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ABSTRACT

Moist convection is an exquisite yet powerful participant in the creation of weather on our planet. To facilitate
numerical modeling of weather systems in a moist atmosphere, a direct and consistent application of dynamic
and thermodynamic principles, in conjunction with parameterized microphysics, is proposed. An earlier for-
mulation of reversible thermodynamics, in terms of the mass of air and water substance and the total entropy,
is now extended to include the irreversible process of precipitation through parameterized microphysics. The
dynamic equations are also formulated to account consistently for the mass and momentum of precipitation.

The theoretical proposal is tested with a two-dimensional model that utilizes a versatile and accurate spectral
method based on a cubic-spline representation of the spatial fields. In order to allow a wide range of scale
interactions, the model is configured on multiply nested domains of outwardly decreasing resolution, with noise-
free, two-way interfaces. The semi-implicit method provides efficient time integration for the nested spectral
model.

The tests performed are the simulation of the growth of single-cell clouds and also the generation of self-
sustaining multicell squall lines, and the effects of various resolutions on the simulations are examined. The
results favorably compare with similar results found in the literature, but also offer new insights into the interplay
between dynamics and precipitation.

1. Introduction

In the Tropics, moist convection dominates the pro-
cess of transporting mass, energy, and momentum
through the atmosphere. At the heart of the process are
short-lived, cloud-scale cells driven by latent heat from
condensing water vapor. The dynamics of individual
cells are in a stochastic regime of turbulence (Ooyama
1982), and the extra mode of transport by precipitation
of condensed water adds to their complexity. General
confinement of convection by the ground and the stable
stratosphere forces neighboring cells to interact, pro-
moting mesoscale organization of cells. On longer time-
scales, the large-scale environment can influence and
control the mesoscale organization and activities. Our
problem, here, is how to handle this long chain of mul-
tiscale interactions in numerical models of weather sys-
tems. The genesis of tropical cyclones is a particular
example that has motivated the present study.

In those models that do not resolve cloud scales, moist
convection is usually parameterized. While this is a rea-
sonable approach under such limitations, parameteri-
zation has remained largely a heuristic art, due to the
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lack of a clear spectral gap between explicit field var-
iables and implicit clouds, which a more deductive the-
ory could have exploited. To overcome this ambiguity,
a number of cloud-resolving models have been devel-
oped, starting from early works by Ogura and Takahashi
(1971), Yamasaki (1977), Klemp and Wilhelmson
(1978), etc., and culminating in institutionally devel-
oped general-purpose models, such as MM5 (http://
www.mmm.ucar.edu/mm5/doc.html) and ARPS (http://
wwwcaps.ou.edu:80/ARPS/). Applying these models, it
is now possible to study a variety of mesoscale phe-
nomena with explicit convection.

The model proposed in this paper is not ready for
general application. At present, it is spatially two-di-
mensional in x and z on a flat earth (no terrain); the
microphysics of precipitation is parameterized by a Kes-
sler-type formulation; no radiative transfer is included;
and only a crude formulation of eddy fluxes in the at-
mospheric boundary layer, above the constant-flux sur-
face layer, has been attempted. What is offered, instead,
is a formulation of dynamic and thermodynamic prin-
ciples and a clean strategy of nested spectral modeling,
both of which can later be extended to more compre-
hensive models. It is believed, however, that the model
in its present form can be utilized for understanding
both the enormous complexity of moist convection and
the role of many critical options that have to be chosen
in numerical simulations of particular events.
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It was proposed in Ooyama (1990), referred hereafter
as O90, that the separation of dynamics and thermo-
dynamics by their primary roles would simplify the the-
oretical design of numerical models of the moist at-
mosphere. The role of dynamics is to predict temporal
changes in the spatial distribution of conservative prop-
erties, such as mass, momentum, and entropy (or inter-
nal energy), while that of thermodynamics is to diagnose
relevant states of each chemical component of matter,
such as pressure, temperature, and phases of water. A
few assumptions were made in O90: water vapor was
treated as an ideal gas, the volume of condensed water
was neglected, and the ice phase was continuously
merged with the liquid phase into a synthesized, single
phase of condensate. Otherwise, the theory closely fol-
lowed the classical formulation of reversible thermo-
dynamics.

In order to allow precipitation in the model, however,
the thermodynamics must be generalized to include ir-
reversible microphysical processes. This can be
achieved, as shown in section 2, by a simple extension
of the reversible theory of O90, provided that the ir-
reversible processes are parameterized. Comments on
other irreversible processes are given in appendix B. As
for the dynamics, we had earlier thought that the prog-
nostic equations based on conservation principles were
well established, until a problem was discovered in the
equation of vertical momentum when parameterized
precipitation was included. A consistent resolution of
the problem is discussed in section 3. Computational
adaptation of those equations, including a remedy for
the computational negative water, is given in section 4.

The finiteness of computational resources constrains
the design of numerical models. In a cloud-resolving
model of weather systems, the required range of spacial
scales may possibly run from 0.1 to 1000 km. We have
decided to adopt the strategy of domain nesting to allow
such a range of scales in a single model, although it
presumes that the convective activities of interest are
confined to the inner domains of finer resolution. We
have also decided on a spectral representation of the
spatial fields by cubic splines, because accuracy in com-
putational phase speeds is essential to noise-free, two-
way nesting. The essence of this numerical method has
been described in DeMaria et al. (1992) and is sum-
marized in section 5.

Two series of experiments with the model are dem-
onstrated in this paper. Simulation of a single cloud cell
in various spatial resolutions is discussed in section 6,
and the generation of a squall line in a sheared envi-
ronment in section 7. A benchmark test of the model is
also given in appendix C. The results favorably compare
with those of similar studies in the literature. Problems
for future work are discussed in the final section.

2. Thermodynamic diagnosis
a. Mass variables

The atmosphere we consider is made of dry air and
water substance. The water substance is recognized in

two phases, vapor and condensate (liquid or solid). The
condensate is further classified in two modes, airborne
and precipitating. The distinction occurs from the dif-
ference in implied particle size. Due to its small particle
size, airborne condensate (cloud) is in instantaneous
equilibrium and moves together with the environment
of moist air in which it is suspended. Due to its greater
drop size and smaller surface-to-volume ratio, the pre-
cipitating condensate (rain or snow) needs time to adjust
itself to the environment through which it falls. Thus,
the spatial distribution of precipitating water must be
predicted separately from that of airborne moisture (the
sum of vapor and airborne condensate), with due con-
sideration of the conversion between phases and be-
tween modes.

The estimation of those conversion rates is greatly
facilitated by the adoption of a Kessler-type parame-
terization of the microphysics. The boldest assumption
by Kessler (1969) is to collapse the drop size–dependent
processes into a set of a few formulas written in terms
of the precipitation water content (a single scalar), by
integrating them over an assumed drop size distribution.
The specific formulas, adopted from Klemp and Wil-
helmson (1978), are listed in appendix A.

Ideally, the liquid and ice phases of the condensate
should be separate. In active clouds, however, the two
phases are hardly in equilibrium; and, moreover, the ice
has various crystal forms and various degrees of ag-
gregation. In order to avoid the complication of a non-
equilibrium mixture, O90 synthesized a single, contin-
uous phase of condensate that would behave, with re-
spect to vapor, like liquid or ice, depending on tem-
perature. The synthesis was made by smoothing the
Kirchhoff equation across a freezing zone of tempera-
ture, in such a way that all three phases of water were
consistently modified. The smoothed saturation vapor
pressure was practically unchanged from the original,
either over liquid or over ice depending on temperature,
but the latent heat of fusion was replaced by a large
anomaly of the specific heat of the synthesized con-
densate in the freezing zone. This approximation is
adopted in the present model. Accordingly, we do not
introduce additional formulas for parameterizing ice–
form interactions, except for reducing the fall speed of
our single-phase precipitation when the temperature is
below the freezing point.

The mass variables are expressed as densities in geo-
metrical space. Since the symbols used in O90 for this
purpose have proved to be rather unpopular, we revert
here to the more traditional density symbol, r, with
subscripts. Namely, ra stands for dry air, ry for vapor,
rc for airborne condensate (cloud), and rr for precipi-
tating condensate (‘‘rain’’ and ‘‘snow’’ in our extended
sense). We also define rm 5 ry 1 rc for the total airborne
moisture, and r 5 ra 1 rm 1 rr for the total mass per
unit volume. As discussed below, ry and rc are not
independently predicted, but diagnostically separated
from the predicted rm.
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b. Entropy

The first law of thermodynamics concerns energy
conservation and can be expressed in terms of the in-
ternal energy, entropy, or enthalpy. In a model of the
moist atmosphere on the geometrical coordinates, the
entropy, in our view, is the most convenient variable to
express the conservation law. In the meteorology of the
dry atmosphere, the potential temperature is the prev-
alent variable employed for the same purpose, but it is
merely an exponential transform of the entropy ex-
pressed in units of temperature. The equivalent potential
temperature is also widely used in studies of the moist
atmosphere, although it is only approximately conser-
vative due to the assumption of the pseudoadiabatic pro-
cess. Various proposals, such as Betts (1973) and Tripoli
and Cotton (1981), have been made to define a potential
temperature that more rigorously handles the phase
changes of water substance. Hauf and Höller (1987)
have argued that those definitions are covered by the
entropy temperature, which they defined directly from
the entropy. In the present paper, the entropy itself is
used as one of the prognostic variables. If so desired,
a conversion of the entropy to an equivalent variable in
temperature units can be easily made from the model
output.

If all the processes are adiabatic and reversible, the
entropy is strictly conserved. This is assumed to be the
case with respect to phase transitions of water substance
within the moist atmosphere. On the other hand, certain
important processes in the real atmosphere, such as the
diffusive mixing or the generation of precipitation, are
irreversible. The common practice in modeling is to add
the effects of those irreversible processes to the con-
servation equations in the form of parameterized sources
and sinks. In this regard, the present model shares the
same basic premise with other dynamic models of the
atmosphere. Nevertheless, it will be prudent to ascertain
that the employed parameterization does not violate the
second law of thermodynamics. Further discussions on
the second law are given in appendix B.

One unique feature in the formulation of the present
model is our treatment of the pressure. The prevailing
practice in atmospheric modeling is to predict the pres-
sure by a tendency equation which is derived from the
combination of dynamic and thermodynamic principles.
Although the derivation for the dry atmosphere is
straightforward, the corresponding one for the moist
atmosphere becomes entangled with the complexity of
moist thermodynamics. According to the classical dic-
tum of thermodynamics, the pressure is a state variable
that, along with the temperature, can be diagnostically
determined from the mass and entropy. Thus, it was
proposed by O90 to separate the dynamics out of the
determination of the pressure. Even in hydrostatic mod-
els, as discussed by O90 and demonstrated by DeMaria
(1995), this approach eliminates Richardson’s problem
of an awkward ‘‘w equation’’ on the height-coordinate.

In nonhydrostatic moist models, the same approach also
allows a stylistically simple yet accurate set of prog-
nostic equations and facilitates the logistics of solution.

The entropy per unit volume may be defined for each
mass component in the volume, that is, sa for the dry
air, sm for the airborne moisture (vapor and cloud), and
sr for the precipitating water. In the present model, how-
ever, only the total entropy density, s 5 sa 1 sm 1
sr, needs to be predicted. In particular, as explained
below, it does not require a separate prediction of sr.

c. Temperature

In the absence of precipitation, O90 defined two equi-
librium states of moist air that were possible for a set
of predicted values of ra, rm, and s. State 1, at tem-
perature T1, is characterized by the absence of conden-
sate, even if the vapor is supersaturated. State 2 is char-
acterized by the vapor being saturated at temperature
T2, even by evaporating borrowed water if necessary.
The two temperatures are diagnostically determined by
solving, respectively,

s 5 S (r , r , T ) and s 5 S (r , r , T )1 a m 1 2 a m 2

for known thermodynamic functions S1 and S2 (see ap-
pendix B). For reasons discussed in O90, the realistic
temperature T, without supersaturation or borrowed wa-
ter, should be the greater of T1 and T2, while T2 is always
identifiable as the wet-bulb temperature.

In the presence of precipitation, the procedure re-
quires a few modifications. Since all the matter in state
2 is at the same wet-bulb temperature, T2 can be de-
termined first, by solving

s 5 S (r , r 1 r , T ),2 a m r 2 (2.1)

where the predicted s now contains sr. It is noted that,
if water must be ‘‘borrowed’’ to saturate the air, it should
not come from rr but from rc. Any change in rr should
occur during prediction in time, not in the diagnostic
procedure at a fixed time, while rc is mathematically
allowed to become negative in diagnostic calculations.

In determining state 1, the role of precipitation is
equally passive; although rc is constrained to zero, rr

remains unchanged. Since T2 has been determined by
(2.1), sr is already known by

s 5 r C(T ),r r 2 (2.2)

where C(T2) is the specific entropy of condensate at T2.
Thus, all the effects of precipitation can be discounted
in the equilibrium equation for state 1, and T1 is obtained
by solving

s 2 s 5 S (r , r , T ).r 1 a m 1 (2.3)

The realizable temperature T is determined by

T 5 max(T , T ).1 2 (2.4)

It is noted that (2.2) is based on an idealization that
the temperature of raindrops is at the wet-bulb temper-
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ature in unsaturated air. Kinzer and Gunn (1951) ob-
served the relaxation time of raindrop temperature to
be approximately 4.35 s. This rapid relaxation is due to
the small amount of heat required to adjust the tem-
perature of a raindrop as compared to that required to
evaporate it. Thus, in unsaturated air, rr must be pre-
dicted with a parameterized evaporation rate, but sr is
a known quantity once the wet-bulb temperature is di-
agnosed. The exchange of both the sensible and latent
heat between the raindrops and gaseous environment is
internal to the prediction of the total entropy. In satu-
rated conditions, the temperature itself is the wet-bulb
temperature, and there is thermodynamically no differ-
ence between cloud and precipitation.

d. Pressure and other state variables

Once the temperature is known, the total pressure, p,
is given by

p 5 p 1 p ,a y (2.5)

where the partial pressures, pa for dry air and py for
vapor, are determined by

r R T if T 5 T ,m y 1p 5 r R T, p 5 (2.6)a a a y 5E(T ) if T 5 T ,2

where E(T) is the saturation vapor pressure. The vapor
density and cloud water content are

21r 5 (R T ) p , r 5 r 2 r . (2.7)y y y c m y

Note that, if T 5 T1, rm 5 ry and rc 5 0.

3. Prognostic equations in flux form

a. Definitions and clarifications

Our working model is two-dimensional in the vertical
plane and can be run in either of two modes: slab sym-
metric or axisymmetric. Since the model will eventually
be three-dimensional, the dynamic equations below are
given in 3D on an f plane, written in Cartesian coor-
dinates (x, y, z). We use vector notation for the horizontal
(x, y) components, and the vertical component will be
written separately. This is because the fall speed of pre-
cipitation W is purely vertical, and its place in the ver-
tical momentum equation needs to be highlighted. Thus,
(v, w) denotes the velocity of both dry air and airborne
moisture (vapor and cloud), while (v, wr) denotes the
velocity of precipitating water, with wr 5 w 1 W. The
sign convention for w and W are the same, so that W
is always negative (downward).

When rc (cloud) is present in saturated air, it may be
converted to rr (precipitation), by autoconversion and
collection processes, at a finite rate Qr. When rr is pre-
sent in unsaturated air, it evaporates back to ry (vapor)
at a finite rate, which will be denoted by a negative
value of Qr. Since both ry and rc are part of the total
airborne water rm, we may treat Qr, either positive or

negative, as the conversion rate between rm and rr. Para-
metric formulas for Qr and W are given in the appen-
dix A.

Other physical processes, such as radiative heat trans-
fer, boundary layer eddy fluxes, and internal diffusive
processes, are not included in the present discussion. A
Newtonian cooling may be added to the entropy pre-
diction, but a more realistic formulation of radiative
fluxes is outside the scope of this paper. Model exper-
iments that run more than a few hours should include
interactions of the atmosphere with the underlying sur-
face. Although a conventional formulation of the con-
stant-flux surface layer and a crude formulation of eddy
fluxes in the mixed layer are included in our model,
these are not utilized in the experiments reported in this
paper.

The omission of internal diffusion terms from our
equations is deliberate and requires a clarification. In
general, models of finite resolution must avoid the ac-
cumulation of spectral power near the Nyquist wave-
length (2Dx). Such a problem may occur due to either
the inherent spectral cascades in nonlinear dynamics or
the numerical accuracy in handling the smallest scales.
Although these causes are often inseparable, the prob-
lem is usually abated by the inclusion of diffusion terms,
attributed to ‘‘subgrid-scale’’ turbulence. In the present
model, a low-pass filter that is built into the spectral
transform (see section 5b) is applied to every prognostic
variable at each time step. Although the filter is designed
primarily for reducing the spectral representation error
in 2 to 3Dx waves, it also effectively eliminates the
spectral accumulation in these scales that is due to non-
linear cascades. Thus, additional diffusion terms are
found unnecessary for computational stability and are
omitted in our equations. On the other hand, since the
built-in filter has a sharp cutoff taper of the sixth order,
the filter will not override the added effects of the sec-
ond- or fourth-order diffusion, if such effects are called
for by the model physics. (See appendix C for a dem-
onstration.)

b. Conservation equations for mass and entropy

The continuity equations for the mass variables, ra,
rm, and rr, are given by

] r 1 = · (r v) 1 ] (r w) 5 0, (3.1)t a a z a

] r 1 = · (r v) 1 ] (r w) 5 2Q , (3.2)t m m z m r

] r 1 = · (r v) 1 ] (r w ) 5 Q . (3.3)t r r z r r r

These three equations are independent and may be com-
bined into other convenient forms. In particular, the sum
of the three gives the equation for the total mass,

] r 1 = · (rv) 1 ] (rw 1 r W) 5 0.t z r (3.4)

Obviously, there is no internal source of mass; but, since
W does not vanish at the ground, the second term of
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the vertical mass flux implies a loss of precipitating
water to the ground.

Similarly, the equation for the total entropy is given by

] s 1 = · (sv) 1 ] (sw 1 s W) 5 0.t z r (3.5)

Internal heat exchanges among various constituents are
balanced out, although there is, again, a loss of entropy
to the ground due to precipitation.

c. Conservation equations for momentum

The horizontal momentum equation for the total mass,
including precipitation, is

] (rv) 1 = · (rvv) 1 ] [(rw 1 r W )v]t z r

1 f k 3 (rv) 1 =p 5 0, (3.6)

where, in the third term, rrW supplements rw to account
for the vertical flux of horizontal momentum by pre-
cipitation.

Since the pressure gradient force acts on volume, it
does not directly accelerate the condensate whose vol-
ume is negligibly small. Nevertheless, even in accel-
erating conditions, no relative horizontal motion is as-
sumed between the condensate and gaseous environ-
ment. This implies that a frictional drag force instan-
taneously eliminates any velocity difference. For the
total mass, the action and reaction balance out internally.

The circumstance is a little different in the vertical.
To illustrate the problem, we write the vertical momen-
tum equations separately for ram 5 ra 1 rm and rr. The
vertical component of velocity is w for the former, and
wr 5 w 1 W for the latter. Specifically,

] (r w) 1 = · (r wv) 1 ] (r ww) 1 r g 1 ] pt am am z am am z

5 2F 2 Q w, and (3.7)r r

] (r w ) 1 = · (r w v) 1 ] (r w w ) 1 r gt r r r r z r r r r

5 F 1 Q w , (3.8)r r r

where Fr is the vertical component of frictional drag
force acting on rr, and its reaction on ram. The pressure
gradient force on rr is, again, negligible.

The sum of (3.7) and (3.8) yields an equation for the
total vertical momentum:

] (rw 1 r W ) 1 = · {(rw 1 r W )v}t r r

1 ] {rww 1 r W(2w 1 W )} 1 pg 1 ] pz r z

5 Q W, (3.9)r

in which Fr is balanced out, but a source term, QrW,
remains as the residual of 2Qrw and Qrwr.

To explain the cause of this residual source, let us
assume for the moment that Qr is positive. Then, the
term 2Qrw on the rhs of (3.7) represents a rate of mo-
mentum loss in ram simply due to the fact that part of
rm moving with velocity w is reclassified to be part of
rr. The same reclassified mass appears in (3.8) as a

momentum source but with velocity wr. This sudden
acceleration is due to the gravity acting on raindrops
(or snow) before it becomes fully opposed by Fr. There-
fore, the source term is legitimate, except for the ide-
alization that the acceleration takes place instantaneous-
ly as soon as the parameterization reclassifies airborne
condensate to precipitation. If Qr is negative, it is an
instantaneous deceleration that accompanies the reclas-
sification of precipitation to vapor.

As a prognostic equation, however, (3.9) has a logical
contradiction. The contradiction is actually inherited
from (3.8), which considers wr to be a prognostic var-
iable. Since w itself is predictable by (3.7), these equa-
tions are in fact predicting W, in spite of our assumption
to parameterize. In terms of prognostic calculations,
(3.9) also presents practical difficulties to a numerical
scheme which requires a priori specification of the lower
boundary condition on (rw 1 rrW). An attempt to ig-
nore only the local time derivative of W leaves physi-
cally unacceptable source/sink terms in the kinetic en-
ergy budget. Theoretically, we can choose to predict W,
by removing it from the list of parameterized variables.
This option, however, may lead to the total abandonment
of the microphysics parameterization, because W is in-
timately involved in the estimation of Fr and Qr. In
order to stay the course, (3.8) and (3.9) must be some-
how modified to be compatible with the diagnostic de-
termination of W.

This dilemma has a well-known precedent in the
quasistatic system of equations. The customary reso-
lution is to ignore the material derivative of w in the
equation of vertical motion, while w is diagnostically
derived from the hydrostatic equation (e.g., O90), al-
though this leads to a counterintuitive consequence that
the kinetic energy budget will not contain the contri-
bution of the vertical motion. As observed by Eliassen
and Kleinschmidt (1957, 20–21), this is commonly ac-
cepted as a plausible approximation without rigorous
justification.

In the present nonhydrostatic case in which w is fully
prognostic, an analogous principle may be applied to
the terminal fall speed W. Namely, we postulate that the
material derivative of W along the path of precipitation,

(r)D W [ ] W 1 v · =W 1 w ] W,t t r z (3.10)

be ignored in (3.8), which then is reduced to

] (r w) 1 = · (r wv) 1 ] (r ww ) 1 r g 2 Ft r r z r r r r

5 Q w. (3.11)r

Similarly, (3.9) for the total vertical momentum is re-
placed by

] (rw) 1 = · (rwv) 1 ] [(rw 1 r W )w] 1 rgt z r

1 ] p 5 0, (3.12)z

which is the sum of (3.11) and (3.7).
Although the kinetic energy equation is not used in
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prediction, it is interesting to see how it comes out of
the new set of prognostic equations. From (3.6) and
(3.12) with the aid of (3.1)–(3.4), an equation for the
total mechanical energy is derived as

] (K 1 F) 1 = · [(K 1 F 1 p)v]t

1 ] [(K 1 F 1 p)w 1 (K 1 F )W ]z r r

5 p(= · v 1 ] w) 1 gr W, (3.13)z r

with the definitions
2 2K [ r(v 1 w )/2, F [ grz,
2 2K [ r (v 1 w )/2, F [ gr z, (3.14)r r r r

where K and F are the total kinetic and potential energy
per unit volume, respectively; and Kr and Fr of the
precipitation alone are defined for the convenience of
notation, although these are part of the total. As ex-
pected, the kinetic energy does not contain any contri-
bution from W in this energy budget of the modified
system.

On the rhs of (3.13), the first term is the mechanical
work done by the changing specific volume against pres-
sure and constitutes the link with the internal energy of
gaseous matter. The second term is always negative, as
W is, and represents the dissipation of kinetic energy of
precipitation due to work done by the frictional drag
against falling precipitation (i.e., FrW), although Fr is
replaced by the nearly equivalent grr under the present
approximation. In the third term on the lhs of (3.13),
the extra flux by W does not vanish at the ground and
represents a loss of the mechanical energy from the
atmosphere; Kr will be lost on impact, though, on ele-
vated terrain, Fr is still retained by the ground water
so that it can run downhill.

In conclusion, we shall accept (3.12) as a plausible
and consistent approximation for the vertical momentum
equation. In more practical terms, numerical discrep-
ancies that may arise from ignoring (3.10) are expected
to be slight, because W varies rather slowly with a small
fractional power of rr and the square root of ra, with
possible minor exceptions in the melting zone.

4. Computational adaptation
a. The equations in advective form

For the convenience of numerical calculations, the
equations in the preceding section are converted to
equivalent equations in advective form. Since our nu-
merical method utilizes differentiable spectral bases, the
conversion does not alter the conservativeness of the
original flux form.

The water mass variables are normalized by dry air;
that is, the mixing ratios1 are defined as mm 5 rm/ra,

1 In recent literature, the symbol for the mixing ratio varies between
r and q. Historically (Huschke 1959), it was w, while q was for the
specific humidity. We take the liberty of adopting m for the mixing
ratio as in O90.

mr 5 rr/ra, and m 5 mm 1 mr. Similarly, we define the
dry-air specific entropy s 5 s/ra. The advection op-
erator is abbreviated as

D ( ) [ ] ( ) 1 v · =( ) 1 w] ( ).t t z (4.1)

For the mass equations, (3.1) through (3.4) are now
written as

D (lnr ) 1 (= · v 1 ] w) 5 0, (4.2)t a z

21D m 5 2r Q , (4.3)t m a r

21D m 5 r [Q 2 ] (r W )], (4.4)t r a r z r

21D m 5 2r ] (r W ). (4.5)t a z r

Of the last three equations for water substance, only two
are independent and actually used in prediction. Our
preference is (4.4) and (4.5).

For the entropy, (3.5) becomes
21D s 5 2r ] (s W).t a z r (4.6)

For the horizontal and vertical components of veloc-
ity, (3.6) and (3.12) respectively yield

21 21D v 1 f k 3 v 1 r =p 5 2r r W] v, (4.7)t r z

21 21D w 1 g 1 r ] p 5 2r r W] w. (4.8)t z r z

b. Background and deviations

The mass and thermodynamic states are strongly
stratified in the atmosphere. By predicting deviations
from predefined background states, rather than the full
values of variables, we may gain a few decimal places
in numerical accuracy. Such a gain is not trivial, since
the model repeats prognostic calculations in small time
steps a great number of times.

In general, the background may vary in space. At the
present, it is defined to vary only in the vertical and
will be indicated by a circumflex on appropriate sym-
bols. For example, a, m, , p̂, etc. are functions of zr̂ r̂ ŝ
defining the background states of respective variables.
No background is assumed for precipitation, so that rr̂
5 0 and 5 a 1 m.r̂ r̂ r̂

We require that the background be a steady-state so-
lution of the model. In particular, it must be in hydro-
static balance:

gr̂ 1 ] r̂ 5 0.z (4.9)

If the background is in motion, it should be in geo-
strophic or similar balance. Thus, the background states
of model variables, such as density and entropy, can be
diagnostically determined from readily observable var-
iables, such as pressure, temperature, and relative hu-
midity.

Although any part of the definitions for the back-
ground states may also be used for defining the initial
states of a particular model run, the two states are con-
ceptually independent; an individual run can be started
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from any set of initial states as long as it is physically
possible.

The prognostic equations (4.2)–(4.8) are rewritten in
terms of deviations, indicated by a prime. Since the
transformation is rather mechanical, only a few exam-
ples are listed below.

With a shorthand notation, a, for the log-density of
dry air (normalized by a constant reference density r0),

a 5 ln(r /r ), â 5 ln(r̂ /r ),a 0 a 0

a9 5 a 2 â 5 ln(r /r̂ ), (4.10)a a

the mass continuity (4.2) becomes

D a9 1 w] â 1 (= · v 1 ] w) 5 0,t z z (4.11)

and, for the total water substance, (4.5) becomes

21D m9 1 w] m̂ 5 2r ] (r W),t z a z r (4.12)

where, since r 5 0,m̂

m̂ 5 m̂ , m9 5 m 2 m̂ 5 m9 1 m .m m r (4.13)

Another example of using deviations is given below.

c. Pressure gradient

From the predicted entropy and mass variables, the
pressure at any spatial point can be determined by the
diagnostic procedures of section 2. However, it is not
the pressure itself but its spatial gradient that is required
by (4.7) and (4.8). Since advective terms in those equa-
tions are calculated by the spectral transform method,
it is not advisable to employ a finite-difference method
to evaluate the pressure gradient. It was proposed in
O90 to calculate the gradient with the aid of analytic
differentiation of pressure in the manifold of thermo-
dynamic variables. This method, derived for reversible
thermodynamics, does not work well in the present case
which includes irreversible processes of precipitation.

Therefore, although the pressure is a diagnostic var-
iable, it has been decided to differentiate it by the spec-
tral transform method, in the same way as the prognostic
variables. For the sake of convenience, we define an
auxiliary variable t by

t 5 p/r ,a (4.14)

which computationally takes the place of pressure. Since
t is approximately proportional to the temperature, its
numerical range of variations is much smaller than that
of the pressure. The background and deviations are also
defined by

t̂ 5 p̂/r̂ and t9 5 t 2 t̂.a (4.15)

At each time step, t9 is transformed to spectral ampli-
tudes, from which =t9 and ]zt9 are obtained by the
inverse transform.

The pressure gradient term in (4.7) is now calcu-
lated by

21 21r =p 5 (1 1 m) (=t9 1 t=a9), (4.16)

and the same in (4.8), but together with g, by

21r ] p 1 gz

215 (1 1 m) (] t9 1 r] a9 1 t9] â 1 gm9), (4.17)z z z

where (4.9) has been used in the derivation. Note that
a is the log-density of dry air and m the mixing ratio
of the total water substance, as previously defined.

It is significant that the rhs of (4.17) avoids a severe
numerical degradation that would occur if the two large
terms on the lhs were directly calculated to yield a small
residual. When precipitation is present, mr is the most
prominent contributor to m9, and the last term, gm9, in
(4.17) represents the so-called water loading effect.

The new strategy for evaluating the pressure gradient
via spectral transform costs a little more computation
time but works extremely well. In fact, we have been
able to remove all ad hoc diffusion terms which were
once included in the prognostic equations, since no noise
occurs that must be suppressed by such means.

d. Hyperbolic transform of mixing ratios

A purely computational problem of negative water
can occur in any numerical model of finite resolution.
In our spectral model, it occurs in sidelobe oscillations
due to Gibbs’ phenomena. The sidelobes are not the
reflection of spectral aliasing or other inadvertent error,
but are simply the result of discarding the unresolvable
part of would-be continuous spectra. Their amplitudes,
in practice, are found to be less than a few percent of
the main lobes; and, if left untouched, they normally
incur no cumulative or permanent damage to model
runs, except for the case of water substance.

Near the edge of a cloud, especially above the cap
of a rising convective cell, the predicted mixing ratio,
m or mr, may become negative in the sidelobes and
cannot be interpreted thermodynamically. When finite-
difference models encounter similar difficulties, some
propose to redistribute negative values to neighboring
grid points, or some others employ the upstream dif-
ference scheme to avoid generation of negative values.
The definition of a neighborhood in the former is ar-
bitrary, and the scheme of the latter is very dispersive.
There are more elaborate schemes to preserve positive-
ness (e.g., Shchepetkin and McWilliams 1998), which
we are not quite ready to adopt.

Another way of coping with the problem is to predict
a transformed variable. For example, if n 5 lnm is pre-
dicted, the recovered m 5 expn will always be positive,
regardless of Gibbs’ phenomena in n. However, the log-
arithmic function bends m at all values; and, in practice,
the mean of m is not well preserved. As a better alter-
native, we propose a functional transform by one branch
of a hyperbola, in which m is stretched only when it is
small enough to be meteorologically insignificant.
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Let us consider first a hyperbolic transform and its
inverse, defined by

2 2 2 1/2n 5 0.5(m 2 m /m), m 5 (n 1 m ) 1 n, (4.18)0 0

where m0 is a constant (typically 1027), and a numerical
factor 0.5 on the first equation eliminates the necessity
of coefficients in the second. This transform is practi-
cally linear; that is, n ; 0.5m, for m k m0. If n becomes
negative, m will remain positive. Unfortunately, this
simple transform is invalid at m 5 0; thus, it cannot be
applied to the mixing ratio of condensate. Therefore,
(4.18) is slightly modified to extend its validity to m
5 0.

The biased hyperbolic transform and its quasi-inverse
are written in terms of two functions, bhyp(m) and
ahyp(n), which are defined by

2n 5 bhyp(m) [ 0.5[(m 1 m ) 2 m /(m 1 m )], (4.19)0 0 0

m 5 ahyp(n)

2 2 1/2(n 1 m ) 1 n 2 m , if n $ 0,0 0[ (4.20)50, if n # 0.

The transform between m and n is again linear for m k
m0, and bhyp(m) is valid at m 5 n 5 0. If n is negative,
the strict inverse of (4.19) will find a negative m but
only within a limited range: 2m0 , m , 0. Therefore,
the maximum adjustment of negative m by ahyp(n) does
not exceed m0.

The proposed adjustment is admittedly pragmatic but
its meteorological significance (or insignificance) may
be measured in terms of the potential temperature dif-
ference, Du, between whether the amount of water rep-
resented by m0 is in vapor or fully condensed. Our typ-
ical value, m0 5 1027, yields Du , 3 3 1024 K, which
we consider to be small enough. We have made a num-
ber of test runs in vigorously convective situations. The
results showed no discernible difference between m0 5
1027 and 1028, while very slight differences were de-
tected in the case of m0 5 1026.

The transform by bhyp(m) is required only for pre-
paring the initial n before a model run, and there would
be no problem in restricting the initial input of m to be
zero or positive. The prediction is made in terms of n,
and it may run freely positive or negative. Although m
at each time step must be recovered by ahyp(n) as input
to thermodynamic diagnosis, n itself is untouched, so
that the effect of m adjustments does not accumulate in
the predicted n.

Applying (4.19) to the two variables m 5 mm 1 mr

and mr, we may rewrite (4.4) and (4.5) as

21D n 5 (dn /dm )r [Q 2 ] (r W )], (4.21)t r r r a r z r

21D n 5 2(dn /dm)r ] (r W ), (4.22)t a z r

where nr 5 bhyp(mr), n 5 bhyp(m), and

dn (m 1 m ) 2 nr r 0 r5 ,
dm (m 1 m )r r 0

dn (m 1 m ) 2 n05 . (4.23)
dm (m 1 m )0

Actual prediction of n is performed in terms of its de-
viation n9 from the background 5 bhyp( ).n̂ m̂

5. Numerical method

a. Conditions for ideal nesting

In order to allow the large-scale environment to in-
teract with convective clouds, the model is configured
on horizontally nested domains of varying resolution.
In the vertical there is no nesting, but the resolution may
be optionally varied with height by the use of a stretched
coordinate.

For prediction of a hyperbolic system of equations,
nested models have been known for numerical noise
that is generated as waves attempt to cross a domain
interface. By adopting a nesting strategy, we accept the
obvious fact that certain short waves in one domain are
geometrically unresolvable in another of a coarser res-
olution. No numerical scheme can alter this fact. How-
ever, it must also be recognized that those would-be-
resolvable waves are not necessarily transmissible to the
coarse domain. Transmissibility depends on dynamics
and is determined by the existence of a matching time-
frequency on both sides. It can be improved by accurate
numerical methods but never beyond the resolvability.
In designing a nesting strategy, therefore, we must ob-
serve the following conditions.

1) The gap between resolvable and transmissible waves
should be minimized.

2) Nontransmissible waves should not be allowed to
reach the interface. If they do, they will be totally
reflected, usually as waves in the computational
mode with negative group velocities.

3) The computational phase speed of transmissible
waves must be identical on both sides of the inter-
face. A mismatch of phase speeds will cause partial
reflection.

4) The interface condition for any field variable is sim-
ply that its value and spatial derivatives of every
order are matched across the interface. Then, pro-
vided conditions 2 and 3 are met, the transmissible
waves will be oblivious to the presence of the in-
terface.

The harmonic spectral method is ideal in many re-
spects, but it does not accept any boundary condition
except for periodicity. There have been proposals (e.g.,
Tatsumi 1986) for a modified harmonic spectral method
which incorporates a few nonperiodic bases to satisfy
arbitrary conditions at the exterior boundary of a finite
domain, but the idea is not extendable to two-way nest-
ing over multiple domains. A series of Chebyshev func-
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tions can also accommodate boundary conditions (Ful-
ton and Schubert 1987), but the nonuniform spatial rep-
resentation, extremely skewed toward the boundary,
makes it a poor choice for atmospheric applications.

Among the gridpoint methods, second-order differ-
ence schemes are employed in many nested models,
such as Kurihara and Bender (1980), Zhang et al.
(1986), Chen (1991), and Grell et al. (1995). However,
the dispersion characteristics of second-order schemes
are hardly ideal in view of the conditions stated above.
If the mesh size is Dx in a fine domain and doubled in
an adjacent coarse domain, the threshold wavelength of
transmissibility (by the centered scheme with Courant
number 0.5) is 11.5Dx; waves shorter than this limit are
totally reflected, and longer waves (up to 20Dx, de-
pending on the assumed tolerance level) cause partial
reflection. The reflected waves, which are pure noise in
the computational mode, can be removed by appropriate
filters or damping schemes, but it is more important to
narrow the spectral range of nontransmissible waves by
employing accurate numerical schemes. This can be
achieved by the use of higher-order difference schemes
(e.g., Tremback et al. 1987) but necessary studies of
interface conditions for nesting have not been under-
taken.

b. The SAFER method

The nesting strategy we have adopted is the spectral
representation of spatial fields by cubic B-splines, which
are assigned one each at equally spaced nodes in a do-
main and form the basis functions. Any field, repre-
sented by a set of amplitudes at the nodes, is continu-
ously differentiable up to the second order, and the third-
order derivative is piecewise continuous. The idea was
first applied to Global Atmospheric Research Program
Atlantic Tropical Experiment data analysis by Ooyama
(1987) and further developed as the architectural foun-
dation for domain nesting in prognostic models. The
algebraic detail of this numerical method, called the
Spectral Application of Finite-Element Representation
(SAFER), was described by DeMaria et al. (1992), in-
cluding the definition of spline-spectral transforms, the
low-pass filter built into the transform, the general form
of boundary conditions, and the logistics of exchanging
data between adjacent domains. While barotropic hur-
ricane track forecasting was the only application dis-
cussed by DeMaria et al. the method itself is sufficiently
accurate and versatile for application to numerically
more demanding problems. The result of a test with a
nonlinear flow problem (Straka et al. 1991) is given in
appendix C, although this example is in a single domain
and does not involve nesting. For the present purpose,
a few significant aspects of the method may be noted
below.

The size of the nodal interval, Dx, determines the
resolution of each domain. As in a finite Fourier series,
only the cosine wave has a representation at the Nyquist

wavelength, 2Dx. Unlike the Fourier, however, the dis-
parity between cosine and sine lingers on up to about
3Dx waves, and these short waves should not participate
in the spectral representation. Thus, a constraint on the
third-order derivatives is included in the least-squares
minimization that defines the transform of spatial fields
to nodal amplitudes. The constraint has the effect of a
low-pass filter with a sixth-order cutoff taper; its spectral
response R (translated as for a Fourier filter) is given by

6 21R(l, l ) 5 [1 1 (l /l) ] ,c c (5.1)

where l is the wavelength in units of Dx and lc the
adjustable cutoff wavelength (defined as the half-re-
sponse point), which is normally taken to be 2 but may
be defined as a function in space.

For wavelengths greater than 3Dx, the phase speed
is very accurate provided that the Courant number does
not exceed a critical value (;p21). The threshold wave-
length of transmissibility (to a double-spaced coarse do-
main) is 5.2Dx, and waves longer than 6Dx are fully
transmissible. Therefore, if lc is gradually increased
from 2 to 4 in a narrow zone abutting the interface, all
waves approaching the interface are transmitted to the
coarse domain without reflection. Thus, the present
method meets conditions 1 through 3 quite well; in fact,
it does much better than fourth- or even sixth-order
difference schemes theoretically could. Furthermore,
since spline bases are local, only three nodal amplitudes
are needed to exactly satisfy up to three boundary con-
ditions, either homogeneous or inhomogeneous, so that
condition 4 can be easily formulated. Thus, the conti-
nuity of spatial fields at the interface will be identical
to that in the domain interior, assuring the transmission
of waves in both ways.

c. Time integration

The time integration is made in discrete time steps,
Dt, by the leapfrog method or, alternatively, by the sec-
ond-order Adams–Bashforth method.2 For computation-
al stability, either method limits the Courant number
approximately to

cDt cDt 1
, , , (5.2)

Dx Dz p

where c represents the maximum wave speed possible
in the model physics. The atmosphere we consider is
compressible and contains acoustic waves as a possible

2 The so-called lattice separation is often associated with the leap-
frog method. This problem in the usual sense of space–time coupling
does not occur with our spectral method. However, in marginally
saturated areas, water may condense at one step and evaporate at the
next; and, on rare occasions, the water-phase oscillation becomes
unstable through dynamic feedback. An Asselin (1972) time-filter
with a small coefficient (0.1) can prevent instability. The Adams–
Bashforth method does not need the Asselin filter, but our comparison
tests have not found clear evidence that it is superior to the leapfrog
method with the filter.



2082 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 1. The assumed background profile of the specific entropy
(solid line), which is a slightly humidified version of Jordan’s (1958)
mean tropical atmosphere for the hurricane season (dotted line). The
entropy of saturated air at the same temperature (dashed line) is also
shown. For the convenience of traditional interpretation, the diagram
is ruled by the equivalent potential temperature (6.1).

mode of solution, even though acoustic waves carry
very little information of meteorological significance.
Thus, if the equations in section 4 are to be explicitly
integrated, the size of a stable Dt will be severely re-
stricted by the speed of sound. A number of methods
are employed in atmospheric models to abate this acous-
tic problem. For example, by modifying the physical
equations, the anelastic approximation (Ogura and Phil-
lips 1962) eliminates the possibility of acoustic waves,
or the quasi-compressibility approximation (Droege-
meier and Wilhelmson 1987) slows down their speed;
and the split time-level method (Klemp and Wilhelmson
1987) gains efficiency by calculating only the acoustic
waves by simpler equations in small time steps.

We have decided to adopt the semi-implicit method.
It does not remove acoustic waves, but slows down
phase speeds in such a way that they are no longer a
factor in determining stability. The method was origi-
nally proposed by Robert (1969, 1979) and now widely
used in hydrostatic global models (against gravity
waves); the first application to a nonhydrostatic model
was made by Tapp and White (1976). In adaptation to
the nested spectral model, we follow Burridge’s (1975)
formulation in which the time integration in each do-
main is split into two steps. In the first step, all the
prognostic variables are explicitly predicted by the leap-
frog (or Adams–Bashforth) method for Dt that is small
enough only for gravity waves and other meteorological
modes of solution. The explicit results, then, are ‘‘im-
plicitly’’ adjusted in the second step. The required ad-
justments are determined by solving a second-order el-
liptic equation with a forcing term that comprises the
second-order time difference of predictions at the cur-
rent (i.e., the explicit step) and two previous time levels.
Since the goal is not to precisely calculate acoustic
waves but only to stabilize them, the adjustments need
to be made only among the velocity components and
the dry-air density, leaving the moisture variables un-
altered.

In actual calculations, the explicit prediction is made
in the geometrical space; the result is transformed to
spline amplitudes; and the adjustments are made exclu-
sively in the spectral space of amplitudes. The adjust-
ment equation is actually an algebraic equation that is
derived by applying the variational principle to the cor-
responding equations in the geometrical space. Since no
cross differentiation is made in the derivation, there is
no need for extraneous boundary conditions on vorticity
or divergence. Furthermore, the algebraic equation can
be efficiently solved by iterating a one-dimensional
solver in alternate directions; two to three iterations in
each direction are found to be sufficient. As the result,
we have been able to increase Dt tenfold in exchange
for a 10% increase in computation time per time step.

Due to the need for an extensive introduction of spec-
tral notation, the mathematical detail of the algorithms
is deferred to another paper which will be devoted to
our numerical method.

6. Single-cell experiments

a. The model setup

The simulated growth of a cloud cell in the two-
dimensional vertical plane is discussed in this section.
The ground is flat and no rotation ( f 5 0) is assumed.
The cloud begins as a warm bubble near the ground and
rises by its buoyancy through a horizontally stratified
atmosphere, which is initially at rest. The background
profile of the specific entropy, s, is shown in Fig. 1. The
solid curve is the assumed background, which is a
slightly humidified version of Jordan’s (1958) mean
tropical atmosphere for the hurricane season (the dotted
line). The entropy of saturated air at the same temper-
ature is shown by the dashed line, indicating the air
below 2 km as potentially unstable if lifted. For the
convenience of traditional interpretation, the diagram is
also ruled by equivalent potential temperature, ue, which
is calculated by a simplified definition,

u 5 273.15 exp(s/c ).e Pa (6.1)

The initial disturbance is defined, in terms of temper-
ature deviations, by

T9 5 DT [1 1 cos(pr)]/2,max (6.2)

where, for | x | # a and 0 # z # (b 1 c),
1/22 2x z 2 c

r [ 1 , (6.3)1 2 1 2[ ]a b
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FIG. 2. A propagating Lamb wave, 10 min after its initiation at the
origin: (a) u at z 5 0 (solid) and 15 km (dashed); (b) w at 9 km; (c)
pressure variations, Dp, at 0 (solid) and 9 km (dashed); and (d) Dp
contours (.025-hPa intervals) and wind arrows in the vertical plane.
The longest arrow within the wave is ;0.1 m s21. The thick tick
marks on the x axis indicate the position of domain interfaces, and
the resolution of each domain is noted between the marks. Both u
and Dp are vertically in phase, and w is very small.

and a 5 16, b 5 3, c 5 0.5, all in km, and DTmax 5 3
K. The relative humidity is not changed in the initial
disturbance.

The domain configuration of the model is very flex-
ible. To maintain some order in the presentation, the
results shown in this section use the same, concentric
nesting to five levels. The innermost domain is in | x |
# 24 km, and the size doubles at the next level of
nesting, as is shown in Figs. 1 and 2. The outermost
domain extends to x 5 6384 km where periodicity
closes the domain. While the domain sizes are fixed,
the horizontal resolution varies with each experiment.
Thus, Dx of the innermost domain, ranging from 200
m to 4 km, may identify a particular run; and, in any
run, Dx of the other domains are outwardly doubled.

The vertical extent of the modeled space is from 0
to 21 km. The vertical resolution is fixed at Dz 5 500
m, except for the case of Dx 5 Dz 5 200 m. A condition

w 5 0 is enforced at the top and bottom boundaries.
For other prognostic variables, the second derivatives
w.r.t. z are set to zero at the bottom, while both the first
and second derivatives are zero at the top.

The time integration employs the leapfrog/semi-im-
plicit combination; in the innermost domain, Dt is 1.25
and 2.5 s for Dx 5 200 and 500 m, respectively, and
5 s for other Dx; and it may be outwardly doubled in
the outer domains, although it should be kept under 40
s for which the vertical propagation of gravity waves
becomes unstable when Dz 5 500 m.

b. Propagating waves

Before focusing our attention on the main event near
the origin, we briefly discuss propagating waves in outer
domains.

While the background state is hydrostatically bal-
anced, the initial bubble is not, and it explodes like a
little bomb, creating acoustic waves. Most of them re-
verberate between the top and the bottom of the domain
and lose identity as recognizable waves. Only one com-
ponent, known as the Lamb wave, propagates horizon-
tally for a long distance. Figure 2 depicts the wave 10
min after the initiation, located at 180 km from the
origin. Thus, the wave has been propagating at a speed
of 300 m s21. The thick ticks on the x axis mark the
location of domain interfaces, and Dx for each domain
is also noted. The wave has already crossed the inter-
faces at x 5 24, 48, and 96 km, and is crossing another
at 192 km. Although amplitudes are small, the u and p
perturbations are vertically in phase, and w is very
small; in an isothermal atmosphere w would exactly
vanish.

The rising bubble at the origin also generates gravity
waves. The leading wave of the first internal mode is
depicted in Fig. 3, at t 5 1 h and x 5 85 km. The wave
was not fully formed until the bubble rose to the top in
about 30 min, so that the propagation speed of the wave
is about 50 m s21. Both the u and p perturbations have
opposite signs between the upper and lower levels of
the troposphere, while w is maximum at mid levels and
lags in the horizontal phase. Thus, the wind field has
the appearance of clockwise rotation as it propagates to
the right. The wave has already crossed two interfaces,
will cross another at 96 km, and is followed by slower
gravity waves of higher modes.

It may be noted that our interface condition for nest-
ing is not selectively adjusted to a certain mode or speed
of waves, but simply asserts that the order of spatial
continuity of fields at an interface is identical to that in
the interior of any domain. Thus, it works equally well
with acoustic and gravity waves, shown above and with
advection, shown later.

c. The growth of a single cloud

The growth of a cloud in the 500-m resolution run is
shown in Fig. 4, with 12 panels at 5-min intervals for
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FIG. 3. The leading gravity wave of the first internal mode, at t 5
1 h, but only 30 min after it was fully formed near the origin. (a)–
(d) The same format as in Fig. 1, though the scales are different;
e.g., in (d), 0.25 hPa and ;10 m s21. Both u and Dp are in opposite
phase between the upper and lower levels of the troposphere, and w
lags by 908.

1 h. Since the growth is symmetric in x, only the right
side is depicted. In each panel, the specific entropy is
shown by solid contour lines, the cloudy areas (rc $
0.02 g m23) are outlined by a dotted line, and the pre-
cipitation water content is in gray shades (7 levels for
rr $ 0.1, 0.5, 1, 2, 3, 4, and 6 g m23). This graphical
convention for rc and rr is used in all of the subsequent
figures. Wind fields are shown later.

Although the initial perturbation (6.2) is rather broad-
ly defined in x, the rising bubble, as seen in Figs. 4d,e,
is very compact, with a sliver of warm3 air under the
cap, and easily penetrates through the cold middle layer.
In Fig. 4f the top has reached the tropopause, and a
clockwise rotation becomes apparent at the edge of the
developing canopy, which spreads farther out and be-

3 Although not technically correct, high or low values of entropy
may be referred to as warm or cold, in the sense of (6.1).

comes turbulent with time. After Fig. 4h, the thick can-
opy of ‘‘snow’’ gradually descends; and in Figs. 4k,l,
a secondary cell is found near the bottom at x 5 4 km,
forced by a small descending tongue of cold air.

A similar sequence for the 2-km resolution run is
shown in Fig. 5. The initial growth is similar but slower;
the top rises to the tropopause (in g) 5 min later than
in Fig. 4f. By comparison, however, most conspicuous
is the absence of a turbulent appearance. The canopy is
very thin, because a large portion of condensed water
does not rise above 5 or 6 km but falls down early.
These differences are analyzed below.

d. Precipitation at the ground

As is known from the linear theory of conditional
instability, the vertical acceleration of an unstable parcel
or plume depends on its horizontal scale. Such a scale
in nonlinear simulations is dynamically determined and
affected by the choice of spatial resolution. Figure 6
illustrates such effects by three pairs of diagrams, (a1,2),
(b1,2), and (c1,2), for Dx 5 1, 2, and 4 km, respectively.
In the first diagram of each pair, the vertical velocity,
w (contours), and the precipitation water content, rr

(gray shades), both at the center of symmetry, x 5 0,
are plotted against time. The second diagram is the rate
of precipitation at the ground, rrW, also plotted against
time.

The last pair (c1,2) is the easiest to interpret. The initial
bubble rises slowly; although w eventually reaches its
maximum value of 21 m s21 at z 5 10 km, it remains
less than 10 m s21 below 5-km level, and much less at
earlier times. The freezing level is about 5 km, and the
terminal speed, W, of raindrops is typically 6 to 8 m
s21, so that the precipitation actually falls downward
almost as soon as it is formed. Thus, the ground receives
a gentle rain continuously after 20 min. (Note that this
is more than ‘‘drizzle,’’ since a rate of 50 g m22 s21 is
18 cm of water per hour). Only a small portion of con-
densed water is lofted above 6 km, due to the increasing
w and the decreased W of ‘‘ice-phase’’ precipitation.

Similar interplays of these factors are involved in the
other pairs of Fig. 6, but the greater intensity of w pro-
duces different precipitation patterns. In (b1,2), the
ground precipitation does not begin until a lull in w
occurs at lower levels around 27 min. In (a1,2), it is
delayed until t 5 36 min after the second pulse of up-
draft; an observer on the ground would see an ominous
dark cloud gathering overhead for half an hour and,
then, suddenly get doused in a torrential rain. In the
runs with Dx 5 200 and 500 m, the onset of ground
precipitation is farther delayed and occurs more sud-
denly than those shown in Fig. 6, although diagrams for
these runs are not shown because the rapidity of the w
pulsation makes contours too closely packed. The max-
imum w is 31 and 45 m s21 in (b1) and (a1), respectively,
and it reaches 60 m s21 in Dx 5 200 m.
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FIG. 4. The growth of a single-cell cloud in the 500-m resolution run shown at 5-min intervals. The time is indicated in the ‘‘hh:mm:
ss.s’’ format. Since the growth is symmetric in x, only the right-side half is depicted. In each panel, the specific entropy is shown by solid
contour lines (with an emphasis on the lowest-level contour), the outline of cloudy areas by dotted lines, and the precipitation water content
in gray shades (7 levels for rr $ .1, .5, 1, 2, 3, 4, and 6 g m23).

e. Wind fields

The wind fields associated with the rising bubble are
shown in Fig. 7. Each of the first three rows (Figs. 7a–
c) for Dx 5 0.5, 1, and 2 km, contains three panels at
t 5 30, 35, and 40 min, while the panels in the last row
(Fig. 7d), for Dx 5 4 km, are at t 5 45, 50, and 55
min, due to the slow rate of growth. In each panel, the
precipitation water content is shown in shaded gray (as
in previous figures), the cloud areas are outlined by a
solid curve, and the wind vectors in the vertical plane
are shown by arrows. The direction of the arrows is
correctly adjusted for the scales on the x and z axes,
while their length is not linearly but only monotonically
related to the speed in order to accommodate large var-
iations in a tight space.

In all the cases, a rotary circulation develops at the
edge of a mushroom-shaped canopy of cloud that is
associated with the formation of the first gravity wave

shown in Fig. 3. In the lower resolutions, Figs. 7c,d,
the flow is largely laminar; and the main circulation
splits into two parts, the rising upper part and the rain-
loaded lower part. In the higher resolutions, Figs. 7a,b,
the circulation is far more complex, reflecting interac-
tions between the initial buoyancy, gravity waves, and
precipitation; the vertical motion even at the center is
not simply up or down, and the flow breaks up into
smaller eddies especially in the spreading canopy.

This trend toward complexity is depicted in Fig. 8
for Dx 5 Dz 5 200 m in three panels, (a1) to (a3), at
t 5 31, 33, and 35 min. The wind vectors are plotted
only on the right side of each panel to afford an un-
obstructed view of condensed water on the left. Due to
reduced fall speeds, the ice-phase condensate is a good
tracer of delicate flows in the canopy.

In (a1), a pair of mushroom-shaped protrusions has
developed on the top of the main canopy; and the ro-
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FIG. 5. The same as in Fig. 4, but for the 2-km resolution run.

tation at the outer edge of the canopy is concentrated
in a mamma-like hanging protrusion. In (a2), the rotary
circulations associated with the little mushrooms grow
stronger, intensifying the narrow downdraft between
them (at x 5 0), while the large canopy almost splits
into two parts on each side with two hanging protrusions
that rotate in the same direction. In (a3), only 4 min
after (a1), the entire canopy is a mass of small eddies.
The behavior of the second pulse of the updraft at the
center of symmetry is also interesting. In (a1), it is
stopped at z 5 7 km, meeting a downdraft from above,
and splits sideways in (a2) and (a3), generating its own
eddies.

Grabowski and Clark (1991) have discussed the
cloud-top instability that generates eddies resembling
those in Fig. 8, although only one mushroom grew at
the center. In their model, the anelastic approximation
was used, the cloud did not precipitate, and the spatial
resolution was typically 5 m. We are quite tempted but
have not yet run our model at such a high resolution.

f. Asymmetry, natural and artificial

The narrow central downdraft at the top and the col-
lision of the up- and downdrafts in the middle, both in
Fig. 8, are singular events due to the assumed strict
symmetry. In contrast, the results of two asymmetric
simulations are shown in Fig. 9: in Fig. 9a, a weak
vertical shear, 5 m s21 per 10 km of height, is assumed
in the initial state; in Fig. 9b, there is no shear but the
initial bubble is placed exactly at the interface of two
domains in such a way that Dx 5 200 m on the positive
side of x and 400 m on the negative side. Otherwise,
both should be compared with Fig. 8 (a2).

In Fig. 9a with shear, the two little mushrooms are
slanted and no sharp downdraft is found between them;
and the collision of the up- and downdrafts at 7 km is
diffused. In Fig. 9b the case of interface straddling, only
one of the little mushrooms grows at the top, and the
opposing drafts in the middle slide past each other. Apart
from these details, the general appearance of the two
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FIG. 6. The vertical velocity (contours) and precipitation water content (gray shades) in (a1), and the
precipitation rate at the ground in (a2), all at the center x 5 0, are plotted against the time for the 1-km
resolution run; (b1,2) and (c1,2) are the same but for the 2- and 4-km runs. The contour levels are 1, 5, 10,
15, 20, 30, and 40 m s21 for positive w but dotted for negative, and 0 is chained. The shading levels are the
same as in Fig. 4.
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FIG. 7. The winds (arrows) associated with the rising bubble for the runs with (a)–(d) Dx 5 0.5, 1, 2, and 4 km, respectively. The three
panels in each of the first three rows are at t 5 30, 35, and 40 min, but those in the last row are at t 5 45, 50, and 55 min due to the slow
rate of growth. The direction of the arrows is correctly adjusted for the graphic scales of the axes, while their length is not linearly but only
monotonically related to the wind speed. The condensate distributions are also shown as before.

results, including the degree of asymmetry, is quite sim-
ilar.

As a matter of fact, the similarity is fortuitous, since
the asymmetry in Fig. 9a is due to a natural cause while
that in Fig. 9b is an artifact of modeling. However, the
latter is not a simple numerical problem such as com-
putational dispersion, which is practically absent in the
present model. It is rather a fundamental problem of the
finite resolution that places a limit on the realizable
extent of dynamics in a numerical model. Earlier in this
section, the dynamic effects of resolution were exam-
ined in separate runs. Fig. 9b demonstrates the degree

of inevitable distortion that occurs when the resolution
jumps in the midst of a severe convective event.

7. Squall line experiments

a. Anatomy of a simulated squall line

Squall lines have been a subject of extensive studies
through observations and models. [See, e.g., Rotunno
et al. (1988), or Fovell and Tan (1998) for references].
Since our goal is not to open new ground in this well-
cultivated field but rather to test the model, a very simple
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FIG. 8. Enlarged views of the wind and condensate distributions for the 200-m resolution run, at t 5 31, 33, and
35 min. The winds (arrows) are plotted only on the right side to afford an unobstructed view, on the left, of delicate
swirls of condensed water (cloud outlined, precipitation shaded).

setup has been chosen for our experiments. We assume
an initial wind profile in the form of

U(z) 5 U tanh(z/z ),0 sc (7.1)

where U0 5 10 m s21 and zsc 5 1 km, unless otherwise
specified. Thus, the atmosphere is in uniform motion
above approximately 2 km, and the vertical shear is
limited in the shallow layer below. To start convection,

the initial disturbance (6.2) is assumed again at x 5 0.
The background stratification is also the same as given
in Fig. 1.

The configuration of nested domains is also similar
to the earlier one, but each nested domain is twice as
wide, slightly off-centered, and on a relative x coordi-
nate translating at the constant speed U0. Specifically,
the innermost domain lies within (224, 72) km at t 5
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FIG. 9. Asymmetry developed in two modified runs, shown at t 5 33 min. (a) A weak shear, 5 m s21 per 10 km of
height, is assumed in the initial state of a 200-m resolution run. (b) No shear but the initial bubble is placed exactly
at the interface of two domains in such a way that Dx 5 200 m on the positive side of x and 400 m on the negative
side.

0, will be within (12, 108) km after 1 h, and so on. All
the outer domains translate at the same speed. The fifth
and periodic outermost domain is 1536 km wide, so that
even the fastest gravity wave will take 8.5 h to come
around to affect the central area of interest.

A snapshot of the well-organized squall line at 5 h,
50 m in the 500-m resolution run is shown in Fig. 10a.
The cloud areas (thin solid lines), precipitation (gray
shades) and specific entropy (medium and heavy solid
lines) are shown in the same manner as in earlier figures,
but the plotted winds (arrows) are relative to the moving
coordinate (by subtracting U0). The x axis is labeled in
the true distance from the point of the initial disturbance,
and the interface originally at x 5 72 km is presently
at 282 km, where the resolution changes from 500 m
on the left to 1 km on the right. The squall system has
been running mostly within the moving, innermost do-
main but is now overtaking the interface. The vertical
profiles of u (velocity) and s (entropy) are shown in
Figs. 10b, c, respectively, at x 5 260, 290, 320, and
330 km, each marked by a triangle in Fig. 10a. For

reference, the initial profile of either u or s is also shown
by a dash–dot line. The propagation speed of the system
at this time is 19 m s21.

From Fig. 10a and (c1–3), it is evident in the precip-
itating area that a shallow wedge of cold air (cooled by
up to 7 K in temperature) has accumulated above the
ground. A jet of the cold air with a peak at z 5 2 km
is found in (b1); it descends to the ground (b2) and
accelerates to a speed greater than 30 m s21 in (b3) as
its depth decreases. Beyond the leading edge of this gust
front at x 5 322 km, no sign of the gust is found in
(b4), and the entropy profile in (c4) is hardly modified
from the initial state. The advancing cold wedge lifts
the hitherto undisturbed air and initiates incipient cloud
cells, of which some may fizzle but many grow into
mature cells and join the main body of the convective
system. The entropy maxima in (c1–3) are the signature
of those rising cells that have been left behind the ad-
vancing cold air.

At the top of the system, z ; 11 to 14 km, the down-
shear outflow of 20 m s21 carries the precipitating cirrus
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FIG. 10. A snapshot of the well-organized squall line at 5 h 50 m in the 500-m resolution run. (a) The cloud
areas (thin outlines), precipitation (gray shades), and specific entropy (solid lines, with an emphasis on the
lowest-level contour, 200 J kg21 K21), and the winds (arrows) relative to the constant wind aloft (U0). (b) The
vertical profiles of u velocity and (c) s (entropy) at the four points of x, each marked by a triangle in (a). For
reference, the initial profile of either u or entropy is also shown by a dash–dot line.

canopy forward, while the weaker upshear outflow
leaves a long trailing cirrus canopy behind the system.
The flow at midlevels is varied; it enters the system
from the front, is partially caught in convective updrafts
and downdrafts, and exits through to the rear.

The pressure field (not shown) contains high-fre-
quency small-scale fluctuations, reflecting the continual
but intermittent activities of numerous cells. Apart from
these fluctuations, the surface pressure under the system
shows a conspicuous high plateau of p9 ; 2.5 hPa be-
tween x 5 250 and 320 km with a slight average gradient
which is consistent with the acceleration of the surface
wind.

b. Generation of squall lines

Once a simulated disturbance gets its various parts
organized in a certain configuration, such as shown in

Fig. 10, it becomes a self-perpetuating system as a squall
line. On the other hand, the way such organization de-
velops from the assumed initial bubble is a process that
requires a favorable combination of many factors. By
setting the evaporation rate of precipitation to zero, we
can confirm the essential role of evaporative cooling in
the generation of a squall line. However, if the evapo-
ration rate is increased without adjusting the fall speed
of precipitation, the cooling takes place at wrong places
for the creation of cold air above the ground. The pre-
existence of a low-level wind shear favors a well or-
ganized squall line, especially its maintenance after for-
mation. However, the role of shear in the formation is
rather ambivalent; a propagating line of convective
clouds can form without preexistent shear; and a strong
shear may delay, or even prohibit, the organizing pro-
cess.

To examine this question about the role of shear, a
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FIG. 11. The precipitation water content rr (g m23) at z 5 0 is portrayed in gray shades as a function of x and t
for five cases of U0 5 0, 5, 10, 15, and 20 m s21. The time origin for each case is offset to avoid overlap. The
trace of a point moving at the speed of U0, starting at the origin of each case, is shown by a dashed line.
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FIG. 12. The horizontal wind speed u (m s21) at z 5 0 is contoured as a function of x and t for the same cases as
in Fig. 11. The contour levels are chosen for a clear depiction of the gust front.
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FIG. 13. The propagation speeds of simulated squall lines are
plotted against U 0 . Triangles indicate the speeds of well-estab-
lished gust fronts, except that it is for local gusts in the case of
no shear. A single asterisk at U 0 5 10 is for the special case of
zsc 5 2 km. Crosses indicate the speeds of drifting clouds when
no gust front is formed.

series of experiments has been conducted in which U0

of (7.1) is varied from 0 to 20 m s21 while zsc is fixed
at 1 km (except for one case mentioned later). This
choice of U0 (the wind aloft) as the primary designator
of the boundary shear, rather than the vertical gradient
of U(z), follows the convention adopted by Fovell and
Ogura (1989, hereafter FO89), although our U0 does not
numerically correspond to their Du due to the use of
different profile functions. The configuration of nested
domains is similar to the case discussed in the previous
subsection, but the translation speed of domain inter-
faces has been adjusted for each case in order to keep,
as much as possible, the propagating activities within
the innermost domain of 192-km width.

The results are summarized in Fig. 11, in which the
precipitation water content rr at z 5 0 is plotted in gray
shades as a function of x and t for five cases of U0 5
0, 5, 10, 15, and 20 m s21. The time origin for each
case is offset to avoid overlap. The horizontal wind
speed u at z 5 0, also a function of x and t, is contoured
in Fig. 12 for the same cases. The contour levels are
chosen for a clear depiction of the gust front. The trace
of a point moving at the speed of U0, starting at the
origin of each case, is shown by a dashed line.

In the case of U 0 5 0, the cold pool of air accu-
mulates under the initial cell for the first hour and
then starts spreading out at a speed of about 10 m
s 21 , initiating weak convective cells on its path in a
quasi-periodic fashion. The wind u locally exceeds 20

m s 21 , but such episodes are intermittent and do not
attain the structure of a gust front. Nevertheless, the
cloud system represents a clearly defined line of pass-
ing showers.

The tendency to form a lasting gust front is enhanced
by an increased U 0 , but only to a certain limit. In the
case of U 0 5 5 in Fig. 12, a continuing zone of u .
20 m s21 is formed behind the rapidly advancing front
after t 5 3 h. In the case of U 0 5 10, a zone of u .
30 m s21 develops behind the front, and the peak values
exceed 40 m s21 just at the front. The precipitation
patterns in Fig. 11 indicate regular regeneration of in-
tense new cloud cells in these cases. The trend appears
to be reversed at U 0 5 15; although new cells are
haphazardly initiated, they simply drift with the wind
aloft for the first 5 h, leaving a passive wake of cold
air behind them. A weak gust front is eventually
formed after 6 h, however. In the case of U 0 5 20,
there is no such possibility since convective activities
cease after 6 h.

The propagation speeds of simulated squall lines for
various U0 are depicted in Fig. 13. A triangular symbol
indicates the speed that is measured by the slope of a
gust front in (x, t) plot after it is well established. The
case of no shear is included in this category since it
appears to be a smoothly connected limit of sheared
cases. Two symbols plotted for the same value of U0

indicate a degree of uncertainty either in the speed itself
or in the way of measurement. In spite of this uncer-
tainty, however, the propagation speed seems to reach
a maximum at approximately 21 m s21 between U0 5
10 and 12.

At U0 5 17 and 20, a ‘‘1’’ symbol indicates the
speed of drifting clouds, since no gust front or squall
line has formed. It was reported by FO89 that ‘‘storms’’
(squall lines) also failed to form for Du . 22.5 when
the model simulation was started from an initial bubble,
but that the storm continued to propagate, if Du was
gradually increased from 22.5 to higher values after the
storm was established at the low value. Thus, their 22.5
appears to correspond to our threshold at U0 5 15. If
we had employed a similar maneuver to increase U0

during a run, we might have found squall lines propa-
gating at higher speeds than 21 m s21. Then, the present
maximum in Fig. 13 and a slight irregularity found in
a similar diagram (Fig. 2) of FO89 may be related phe-
nomena, although many differences in the experimental
designs make such a comparison imprecise.

The depth of the sheared layer is one such difference;
it is 2.5 km for a linear wind profile in FO89. In order
to reduce the gap, we have conducted one experiment
with zsc 5 2 km and U0 5 10 m s21 for our hyperbolic-
tangent profile. In this experiment, an initial gestation
period lasts for 6 h with haphazard convective activities
before a well-organized squall line emerges. When it is
finally established, however, the propagation speed is
found to be nearly identical to the speed in the case of
zsc 5 1 km, as shown by an asterisk in Fig. 13, sug-
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FIG. 14. The effects of spatial resolution on the simulated squall line with U0 5 10 are demonstrated for Dx 5
0.5, 1, 2, and 4 km, in the same format as Figs. 11 and 12, but the wind contours are now superposed on the
precipitation.
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gesting that the depth of the sheared layer is not a sen-
sitive factor in determining the speed of a mature squall
line.

The effects of spatial resolution on the simulated
squall line with U0 5 10 are demonstrated in Fig. 14,
for Dx 5 0.5, 1, 2, and 4 km. The contour lines of
horizontal winds are now superposed on the precipita-
tion in gray shades. As the resolution becomes coarser,
the gust front takes more time to develop and attains
lesser intensity, although the propagation speed remains
in the range of 18 to 20 m s21. The precipitation patterns
are more sensitive to the resolution. Especially in the
case of Dx 5 4 km, the formation of new cells is in-
frequent and each cell is extremely broad.

Weisman et al. (1997) presented similarly broad struc-
tures of squall lines, simulated in various resolutions
from 1 to 12 km. In their experiments, an initially as-
sumed cold pool of air initiates convection, while, in
the present experiments, the cold pool has to be created
by convection. We do not know at this time whether or
not a squall line can bootstrap itself with 12-km reso-
lution.

8. Concluding remarks

We have proposed a direct and consistent application
of dynamic and thermodynamic principles, in conjunc-
tion with parameterized microphysics, for modeling the
moist, convective atmosphere. A two-dimensional mod-
el has tested the theoretical proposal, utilizing a versatile
and accurate spectral method based on a cubic-spline
representation of the spatial fields. In order to allow a
wide range of scale interactions, the model is configured
on multiply nested domains of outwardly decreasing
resolution, with noise-free, two-way interfaces. The
semi-implicit method provides efficient time integration
for the nested spectral model.

Tests have been conducted for the growth of single-
cell clouds and for the generation of self-sustaining mul-
ticell squall lines, both in various spatial resolutions.
While the results favorably compare with those found
in the literature, they also pose a question about the
resolution-dependent interplay between the dynamics
and the parameterized microphysics.

The Kessler-type parameterization with an assumed
drop-size distribution may not be realistic for every pos-
sible occasion, and there is a range of uncertainty as to
the choice of coefficients as well as form. Nevertheless,
the microphysics in micron to millimeter scales are
clearly separated from the smallest scale (perhaps a me-
ter) that a dynamic model of the atmosphere may deal
with. In this regard, the parameterization is independent
of the model resolution. On the other hand, the dynam-
ics, especially the vertical motion in a conditionally un-
stable atmosphere, is highly dependent on the resolution,
affecting the generation and distribution of precipita-
tion.

Within the limited scope of our experiments, the res-

olution of Dx 5 1 km or less, or marginally 2 km, is
needed for realistic simulations of precipitating clouds.
If Dx had to be 4 km or greater, a modified parameter-
ization adjusted to the resolution of the dynamics might
perform better, though it would be a murky idea re-
gressing back toward the parameterization of whole
clouds. On the other hand, the need for high resolution
also depends on the specific goals of the model; coarser
resolution may be tolerated, for example, if the con-
vection is the result of other dynamic forcing mecha-
nisms in a nearly moist-neutral atmosphere.

Although omitted in this paper, we have been working
on the parameterization of eddy fluxes in the atmo-
spheric boundary layer. The implementation of the sur-
face layer, based on the Monin–Obukhov similarity the-
ory and observationally deduced profiles (e.g., Högs-
tröm 1988), is a mathematical problem of solving the
flux equation. However, the parameterization of the
mixed layer is a harder problem; one can adopt one
proposal out of hundreds in the literature but will not
know its adequacy until it is tested in a particular model
for a specific goal. Furthermore, in convectively dis-
turbed conditions, the explicit eddies generated by a
model and those implicitly assumed in a parameteri-
zation tend to overlap in scales, raising the question of
consistency.

The spectral method does not suffer truncation errors
in the usual sense of the gridpoint method. However,
since not all the possible functions in space belong to
the limited class of functions spanned by the chosen
spectral bases, the spectral method incurs representation
error. In order to abate the problem, a low-pass filter
with a sharp cutoff taper is built into our spline-spectral
transform. The filter apparently takes care of the small-
scale numerical problem associated with the nonlinear
spectral cascades, and produces numerically accurate
solutions within the resolvable scales. Therefore, al-
though we have entirely avoided the controversial sub-
ject of parameterizing the subgrid-scale turbulence, the
model can be utilized to study the physical significance
of such parameterization, dissociated from its customary
role as a computational facilitator.

The theoretical foundation, as well as the numerical
method, is extendable to three spatial dimensions, and
the construction of a 3D model is contemplated.
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APPENDIX A

Microphysics Parameterization

The parameterization formulas by Klemp and Wil-
helmson (1978), after conversion of the dimensional
constants to SI units, are adopted for our experiments,
with a modification of the fall speed W by a temperature
dependent factor, f ice, when the temperature is below
T0 5 273.15K:

0.1364 0.5W 5 214.164r (r /r ) f ,r a0 a ice (A.1)

where the density variables are in kg m23, and


T 2 T00.2 1 0.8 sech , if T , T01 2f 5 5.0ice (A.2)


1.0, if T $ T . 0

The rates (kg m23 s21) of the autoconversion Qauto,
collection Qcol, and evaporation Qevap, are specified by

Q 5 0.001(r 2 0.001r ), (A.3)auto c a

0.875Q 5 2.20r (r /r ) f , (A.4)col c r a ice

0.525f · {r*(T ) 2 r }rvent y y rQ 5 , (A.5)evap 4{2.03r*(T ) 1 3.337/T} 3 10y

0.2046 1.5f 5 1.6 1 30.39r ( f ) , (A.6)vent r ice

where denotes the saturation vapor density, and f ventr*y
is the ventilation factor. These rates are individually set
to zero if negative. Since W is implicitly involved in
the formulas for Qcol and f vent, these are also modified
by f ice.

The net production rate (or evaporation if negative),
is given by

Q 5 Q 1 Q 2 Q .r auto col evap (A.7)

APPENDIX B

Thermodynamic Functions

The entropy functions defined in O90 are listed below
in present notation, replacing the original symbols, j
and h, by ra and rm, respectively. For state 1, with no
condensate,

(1)S (r , r , T) [ r s 1 r s ,1 a m a a m m (B.1)

and for state 2, with saturated vapor,
(2)S (r , r , T) [ r s 1 r s ,2 a m a a m m (B.2)

where

s [ c ln(T /T ) 2 R ln(r /r ), (B.3)a Va 0 a a a0

(1)s [ c ln(T /T ) 2 R ln(r /r* ) 1 L , (B.4)m Vy 0 y m m0 0

(2)s [ C(T ) 1 D(T )/r . (B.5)m m

The specific entropy of condensate C(T ), the satu-

ration vapor pressure E(T ), and its derivative D(T ) 5
dE(T )/dT, along with the various constants in the for-
mulas, have been defined in O90 for the synthetic
condensate that continuously represents both ice and
liquid water.

The Second Law of Thermodynamics

Since the publication of O90, muted but persistent
criticisms have been heard against the use of the entropy
as one of prognostic variables in an atmospheric model.
Our general response in section 2b is supplemented be-
low with specific details.

In the standard notation of thermodynamics (e.g.,
Morse 1969), the second law is stated as

–dS $ dQ/T, (B.6)

where dS is the change of entropy of a given system
from one equilibrium state to another, and the heat–dQ
added to the system from an external source. The
crossed d signifies an imperfect differential, implying
that the exchanged amount of heat is not a function of
the two equilibrium states but varies depending on the
specific path the system takes during the transitional
process. If and only if the process is reversible, –dQ
can be written as the perfect differential dQ, since it
is the same for any reversible path that connects the
two equilibrium states, and (B.6) takes the equality dS
5 dQ/T.

If the process is irreversible, the inequality (B.6) does
not tell what dS should be, even if is known. On–dQ
the other hand, the entropy is a state variable defined
at any equilibrium state and can be determined by the
first law,

– –dU 5 dQ 2 dW, (B.7)

along with, if permissible, the ideal gas law and the
perfect gas assumption.B.1 Note that the mechanical
work done by the system, is also an imperfect–dW,
differential in irreversible processes, and that (B.7) re-
quires both and to be determined for a specified– –dQ dW
path. Thus, the irreversible processes that often arise
in meteorology are configured to take place in a ther-
mally and mechanically isolated container of a fixed
volume, so that

– –dQ 5 dW 5 0, (B.8)

and, consequently, dU 5 0.
For example, the mixing of dry air and water vapor

from the initial state of each gas occupying a separate
space at the same temperature to the final state of a
homogeneous mixture in the combined space, is treated
as the free expansion of each gas into the space orig-
inally occupied by the other gas. The temperature of
perfect gases does not change in free expansion, but

B.1The internal energy of a perfect gas is a function of the tem-
perature only.
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an increase of the total entropy results from the volume
expansion of each gas. This entropy due to the mixing
of two different gases is already included in the defi-
nitions (B.1)–(B.5). If the two gases are the same, sim-
ilar reasoning results in Gibbs’ paradox: the entropy
of a gas in a container may be decreased or increased
merely by inserting or removing a partition. Therefore,
the mixing of the same gas in two different states is
treated as a process of temperature equalization. In
particular, if the two initial states are at the same pres-
sure and differ only in temperature, the final temper-
ature is the mass-weighted mean of original tempera-
tures and the pressure does not change. The entropy
increases from the fact that the arithmetic mean of two
different temperatures is always greater than their geo-
metric mean.

The thermal diffusion in atmospheric models is a pa-
rameterization of the temperature equalization process
at finite rates. For the gravitationally stratified dry at-
mosphere, it is commonly expressed in terms of the
potential temperature u as

] u 5 K] u,t xx (B.9)

where K is the eddy diffusivity; for simplicity, only one
spatial dimension, x, is used and advective terms are
omitted. If we accept (B.9) as part of the modeled phys-
ics, an exactly equivalent equation can be derived in
terms of the specific entropy, sa 5 cPa lnu, as

2] s 5 K{] s 1 (] s ) /c }.t a xx a x a Pa (B.10)

The squared term on the rhs shows not only the fact
that the entropy increases, but also that the rate of in-
crease is rather small, since cPa is greater than typical
spatial variations of sa by two or three orders of mag-
nitude. In the case of a moist atmosphere, the primary
question is how to parameterize the process of diffusion
for the mixture of dry air and water substance in various
phases. If the decision, for example, is to equalize the
entropy temperature (Hauf and Höller 1987), the dry
entropy in (B.10) is simply replaced by the moist en-
tropy. Therefore, as long as the defined parameterization
is physically consistent, it can be expressed in different
but physically equivalent forms; the choice between en-
tropy and potential temperature is akin to the choice
between Cartesian and curvilinear coordinates for the
same geometric space.

As stated in section 2b, it is prudent that the param-
eterization of irreversible processes obeys the second
law. In fact, it is not difficult to satisfy the law as an
inequality. More difficult is the quantitative question,
how much should the entropy increase? The question
is especially relevant to numerical models in which the
major role of the diffusive terms is to control numerical
problems near the small-scale limit of the model reso-
lution. When the coefficient K is chosen to be large
enough for this purpose, the damping by the second-
order diffusion extends far into larger scales where the
damping is no longer required for numerical reasons,

implying that the entropy increase is excessive in both
the thermodynamic and informational sense. In order to
focus the damping more selectively on small scales,
many models now employ diffusion written in terms of
fourth-order derivatives, although diffusion being sec-
ond order is crucial for upholding the second law. In
fact, fourth-order diffusion violates Clausius’ principle,
an alternative statement of the second law, by creating
temperatures colder than those originally present. This
dilemma, seemingly a mere glitch in the principle, is
not likely to deter pragmatic modelers from the use of
the fourth- or higher-order diffusion. The model pre-
sented in this paper performs without diffusive damping
(see appendix C), so that it can implement the physically
required diffusion without the dilemma. The verifiable
determination (or parameterization) of the eddy diffu-
sivity is a problem by itself, but it goes beyond the
question about thermodynamic principles.

There are other irreversible processes that can not be
discussed under the idealized condition (B.8). We may
agree, for example, that the eddy kinetic energy in the
inertial range of scales should eventually turn into heat
by molecular viscosity. The problem arises in the models
whose resolvable scales are far greater than the viscous
range in millimeters, concerning the fate of the kinetic
energy dissipated out of the resolvable scales. One op-
tion is to convert the kinetic energy of unresolvable
eddies into heat as the immediate input to the entropy
or internal energy of the resolvable scales; and another
option is to simply ignore the lost kinetic energy. Of
the two options, the first is quantitatively likely to be
an exaggeration, especially if the eddy viscosity is cho-
sen for computational reasons, while the second is ab-
surd in principle but may be closer to the quantitative
truth in short-term predictions, even though it is possible
to contrive a theory to demonstrate otherwise (e.g., Bis-
ter and Emanuel 1998). Another question that is often
raised by critics concerns the Earth’s contributions to
the cosmic entropy increase. We see no problem in prin-
ciple. If the question is not merely philosophical but
quantitative, the answer requires good estimates of

and by all the irreversible and reversible pro-– –dQ dW
cesses, regardless of whether a model uses the entropy
or the internal energy.

APPENDIX C

The Cold Blob Experiment

A ‘‘Workshop on Numerical Methods for solving
Nonlinear Flow Problems’’ was held on 11–13 Septem-
ber 1990 at the National Center for Supercomputing in
Urbana, Illinois. For the purpose of comparing the be-
havior of a variety of numerical methods, a density cur-
rent problem in the otherwise homogeneous and isen-
tropic two-dimensional dry atmosphere was chosen as
the test problem of the workshop. The complete defi-
nition of the problem, including the prognostic equa-
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FIG. C1. (a)–(e) The solution of the test problem in the 100-m
resolution run, shown by the contour plots of u9 at 300-s intervals.
The thick contour line is for u9 5 20.5 K (or u 5 299.5 K), and
other lines are drawn at 1-K intervals. The result is nearly identical
with the 25-m resolution result obtained by the workshop ‘‘reference’’
model (Straka and Anderson 1993).

tions for mass continuity, horizontal and vertical mo-
mentum, and internal energy, may be found in Straka
et al. (1991, hereafter SWWDA91) and also in Straka
and Anderson (1993, hereafter SA93) with the quasi-
compressible form of the equations. Our cubic spline-
based spectral method, called the SAFER method (see
section 5), was not ready at the time of the workshop,
but was able to run the test a few months later. The
result, shown below, confirms that our method is as
competent as the best of the methods presented at the
workshop.

The equations for this test are the same as described
in section 4, with important exceptions: (i) all the mois-
ture or precipitation related terms are deleted, and (ii)
the diffusion terms are added as specified by the work-

shop. Thus, for the present discussions, r 5 ra, a 5
ln(r/r0), s 5 sa, and K is the diffusion coefficient. Spe-
cifically, our prognostic equations are

] a 1 u] a 1 w] a 1 (] u 1 ] w) 5 0, (C.1)t x z x z

21] u 1 u] u 1 w] u 1 r ] pt x z x

5 K(] u 1 ] u), (C.2)xx zz

21] w 1 u] w 1 w] w 1 g 1 r ] pt x z z

5 K(] w 1 ] w), (C.3)xx zz

] s 1 u] s 1 w] st x z

21 2 25 K{] s 1 ] s 1 c [(] s) 1 (] s) ]}. (C.4)xx zz Pa x z

As discussed in appendix B, the squared gradient of
entropy on the rhs of (C.4) makes this entropy equation
an exact equivalent of the internal energy equation in
the workshop definition, although these extra terms have
hardly made any difference in numerical tests.

There is no need for the diagnostic procedures of
section 2; the usual state variables, if necessary, are
directly determinable from the predicted entropy s and
log-density a:

u 5 u exp(s/c ), p 5 p exp[(s 1 c a)/c ],0 Pa 0 Pa Va

T 5 p /(rR ),a (C.5)

where the subscript 0 denotes the constant reference
values. The actual prediction, as discussed in sections
4b and 4c, is made in terms of the deviations (denoted
with a prime) from the hydrostatically balanced back-
ground states (denoted with a circumflex). In particular,
the pressure gradients in the momentum equations are
given by

21r ] p 5 t] a9 1 ] t9,x x x

21g 1 r ] p 5 t] a9 1 t9] â 1 ] t9, (C.6)z z z z

where the auxiliary diagnostic variable t 5 p/r is related
to the predicted a9 and s9 by

ˆt 5 t̂ exp[(s9 1 R a9)/c ], t̂ 5 p̂ /r̂ 5 R T,a Va a

t9 5 t 2 t̂. (C.7)

Being reduced to the dry atmosphere, our equations are
not substantially different from the traditional schemes
with the prognostic pressure. In particular, the semi-
implicit method in our fully compressible model and
the quasi-compressible assumption on the pressure ten-
dency equation are equally effective in handling un-
wanted acoustic waves.

The background states are defined to be isentropic at
5 300 K with the surface pressure 1000 hPa. Theû

horizontally symmetric domain of half-width 25.6 km
and 6.4 km in height is specified. In order to start a
density current, a cold elliptic blob of radii 4 km in x
and 2 km in z, centered at x 5 0 and z 5 3 km, is
prescribed as a temperature perturbation of 215 K at
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FIG. C2. The effects of model resolution: (a) 800, (b) 400, (c) 200,
(d) 100, and (e) 50 m, shown at t 5 900 s. The contours are for u9
as in Fig. 15. The fixed diffusion coefficient, K 5 75 m2 s21, becomes
more effective as the resolution is refined, so that the solutions con-
verge from (a) to (e), and (d) and (e) are practically identical. In the
coarser resolutions of (a) and (b), the built-in spectral filter is re-
sponsible for noise-free solutions within the respective range of re-
solvable scales.

FIG. C3. The solutions of the same test problem but with no dif-
fusion. The contour plots of u9 at t 5 600 s are shown for the res-
olutions: (a) 200, (b) 100, and (c) 50 m. The contour intervals are 1
K as in earlier figures, although lines are now extremely crowded.
The shear instability generates a greater number of rotary eddies as
the resolution is refined, but no numerical difficulty is encountered
in these runs. The fine structure of these eddies is also found in
Skamarock and Klemp’s (1993) adaptive-grid solutions with scaled-
down diffusion.

the center. More precise definitions of the test problem,
including the numerical values of physical constants,
are found in SA93, and need not be repeated here, except
for emphasizing that the diffusion coefficient K is fixed
at 75 m2 s21 for comparison purposes. The spatial res-
olution and the time step are optional; in our experiment,
Dx 5 Dz 5 50, 100, 200, 400, 800 m, and Dt 5 0.25,
0.5, 1, 2, 4 s, respectively.

The result of the 100-m resolution run, depicting the
initiation of a density current, generation of multiple
rotors by Kelvin–Helmholtz instability and gradual dis-
sipation, is shown in Fig. C1 by contour plots of u9 at
300 s intervals. This result may be compared with the

25-m resolution result by the workshop ‘‘reference’’
model in Fig. 1 of SWWDA91 and Fig. 3 of SA93. The
agreement is nearly perfect. The contour intervals are
1 K in all these figures, but the absolute levels of con-
tours are vague in the cited papers. In our Fig. C1; the
thick contour line is for u9 5 20.5 K (or u 5 299.5
K), since this choice gives us the best agreement with
the diagrams of the ‘‘reference’’ solution.

In the workshop, a particular emphasis was placed on
the convergence of solutions. Fig. C2 answers this ques-
tion by comparing the results of various resolutions at
t 5 900 s. The bottom two panels for 100 and 50 m
are almost identical, and the middle for 200 m is still
very similar; the loss of fine details is apparent at 400
m, and only the gross features of the advancing pool of
cold air are captured at the 800-m resolution. When this
figure is compared with Fig. 5 of SA93 and Fig. 3 of
SWWDA91, two complimentary aspects of the present
model stand out: (i) at finer resolutions, where the dif-
fusion is dominant in the small-scale dynamics, the
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model accurately converges to the ultimate solution; (ii)
at coarser resolutions, where the diffusion is ineffective,
the model’s spectral filter asserts control over the small-
scale numerics and produces a reasonable solution with-
in the resolvable scales. The workshop reference model
apparently lacks (ii), so that its solution becomes fairly
noisy at 200 m and much worse at 400 m. In application
to a nested model, (ii) is an important property of our
method, since the same set of physical equations may
have to be solved in multiple domains of different res-
olution.

In order to gather further evidence that the model
with no diffusion can handle highly nonlinear flows, we
have run the test problem by setting K 5 0 in (C.2)–
(C.4). The results for the 200-, 100-, and 50-m reso-
lutions at t 5 600 s are shown in Fig. C3. It is obvious
that the solutions do not converge. Instead, the shear
instability generates a greater number of rotary eddies
as the resolution is refined. No numerical difficulty is
encountered in each run for 1200 s. We have no ref-
erence solution with which to compare, but Skamarock
and Klemp (1993) show in their Figs. 4 and 5 the so-
lutions of the adaptive-grid model with the finest local
resolution of 28.7 m and scaled-down diffusion. The
similarity in the fine structure of the eddies suggests the
numerical veracity of our method.
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Hauf, T., and H. Höller, 1987: Entropy and potential temperature. J.
Atmos. Sci., 44, 2887–2901.
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