Tm > ('h) =< Te > ('h) .

We need a second matching condition [there are 2 unknowns: 'h and
< Tm > (0)]. We get this from the steady thermodynamics equation;
integrating (7) over the globe:Z H

0

Z �
2

0

Q cos' d' dz = 0

whence, since Q = �� (T � Te) = 0 in j'j > j'hj,Z 'h

0

< Tm > cos ' d' =

Z 'h

0

< Te > cos ' d' . (11)

We can now solve the problem, in principle. One way of visualizing
the solution is graphically, as shown Fig. 4. Held & Hou used a thermal
equilibrium pro�le such that Z(z) = 1 and

�(') = ��(sin2 '� 1=3) . (12)

Then hTei goes as '2 near the equator, while, from (10), hTmi goes as
'4. These di¤erent shapes make it clear (see Fig. 4) that one can �nd
an �equal area�solution that hasZ 'h

0

[hTmi � hTei] cos' d' =
Z 'h

0

[hTmi � hTei] d (sin') = 0

(so that this states that the net area between the curves, plotted against
sin', must vanish) and has T continuous across ' = 'h.
One can actually solve the problem semi-analytically. The interface

between the two regions is located where sin'h = Y , where

1

3
(4R� 1)Y 3 � Y 5

1� Y 2 � Y +
1

2
ln

�
1 + Y

1� Y

�
= 0 ,
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Figure 4: Solid curve is hTm(')i from (10). Dashed curve is hTe(')i.
{Fig 1. of Held & Hou. }

with

R =
gH�


2a2
.

For weak forcing, R << 1, the solution reduces to

sin'h
�= Y �= (

5R

3
)
1
2

� so the width of �Hadley cell�goes as square root of equilibrium tem-
perature contrast (for this choice of forcing). {Held and Hou also show
the exact solution.}
Held & Hou did some numerical calculations for a series of values

for �� some of which are shown in Fig. 5. For small �, the numerical
solution asymptotes to something like what the inviscid theory predicts.
[But not quite; the numerical solution goes inertially unstable, producing
an unsteady state, for very small �:] Fig. 6 shows how well u (';H) !
um as � ! 0.
Note:

1. For small R, a small 'h approximation sin' ' ' is good (Held
and Hou illustrate this.)
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Figure 5: {Held and Hou, Fig 4b.}
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Figure 6: {Held and Hou, Fig. 5}

2. The theory predicts that T becomes very �at within the tropical
AMC regime. The AMC solution has

hTmi (')� hTmi (0) = �

2a2

2gH
T0
sin4 '

cos2 '
�= �


2a2

2gH
T0 '

4 ;

cf.
hTei (')� hTei (0) = �� T0 sin

2 ' �= �� T0 '
2 .

� angular momentum conservation makes hT i �atter than hTei.
(Recall the observed climatology of T .)

3. The edge of the circulation cell slopes poleward with z: the sub-
tropical front.

4. In the Hadley cell, angular momentum conservation is violated
(�ow across m contours) at low levels and also near the upper
boundary. See Fig. 7: m is constant along the top boundary for
the small � case for 150 < ' < 250, but m 6=M0. Suggests angular
momentum exchange across meridional streamlines.

5. The AMC solution has u(0; z) = 0 and u(';H) = 
a sin2 '= cos' :
no tropical easterlies aloft or on equator. Numerical solutions show
weak easterlies at low levels, especially for larger �. E�W bound-
ary slopes equatorward with z:
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Figure 7: {Fig. 6 of Held-Hou}

6. Because @T=@' is weak, then

wS �= Q = ��(T � Te):

Note that this simply expresses a balance between radiative heat-
ing/cooling and adiabatic cooling/warming � where the air is
cooler (warmer) than radiative equilibrium, it must be ascending
(descending). Now, since hTmi ('h) = hTei ('h) , for small R;

hTei ('h) = �� T0
�
'h

2 � 1
3

�
= hTmi (0)�


2a2

2gH
T0 'h

4 = hTmi (0)�
�

2R
T0'

4
h ;

and 'h
2 �= 5R=3 so

hTmi (0)
T0

= ��
�
5

3
R� 1

3

�
+
�

2R
� 25R

2

9
= �

�
1

3
� 5

18
R

�
:

Therefore

hTmi (')
T0

=
hTmi (0)
T0

� �

2R
'4 = :�

�
1

3
� 5

18
R

�
� �

2R
'4

and
[hTmi (')� hTe(')i]

T0
= � 5

18
R�+�'2 � �

2R
'4
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If S independent of z, therefore,

hwi (') = ��
S
[hTmi (')� hTei (')] =

��

2ST0
(
5

9
R� 2'2 + 1

R
'4) .

If S also independent of �, hwi (0) / �2(R / �). hwi = 0 at '0
where

'0 =

�
R

3

� 1
2

.

So the total upward mass �ux is proportional to (for small R and
therefore small ') :Z '0

0

w cos' d' '
Z '0

0

w d' ' 5�

18ST0
R�'0 / �5=2:

A schematic summary of these results is shown in Fig. 8. This

Figure 8: Schematic of theoretical Hadley cells.

schematic shows many features evident in observations: the subtrop-
ical jets, the weak temperature gradients between the jets, the merid-
ional circulation, the dry subtropics consequent on mean subsidence, the
easterly Trade winds in the tropics. But there are major discrepancies:
the observed jets are weaker than this simple theory would predict, the
observed surface extratropical westerlies are missing (or in the wrong
place), and the high latitude atmosphere is not in radiative equilibrium
(or it would be much colder than it is). So we are missing some impor-
tant factors (eddies, of course). We are also missing, in this equinoctial
or annually averaged view, asymmetry about the equator.
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1.3 The asymmetric case [G]
Lindzen and Hou (1988) took

Te = T00(z) + To �(')Z(z)

with
�(') = ��[(sin'� sin'0)2 �

1

3
] . (13)

where '0 is the latitude of maximum Te('0 = 0 reduces to the Held &
Hou case of eq. (12)). The theory goes basically the same way but with
some di¤erences:

1. cannot assume symmetry: j'+h j 6= j'�h j;

2. the dividing streamline (assumed vertical) is at '1, not at the
equator; moreover, we cannot assume '0 = '1;

3. in the AMC cells, M = 
a2 cos'1, so

um(';H) = 
a
(cos2 '1 � cos2 ')

cos '

As shown in Fig. 9, um (';H) (and hence hTmi also) is symmetric
about the equator, not about '0 or '1, within the AMC cells (but
these may not be symmetric in latitudinal extent). Note that there
are easterlies in the equatorial upper troposphere for '0 6= 0.

There are 4 unknowns � hT i (0), '1, '+h ; '�h� and 4 constraints (2
matching conditions at each of 2 interfaces). Inviscid solutions for the
last 3 look are shown in Fig. 10.
N.B.:

1. '�h > '
+
h : more spread into the winter hemisphere;
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Figure 9: [Lindzen & Hou, 1988]

Figure 10: [Lindzen & Hou, 1988]

15



2. '1 � '0 : the dividing streamline is much further poleward than
the Te maximum; the Te maximum lies within the larger, cross-
equatorial cell.

The temperature structure is

hT i (') = hT i ('1)�

2a2T0
2gH

(sin2 '� sin2 '1)2
cos2 '

which is shown in Fig. 11. For small angles,

Figure 11: [Lindzen & Hou, 1988]

hT i (') ' hT i (0) + 
a
2T0
gH

('1
2'2 � 1

2
'4) ;

so

1. T has a local minimum at the equator for '0 6= 0

2. T is maximum at ' = �'1 (for small '1):

Numerical solutions were obtained by Lindzen and Hou for � =
0:5m2s�1. The meridional streamfunction is shown in Fig. 12. for three
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Figure 12: [Lindzen & Hou, 1988]
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Figure 13: [Lindzen & Hou, 1988]

values of '0. Note the strong asymmetry with even a small displacement
'0 of the Te maximum o¤ the equator. The zonal wind distribution for
'0 = 6

o is shown in Fig. 13.
Note:

1. The jet in winter hemisphere is much stronger than that in summer.

2. Generally, the inviscid theory is not not too bad qualitatively (e:g.
location of jets; departures from symmetry about the equator;
weak equatorial easterlies) but poor quantitatively (jets much too
strong). So the assumption of AM conservation does not look too
good.

The corresponding temperature structure is shown in Fig. 14. Note
especially the �at isotherms in the tropics, between the jets, and the
strong baroclinic zone in the winter hemisphere. Apart from the exteme
magnitude of the jets, note that the surface westerlies are located in the
subtropics, beneath the subtropical jets, and not in middle latitudes.
Overall, the theory and the model results suggest the schematic of

Fig. 15.
While the strong asymmetry is indeed evident in the solstice seasons,

the senstivity of the asymmetry to small asymmetry in the external
forcing may not be as great in reality as in these simpli�ed calculations
suggest [Dima & Wallace, 2003; Walker & Schneider, 2005].
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Figure 14: [Lindzen & Hou, 1988]

Figure 15: Schematic of the theoretical asymmetric Hadley cell.
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Recall also that, at the edge of the theoretical inviscid Hadley cell, u
need not be continuous; indeed, results show it is not (Fig. 6), at least for
these simple forcings. Discontinuity of u implies a delta-function (and
therefore an extremum) of vorticity, a state that might be expected to be
unstable to 3D perturbations. Therefore, while these simple 2D models
give a qualitatively satisfying picture of the tropical Hadley circulation,
such a state may be impossible to achieve in practice.
In reality, of course, the �ow is not zonally symmetric and this fact

has a major impact on the actual tropical circulation, in two ways. First,
transient synoptic eddies transport angular momentum out of the tropics
and thereby cause violation of AM conservation. Second, the thermal
driving of the circulation is strongly a¤ected by zonal asymmetries in the
lower boundary conditions: thus the circulation becomes regionalized
on the continental scale, especially during northern summer when the
zonally averaged circulation is dominated by the South Asia / Indian
Ocean monsoon system.
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