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ABSTRACT

The major topic of this paper is the resolvable spatial scales that can be analyzed by statistical interpolation
of an undersampled dataset. The inquiry was motivated by the need to design the most appropriate procedures
for spatial analysis of the upper-air sounding data from the GARP Atlantic Tropical Experiment. A reliable
representation of horizontal scales in the analyzed wind fields was a matter of utmost concern, since the derived
fields of vorticity, divergence and vertical motion were also of vital interest. To achieve our goal, it was found
that the traditional premise of statistical interpolation had to be reexamined. The main conclusions of this
theoretical inquiry are (i) resolvable scales are determined by the geometrical distribution of observing stations;
(ii) precise knowledge of the second-moment statistics improves the analysis by de-aliasing the amplitudes of
resolvable scales, but has no effect on the definition of resolvable scales; (iii) residual effects of unresolvable
signals in the data are removable by a spatial filter and must be so removed; and (iv) spatial phases of the de-
aliased resolvable scales may still be in error.

On the basis of these findings, the objective analysis procedures we have developed are targeted on the best
achievable analysis of resolvable scales. The procedures include the following: an adequate estimation of “true”
statistical fields from the given ensemble of data, a search for the optimum spatial filter by monitoring the
targeted error variance, and a rational method of desensitizing the analysis to statistically errant data. In order
to reduce the spatial phase error of propagating disturbances, the procedures are extended to the analysis of the
timewise Fourier-transformed dataset (actually in the frequency-band analog). Since the wind is a physical
vector, the entire procedure for the wind analysis is given in the tensor-invariant form, which is decidedly
advantageous for very practical reasons. For example, the tensor approach eliminates the notorious ambiguity
in normalization that is encountered in the multivariate approach. The paper also describes, in the Appendix,
a method of filtered mechanical interpolation, which is specifically designed, with a variety of optional boundary
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conditions, for application to analysis in a finite domain.

1. Introduction

Analysis, in this paper, is a process of estimating the
continuous spatial field of a physical variable from a
set of discrete observational data. (The product of such
a process, if not ambiguous, is also called an analysis.)
In the ideal case, in which the domain of interest is
densely covered by data of reasonable accuracy, all that
is required of analysis may be mechanical interpolation
of the discrete data with some smoothing. For most
meteorological observations, however, especially those
obtained by direct probes, the data are collected by a
less-than-ideal number of irregularly placed stations;
that is, some small-scale variations of the field are not
adequately sampled. The common problem in analysis
of such undersampled data is known as aliasing, or
misrepresentation of spatial scales. In the case of ir-
regularly placed data, the amplitudes of aliased scales
are not necessarily conserved and may result in further
distortion by overshooting.

Spatial analysis of the undersampled data must per-
form two tasks, related but distinct. One is the me-
chanical task, as before, of producing a continuous
field. The other is a judgmental task of managing the
total information input to the mechanical task, for the

purpose of ensuring the resulting field to be a reasonable
approximation of the true field. The latter task ob-
viously requires some information about the true field,
real or presumed, in addition to the given data. The
required information does not substitute for real data
but, rather, determines the ground rules of judgment
for reducing the multitude of possibilities in the un-
dersampled data to fewer, more likely possibilities. To
reduce merely the number of possibilities, we may
simply limit the degrees of freedom in the represen-
tation of the analyzed field, e.g., by fitting a low-order
polynomial to the data. To “de-alias™ the analysis of
undersampled data, however, we need more factual
information concerning the likely spatial structure of
the field to be analyzed. This is the reason why, in
meteorological analysis, judgments by a knowledgeable
and experienced human analyst are respected, if not
unanimously accepted.

While flexible human judgment is hard to emulate,
automated implementation by a computer of any cod-
ified rule has the advantage of being consistent under
the rule. Furthermore, codified rules are more ame-
nable to orderly refinements than are subjective judg-
ments. Thus, even in judgmental analysis, it is desirable
to have the analysis procedure objectively defined and
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implemented. Procedural objectivity is not sufficient,
however. The quality of judgmental analysis depends
critically on the informational content of the imple-
mented rules. Objectivity must be extended to the der-
ivation of those rules from well-defined sources of in-
formation. In this respect, many methods in the lit-
erature of objective analysis are objective only in the
procedural sense.

For example, the successive correction method by
Cressman (1959) attempts to de-alias the analysis by
assigning a spatially extended structure to each discrete
datum. The assigned local structures are usually syn-
thesized from a set of discretionary weighting functions.
Since Cressman’s original application to the analysis
of synoptic-scale isobaric height fields, the method has
been applied to a wide variety of meteorological situ-
ations differing both in spatial scales and in types of
physical variables. In each new situation, however, the
analyst must experiment with the weighting functions
until, in his judgment, satisfactory results are obtained.
The method itself contains no intrinsic information.

In contrast, a far greater degree of objectivity is pos-
sibly achieved by an analysis method that utilizes sta-
tistical interpolation or, as it is often referred to, op-
timum interpolation (Gandin, 1963). The principle of
statistical interpolation is to minimize the error vari-
ance between the true and the analyzed fields. The
minimization is taken at each point in space, over an
ensemble of statistically similar events at different ob-
servation times. De-aliasing is made possible by the
knowledge of spatial covariance functions for the en-
semble of true fields. In this role, the covariance func-
tions are similar to the local structure functions in
Cressman’s method, but are no longer discretionary.
The error minimization also leads to a mathematical
optimization of the combined effects of several adjacent
data when their influences are overlapping. There is a
hitch, however. The true fields are not knowable as
postulated. If they were, there would be no need for
analysis. Thus, the method is built on the premise that
an adequate estimate of the true statistics is obtainable
not from the knowledge of individual true fields but
from statistical analysis of observational data.

In early applications of statistical interpolation to
the initial data analysis for numerical prediction models
(e.g., Eddy, 1967; Rutherford, 1972; Schlatter, 1975),
attempts were made to estimate the required statistics
from observational data, although autocovariance
functions, mathematically modeled with a few dispos-
able parameters, have been often used in operational
models (e.g., Lorenc, 1981; Baker and Rosmond,
1985). These applications are mainly for the analysis
of scalar fields, such as isobaric heights or streamfunc-
tions, in a multivariate framework in which wind data
are incorporated through the assumption of nondiver-
gence, although the improved initialization techniques
of current operational models permit the calculation
of the initial divergence field that is consistent with the
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model. It is not the purpose of this paper 1o review the
analysis for global models, but the design proposed by
Daley (1985) for the direct analysis of both rotational
and divergent components of winds, and the objective
determination by Hollingsworth and Lonnberg (1986)
of complete wind covariance functions from the mas-
sive FGGE data, are among the recent contributions
to the wind analysis.

In the application of statistical interpolation we dis-
cuss below, the estimation of true covariance functions
of highly divergent winds was from the outset the cen-
tral concern of our objective analysis. The information
encapsulated in the covariances is necessary not only
for interpolating discrete data but also for de-aliasing
the analysis of undersampled data. The latter, judg-
mental aspect of statistical interpolation has not at-
tracted wide attention in the literature. (See section 3¢
for further comments.) '

In 1974, the GARP Atlantic Tropical Experiment
(GATE) was conducted for the purpose of studying
scale interaction between convective cloud systems and
their environment in the tropics (e.g., see Houze and
Betts, 1981), deploying an unprecedented concentra-
tion of observation platforms and instrumentation over
a maritime tropical region. Among the vast amount of
data collected in GATE, there was a set of nearly 2000
upper-air soundings of wind, temperature and humid-
ity taken by the international fleet of 15 ships over an
hexagonal area of about 800 km across during the three
weeks of the Phase III observation period.

The analysis of these soundings deserved high pI’lOl‘-
ity, since a reliable time history of the basic meteoro-
logical fields would serve as the foundation for inter-
action studies, allowing other data by radar, aircraft
and satellites to be integrated. On the other hand, the
double-hexagonal array of GATE ships with separation
distances of 170 km or greater was not designed to
resolve convective systems in detail. Thus, great care
was needed to de-alias the analysis of such undersam-
pled data in this convectively active region. The task
of analysis was further complicated by the international
mix of instrumentations which substantially differed
from each other in accuracy, response and calibration.
Consequently, the majority of diagnostic studies uti-
lizing the GATE upper-air data were directed only to
the areal mean properties and budgets over the entire
ship array in categorized time-phases of the synoptic-
scale wave (e.g., Thompson et al., 1979).

During his tenure at the National Center for At-
mospheric Research (NCAR), the author made a de-
termined effort to analyze the GATE upper-air sound-
ings, applying the principle of statistical interpolation.
The first goal was to quantify the time-varying, three-
dimensional fields of horizontal wind, vorticity, diver-
gence and vertical motion in the highest resolution that
the given data would objectively allow. (The second
goal of similarly analyzing thermodynamic fields was
carried out later by S. K. Esbensen of Oregon State
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University.) In GATE wind analysis, neither geostro-
phy nor nondivergence could be assumed, since hori-
zontal divergence and vertical motions were the most
critical fields of interest. Moreover, the reported pres-
sure-height data were useless, due to instrumental
biases. Thus, wind analysis had to be designed for direct
use of wind data only. Statistical interpolation for this
task required judgmental information in the form of
tensor covariance functions of vector winds. No sim-
plifying assumption that might prejudice spatial deriv-
atives was allowed. Heuristic, mathematical modeling
was also out of the question, since little was known of
the statistical tensor structure of highly divergent, sub-
synoptic-scale winds in GATE or elsewhere.

The only way of deriving the required information
was by mechanical interpolation, in space, of the dis-
crete, sample covariances. This procedure would not
yield the true covariance functions but only their es-
timates. Thus, followed the question: Would such es-
timates be adequate to achieve our goal? The data for
the statistical estimation were an ensemble of the same,
undersampled data that originally raised the specter of
spatial aliasing. Any uncertainty in small-scale detail
of those estimates would be amplified by spatial dif-
ferentiation in calculation of divergence. On the other
hand, unnecessary filtering or smoothing was to be
avoided. Therefore, the question of adequacy required
a clear answer before the guality of analysis could be
associated with objectivity of procedures.

To answer the gquestion above is the main purpose
of this paper. It will be necessary to reexamine the
principle of statistical interpolation in terms of resolv-
able spatial scales. The term resolvable refers here to
the valid informational content of analyzed scales, and
not to the mechanical degrees of freedom for repre-
senting them. The concept of resolvable scales has been
obscure in statistical interpolation, since the traditional
definition postulates the error variance to be minimized
independently at each point of the analysis domain. To
understand the consequence of this point-by-point
minimization in the perspective of field analysis, we
consider, first, the Fourier transform of statistical in-
terpolation in an idealized case of equally spaced, one-
dimensional data. The theoretical result, then, is gen-
eralized to the more realistic case of irregularly distrib-
uted, two-dimensional data. Specifically, the paper
proceeds as follows:

The basic terminology and notation are defined in
section 2, and the traditional principle of statistical in-
terpolation is reiterated in section 3. Spectral properties
of mechanical interpolation in the idealized case, es-
pecially the problem of the aliased main band, are re-
viewed in section 4. The idealized spectral examination
is extended to statistical interpolation in section 5. It
is concluded that the statistical method attempts to de-
alias the spectral amplitudes of the main band and that
it also generates meaningless side bands. In other words,
the resolvable scales are those scales in the main band
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and are solely determined by the geometrical placement
of observing stations. Even the knowledge of true co-
variances cannot extend the resolution limit, although
it will improve the quality of analysis within the re-
solvable scales. It is also shown that the residual com-
ponents in the side bands are not only meaningless but
are also harmful to field analysis, even though they
contribute to minimization of the error variance.
Therefore, the side bands must be removed from the
analysis. A spatial filter for doing just that, without
affecting the resolvable scales, will be called optimum.
In brief, the true field, which is the assumed target of
the traditional error minimization, is not an achievable
target in analysis of discrete data.

The strategy for analyzing irregularly distributed data
is discussed in section 6. Although the exact language
of the Fourier transform does not apply any more, the
concept of an optimum filter can be extended to a gen-
eralized definition of resolvable scales. The optimum-
filtered true field, containing only the resolvable scales,
is introduced as the best achievable target. Then, the
minimization principle of statistical interpolation is
redefined in terms of the error variance of analysis
against the best achievable target. The new definition
yields a practical procedure of determining the opti-
munm filter for any particular ensemble of discrete data.
It also answers our posted question, at least theoreti-
cally, by defining the adequate estimation of true sta-
tistics that is needed for analysis to attain the achievable
goal. Actual estimation procedures are discussed in
section 7.

The principle of statistical interpolation applies only
to analysis of deviations from a norm. The norm must
be defined and analyzed by other means. Only by using
a model-predicted field as the norm has statistical in-
terpolation become operationally practical in global
applications. We did not have the benefit of a prediction
model in the GATE analysis, but our task was a post-
analysis of time-sequenced datasets. The question of
the norm is discussed in section 8, together with other
beneficial aspects of the time-sequenced data. For clar-
ity of presentation, the discussions, summarized above,
are developed for the analysis of a scalar variable. Ad-
ditional comments for analysis of a vector variable are
given in section 9. Both in theory and in application,
some means of mechanical interpolation is needed as
a working tool. The tool that we have developed for
use in a finite domain with general boundary conditions
is described in the Appendix.

2. Basic definitions and notation
a. Matrix notation

The purpose of this section is to define the termi-
nology and mathematical notation that are basic to the
rest of the paper. Although the results of the paper are
applicable to multivariate analysis of several variables,
our main presentation will be limited, for clarity, to
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the field analysis of a single scalar variable, f(x). Ex-
tension to the analysis of a vector variable, u(x), is dis-
cussed in section 9.
By field analysis, we mean the estimation of f(x), as
a function of x in a prescribed domain D, from a finite
number of given data, f;, which are observational es-
timates of f(x) at discrete points, x = X;, for j = 1, 2,
. « «J, respectively. The resultant field, which we may
simply call the analysis, will be denoted by (%) to
clearly distinguish it from the target of estimation, the
true field, f(x). The analysis domain of interest is a
finite horizontal area; that is, x = (x, y) € D. The extent
of the domain is largely dictated by the distribution of
_data points; D is normally an envelope of all X;. Anal-
ysis is performed in space at a specific time, with the
assumption that the given data are concurrent in time.
The indication of time, ¢, will normally be omitted.
The concurrent set of the given data shall be written
as a column matrix of J elements. Namely,

{f} E(];)un

where the pair of braces on the left-hand side signifies
the column matrix and the right-hand side is a concise
definition of the J-by-one column matrix with a typical
element in parentheses. Similarly, the set of the obser-
vation points may be written as

@.1n

{i} = (ﬁj)JXI s (2.2)
where each element of the column matrix is the posi-
tion vector of a station. In the two-dimensional do-
main, there is no logically unique way to order a set
of points. Thus, both the observing stations and the
corresponding data may be indexed in any convenient
order. However, once it is chosen, the same order must
be kept.

It is important to note that the term vector is used
in this paper only for physical and position vectors
whose scalar components are subject to a definite rule
of coordinate transformation. These vectors are printed
in boldface type. On the other hand, a merely ordered
set of discrete elements, which is a vector in linear al-
* gebraic terminology, is denoted by a column matrix,
as it is in (2.1), and is always referred to as such. The
discrete elements themselves may be vectors, as in (2.2),
or functions of x, as are introduced below. Extending
the notation, we shall denote a doubly ordered set of
discrete elements by a square matrix, in which the ele-
ments may be scalars or, later, tensors. The notational
distinction, separating the ordered sets from the phys-
ical vectors and tensors, greatly facilitates the later
transition from scalar analysis to vector analysis.

For the reason above, the use of braces { } and
brackets[ ] will be reserved, in this paper, exclusively
for the purpose of indicating those column matrices
and square matrices, respectively, that are defined
above. We also reserve angle brackets () for the en-
semble average. }
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b. Representation of the analyzed field

Since the number of given data, J, is finite, the an-
alyzed field, f(x), will not contain an infinite amount
of independent information; thus, it can be adequately
represented by finite degrees of freedom. The most
common practice is to represent f(x) by its values at
regularly spaced grid points. However, also available
are the spectral and other similar means of continuous
representation by a finite number of basis functions
(see the Appendix).

The number of basis functions, M, like that of grid
points, defines the representational resolution. In a
properly designed objective analysis, there is no need
to restrict M by the number of data, J. In fact, unless
the data coverage is redundantly dense, M should be
sufficiently greater than J, so that enough degrees of
freedom are left for the representation to accommodate
judgmental information in addition to the data. In
other words, we may choose M as large as necessary
to suit the intended goal of analysis.

This does not imply, however, that the quality of
analysis would improve with the increasing value of
M. As we shall see, an absolute limit to the amount of
meaningful information in the analysis is set, not by
the mode of representation, but by the number and
spatial distribution of the sampled data. Otherwise, the
exact mode of representation is immaterial to our dis-
cussion; we shall maintain the function notation for
f(x), as being defined at every x in the analysis domain.

¢. The assumption of linear dependence

The elementary principle that lies at the base of
practically all the objective analysis methods is the as-
sumption that the analyzed field, f(x), at any X, be lin-
early dependent on each and every datum f;. Under
the standard convention for matrix operations, the as-
sumption is expressed as

fx)= (¥} },
(Y0} =W x)n (2.4)

is a set of J spatial functions expressed as a column
matrix. In (2.3), it is transposed to a row matrix as
indicated by superscript T. Each element, ¥;(x), called
an influence function, is the coefficient of linearity de-
fining the influence of a datum at X; on the field at x.
_ Under assumption (2.3), obtaining the analysis,
f(x), is equivalent to determining the set of influence
functions, {(x)}. If the observing stations, {X}, cover
the analysis domain in sufficient density, or if the an-
alyst so decides, {{/(x)} may be determined by a geo-
metrical consideration of {%}, coupled with a spatial
filter to remove the possible observational errors in
{f}. This is the case for a mechanical interpolation,
implying that no additional information beyond the
observational data, {X} and { f}, is prerequisite to the

2.3)
where '
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analysis. A method for mechanically interpolating ir-
regularly distributed data in a finite domain is described
in the Appendix.

On the other hand, if it is suspected that the given
data inadequately sample the domain, the determi-
nation of {zl/(x)} requires some knowledge of the true
field, f(x), in order to judge whether or not { f } is ad-
equate and, if not, to compensate for the defects in
sampling. This is the case for judgmental analysis. As
discussed in the Introduction, statistical interpolation
is the best known objective method for judgmental
analysis, and it is the major topic of this paper.

3. Statistical interpolation
a. The traditional definition

The purpose of this section is to reiterate the tradi-
tional development of statistical interpolation. The
problems that have been encountered in practical ap-
plications are also reviewed later in this section.

As elucidated by Gandin (1963), the theoretical
principle of statistical interpolation is to minimize the
second statistical moment of differences between the
true field and the analyzed. The minimization requires
an ensemble of datasets, of which {f} is a member
set, drawn from statistically similar events, and a cor-
responding ensemble of true fields, of which f{x) is a
member. The datasets are given by the observations,
but the true fields must be viewed as a rhetorical device
for mathematical development.

The first statistical moment, or the norm, of the en-
semble is not the subject of statistical interpolation.
Following the tradition, we assume that the norm has
been already subtracted from the data. Thus, in this
paper, all the symbols for data and field variables,
without customary primes ('), stand for deviations from
the norm. Specifically,

(f1y=0 and (f(x))=0, (.1)

where the pair of angle brackets {( ) denotes the en-
semble average.

The error variance, & (x), of analysis (2.3) agamst
the true field is defined for the ensemble by

E ) ={(f(x)— (X)), (3.2)

and this is to be minimized by choosing {{(x)}. Since
the minimization is taken independently at every x, it
leads to a formal definition of the optimum {¥(x)} as
the solution of a matrix equation,

[} = {m(x)}, (3.3)

where [r#1] is the J-by-J square matrix of sample-co-
variances, and {m(x)} the column matrix of J covari-
ance functions, defined by

[l=p={fHYT,  (B4a)
{mx)} =(mx)) i ={fYx),  (3.52)
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respectively. The same, in terms of matrix elements,

are o
e = fifr)s (3.4b)
my(x) = { (%)) = {fER)x)). (3.5b)

The rightmost equality in (3.5b) is based on the as-
sumptlon that, over the ensemble, observational errors
in {f} are not correlated with f(x) at every &; of {%}.
Therefore, {m(x)} is considered to be a set of the true
covariance functions.

By definition, [#] is a positive definite matrix; its
inverse matrix exists. Thus, with the solution of (3.3),
analysis (2.3) becomes statistically optimum in the form

J® = {mx)} A1 {f}- (3.6)
The minimized error variance of analysis (3.6) is
Ex)= m}né’ (x),

=s¥x)— {m(x)}" A {mx)}, (3.7)
with the variance of the true fields given by
s2(x) = {fx)?). (3.8)

b. Problems in practice

In application of the above theory, there are a few
practical problems that must be addressed; in partic-
ular, analysis of the norm, estimation of true covariance
functions {m(x)}, and hypersensitivity of the analy-
sis (3.6).

Since statistical interpolation apphes only to the de-
viations from a norm, the norm must be defined, first
as discrete values at {X}, and then as a continuous field
in x. The latter, i.e., the norm field, must be added
back to the analyzed deviation field in order to recover
the total field. Although a constant field and a clima-
tological mean field are often mentioned as possible
candidates for the norm, these are too crude or unre-
liable in real applications. Ideally, the norm should
define a slowly varying field of large spatial scales, while
more transient, smaller-scale disturbances are con-
tained in the deviations. In reality, a clear separation
of scales between the norm and deviations is not always
possible with a given ensemble of data.

For example, a meaningful analysis of the global
norm field, directly from operational synoptic data, is
practically impossible due to a large variation in data
coverage from one region to another; the model-pre-
dicted field from an earlier time is now commonly used
as the norm in the analysis of initial fields for global
prediction models. In our GATE analysis, the number
of ship stations in the array was too small to separate
the norm-defining scales by spatial considerations only.
Therefore, the separation had to be made, at each sta-
tion, in terms of temporal frequencies, and the analysis
of the norm field required mechanical interpolation
with some subjective constraints (see section 8).
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It is clear in (3.6) that the ability of this formula to
interpolate the discrete data is derived solely from the
knowledge of {m(x)} as continuous spatial functions.
If we are also interested in spatial derivatives of the
analyzed field, the derivatives of {m(x)} must be reli-
ably known. On the other hand, as the means of de-
termining {m(x)}, the formal definition (3.5a, b) is
useless in practice, since we never know the true field,
f(x), as a spatial function. As we have discussed in the
Introduction, we cannot always assume that a heuristic
modeling of {m(x)} is possible and acceptable. An at-
tempt can be made to estimate {m(x)} objectively from
the discrete sample covariances, [#1], but there still re-
mains the question of the adequacy of such estimates.
This paper will try to answer this question by examining

the realistic goal of analysis that is achievable by sta-

tistical interpolation.

In most applications, especially in operational ones,
a new dataset { f } is introduced at every analysis time,
and the ensemble of {f} becomes an open-ended,
theoretical concept. In practice, therefore, not only the
elusive {m(x)}, but also the theoretically definable [r7]
are synthesized by an assumed model of autocovari-
ance, so that [#] is not assured to be positive definite.
Even if [#1] is somehow made to be positive definite
and computationally invertible, it is a notorious fact
that the analysis (3.6) may unexpectedly produce be-
wildering results. The cause of this difficulty is the ex-
treme sensitivity of (3.6) to those datasets, { f }, that
do not fit quite well to the statistically probable range
of patterns expected by [#2]. Paradoxically, the more
trivial the statistical mismatch is, the greater the sen-
sitivity becomes.

Beginning with Gandin (1963), the most common
remedy for the hypersensitivity has been an extra “ob-
servational” error variance that is added to the diagonal
elements of [#1]. By raising all the eigenvalues of the
matrix, it desensitizes the contribution from statistically
errant data, but also degrades the overall quality of the
analysis. Furthermore, this remedy introduces its own
paradox that, as Gandin observed, the better the data
coverage is, the greater becomes the need for the up-
ward adjustment of variance; that is, the required
amount of adjustment has little relation to the actual
quality of observation. A more rational remedy, orig-
inally proposed by Petersen (1973), will be discussed
in section 7.

¢. The missing consideration of spatial scales

In the spectral analysis of time series, Blackman and
Tuckey (1959) state that the aliased data due to poor
sampling should be discarded and new measurements
be taken under a better experimental design. The pos-
sibility of aliasing is equally present in the field analysis
of discrete spatial data. During GATE, the on-board
observations of every ship clearly registered frequent
passages of squall lines in the wind and humidity mea-
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surements. The time series of the upper-air data at each
ship also showed fairly strong signals associated with
those convective-scale disturbances, especially in the
lower atmosphere below the 60 kPa level. Although
the array of the GATE ships was able to capture the
cloud clusters, i.e., the subsynoptic-scale aggregates of
convective-scale disturbances, the array was too coarse
to determine the spatial structure of the individual dis-
turbances that generated the observed strong signals.
Therefore, in the spatial analysis of the GATE ship
data, there was a real danger of aliasing the undersam-
pled convective-scale signals to the cloud-cluster scale.

In spite of Blackman and Tuckey’s advice, it is ob-
viously unrealistic to hope for another GATE with a
greater number of ships. However, we may take heed
to its implied contrapositive that it is not possible to
de-alias the aliased data without additional informa-
tion. Thus, the question shifts to the availability of the
additional information. As was discussed in the Intro-
duction, our decision is to use the spatial covariances,
calculated from the entire dataset (the ensemble) of the
GATE Phase III period, in the attempt to de-alias the
spatial analyses at individual map times. The meaning
of de-aliasing in this attempt, and the degree of success,
are discussed theoretically in sections 4 and 5, and the
practical procedures are developed in the subsequent
sections. In so doing, we find that the traditionally de-
fined error variance (3.2) is not necessarily the best
criterion for de-aliased analysis. For example, the the-
ory of optimum estimates by Thiebaux (1973) or Thie-
baux and Passi (1976) did not address the question of
analyzable spatial scales by a given, and possibly un-

- dersampled, set of data.

It is noted that the de-aliased analysis would require
spatially filtered covariance functions, even if the true
functions were known in every detail. This conclusion
is not necessarily new, in the sense that all the opera-
tional applications of statistical interpolation are em-
ploying smooth covariance functions. For example, the

. scale length in the Gaussian model of the autocovari-

ance by Lorenc (1981) is set to 500 km, presumably
for the best performance of the global prediction model.
In the GATE analysis, we are not testing a prediction
model but are trying to extract from the data a maxi-
mum amount of information that would be compatible
with the study of interaction between convective sys-
tems and their environment. Therefore, the question
is not just about the need for a filter, but, rather, the
determination of the filter that is optimum to our goal.

4. Spectral properties of mechanical interpolation
a. Matrices for one-dimensional Fourier transform

The central problem of our inquiry is concerned with
the smallest scale or scales that can be meaningfully
analyzed when the distances between the observing
stations are not arbitrarily small but finite. In this sec-
tion and the next, we consider an idealized model of
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the equally spaced stations, so that the problem can be
reduced to its essentials. The purpose of this particular
section is to introduce Fourier spectral representation
in a band-grouped matrix notation.

The analysis domain is assumed to be a one-dimen-
sional cyclic domain of width D, in which the observing
stations, X;, are placed with a constant separation dis-
tance, Ax. Any integer is allowed for j, but j = 1, 2,

-, Jwill be considered as the primary cycle. Thus,

£=jAx, @.1)
D=XJ—XO=JAX. (42)

The cyclic conditions on the data and the true field are

fies=f and fix+D)=f(x). (4.3)

Since observational errors in the data only divert our
attention from the present question, the data are as-
sumed to be error-free, that is,

fi=1%). (4.4)

Finally, it is assumed that the ensemble statistics of the
true fields are spatially homogeneous and precisely
known. In particular, the covariance function (3.5b)
is, for every J,

m;(x) = p(x"), (4.5)

where u(x’) is the autocovariance function and is as-
sumed to be known everywhere.

Under the assumed conditions, any analyzed field
can be compared with the corresponding true field in
terms of their Fourier spectra in wavenumber space.
Since the domain has a finite cycle width, the wave-
numbers to be considered are discrete but may range
between plus and minus infinity. These wavenumbers
will be denoted by k;,,, with the two integer indices, b
to indicate a band of J wavenumbers and # to specify
an individual within the band. In order to center the
main band, b = 0, at zero wavenumber, we shall assume
J to be an odd integer, i.e.,

for x'=x—X,

J=2N+1. 4.6)
Thus,
kpn = (bJ+ n)AK,
b=—c0,+++,—1,0,1, -+, 0
R 4.7)
n=—N,+++,~1,0,1, -+« N
with
Ak=1/D, or JAkAx=1 4.8)

The assumption of odd J by (4.6) is only to avoid awk-
ward notation. It is not critical to the rest of the dis-
cussion.

For compactness of notation, we abbreviate the
complex Fourier function as

Qb Ax)=exp(—i2nkpX). (4.923)

For each band b, there are J independent functions of
the above form, with n running from —N to N. These
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are grouped as a set and denoted by a column matrix
of J elements,

{60} =(Qp X)) sx1 - (4.9b)

We may further define, for each band, a J-by-J matrix,
(O], composed of dlscrete values of (4.9b) evaluated
atx =X, forj = ,J, and also for n = —N, -

N. However, because of (4.8), [Os] of different bands
are identical to each other. Therefore, we drop the sub-
script b and define

[01=(QsA%)ss, (4.10)

for any b on the right-hand side. The rows of [()] are
indexed by n, from —N to N (J rows in total), and the
columns by j from 1 to J.

Orthogonality relations of the defined Fourier ma-
trices are listed below for convenience:

D
8k [ (00} @)= bl

o0 , >
Ak 3 {Q0){Qux)} =d(x—x") [
b=—c0
[QNO1 =[Q1*(Q] =JI1]
where [1] denotes the identity matrix, &, is Kroneck-
er’s delta, and 8(x — x') Dirac’s delta function. Also in

the above, superscript H indicates a transposed, com-
plex conjugate matrix (Hermitian transpose).

4.11)

b. Fourier representation of the true field

Being defined at every Xx, the true field can be ex-
pressed by an infinite Fourier series. In our band-
grouped notation, it is

fo=8k S (QM0}H{F),

=—00

(4.12)
with
D
(F = [ 10um} o 4.13)
where {F,} is the column matrix of F,,, the Fourier
coefficient for k; ,, of band b.
The Fourier spectrum of f{(x), that is, { F,} of all the
bands, is defined for each member of the ensemble.

- On the other hand, the statistical properties of the en-

semble are related to the power spectral density, or
power spectrum for short. For example, the ensemble-
averaged variance (3.8), which is, here, spatially con-
stant due to the homogeneity assumption, is given by

o© N
s()=s*=Ak 3 X Py, (4.14)
b=—co n=—N
where
Pb,n = Ak<F2‘,an,n> (4 1 5a)

is the component of the power spectrum at wavenum-
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ber k.. In the above, superscript * denotes a complex
conjugate. We may group J components of (4.15a),
from n = —N to N, and represent them for each band
by a diagonal matrix,

[Pb] = (Pb,nann')JXJ' .

As is well known, the power spectrum is also the Fou-
rier coefficients of the autocovariance function u(x).
By shifting the origin of u(x) to individual stations X;,
as shown in (4.5), we have the covariance functions
expressed in terms of the power spectrum. Namely,

(4.15b)

(m()} = AKIOT S [P0}

b=—w0

(4.16)

¢. Aliased analysis

The true field, expressed by the infinite series (4.12),
is only the target of discrete-data analysis. The best
analysis obtainable by mechanical interpolation is a
finite Fourier series, in the present case of the equally
spaced data, {f}, in a cyclic domain. The result is a
continuous function of x, but does not contain any
more information than exists in the data. Therefore,
this analysis result is denoted here by f(x) and is given

by . X
f(x)= Ak{Qp(x)}H{F},

{F} = AXOH T }-

As explained for (4.10), [Q] has no band designation;
neither does {F}, the column matrix of Fourier coef-
ficients. However, { F} is normally considered to belong
to the main band, b = 0. This assumption is already
reflected in (4.17) by the choice of {Qy(x)} rather than
{Qx(x)} of a side band. (Exceptions may occur in the
analysis of certain other datasets, such as the Doppler-
radar observation of wind speeds. The problem there
1s to relocate, or unfold, the observed spectral peak to
a correct side band, depending on wind conditions.)
Besides the missing side bands, the mechanical anal-
ysis (4.17) does not agree with the true field (4.12) even
in the main band. To see this, we only need to com-
pare the two at the discrete data points {X }, where, on
account of (4.4), both must reproduce {f}. In fact,

(4.17) yields ) ) A
{/}=Ak[QIP{F},
while (4.12) is reduced, because of (4.10), to

(4.17)
with

{/}=AkIOF X {Fy}.
b=—00
Since [Q] is not a singular matrix, it follows that

(F}= 3 (F),

b=~

(4.19)

which implies the well-known fact that all of the side
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bands of the true spectrum are folded onto the one and
only main band of the spectrum that is obtained by
the mechanical interpolation. In other words, higher
wavenumbers in the true side bands are aliased to ap-
pear like wavenumbers within the main band. We may
note that the amplitudes of the true side bands are
unchanged, even though their wavenumbers are aliased
in (4.19). If the data points are not equally spaced,
there will be no such assurance of amplitude preser-
vation. In the mechanical interpolation of irregularly
spaced data, therefore, aliasing is practically synony-
mous with overshooting.

For the convenience of later reference, the analysis
(4.17) may be given in the one-sided real form, i.e.,

N
S = 2 Gulx), (4.20)
with
G(x) = 2Ak(4, cos2nky ,x — B, sin2wky,x), (4.21)

where A, and B, are the real and imaginary parts of
F,, respectlvely The spatial phase of each wave com-
ponent G,(x) is determined by the ratio 4,:B, and is
also affected by aliasing.

_ Now, the statistical properties of the ensemble of
f(x) can be written in the spectral form. The power
spectrum is unique only in one band and the com-
ponents for n = —N to N are .

P, = AK(F*E), (4.22a)
which may be set in the diagonal matrix form,
[P)=(Pudun)is- (4.22b)

Then, the sample-covariance matrix (3.4a) becomes
[72] = ALQT*[PIIQ]. (4.23)

Because of (4.4), [##1] can also be formed by arranging,
side by side, J columns of (4.16), each at x = X for j'
=1, « -+, J. The result,

[Rl1=kIQI' 2 [P:DIO)

b=

must agree with (4.23). Thus, it follows that

Pl= 3 [P, 4.24)
b=—0c0

which shows that the power spectrum of the ensemble
of f(x) is also folded, or aliased.
The ensemble variance of f(x) is given by

§(x)= Ak 2 P,=s2, (4.25)

n=—N

which is constant in space, and, because of (4.24), is
identical to s* of the true variance (4.14).
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5. Spectral properties of statistical interpolation
a. Intoto

In the idealized setting of the preceding section, we
have seen that the mechanical interpolation of the dis-
crete data produces no information in higher wave-
numbers of the side bands, that the analysis in the main
band may be incorrect due to aliasing, and, worst of
all, that the method does not tell how severe or light
the extent of aliasing might be. In the analysis of real
observational data, aliased spatial scales are likely to
be accompanied by overshooting amplitudes. A human
analyst often has background knowledge of the ob-
served physical event, so that he may recognize un-
realistic distortions in the analysis. Removing the sus-
pected aliasing from the analysis is another matter and
requires some additional information about the true
field.

In the objective analysis by statistical interpolation,
the knowledge of covariance functions, or, equiva-
lently, that of the true power spectrum of the ensemble,
constitutes the supplied judgmental information. We
are now ready to see, again in the idealized setting,
how this extra information is used in an attempt to de-
alias the main band. We shall also see that even a per-
fect knowledge of the statistics is no help for recovering
the undersampled small-scale components in the side
bands.

In the one-dimensional spectral form, the statistically
optimized analysis (3.6) is represented by an infinite
Fourier series,

=2k 3 (O} E),

b=-c0

(5.1)

where {Fb} is the set of J Fourier coefficients of f(x) in
band b, and is given by the Fourier transform of the
right-hand side of (3.6),

{Fp} = fOD {QsX)} {m(x)} T[] '{ f }dx.

Making use of (4.16), (4.18) and (4.23), as well as (4.8)
and the orthogonality relations listed in (4.11), we can
reduce the above to
{Fy} =[PP {F}. (5.2)
Also for the present one-dimensional case, the min-
imized error variance (3.7) can be written as
E(x)=s*—§%(x), (5.3)

where the constant s? is the ensemble variance of the
true fields, (4.14), and §%(x) is the ensemble variance
of the optimum analysis (5.1); specifically,

Fy=8k T T Q)PP [Py{ Qp(x)}-

b=—c0 b'=—0

(5.4)
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The traditional minimization, as defined in section 3,
works on the premise that the analysis would be better
if the error at any x were made smaller. As the result,
(5.3) is a varying function of x in the domain and nor-
mally becomes a minimum at every data point. In the
present case of error-free data, we can in fact show, for
every j, that
mxinE(x) = E(X;)=0. (5.5)
Although the above premise for point-by-point
minimization seems to be commonly accepted without
qualification, the obvious imprints of observing stations
in the spatial variation of (5.3) and (5.4) should be
viewed as a warning sign of trouble. For a better un-
derstanding of the problem, we divide (5.1) into two
parts and shall examine them separately. Namely,

00 =f)+f1(x), (5.6)
where . .
Jox) = Ak {Qo(x)}H{ Fo}, (5.7)

F00= 8k 3 (O Ey} + (000} HF ). (5.8)
b=1

In the above, ﬁ)(x) is the primary part containing the
main-band components only, and f'(x) is the remain-
der that includes all of the side-band contributions. _

Technical note. Because of the assumption (3.1), P,
vanishes at # = 0; in strict terms, [P] cannot be inverted
as we have written in the above. However, Py, and Fy
also vanish for the same reason. Thus, the singularity
at n = (0 isremovable and will not appear in the explicit
notation below.

+b. The de-aliased main band

The meaning of the main-band analysis (5.7) be-
comes clear if it is compared with the aliased analysis
(4.17) by mechanical interpolation. Since both [Fy] and
[P] are diagonal matrices, the individual Fourier coef-
ficients in {F;}, except for n = 0, are

FO,n=RnFna (5.9)
where .
R,=Py /P, <1, (5.10)

in which the inequality follows from (4.24). Thus, (5.9)
is a statistical attempt to de-alias the aliased amplitude
F,, by the ratio, R,, of the true power to the aliased
power at each main-band wavenumber. We may write
(5.7) in the one-sided real form as

N
S = 2 R.G(x),

n=1

(5.11)

which is to be compared with the similar form (4.20)
for f(x). Since the de-aliasing factor, R, is a real num-
ber, the correction applies only to the amplitude of the
real wave G,(x); the spatial phase error that may already
exist in G,(x) stays uncorrected and will be carried over
10 fo(x). ‘
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The power spectrum for the ensemble of f:)(x) is given
by
Po,,, = Ak<ﬁanﬁ0’n>

= anpn = RnPO,n

which implies a reduction of the aliased power by the
square of factor R, and also a reduction of the true
power in the main band by R,. Therefore, it appears
that statistical interpolation de-aliases the power spec-
trum too much. Although unfortunate, this is the con-
sequence of the attempt to minimize the analysis error
. of individual fields by the correction factors that are
defined for the ensemble. To adjust the correction fac-
tors to individual fields, a far greater amount of judg-
mental information is required than is assumed by sta-
tistical interpolation.

The ensemble variance of (5.7), which represents the
spatial distribution of the power, is given by

50700y = {fox)?)
_§QZ=2Ak EP(),,

n=1

, (5.12)

(5.13)

and is constant in space. In comparison with the full
variance (5.4), the interesting aspect of (5.13) is not
that it is exactly constant, but that it does not show
imprints of the observing stations.

¢. Utility of the side bands

We have seen that the analysis f5(x), containing only
the main band, is an improvement over the mechanical
analysis f(x). Although the wave phases are not cor-
rected, the spectral amplitudes are statistically de-
aliased. However, the error variance of fy(x) must
be greater than the theoretical minimum (5.3), since
Jo(x) alone is not the optimum analysis. The minimum
can be attained only by addmg back the side-band con-
tribution f ‘(x) to the main band. Does this mean that
fo(x), as a field analysis, could be further improved by
the addition of side bands? The answer is that the side
bands are not only useless but potentially harmful to,
the field analysis. It is not suggested, however, that me-
chanical interpolation (4.17) which produced no side
band would be preferable. Although it sounds para-
doxical, the utility of the side bands produced by sta-
tistical interpolation resides in their nature of being
filterable.

To explain the answer unequivocally, we need an
explicitly defined distribution of the true power spec-
trum in the side bands. It is general enough for the
purpose to assume that the power spectrum varies lin-
early within each side band, or that, for N> n= —N
and b= 1,

Py, =Pyo+nAP, (5.14)

where P is the power at the central wavenumber,
ks, of side band b, and AP, is a constant increment
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of power between two adjacent wavenumbers within
the band. For b < —1, it holds that P,, = P_,_,, due
to the inherent symmetry of the power spectrum.

The side-band contribution (5.8) can now be written
as

F0)=2 T (Cyx) cos2mkyox + Sp(x) sin2wks,0x),
b=1

(5.15)
where

N
2 (P b,O/ P n)Gn(x)’

n=1

Si(x)= 2 (nAPy/P,)G, (x+ ko,,"). (5.17)

n=1

Co(x)= (5.16)

It is immediately seen that Cy(x), above, is identical to
(5.11) except for the different statistical factors reducing
the amplitudes of G,(x). In Si(x), besides the altered
amplitudes, the spatial phase of each G,(x) is shifted
by a quarter of its own wavelength. Therefore, both
C(x) and Sp(x) contain oscillations only at the wave-
numbers of the main band and represent essentially
the same information as does ﬁ,(x) In (5.15), these low-
wavenumber oscillations act as modulation factors on
the rapidly oscillating sine and cosine at the central
wavenumbers of the side bands.

The situation mathematically described in the above
is analogous to a simultaneous radio transmission of
the same, but muffled and slightly garbled, message
over several carrier frequencies. Actually, the total effect
of (5.15) is worse than thlS analogy implies. Due to the
fact that

cos2mkpoX;= 1 . (5.18)

for all b at any X;, the summation of the first term in
(5.15) leads to a sympathetic interference (coherent su-
perposition), at and around the observing stations, of
redundant messages Cx(x) from all the side bands. The
cumulative effect of interference will be more pro-
nounced if P, decreases less rapidly with b or, equiv-
alently, if the autocovariance function (4.5) has a nar-
rower peak at zero lag. The effect of the second term
in (5.15) is much less significant since the summation
tends to cancel out incoherent waves.

It is now clear that the side-band components con-
stituting f'(x) have no useful information in them and
that the interference between them creates the illusion
of small-scale disturbances trapped near the observing
stations. When spatial derivatives are calculated from
f(x) that includes f '(x), the erroneous contributions of

- f() will be exaggerated due to their high wavenum— .

bers. Therefore, there is no good reason to keep f'(x)
in the analysis. Since the side bands are distinct from
the main band in the wavenumber spectrum, the re-
moval of f'(x) can be achieved by a proper spatial filter.
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If the field analysis is desired in higher wavenumbers,
the main band must be extended to cover those wave-
numbers; it can be done only by making observations
at shorter intervals. .

We have seen in (5.5) that the total analysis f(x) has
no error variance at the observing stations, which im-
plies that the analysis fits exactly to the given data at
those points. For this reason, one might still argue for
the retention of f'(x) in the final analysis. In view of
the fact that the fortuitous interference of the mean-
ingless side bands is solely responsible for those dips
of the error variance, the exact fit of an analysis to the
data cannot be a virtue of overriding importance. If it
were, even the mechanical interpolation f(x) would fill
the bill.

d. Summary

The conclusions of the preceding discussions are now
summarized in slightly generalized terms.

A discrete set of observational data hormally con-
tains signals of all scales; some scales are sampled suf-
ficiently well to resolve a field, and others are not. The
resolvable scales, i.e., the adequately analyzable spatial
scales, are determined solely by the geometry of ob-
serving stations, {xX }. In the case of equally spaced sta-
tions, the resolvable scales are in the main band of
wavenumbers bounded by the Nyquist frequency of
spatial sampling, (2A x)~!. An analysis method cannot
change the resolvable scales.

An intelligent analysis method analyzes only the re-
solvable signals, after separating them from the input
signals in {f}. The resolvable signals are those that
are judged to belong to the resolvable scales. Unre-
solvable residual signals must be discarded. Mechanical
interpolation, lacking the necessary intelligence, takes
the input signals as if they all belong to the resolvable
scales. There is no way to untangle the misinterpre-
tation, once the interpolation has been made.

Statistical interpolation, aided by the statistical
knowledge of de-aliasing factors, determines the most
probable amplitudes of resolvable wave components
and produces an analysis, fo(x), of the de-aliased re-
solvable signals. However, the method does not actually
discard the unresolvable residual signals, but turns
them into a spurious additional field, /'(x), in the side
bands. The spurious field is removable by a proper
spatial filter and should be so removed. In next section,
we modify the minimization principle of statistical in-
terpolation such that it will only produce the analysis
of resolvable signals.

Statistical interpolation does not correct the possible
phase error even in the de-aliased wave components.
In real applications, this may become a serious problem
in locating the center of a disturbance. However, it is
commonly known that, if the field analysis is being
performed sequentially in time, the phase error of
propagating disturbances can be alleviated by consid-
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ering the time continuity of analysis. As we discuss in
section 8, the time continuity can be taken into account
objectively, by Fourier-transforming the time-se-
quenced station data into time-frequency bands.

6. Field analysis of resolvable scales
a. The strategy

The purpose of this section is to reformulate the
principle of statistical interpolation in such a way that
the conclusions of the last section can be extended to
applications under normal conditions of real data.
Specifically, we consider a finite number of observing
stations irregularly distributed in a nonperiodic two-
dimensional domain of limited extent. The obvious
question here is how to define resolvable scales. The
exact language of the Fourier transform no longer ap-
plies, and any answer must be somewhat empirical.

Our strategy is to determine the optimum level of
filtering that would be just enough to remove the res-
idue of unresolvable signals from the analysis, rather
than to tackle directly a definition of the resolvable
scales. To follow this strategy, we must modify the error
variance (3.2) in such a way that the optimization pro-
cedure can be directly focused on the analysis of re-
solvable scales. Then, the optimum filter can be deter-
mined by monitoring the spatial distribution of the
error variance.

We shall begin by introducing a spatial low-pass fil-
ter, &, which operates on field variables in the analysis
domain. The filter should have a disposable parameter
specifying the limit of scales to be filtered. There are
many ways to construct such a filter. In the case of a
cyclic domain, a Fourier filter with sharp cutoff at a
desired wavenumber may be used. This is the filter we
assume when references are made, below, to the ideal-
ized case. For a finite domain with general boundary
conditions, a filter is designable only with a tapered
cutoff. For the matter of terminology, however, the
cutoff point of the filter is defined as the wavenumber,
or wavelength, of the half-response point that would
result if the filter operated in a cyclic domain. In two-
dimensional applications, the filter response can be
made to vary in direction or with spatial coordinates.
However, in the following discussion, we assume an
isotropic and homogeneous filter, so that the filter may
be referred to by a single cutoff wavenumber, k., or an
equivalent wavelength, /.. The filter we used in the
GATE data analysis is described in the Appendix.

Using the low-pass filter § as a field operator, we
may define a filtered true field, denoted by f(x), by

J) = & (fx); ). (6.1)

It is noted that the filter makes no reference to observing
stations or data, and also that the filter parameter /.,
at this point, is completely at our disposal. However,
the purpose of defining the filtered true field is to allow
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the analysis of discrete data to aim at a potentially
achievable target. As we have seen in the preceding
section, the true field itself is not an achievable one.

b. Minimization of the targeted error variance

We shall now introduce a new form of error variance
by including a specified target of analysis in its defi-
nition. Namely, for the ensemble of any analysis f(x)
of general form (2.3), we define

€ (x; 1) = {(f) = )y +{ () = fx)®),  (6.2)

where /. on the left-hand side indicates the filter pa-
rameter that is implicit in f(x) on the right-hand side.

The first squared term of (6.2) measures the error of
the analysis f(x) relative to the specified target f(x).

However, this term alone will not properly account for
the skill of the analysis, since the target itself can be
made less demanding by increasing /.. Thus, the second
squared term, representing a penalty for lowering the
target by filtering, is necessary to make (6.2) a balanced
measure of the analysis error and skill. The new defi-
nition (6.2) is a generalization of the original definition
(3.2) in the sense that the new one becomes identical
to the old as /. decreases to zero (no filter).

The next step is to minimize (6.2) by choosing the
influence functions {y(x)} while holding the filter pa-
rameter constant. Since the second squared term of
(6.2) does not depend on {y(x)}, this step goes exactly
the same as in section 3, except that f(x) is replaced
here by f(x). Thus, the new solution {y/(x)} that min-
imizes (6.2) is obtained by solving

[A1{¥x0} = {mx)},
{m)} =) =({F10),  (6.4)

and ’[rfz] is the same as (3.4). Since the filter does not
operate on discrete data but only on the field, {#1(x)}
is obtainable by filtering (3.5), i.e.;

{mx)} =& ({mx)}; 1), (6.5)

which implies that the elements of {r2(x)} are not the
covariance functions of the filtered true field but rather
the filtered covariance functions of the true field.

With the solution of (6.3), the statistical analysis,
optimized for the target (6.1), is given by

fx)= {m)} A1 f). (6.6)

In the above, we could have denoted f{x) with a bar
added, since it is also obtainable by spatially filtering
the original f(x) defined by (3.6). We have not done
so, in order to avoid an overcrowded symbol and also
to hint at the fact that, in the actual process of analysis,
we do not calculate (3.6) and then apply the filter.

If the cutoff taper of the filter is reasonably sharp,
we may assume

LAY = {FEOfx)).

(6.3)
where

6.7)
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Then, the minimum error variance which (6.2) attains
with analysis (6.6) is
E(x;1)=miné (x;1,)
= s%(x)— {m()} M1 {mx)},
where s%(x) is the variance of the (unfiltered) true
field, (3.8).

In the limiting case of /. = 0 (no filter), (6.8) is iden-
tical to (3.7) and the analysis (6.6) will contain all the
residual effects of unresolvable signals. In the opposite
limiting case of infinite /., (6.8) takes the absolute max-
imum values equal to s%(x) and the analysis will be a
total washout. Our next problem is to determine the
optimum value of /., so that (6.6) will be targeted for
the best analysis of resolvable signals.

(6.8)

¢. Search for the optimum filter

For the moment, let us return to the idealized one-
dimensional case of the preceding section. If the filter
cutoff point is chosen exactly at the Nyquist wavenum-
ber, or at the wavelength 2Ax, the analysis (6.6) will
be exactly equal to the main-band analysis f(x) defined
by (5.7). Therefore, I, = 2Ax is the optimum filter.
Then, (6.8) is reduced to

E(x;1,.=2Ax)=Eyy

6.9)

which is constant throughout the domain, since both
terms on the right-hand side, defined by (4.14) and
(5.12), respectively, are independently constant.

If the cutoff wavelength is increased, the filter will
begin to affect the main band, removing small-scale
components within the band. Since the true variance
s? is unchanged, the error variance will increase but
still remain constant in the domain. Thus,

E(x;1.>2AXx)=const> E.

On the other hand, if the cutoff wavelength is less than
2AXx, the error variance will become smaller than
(6.9), i.e.,

=SZ__§02’

E(x;I,<2Ax)< E,y,

but it will not be a spatial constant. It is reduced more
at the observing stations than between them, due to
the phase interference of the side-band components,
which are only partially filtered.

The above discussion clearly suggests an empirical
procedure for determining the optimum filter that
would remove just the undesirable residues of unre-
solvable scales and no more. In the idealized case, the
optimum filter is the one that makes E(x; /) a spatial
constant of the least value. Since the procedure does
not require an explicit knowledge of the resolvable
scales, it can be extended to the general case of irreg-
ularly distributed stations in a finite domain. If the true
variance itself is not constant over the domain, we may
use the normalized error variance,
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e(x; 1) = E(x; 1)/s*(x), (6.10)

provided that a reasonable estimate of s%(x) is available.

A more unsettling problem may arise in the general
case, if the local density of observing stations varies
within the analysis domain. Namely, the rate of ap-
proach of the error variance to a constant field may
not be uniform. To avoid overfiltering in certain areas,
other areas may have to be left underfiltered. This am-
biguity is a reflection of the fundamental difficulty in
the analysis of irregularly distributed data. The pro-
posed procedure does not solve the problem, but allows
us to make an informed compromise. If the disparity
within the domain is too great, the use of a spatially
variable filter may be considered.

In applying the above procedure to the GATE data
analysis, we have found that the flatness of the error
variance, either (6.8) or (6.10), is not a very sensitive
measure to monitor. Therefore, we have also used an-
other statistical measure, e(x; /), which is much more
sensitive to the unfiltered residues of unresolvable sig-
nals. It is formally defined as follows.

Let us consider an imaginary ensemble of normal-
ized pure random data at every station, or an ensemble
of {7}, such that

T =111, (6.11)

where [1] denotes the identity matrix. For each dataset
{n}, the analysis (6.6) would produce an obviously
meaningless analysis,

7(0) = {m(x)} "[A] {7}. (6.12)

Then, e(x; /) is defined as the ensemble variance of
7(x). Namely,

e(x; L) = (R(x)ii(x))

= {mx)} T[] [m] " {m(x)}.

The behavior of e(x; /) with respect to the filter pa-

rameter is similar to that of e(x; /), except that when

one increases, the other decreases and vice versa. In

the idealized one-dimensional case, (6.13) for the op-
timum filter is given by

(6.13)

N
€, 1,=2Ax)=2J"" 3 (P /P

n=1

(6.14)

which is constant throughout the domain. As /. in-
creases, (6.13) decreases but remains constant in the
domain. If /. decreases below 2A X, (6.13) generally in-
creases but much more rapidly at the stations than
between them. A similar pattern of the behavior with
respect to /. may be expected in the general two-di-
mensional. case. Since unresolvable signals in the real
data have little correlation between stations, they are
hardly different from the random data that are assumed
in the derivation of (6.13). Therefore, in terms of the
response to unresolvable signals, the similarity between
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e(x; ) and e(x; /) is not surprising; the latter is only
more sensitive than the former.

As we have noted earlier, the filter is not applied to
the individual analysis f(x). Instead, it is used only for
filtering the true covariance functions, {m(x)}, as
shown in (6.6). In reality, however, {m(x)} is unknown
and even its empirical estimate is difficult to obtain.
What we may hope to do with an ensemble of real data
is to estimate the filtered version, {r2(x)}. In this sense,
the search for an optimum filter becomes entwined
with the empirical estimation of the covariance func-
tions.

7. Estimation of the ensemble statistics
a. Variance

We have discussed, thus far, the analysis of resolvable
signals as the goal of statistical interpolation, as well
as the strategy for achieving it. We shall now turn to
the actual problem of estimating the required covari-
ance functions from a given ensemble of observational
data. The degree of success in this task depends on the
coverage and quality of observations and also on the
complexity of the observed natural phenomena. In or-
der to compensate for observational undersampling,
additional assumptions such as spatial homogeneity
and isotropy of the statistical fields are often used, but
their justification depends on the given circumstances.
Since the estimation of statistical fields is essentially
an empirical procedure, it cannot be described without
reference to the actual data; the following presentation
reflects certain important decisions we made with
GATE data.

As before, { f } represents a set of J concurrent data
at J stations {X }, and it is assumed that the norm has
been subtracted, so that ({ /' }) = 0is still true. For the
ensemble of { f }, the sample-covariance matrix [#1]
can be immediately calculated, i.e., repeating (3.4) for
convenience of reference,

iy =S ]

. A
[m]= (mﬂ’)MJ .1

The diagonal terms, j = j/, of (7.1) are the sample vari-
ances; they are denoted, as elements and as a diagonal
matrix, by

A2 ~
S =my
(7.2)
[32] (sj 6]] )JXJ]

The positive square root of the variance matrix is also
a diagonal matrix, defined by

5,;_ = (S}Z)I/Z
[s1= (§jajj’)1><1
(51151 =57

(7.3)
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The inverse of [§], denoted by [§]7!, is also a diagonal
matrix, such that .

[ST781=[S10817" = [1].

The sample variance, its square root and inverse are
all calculable directly from the ensemble of { f }. The
real challenge begins with the estimation of the true
variance as a spatial function. Two problems are in-
volved: how to estimate the station values of true vari-
ance and how to avoid, or reduce, aliasing in spatial
interpolation of the discrete values. Of the first problem,
the so-called random error in observations is least
troublesome, if it is the only kind of observational error.
In our GATE analysis, it was possible to remove prac-
tically all of the random error by preprocessing the
data of each ship as a time series. On the other hand,
the mixed instrumentation of these ships, differing in
calibration and dynamic response, created a substantial
but yet unknown magnitude of ship-dependent errors
in the calculated §?, on which equally substantial geo-

" graphical variations of the presumably true variance
were superposed. Although spatial variations of the
variance field were of relatively large scales, there was
evidence of undersampling, especially in the meridional
direction.

The procedure we have used for estimating the true
variance field s%(x), or actually its square root s(x), is
symbolically written as

s(x)= & for all j; L,, L)),

(7.4)

(7.5)

where & denotes an operator for mechanical interpo-
lation with a spatial low-pass filter; the operand of &
is the discrete data §; at X;, and L, and L, are the cutoff
wavelengths in east—west and north-south directions,
respectively, of the direction-dependent filter. In section
6, we introduced & simply as a filtering operator, since
the interpolation role of the operator is insignificant
when the operand is densely defined. Here, in (7.5),
the discrete operand must be interpolated in space as
input to the filter. Note that we do not use an overbar
with s(x) above, because the purpose of (7.5) is not to
filter s(x) but to obtain an estimate of s(x) itself Al-
though the procedure is equally applicable to §? to di-
rectly estimate s3(x), we prefer estimating s(x) and,

then, squaring it.

The choice of the filter parameters is the most critical
part of the procedure (7.5). The goal is to average out
the instrumental differences among stations by choos-
ing L, and L, large enough, but not so large as to wipe
out the geographical variations. Since the latter were
primarily in the meridional direction in the GATE area,
the use of a directional filter was necessary to achieve
the goal. In the end, (7.5) gives a fairly smooth field of
s(x), which generally does not agree with §; at X;. The
ratio of the two, s(X)):5}, provides us with a correction
factor which adjusts individual f for either too high or
too low instrumental response at station X;.
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b. Covariance

Unlike the slowly varying variance field, the co-
variance function m;(x) must carry the information on
small-scale components. As was discussed in section
6, what is needed in the field analysis is the filtered
covariance function r;(x) containing the information
only of resolvable scales. Even then, the estimation of
n1;(x) by mechanical interpolation of discrete 1 of
(7.1) is “as tricky a maneuver as pulling oneself up by
his own bootstraps.” In order to reduce the possible
aliasing in the interpolated m;(x), the set of data r;
for any fixed j should have a coverage dense enough
to resolve the smallest resolvable scale. On the other
hand, the lack of such coverage is the very reason for
the limited resolvable scales.

The circular dilemma can be broken only by a spatial
composite of 772 under certain assumptions. One such
assumption is spatial homogeneity. However, when the
variance significantly varies in space, the assumption
may be applied to the covariance only after it is nor-
malized by the variance. In addition to homogeneity,
which implies invariance in parallel translation, the
usual practice also assumes isotropy, which means in-
variance in rotation. We did not assume isotropy in
GATE analysis, however. If it were assumed, the co-
variance functions would have lost about 30 percent
of the otherwise recoverable information. It is noted
that, for the assumed homogeneity to improve the spa-
tial coverage of the composite data, the geometrical
pattern of the observing stations should not be self-
repetitive in translation, as would happen with regularly
spaced grid points. In this regard, the slightly irregular,
double hexagonal arrangement of ships dunng GATE
was helpful.

The normalized sample-covariance (correlation)

‘matrix is defined and calculated by

Ay = 85 iy §p !
or
[A] =517 [R5 (7.6)

The next step, under the assumed homogeneity, is to
estimate the normalized, filtered autocovariance func-
tion ¥(r) in the horizontal space of the relative displace-
ment vector r. For this purpose, every element 77 of
(7.6) is assigned to a relative position f;, defined by

fjj’ = ij’ - )A(j, (7.7)
in the r-space. At the origin r = 0, the normalized sam-
ple-variance 7; is unity for every j = j’ and includes
contributions from both resolvable and unresolvable
signals. Thus, even if random observational errors were
absent, the diagonal terms of (7.6) must be excluded
as data for estimation of v(r).

Applying the filtered mechanical-interpolation op-
erator in the r—space to the discrete data (7.6), except
for those with j = j', we obtain
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#(r) = 8 (A for j# ', 1,), (1.8)

where /. is the filter parameter that defined a potentially
achievable target in (6.1), and its value is to be adjusted
for the optimum definition of resolvable scales by the
empirical procedure described in section 6. When the
optimum filter is decided, #(0) at the origin will indicate
the fractional ratio of the resolvable-signal variance to
the total input variance.

Returning to the original x-space, we obtain the fil-
tered, normalized covariance functions by

(%) = x— %) o
{ﬁ(x)}=(@(x)),x1]' (79

The filtered covariance functions, which were theoret-
ically defined by (6.5), are now actually obtained by

{mx)} = [§1{A(0)}s(x). (7.10)
With (7.10) and the reverse of (7.6), i.e.,
[] = [S1[A]IS], (7.11)

we may rewrite (6.6) for the normalized analysis,
5@ = {AYTATISTY Y, (7.12)

which clearly shows that the difference between [§] and
s(x) is working for equalization of the data with respect
to the station-dependent variation of instrumental re-
sponse.

The assumption of homogeneity, especially that after
normalization, incurs a certain loss in the degrees of
freedom, so that the recovery of unnormalized esti-
mates is not totally unique. For example, [§] in both
(7.10) and (7.11) may be replaced by the presumably
truer variance matrix with s(x;) as diagonals. It can be
an attractive alternative if the cause of errors in [§] is
not as certain as we have assumed. For this and other
reasons, it does happen in practice that the actual [771]
used in analysis does not exactly match the one theo-
retically defined by (7.1). Then, the mismatch, however
slight it seems, may literally ruin the analysis. Preven-

tion of such disastrous consequences is our next topic. -

¢. Desensitization

As was mentioned in section 3, the hypersensitivity
of statistical interpolation is a serious problem. Unless
countered by some means, it worsens when more data
are available to define a field and, thus, a better analysis
should result. The commonly applied remedy for the
problem is an extra “observational error variance”
added to the diagonal elements of [1]. However, the
additional amount that is necessary for the cure has
no relation to actual observational errors at individual
stations. In fact, the cause of the problem is not with
individual data, but with the spatial pattern these cor-
related data make as a set.

As we discuss below, the covariance matrix [71] de-
fines a statistically probable range of spatial patterns
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with which every set of data { f'} should conform. Hy-
persensitive reaction occurs when the analysis tries to
interpret a set of data whose spatial pattern does not
fall within the probable range. Although a mismatch
of this sort may occur with statistically freakish sets of
data, it is more often caused by an assumed, or syn-
thesized, [r1] which erroneously sets up the probability
of expected patterns. Therefore, the removal of un-
realistic expectations of [#1] must be the basis of a ra-
tional remedy for hypersensitivity.

Since the sample-covariance matrix (7.1) is sym-
metric, we can define eigenvalues A, and corresponding
orthonormal eigenmodes {¢x}, k = 1,2, - - -, Jsuch

that

[rﬁ]{(bk} =Ak{¢k}]. (7.13)

{d} {dn'} = b
All of the eigenvalues are positive or zero, and we may
assume they are numbered in decreasing order of val-
ues, i.e., Ay = Axqy. Each eigenmode {¢;} is a column
matrix of J discrete values, ¢y, assignable to stations
atX;, j =1, - - -, J, respectively. Since {¢,} is not a
physical vector or a continuous function in space, we
have avoided the use of other familiar names, “eigen-
vector” and “empirical orthogonal function (EOF).”
The eigenmodes, above, form a complete set of or-
thogonal bases spanning a J-dimensional linear alge-
braic manifold. Therefore, any set of J data, { f }, can
be expanded in terms of the eigenmodes. Namely,
J
(/Y= 3 {#u}dr, (7.14)
k=1

where d; is the amplitude of the kth mode. For the
ensemble of {f} that has defined [r1], it follows that

M= (2. (7.15)

The covariance matrix itself can be expanded, such
that

J
[#]= 2 {éet M i}, (7.16)
k=1
and, for the variance, we have
J J
Trace [M]= X §7= 3 A (7.17)

j=1 k=1

We can now discuss the sensitivity of statistical in-
terpolation in clear mathematical terms. If no eigen-
value exactly vanishes, the inverse of (7.16) is given by

J
(17 = 2 {dut N { i)™ (7.18)
k=1
Thus, with (7.14) for { f}, the analysis (6.6) becomes

J
Jx) = {m@)}T T {$}(d/ N (7.19)
k=1
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If some eigenvalues do vanish, say, A, = 0 for K < k
< J, the corresponding g, must be zero due to (7.15),
and the summation with respect to k in (7. 19) should
be terminated at K.

Often, in practice, a particular dataset {{} to be
analyzed is not necessarily a member of the ensemble
of { f} by which (7.1) defined [#]. In a more extreme
practice, the ensemble is treated as a mere theoretical
concept so that a mathematical model replaces the en-
semble-averaging in defining [r1]. In these cases, (7.15)
breaks down and there is no statistical constraint on
the magnitude of d; with respect to A,. Some eigen-
values for higher k may become zero or even negative,
without the amplitudes g, vanishing at those k. Since
these eigenvalues are meanirngless, the corresponding
terms in (7.19) should be discarded. Even for the re-
maining positive eigenvalues, it may happen by chance
that some 4, that correspond to very small A\, are not
small enough to keep their ratio within proper bounds,
resulting in erroneously large contributions to the
summation in (7.19). Thus, if unpredictable hypersen-
sitivity of the analysis is to be avoided, those terms
with positive but very small A, should also be discarded.
The proposed exclusion implies a partial loss of the
input signals that may have been correct observation-
ally. However, as long as the retained eigenvalues still
account for a major part of the total variance (7.17),
the loss is statistically insignificant.

To formalize the above procedure, let us define K
as the number of eigenmodes to be retained in the
analysis, counting in the order of decreasing eigenval-
ues. The inverse of [#1] in the K- dlmensmnal subspace
is obtained by

K :
[ K17 = 2 {dt M { e} ™. (7.20)
k=1

The desensitized analysis that includes only the first X
terms in summation of (7.19) is given by

S = {mx)} " K17 f}. (7.21)
., The value of K, above, has to be chosen empirically.
This can be done either by examining the spectrum of
eigenvalues or by combining the selection process with
the search for the optimum filter /. as described in sec-
tion 6. For the latter, it is only necessary to replace
[7]7! in the definition of the error variance (6.8) or
(6.10), as well as in (6.13), by the truncated inverse
(7.20). The eigenmodes with smaller eigenvalues are
more oscillatory from one station to another. Thus,
the excluded amplitudes of those modes would have
contributed mainly to the unresolvable part of input
signal that was to be filtered out anyway. Therefore,
the analysis (7.21) is not very sensitive to a choice of
K within a reasonable range.
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8. Field analysis of time-sequenced data
a. The advantage

Until now, we have discussed. the field analysis by
statistical interpolation in which the judgmental in-
formation necessary for de-aliasing is derived from the
ensemble-averagéd spatial covariance functions. Al-
though the ensemble usually consists of spatial datasets
at many different observation times, the chronological
order of individual sets is actually irrelevant to the en-
semble-averaging process. If all the member sets of the
ensemble were rearranged in a random chronological
order, the spatial covariance functions would remain
exactly the same. Thus, it is obvious that the above
method of analysis does not use all the information
that is available in the ensemble of properly time-se-
quenced sets.

Given such sets of data, a human analyst certainly
consults with past and future data, looking for timewise
continuity of propagating disturbances. It is also a
common practice to composite several datasets at
neighboring observation times by displacing them in -
space according to an assumed rate of translation. Ob-
jective analysis by statistical interpolation may similarly
take advantage of the time-sequenced ensemble by in-
troducing time-lagged spatial covariances. In the post-
analysis of such data, it is more efficient to Fourier-
transform the ensemble in the time-frequency domain
and to apply the statistical knowledge of cross-spectra
for combined judgments in space and time.

The proposed method will not alter the limit of re-
solvable spatial scales discussed in section 6. Within
the resolvable scales, however, the phase and coherence
of propagating disturbances, if such are statistically
present in the data, will be included automatically in
the optimization of analysis; thus, spatial phase errors
of these disturbances are likely to be reduced. Unlike
the subjective composite, the statistical method does
not assume or impose rigid, kinematic displacements.

b. Separation of frequency bands

For the new method to be effective, the given en-
semble of data must have been sampled frequently in
time, so that the risk of temporal aliasing is small.
Therefore, in the following discussion, we shall assume
a well-sampled time series of data at every station X;
and denote it by fror (o for j =1, , J or, in the
column-matrix notation, by { me(t)} wnhout explicit
indication of discreteness in time. )

In our application to the GATE data, a time series
in the above form was generated for each ship station
by mechanical interpolation of the reported upper-air
data in the form of time-height cross section. During
this process, the raw data were checked and errors were,
if possible, corrected. With nominally three-hourly,
though often six-hourly, observations, and after several
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iterations of data-editing and interpolation, the risk of
temporal aliasing was judged acceptable. However, the
time series was neither periodic nor long enough (20
days in Phase III observation period) for the application
of the exact Fourier transform. For the purpose of de-
riving the ensemble statistics, only three or four fre-
quency ranges could be considered quite independent.
Therefore, a band-filtered analog was more practical
than the formal Fourier transform. The band-filtering
was achieved by subtracting two low-pass filters at con-
secutive cutoff frequencies. The low-pass filter was ap-
plied to the time-height cross section analysis by the
method given in the Appendix, specifying the filters
independently in time and in height. Since the filter
cutoff was tapered, the consecutive frequency bands
slightly overlapped each other.

In the frequency-band analog of the real Fourier
transform, the total input data may be written as

Fror (&)= fu )+ f®) (8.1)
with L
0= 2 7,0,
>0

8.2)

where fy j(f) represents the norm-defining data in the
lowest frequency band (g = 0), which includes the time
mean, and f(¢) is the sum of deviations f, ;(¢) in higher
frequency bands, designated by index g =1, - - -, Q.
As before, these band-filtered data, grouped for all the
J stations, will be denoted by column matrices,
{7}, { D} and {f}.

Our goal is to obtain the spatial analysis in the form

Jror(x, 8) = Ju(x, 1) + fix, 1). (8.3)

The time-dependent norm field, fu(x, ¢), will be ob-
tained by mechanical interpolation of { /\(#)} in space,
while the deviation field, f(x, #), will be analyzed by
statistical interpolation, utilizing { f(z)} for all ¢ > 0
as the input data. Note that the time mean of { f(1)}
vanishes. We write the true field, again as a rhetorical
device, in the same form as above,

Jror(x, 1) = fM(x, 1) + f(x, 1). (8.4)

The actual selection of the frequency bands must be
adjusted to the given data. Although the decision is
subjective, the range of possible choices is practically
limited. For example, the bandwidth of { f\(#)} should
be narrow enough to allow mechanical interpolation
of the norm field; yet it should be wide enough so that
even the slowest variation in the remaining { f(7)} is
sufficiently recurrent within the duration of the time
series. Similarly, the bandwidth of each { £(#)} should
be narrow enough for resolution of the frequency spec-
trum and yet wide enough to retain statistical signifi-
cance in the interstation correlation.

The frequency bands we adopted for GATE analysis
were the following: the norm band N (g = 0) for all
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variations with periods longer than eight days, includ-
ing the mean and trend; the E band (g = 1) for periods
between eight days and two days, centered at the av-
erage period (about four days) of the synoptic-scale
easterly wave; and the D band (g = 2) for periods be-
tween two days and twelve hours, centered at the one-
day period of apparent diurnal modulation of convec-
tion in the GATE area. The remaining variations at
higher frequencies (all periods less than twelve hours)
were extremely variable among ships and judged to
contain almost pure noise and were not used in spatial
analysis. '

c. Statistical interpolation by analog cross-spectra

Following Wallace and Dickinson (1972), we define
the band analog of the complex Fourier transform for
each band ¢ > 0 by

. . d .,
FqJ(t)——_—-%(fq’j(t) +(i27rw,)! EZﬁ,,j(t)), (8.5a)
and for all j by

{FLD} =F ;)1 (8.5b)

where w, is a representative frequency of the gth band
and is only used for scaling the time derivative to form
the imaginary part; all the frequencies of the band are
still present in (8.5). For mathematical convenience of
the two-sided transform, we éxtend (8.5) to negative
frequencies by w_, = —w, so that

{F_0)} = {F 0}~ (8.6)
s F0} =2 Re{F )}
{f{}=2Re
~ (0} + {ﬁ_,xz)}} - 67

The general linear form (2.3) for analysis is now
generalized by associating complex-valued influence
functions { ¥ (x)} with {F(¢)} for every g # 0. Namely,

fx,0= 3 { T ) {EL0)}, (8.8)
q#0

where the summation covers all the positive and neg-
ative bands, but excludes the norm (g = 0). To ensure
the analysis to be real-valued, we should have

{¥_ ()} = { T (x)}*. 8.9)

To discuss statistical interpolation further, we apply
the minimization principle to analyze all the frequency
bands together. Although it is mathematically simpler
to handle each band separately, our interest is not in
analysis of just a few spectral peaks; we must properly
account for all the frequencies, including those covered
by overlapping band-filters. For clarity of presentation,
we shall use the error variance (3.2) of the traditional
definition. However, the result, below, can be easily
extended to the targeted error variance (6.2), since our
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discussion of resolvable spatial scales equally applies
to every temporal frequency band. Also for clarity, time
t,as argument will be dropped, although the ensemble
average is still with respect to ¢.

Now, with substitution of (8.8) for f(x), (3.2) is to
be minimized at every x by choosing every element of
{¥,(x)} for every g # 0. The minimizing solution,
{¥,x)}, can be obtained by simultaneously solving
20 matrix equations for g # 0,

M H{ ¥ %)} = {Mx)}, (8.10)
g'#0
where ) A ) :
[Mgg] = ({F}{Fp 3™, (8.11)
{Mx)} = {{F}/1x)). (8.12)

The typical element of (8.11) for ¢ = ¢’, qu ii'» is the
frequency-band analog of the cross-spectrum between
stations X; and X;. For g # ¢', the elements of (8.11)
should be small but do not necessarily vanish, since
two frequency bands partially share the same frequen-
cies in the overlap. Even if g and ¢’ are of opposite
signs, there are still some contributions to (8.11) due
to nonperiodicity of the band-filtered data. In (8.12),
J(x) contains all the frequency bands except the norm,
so that the data for empirical estimation of {M(x)},
the true cross-spectrum function, are the sum of (8.11)
with respect to all ¢’ # 0.

In the ideal case in which all the interband contri-
butions are negligible, (8.10) is reduced to

M) {¥,} = {Mx)}. (8.13)

With the solution of the above for every g, the optimum
analysis is given by

f) =3 {M)IM,)]{F,), (8.14)
0

and the minimized error variance by

E(x) = fx)*) —  {MLx)}P[M, ] {Mx)}. (8.15)
q*0

In our GATE analysis, we did not depend on this
simplification, but solved the full form of (8.10). Al-
though we do not give the explicit expression for f(x)
here, there was no computational problem in calcu-
lating the analysis with the desensitization procedure
explained in section 7. The targeted error variance (6.2)
was actually used for simultaneous analysis of both the
E and D bands. By monitoring the spatial variation of
the error variance, /. = 450 km was chosen as the cutoff
wavelength of the optimum spatial filter.

If two or more frequency bands are analyzed si-
multaneously, one may wonder why it is necessary to

“separate them. The reason lies in differences in their
spatial structures. We may surmise that the low-fre-
quency E-band data are generally associated with large
spatial scales, and the high-frequency D-band data with
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small spatial scales. This does not imply that the D-
band data would allow us to analyze smaller spatial
scales than the E-band data would. The resolvable spa-
tial scales are determined by the spatial placement of
ships and are the same for either frequency band. What
we may expect from the time-space scale association
is that the D-band data would contain proportionally
more unresolvable signals than would the E-band data.
Thus, in order to de-alias the resolvable scales as ac-
curately as possible, the required judgmental infor-
mation must be adjusted to the different spatial struc-
ture for each frequency band.

d. Analysis of the norm fields

Since our interest is in analysis of the total field (8.3),
the norm field is as important as the deviation. Un-
fortunately, however, there is no statistical help to de-
alias the spatial analysis of the norm field; it must be
accomplished primarily by mechanical interpolation
of data at discrete stations. Ideally, therefore, the norm-
defining data should only represent sufficiently large
spatial scales. Since slow variations in time are usually
associated with large spatial scales, separation of the
norm data by temporal filtering may reduce the risk
of spatial aliasing. However, the association is far from

- being perfect; even the spatial set of the station time

means may still be undersampling the norm field. If
this is the case, only subjective judgments can help the
analysis of the norm, but without a guarantee of suc-
cess. As we mentioned in section 3, the operational
analysis of global data for numerical models does not
even attempt to analyze the norm field from the data.

With the GATE upper-air data, we indeed encoun-
tered serious difficulties. Although our norm-defining
data, { fv}, included slow variations in time, the sign
of spatial undersampling, coupled with ship-dependent
instrumental biases, was apparent in the time-mean
data. In the analysis of the mean wind field, troubles
were most evident in the field of vertical motion. As
was noted by many earlier analysts of the data, the
mean vertical motion over the ship array, calculated
by the usual kinematic method, naturally balanced out
to a very small value at the 200 mb level and above.
However, when similar calculations were made sepa-
rately for the eastern and western halves of the array,
the mean vertical motions in the two halves resulted
in a huge imbalance of opposite signs. The main cause
of this problem was in the sampling: the strong lati-
tudinal variation in the mean wind was undersampled
by the outer ships, while it was better captured by a
greater number of ships along the central meridian of
the array.

Once the cause was diagnosed, directional filtering
became an obvious choice as a remedy. The actual
procedure was similar to (7.5) except that the data were
{ fN} Although the filter wavelengths, L, and L,, had
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1o be determined by subjective trial, we monitored the
resulting vertical motion field, especially the spatial
distribution of imbalance at the top, to decide on the
best filter combination. The final values were L, = 1800
km and L, = 900 km, under the boundary condition
Type 2 (see Table Al). The stronger zonal filter ex-
tended the influence of the better-sampled central me-
ridian to the east and west, while the weaker meridional
filter preserved the likely true latitudinal variation of
the mean wind. In analysis of the temperature field,
the ship-dependent biases in the norm data were too
large to be corrected by spatial filtering alone. There-
fore, the analyzed norm wind field was used, through
the thermal-wind relation, to set horizontal tempera-
ture gradients as part of the boundary conditions on
the norm temperature field.

9. Analysis of a vector field
a. Scalars versus vectors

The purpose of this section is to discuss the analysis
of a vector variable or, to be specific, the horizontal
wind. Since the essence of our preceding discussions
for a scalar variable equally applies to a vector variable,
we actually need to explain only a few differences be-
tween them. Before going into technical details, how-
ever, it may be prudent to clarify our position with
regard to the vector analysis.

The horizontal wind, u, is a vector that can be rep-
resented by two scalar components (i, v) in any Carte-
sian coordinates (x, y) that have been chosen to rep-
resent the horizontal space. If a given set of wind data
is a sufficiently dense sample of the field, each com-
ponent may be analyzed separately by mechanical in-
terpolation. This is equivalent to a parallel analysis of
two independent scalar variables; it does not matter
whether or not the scalars are components of a vector.
If we decide on a simultaneous analysis of the two
components to take advantage of the possible corre-
lation between them, it can still be formulated as a
multivariate analysis of two scalars. Thus, in multi-
variate statistical interpolation of wind data at J sta-
tions, the required covariance matrix will be that of 2J
scalar components.

However, the wind vector is not merely a set of sca-
lars, but is a physical vector, implying that its scalar
components must satisfy a definite rule of coordinate
transformation. In other words, the wind vector is one
and the same physical entity, while its representation
in components varies with the choice of coordinates.
Since the sphericity of the earth was ignorable in the
GATE analysis, the transformation we are concerned
with is the rotation of the (x, y)-coordinates about the
vertical axis. In analysis of the wind data, we naturally
wish the analysis result to be a physical vector also. In
other words, the analysis method itself must be in-
variant to rotation of the coordinates. In statistical in-
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terpolation, then, the covariance between two vectors
should be a tensor, and the covariance matrix becomes
a matrix of tensors. A tensor, in the present context,
is representable by four Cartesian components, and
the representation changes with rotation of the coor-
dinates. However, the tensor, like the vector, is an in-
variant physical entity. _

Now, confusion may follow from the fact that, in
any chosen coordinates, the representation of the tensor
covariance matrix by tensor components is mathe-
matically identical to the multivariate covariance ma-
trix in terms of vector components. Why is it necessary
to talk of tensors, especially if we do not intend to
rotate the coordinates for curiosity’s sake or otherwise?
It is not necessary, unless we manipulate the covariance
matrix for very practical reasons.

A familiar example of such manipulation is simpli-
fication of the covariance by the assumption of isot-
ropy, i.e., rotational invariance of the representation.
Although this assumption was not used in our analysis,
it is definable only in the context of tensor covariance
(Buell, 1972). Another example, which is more relevant
to us, arises when we attempt to normalize the co-
variance matrix. “There are a variety of possible ap-
proaches” (Wallace and Dickinson, 1972) describes
well the problem one faces in normalization of the
multivariate covariances. As we shall see, there is only
one correct way to normalize the tensor covariances.
Therefore, it is not for academic pedantry but for prac-
tical necessity that we develop vector-analysis proce-
dures in the tensor-invariant form.

b. Extended notation

The matrix notation of section 2, for ordered sets of
scalar data, is extended to similarly ordered sets of vec-
tor data. Thus, the concurrent wind data at J stations
are denoted by a column matrix of J vector elements,

{ﬁ}E(ﬁj)jx[, (913)

where each vector wind #; at station X; is considered
to be internally represented by a 2-by-1 column matrix
of Cartesian components,

i
A |
uj"—(,\),
v;

so that, for the purpose of performing matrix operations
by the conventional rules, {ii} is a column matrix of
2J scalar elements. Thus, the transposed row matrix
of (9.1a) is understood to be

{8} =@ 1. 9.2)

Corresponding to (3.4) for scalar data, the covariance
matrix for an ensemble of vector data is written as a
J X J matrix of tensor covariances,

[] = (@), = ({0} {@}T),

(9.1b)

(9.3a)
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and each tensor covariance, My, is internally repre-
sented by a 2-by-2 matrix of Cartesian components,

12'12" ﬁf)l

my = <ﬁjﬁj'T> = (< AJ ,.j > <AJ ,\]>
(i) (DD

For the rhetorical true wind field, u(x), the true co-

variance functions are written as a column matrix of
J tensor functions,

{m(x)} = (m;(x)),x; = ({@}ux)T). 9.4

The tensor notation is similarly extended to the
cross-spectra of time-sequenced wind data. Applying
consecutive frequency-band filters to both components
of the wind in time series, we obtain the band analog
of the real Fourier transform, {ii()}. Then, applying
the procedure defined by (8.5a) to both vector com-
ponents, we obtain the band analog of the complex
Fourier transform, {Uy(#)}, for ¢ # 0: The matrix of
analog cross-spectra is a J-by-J matrix of complex-val-
ued tensors,

[qu’] = (qu',jj’)JXJ = <{0q} {0q’}H>’ (9.52)
and each tensor element is
qu’,jj’ = <ﬁq,jﬁq’J’H>’

). (9.3b)

(9.5b)

which can be internally represented, as in (9.3b), by
four complex-valued Cartesian components. (Human
perception of the tensor by components is a formidable
problem. See comments later in this section.)

The extension of empirical estimation procedures
of section 7 to the tensor statistics requires normaliza-
tion by tensor. variances of vector data. Contrary to
the multivariate approach, in which the Cartesian
components of a variance tensor are arbitrarily dis-
membered, the correct handling of the variance re-
quires that all the components of the tensor are kept
together. Thus, without any ambiguity, the variance
matrix for all the stations is

[§]= (870,55 (9.6a)
and for each station,
§j2 = lﬁﬂ = <ﬁjﬁ]T>. (9.6b)

The “square root™ of the variance and its inverse are
also tensors. These are denoted, respectively, by

[§]= (§j5ﬁ')f><f

817 =8 0.7
‘and are uniquely definable by
(81181 = [$* ]
N s 9.8
[§1081°" = [$17'(81 = [1] ©-8)

where [1] is now the matrix of unit tensors on the di-
agonal.
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In the empirical estimation of cross-spectra of wind
data, normalization is made by tensor cospectra (only
for g = g'), which are defined by

[821= (8081, (9.9a)
Sq,j 2= quw = <ﬁw‘ ﬁqJH>A- (9.9v)

The “square root” [S,] and its inverse [S,]~! are also
definable for these complex-valued tensors in the same
way as their real-valued counterparts are by (9.7) and
(9.8). A practical algorithm to calculate them is given
below.

By definition, tensor (9.9b) is representable, in terms
of Cartesian components, by a self-adjoint matrix,

. A C

Ses”= (c* B)’
where 4 and B are real numbers, while C is generally
complex. Also by definition, the matrix is positive-def-’
inite, except for the special case mentioned below.

Thus, we can generally define two positive real num-
bers,

(9.10)

D=(AB—CC*'?,
X=(A+B+2D)"?,

with which we further define

1/ A—B
_§(X+T)’
1/. A—B
b_E( _T)’
_C
““x

where a and b are positive real numbers and ¢ is com-
plex. Then, the “square root” of (9.10) is a self-adjoint,
positive-definite matrix, given by

2 a ¢
S”:(c* b)’

and its inverse by

_ b —c\
Sas l=5(-—c"‘ a)'

The above algorithm also applies to the real-valued

tensors in (9.8), in which C and c are real numbers.
In the special case in which the two components of

wind data, #; and 9;, are perfectly correlated in the

(9.11)

9.12)

. entire ensemble, (9.11) is still valid but (9.12) will fail

because D vanishes. However, if such exceptional data
have to be included in the analysis, the inverse tensor
can still be defined in the sense of truncated inverse
that was discussed in section 7.
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¢. Wind analysis by statistical interpolation

In order to apply the minimization principle of sta-
tistical interpolation to wind analysis, we must properly
define the error variance. The fact that two definitions
are possible requires clarification. For this purpose, we
shall take the real form of the analysis as example.
Thus, extending the linear form (2.3) to a vector vari-
able, we write the analyzed vector field as

ii(x) = {y(x)}T{d},
{¥(x)} =;(X)sxi1- (9.14a)

Since each influence function, ¥;(x), specifies the con-
tribution of a vector at X; to another vector at x, it must
be a tensor and is representable by four Cartesian com-
ponents, each of which is a function of x. Namely,

ij,uu(x) "pj,uv(x))
‘l/j,vu(x) ¢j,vv(x) )

The variance of the analysis error vector, ii(x) — u(x),
may be defined either by the tensor product of the error
vector or by the scalar product. Thus, the traditional
error variance (3.2) can be extended, for vector analysis,
to either

(9.13)
where

¥i(x) = ( (9.14b)

& (x) = ((ii(x) ~ u(x)A®) —u(x))")  (9.15)

& (x) = {({i(x) — u(x))"({li(x) — u(x))).

or
(9.16)

The statistically optimum {¥(x)} is to be determined
by minimizing the error variance at each x with respect
to any possible choice of every component of (9.14b)
for all j. However, since (9.15) is a tensor, it cannot be
simply “minimized.” Instead, we shall require all the
Cartesian components of (9.15) to be stationary in the
sense of variational calculus. On the other hand, (9.16)
is a scalar, i.e., not a scalar component but a tensor of
order zero. Thus, it is tensor-invariant and can be min-
imized in the usual sense. In both cases, however, the
results are identical. In other words, the tensor and
scalar forms of the error variance are equivalent in
deriving the tensor-matrix equation for {{(x)},

(] {¥(x)} = {m(x)}, 9.17)

which defines the statistically optimum analysis.

The above conclusion, which also applies to the tar-
geted error variance of section 6, is important to the
resolvable-scale analysis of wind fields. In sections 6
through 8, we have discussed the entire analysis pro-
cedure for a scalar variable. The computational aspects
of the procedure can easily be rewritten for the wind
analysis with the vector-tensor notation of this section.
However, the procedure also calls for decisions on the
optimum spatial filter, defining the resolvable scales,
and on the number of eigenmodes in truncated matrix
inversion. Because of the equivalence shown above,
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the decision-making process can still be monitored by
the scalar form of the error variance.

In actual execution of the analysis, all the necessary
calculations are made in terms of scalars and scalar
components. To a computer, vector-tensor calcula-
tions mean nothing but an increase in clerical com-
plexity. Even in empirical estimation of covariances
or cross-spectra, our procedure does not depend on
human interpretation of the calculated results. Nev-
ertheless, objectivity is not a guarantee of satisfaction.
If we should believe in the final wind analysis, we must
convince ourselves that the statistical fields we have
used contain meaningful information. However, the
tensor, especially the complex-valued tensor, defies
human perception or understanding when it is repre-
sented by Cartesian components.

To meet this human need to watch what the com-
puter does, we have derived from the tensor property
of rotational invariance a new way to represent the
tensor by pairs of a magnitude and an angle. The co-
variance tensor requires two such pairs, and the com-
plex-valued cross-spectrum tensor requires four. Each
pair is easily and independently interpretable and
amenable to direct human perception almost like a
vector. This polar representation of the tensor, as we
may call it, was an indispensable tool to monitor the
progress of our GATE wind analysis and should be
useful in other statistical studies of two-dimensional
vector fields, as was demonstrated by Shapiro (1986).
Although a full description of the polar representation
isintended for publication elsewhere, a condensed ver-
sion is available in Ooyama (1985).

By Helmbholtz’s theorem (e.g., see Daley, 1985), the
two-dimensional vector can be expressed in terms of
two scalar functions, the streamfunction and velocity
potential. The tensor covariance of vector winds,
therefore, may be expressed in terms of the scalar co-
variances of these functions plus the cross-correlation
between them. If the tensor covariance is assumed to
be homogeneous and isotropic, the scalar forms may
also be simplified as proposed by Daley (1985). Hol-
lingsworth and Lonnberg (1986) have calculated the
wind statistics in the scalar forms (actually, the statistics
of forecast errors) from the FGGE data without assum-
ing isotropy. In the most general form, the scalar for-
mulation is theoretically equivalent to the tensor.
However, neither the streamfunction nor the velocity
potential is directly measurable by observations; they
are related to the observable winds through differential
relations. Thus, the determination of the scalar-form
statistics involves spatial integration with appropriate
boundary conditions which are often additional as-
sumptions.

Unlike the global data Hollingsworth and Lénnberg
(1986) processed, the GATE data were available only
in a small tropical region, so that the need for boundary
conditions made the scalar formulation very unattrac-
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tive. As we mentioned earlier, the perceived difficulty
of interpretation has been the greatest hindrance to a
wider adoption of the tensor formulation for the wind
statistics. The representation in terms of the longitu-
dinal and transversal components (Buell, 1972) is
widely used for the isotropic part of the tensor. Al-
though the anisotropic part can be represented by the
correlation between the longitudinal and transversal
components (Buell, 1971), its interpretation requires
a considerable mental effort. The proposed polar rep-
resentation by Ooyama (1985) solves this difficulty by
representing the general tensor covariance in terms of
independently interpretable, invariant scalar functions,
without invoking spatial differentiation or integration.

10. Conclusions

The present study was motivated by our desire to
analyze the wind fields over the GATE ship-array. Since
the derived fields of vorticity, divergence and vertical
motion were of vital importance to intended scale-in-
teraction studies, a reliable representation of horizontal
scales in the wind analysis was a matter of utmost con-
cern. Although GATE represented an unprecedented
concentration of observations over a maritime tropical
region, every effort to analyze the upper-air dataset had
to face severe problems of undersampling and mixed
data quality. Our attempt to overcome the problems
was a judgmental objective analysis by statistical in-
terpolation in which the informational basis of nec-
essary judgments was statistically derived from the da-
taset itself.

It was found that in order to achieve our goal the
traditional premise of statistical interpolation had to
be reexamined in terms of correctly resolvable spatial
scales. The main conclusions of this theoretical inquiry
are (i) the resolvable scales are determined by the geo-
metrical distribution of observing stations; (ii) the
knowledge of true statistics can improve the analysis
of resolvable scales by de-aliasing those signals that be-
long to resolvable scales, but has no effect on the def-
inition of resolvable scales; (iii) residual effects of un-
resolvable signals on the analysis are removable by a
spatial filter and should be so removed; and (iv) de-
aliasing applies only to the wave amplitudes of resolv-
able scales, and the wave phases in space may still be
in error.

On the basis of these conclusions, we have developed
objective analysis procedures that are targeted for the
best achievable analysis of resolvable scales. The pro-
cedures include an adequate estimation of “true” sta-
tistical fields from the given ensemble of data, a search
for the optimum spatial filter by practical criteria, and
a method of desensitizing the analysis to statistically
errant data by the truncated inversion of the covariance
matrix. In order to reduce the spatial phase error of
propagating disturbances, we have taken advantage of
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the GATE data being time-sequenced; the statistical
analysis method has been generalized to interpolate,
in space, the timewise Fourier-transformed data in two
frequency bands. Since the wind is a physical vector,
we have written the entire procedure in the tensor-
invariant form. This approach is not only theoretically
correct, but decidedly advantageous in very practical
terms; it eliminates notorious ambiguities encountered
in the multivariate approach, and it also leads to a
humane method of perceiving statistical tensors.

As for the result of our attempt at the GATE data,
the analysis of wind fields, including vorticity, diver-
gence and vertical motion, was completed in 1980 by
the author, and the analysis of temperature and relative
humidity in 1983 by S. K. Esbensen of Oregon State
University. The tabulated results of both analyses are
archived at the National Center for Atmospheric Re-
search and are available for use by any interested sci-
entist. The method of access to the datasets and some
details of the temperature~-humidity analysis proce-
dures are described in an unpublished report by S. K.
Esbensen and K. V. Ooyama (1983): “An objective
analysis of temperature and relative humidity data over
the B and A/B ship arrays during Phase III of GATE.”
A copy of the report is available from the senior author.

Although the quality of analysis by statistical inter-
polation may be assessed by the error variance, it is a
measure relative to the given data. In objective analysis,
no method, however elaborate, can recreate what was
missed by the original observations. Only by meteo-
rological interpretation of the analyzed results through
diagnostic and prognostic tests can the real worth of
both the data and analysis be ascertained. It is regret-
table that the author, under altered circumstances,
could not personally continue the intended work.

However, the result of the wind analysis, when seen
on time-lapse movie film, shows fascinating propaga-
tion and evolution of disturbances that have not been
detected by other low-resolution analyses. One partic-
ularly striking phenomenon is the appearance of vor-
ticity couplets in the outflow layer of several cloud
clusters. Quantitative studies of this and related phe-
nomena have been published by Esbensen et al. (1982),
Tollerud and Esbensen (1983) and Sui and Yanai
(1986). Somewhat unexpected use of the analyzed data
has been reported by Krishnamurti et al. (1983).

The present paper also describes a method of filtered
mechanical interpolation in the Appendix. It was de-
veloped as an integral part of our analysis procedures.
Since the method accepts a variety of boundary con-
ditions and applies optional filters up to the boundary,
it is suitable for general application, especially when
the analysis domain is artificially bounded. By gener-
alizing the method to accept inhomogeneous boundary
conditions, one can develop an analysis method on
several nested domains, and even a prognostic nu-
merical model, with very clean interface conditions.
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Work on hurricane analysis and prediction is in prog-
ress on this basis.

Finally, we would like to conclude the paper with a
philosophical note. The power of creative inference is
the driving force of science, but must be checked and
nourished by factual evidence. We saw in GATE a rare
opportunity to probe the physical linkage between
convective systems and their environment and tried to
establish factual bases, at first, by deductive processes
only. After having explored every possible avenue to
extract “facts” from the observational data, the author
cannot hide his empathy with Bernard Trevisan
(alchemist, 1406-1490) who uttered with his last breath
his conviction: “To make gold, one must start with
gold” (quotation from Jaffe, 1976). Nevertheless, it has
been, and will be, the task of a meteorological analyst
to rectify whatever shortcomings may exist in the
available data, by whatever means the end justifies. In
this regard, the approach of this paper is not pragmatic
enough for general application. As an extreme example
of the deductive approach to judgmental analysis,
however, it should be of interest to the designers of
their own analysis procedures and, it is hoped, to the
planners of new field experiments.
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APPENDIX

Filtered Mechanical Interpolation of Irregularly
Distributed Data in a Finite Domain

1. Representation of a field by cubic splines

A continuous field in a domain can be continuously
represented by a linear combination of basis functions.
A gridpoint representation is not continuous since the
bases are defined only at discrete points. Common ex-
amples of continuous bases are nth-degree polynomials,
Legendre orthogonal polynomials, trigonometric and
other harmonic functions, Chebyshev polynomials,
Hermite interpolation polynomials, linear and cubic
splines. Any of these sets of basis functions may yield
a satisfactory representation, if an arbitrarily large
number of bases are allowed. In reality, we use only a
finite number of bases of a set, since the field to be
represented has a limited amount of information.
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Then, the advantage and disadvantage of any particular
set must be weighted against the goals of intended ap-
plications.

The goals we set here in the order of priority are (i)
spatial uniformity of representation, (ii) flexibility in
choosing boundary conditions, (iii) differentiability,
and (iv) computational efficiency. The domain we
consider is finite not because the atmosphere is so con-
fined, but because the data for analysis are available
only in that limited area. In this regard, Legendre and
Chebyshev polynomials severely violate the uniformity
requirement, since orthogonality of the bases in either
case is achieved by a spatially variable weight that favors
more detailed representation near the domain bound-
ary than in the interior. The absence of data outside
the domain causes another problem; it may adversely
affect the analysis inside, unless the latter is controlled
by appropriate boundary conditions. The representa-
tion by a Fourier series, though perfect in uniformity,
allows only the periodic condition. We need a flexible
representation that accepts more general boundary
conditions of our own choosing.

The basis functions we have adopted are the finite
elements of C, continuity. Specifically, the element is
the cubic B-spline (De Boor, 1972; Lyche and Schu-
maker, 1973), which is made of four smoothly joined
segments of cubic polynomials and identically vanishes
outside the four basic intervals. It is defined on the
nondimensional coordinate £ for the basic interval of
unity by

0, if [E=2,

B(e)=] ;- l8l), if 2>8>1, (A1)

JC— P (=P, if 1>]g>0.

Let us first consider a one-dimensional domain (x,,
Xp), which is to be divided in M equal intervals of
width Ax = (x3; — Xp)/M. The dividing points, x,, for
m=20,1, ---, M, including the end points of the
domain, will serve as nodes of cubic segments. Any
positive integer, preferably not less than 4, may be taken
as M, which defines the desired degrees of represen-
tational freedom. For the ease of mathematical nota-
tion, two outside points, x_; and X, are also defined
as auxiliary nodes, one interval away from the bound-
ary nodes, xp and X, respectively. Thus, the nodes we
consider are at

Xm=Xot+mAx, m=-1,0,1,-- - M,M+1. (A2)

To each node x,,, we assign a basis function ¢,,(x),
derived from (A1) by shifting the origin to x,, and by
scaling the basic interval to Ax;, i.e.,

Drl(X) = B((x — X))/ AX). (A3)
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The kth derivative with respect to x fork =0, 1, 2 or
3 will be denoted by

G (X)) = d*§ (x)/dx. (Ad)

The third derivative is not defined at the nodes, but
still is integrable over the domain. Any function u(x)
that is representable in the domain is defined by a linear
combination of ¢,,(x), ‘

M+1

Ux)= 2 audm(x),

m=~1

where a,,, m = —1,0, - -+, M, M + 1, are the ampli-
tudes of the nodal B-spline bases. For the first three
nodes, m = ~1, 0, 1, and similarly for the last three
nodes, m = M — 1, M, M + 1, the definition (A3)
extends a nontrivial part of ¢,,(x) outside the domain.
However, it is important to note that the representation
(AS) defines u(x) only for the domain, xy < x < xp,.
Any interpretation of u(x) outside the domain is in-
valid. We shall call (AS) the open form of representa-
tion, in contrast to another form to be discussed in
next section.

By the definition of the cubic B-spline (A1), the rep-
resentation u#(x) is continuous and continuously dif-
ferentiable up to the second order. The third derivative
is piecewise continuous with finite discontinuities at
the nodes. (Exception: any quadratic polynomial func-
tion, including a constant and a straight line, is exactly
representable over the domain.) By the virtue of equally
spaced nodes, the representation is macroscopically
uniform in the sense that every nodal interval within
the domain shares an identical capability of repre-
senting a field. In microscopic scales of A x or less, spa-
tial uniformity is not maintained. For example, the
2Ax cosine wave with maxima and minima at alter-
nating nodes is approximately representable, while the
2Ax sine wave with maxima and minima between the
nodes has no representation. If these and still shorter
waves need an accurate representation, Ax must be
reduced by increasing M.

The extension of the above to a rectangular two-
dimensional domain is straightforward. The domain
is now bounded by (X, xa) and ()y, yn), Where N is
the number of the basic nodal intervals, Ay, in the y-
direction. It is not necessary that Ax and Ay are equal.
The nodal basis functions in y, similar to (A3), are
defined by

(A5)

on(¥) = (¥ = yn)/AY), (A6)

centered at y, = yo + nAy, n = —1,0,0, ---, N, N
+ 1. Similarly to (A4), the kth derivative with respect
to y will be denoted by ¢,9(y), for k =0, 1, 2 and 3.
A representable function u(x, y) in the rectangular do-
main is defined by a bilinear combination of ¢,,(x) and

on(¥),

M+1 N+1

U, )= 2 2 @GPPI,

m=—1n=-1

(AT)
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where g,,, is the amplitude of the bilinear basis function
at the node (x,,, y,). The representation is valid only
within the rectangular domain that includes the
boundary lines.

2. Homogeneous boundary conditions

We return to the one-dimensional case and dem-
onstrate the boundary conditions at the left end of the
domain, x = xy. The conditions at the right end, x
= Xu, are similar. Since (AS5) is valid at the boundary
point, u, u, and u,, are defined at x,, where the sub-
script x denotes differentiation with respect to x. Let
us generally define a second-order linear differential
operator G[u] by

(A8)

where gi, k = 0, 1, 2, are constant coefficients, not all
of which are zero. The general form of the boundary
condition we may impose on u(x) is

Glul=§, (A9)

where £ is a given constant. If § = 0, the condition is
called homogeneous; otherwise, it is inhomogeneous.
Although inhomogeneous conditions can be imple-
mented, they were not used in the GATE data analysis.
In this paper, therefore, we shall discuss only the ho-
mogeneous conditions.

Substituting (A5) for #in (A9) with ¢ = 0, and noting
that ¢,,(x) for m = 2 has no participation at x,, we
have the homogeneous condition expressed in terms
of the first three amplitudes,

a_y=Leao+Bia,

wher'e, form=0and 1,

Glul=gou+ g us+ gy,

at  x=Xxp,

(Alb)

2 2
Bm=—(2 8ubmP X/ Z gxbp-1®P(x0)). (A11)

k=0 k=0

In strict terms of formality, the choice of g in (A8)
must be restricted so that the denominator in the above
would not vanish. However, such a possibility does not
occur unless the homogeneous condition attempts to
emulate an outwardly increasing exponential function,
or similarly ill-advised behaviors of u(x), at the bound-
ary. In practice, therefore, we may assume (A 11) always
defines 8,,. Similarly at x;,, though not necessarily for
the same coefficients g, the homogeneous boundary
condition is reduced to

Arv1 = Brmaprr+ Brr—1apr—1 - (A12)

The coefficients 3,, for a common variety of boundary
conditions are listed in Table A 1. The type 10 condition
forces an outward exponential decay of u(x) to zero,
with a scale length A. In the type 21, it is the gradient
of u(x) that decays to zero.

When the boundary conditions at both x, and x,;
are chosen, the representation (A5) with (A10) and
(A12) may be written in the closed form,
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TABLE Al. Common examples of homogeneous boundary con-
ditions. (In the second column, +X for B.C. at xp, and —A for B.C.
at xs; A is a positive scale length for the outward exponential decay.)

B.C. at x,
Type or at X, Bo, By Bis Brs-1
0 u=0 -4 -1
1 u, =0 0 1
2 #o =0 2 -1
—4Ax 2A— Ax
= 4\, =2 =2
10 = A 20+ Ax A+ Ax
6\ —~3\+Ax
e = £ XX
21 “ “ I+ Ax N+ Ax
M
uUx)= 2 amm(x),

m=0

(A13)

where ¥,,(x), form =0, 1, - - -, M, are the closed basis
functions defined by

V() = OlX) + Br-1 (), |
for

V(%) = pX) + Br®ass1(),

m=M and M-1

¥m(X) = ¢mlx), for m=2,3,.- M-2 |

For the two-dimensional rectangular domain, bound-
ary conditions must be chosen on all four sides, al-
though the four conditions need not be of the same
type. If they are all homogeneous, the sides at y, and
Y are closed by introducing y,(») in the same way as
the sides at x, and x;, are closed by (A14). Then, the
closed form of the bilinear representation is given by

m=0 and 1
r . (Al4)

for

M N
X)) = 20 2 Al XWn( Y).

m=0n=0

(A15)

3. Least-squares fitting with a derivative constraint

Before discussing interpolation of discrete data, we
shall first discuss the filtered representation of a given
continuous function #(x) by the closed form (A13) in
the one-dimensional domain (xo, x,). In general, 7(x)
is not exactly representable on the cubic spline bases
or does not necessarily satisfy the assumed boundary
conditions. Therefore, the representation is approxi-
mate. We shall define the best approximation, u(x), by
minimizing the squared differences between u(x) and
#(x) over the domain. We may also include in the def-
inition a certain derivative constraint, which will be
shown to act on u(x) as a low-pass filter.

The mathematical problem is to determine ampli-
tudes a,,, of (A13) such that

f (@00~ w0 + aDfu()P)dx = min, (AL6)
X0
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where « is a disposable constant, and Dy is a differential
operator which, in the one-dimensional case, may sim-
ply be the kth derivative, i.e.,

Di[u] = d*u/dx*. (A17)

The allowable order of the constraint, k, is 1, 2 or 3.
As noted earlier, the constraint is integrable even at k
= 3. The spectral response of the constraint as a filter
will be discussed shortly.

Substituting (A13) for u(x) in (A16), we obtain the
equations for a,, as

M
2 (D' + €)W = by,

m'=0
for m=0,1,.--+«, M, (Al8)
where
W
b= [ Ul
X0
Dot = [ Ul L (A19)
X0
G’ = f M'Pm""(X)th""’(X)deqmmr""
X0

J

The coefficients p,u,»’ and g, for all m and m’, form
(M + 1) X (M + 1) square matrices P and Q, respec-
tively. Here P is positive definite and Q semidefinite,
and both are banded matrices of seven diagonals due
to the finite width of the basis functions. Thus, with a
recursive formula,

(A20)

(A18) can be efficiently solved by calculating e,,, €},
ey, and f,, in a forward sweep with respect to m, and,
then, a,, in a backward sweep.

The simplest way to find the effect of the derivative
constraint on the representation is to apply the calculus
of variations to the integral (A16). Treating u(x) as if
it were an analytic function, and ignoring boundary
effects for a sufficiently large domain, we obtain the
Euler-Lagrange equation of the problem as

(— Dl d*ufdx?) + u=1i. (A21)

If the given # is a trigonometric function of wave length
[, the same function will be the solution of (A21) except
that its amplitude is reduced by a factor

rd)= 1+ /17,
provided that we set
a=(,27)*.

Am = €mQm+ + elmam+2 + elr,nam+3 +fm,

(A22)

(A23)

Thus, the kth-order derivative acts as a low-pass filter
with a (2k)th-degree taper in the spectral response, and
[ is the cutoff wavelength where the amplitude response
is a half. Since the actual u(x) by (A13) is not analytic
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as dssumed in the above, the response function (A22)
is not correct if /. is too close to 2A x or smaller. How-
ever, more precise calculations show that (A22) is a
good approximation of the true response for k = 2 and
3, if /. is about equal to, or greater than, 4Ax.

The extension of the above to two-dimensional fit-
ting of #(x, y) by u(x, y) of (A15) is, in principle,
straightforward, but there are a few variations to con-
sider. One method that is frequently practiced is to
execute the two-dimensional fitting as the direct prod-
uct of two one-dimensional processes, first in x, then
in y. However, this method is obviously not suitable
to interpolation of irregularly distributed data. There-
fore, we shall summarize, below, a fully two-dimen-
sional approach.

The minimization problem is essentially the same
as (A16), except that the integration covers the rectan-
gular domain. A major difference occurs in a wider
option in choosing the form of derivative constraints.
If the coordinates x and y represent physically unrelated
variables, such as time and height, the filter in x and
that in y may be independently specified. On the other
hand, if x and y are the Cartesian coordinates on a
horizontal plane, we may wish that no directionality
imposed by the filter. Examples of Dy, for such an iso-
tropic filter are

Dl[u] =
Dyful=Viu },
Ds[u} = V(Vu)

(A24)

where V is the two-dimensional del-operator. Since D,
and D; are vectors, their squaring should be by the dot
product.

The equations for amplitudes a,,, can be written as

E

z mm’ + anm )Am ma

for m=0,1,---,M, (A25)

where A,,, as a column matrix of N + 1 elements,

represents a subset of a,,,, for n =0, 1, , N; B,, 18
similarly a subset of b,,,,;; P,y 1 a (N + 1) >< (N + 1)
square submatrix of pp,., for n, n' =0, 1, ., N;
O, is similarly a submatrix of g,m; and

‘ XM (*VN n

bn= f f YW Y)i(x, y)dydx
% Yo , (A26)
Dmnm'n’ = Dmm' Dnn'

but for D;[u], as an example,
Amnm'n’ = Qmm’(s)qnn’w) + 3qmm’(2)4nn’

+ 3Qmm’(l)an’(2) + qmm'(O)an{(3)

1)

(A27)

In the above, p,, and g,,,"* are similar to those in (A19)

MONTHLY WEATHER REVIEW

VOLUME 115

but with y,(»). Note that boundary terms, which may
arise during integration of the derivative constraint by
parts, are not shown in (A27), although they have been
included in our computer program. The solution of
(A25) is obtainable through a recursive formula similar
to (A20) but in terms of 4,, and with (N + 1) X (N
+ 1) matrix coefficients.

4. Filtered interpolation of discrete data

The problem of interpolating a set of discrete data
is almost identical to that of representing a given con-
tinuous function, if the data coverage over the domain
is reasonably dense (e.g., a few data points in each nodal
cell). In fact, the integrals defined in the previous section
are actually calculated by summation of discrete values.
In the case of sparse coverage, in which many nodal
cells are found devoid of data, the present method is
still mathematically well defined, with minor excep-
tions explained below. The real problem with sparse
data, the paucity of information, has been discussed
in the main text of this paper. The purpose of this
section is to summarize the mathematical aspect of
interpolation.

Dealing directly with the two-dimensional case, we
assume a given set of discrete data 4; at X; = (X;, ¥)),
respectively, for j = 1, 2, -, J. All the data points
must be within the domain or on the boundary, but
their indexing order is immaterial. Some data may even
be collocated. The boundary conditions for the closed
representation (A15), the form of a derivative con-
straint, and the filter cutoff wavelength, /., must be
decided. Then, the minimization problem for the dis-
crete data is defined by

J
> (%~ u(x;, ﬁj))z"GAXAy
j=1

- (M (CUN
+a f D [ulPdydx=min, (A28)
X0 Yo

where w; is an optional weight factor assigned to each
data point x;. Although we still call the present method
of interpolation mechanical, the boundary conditions,
the filter and the weight factors are judgmental infor-
mation to be supplied by the analyst; further comments
on this point are found at the end of this section.

With substitution of (A15) for u(x, y), the minimiz-
ing solution in terms of A4,,, is obtainable from the same
form of equations as (A25), except for the changes
noted below. Since the derivative constraint is applied
not to the given data but to the represented field u(x,
), there is no need to change the integral definition of
Gmm'™® that leads to the definition, such as (A27), of
Gmnm'» and eventually to O,y On the other hand, the
elements that constitute B,, and P,,, must be defined
by summation Thus, in lieu of (A26), we have
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J
b= Z ‘Pm()ej)ll/n( J?j)ﬁ] WjAXAy
=1

; .(A29)
Dmnm'n' = Z V/m(?@)kl/m'()@)%(ﬂ)%'(J@)W,'Axﬂy
i=1

It is important that the same w; be used in the both
definitions, above.

The recursive algorithm of the preceding section can’

be applied to solve (A25) with the newly defined matrix
coefhicients (A29). The algorithm is stable and accurate
in a wide range of applications, with certain, obviously
recognizable, exceptions. To explain these exceptions,
we write (A25) in a more abstract form

(P+aQ)4=B, (A30)
where A and B are super column matrices whose ele-
ments are column matrices 4,, and B,,, respectively,
and P and Q are super square matrices whose elements
are matrices Py, and Q,,»', respectively. The solution
A of (A30) is uniquely determinable, if the null space
of P and that of Q do not intersect each other. In the
case of dense data, P may be positive definite (with an
empty null space). Then, (A30) is solvable even with
a = 0 (no filter).

In the case of sparse data, in which P is likely to be
singular, & must be positive however small it may be.
The null space of P for irregularly distributed data is
hard to define in general terms. On the other hand, the
null space of Q is independent of the data and has a
simple structure that is easily recognizable by inspection
of its definition. For example, let us consider the case
in which the boundary conditions on all the four sides
are of the type 2 (Table Al) and the derivative con-
straint is D; of (A24). Then, the null space of Q contains
only those A that define u(x, y) to be a linear surface
in terms of x and y. On the other hand, if the given set
of X; contains at least three points that are not on a
straight line, a linear surface does not belong to the
null space of P. Thus, regardless of the size of M or N
for the representational purpose, all that is required by
(A30) for uniqueness are three non-colinear data
points. If the boundary conditions are of either type 1
or type 21, only one data point is necessary. Without
further examples, we may conclude that the unique
solvability of (A30) is practically assured to any number
and distribution of discrete data that are worth ana-
lyzing.

Unfortunately, the mathematical niceties have no
relation to the question of whether or not the resulting
field of mechanical interpolation would produce an
acceptable analysis. If the information in the given data
is not sufficient to produce an acceptable result, ex-
pectations of a human analyst must be codified and
put into the analysis as additional information. The
objective method of combining statistical expectations
with the observational data has been discussed earlier
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in this paper. The present method of mechanical in-
terpolation also allows some degree of control over the
result, by adjusting optional features according to the
analyst’s heuristic judgment.

Of the optional features, the choice of weight factors,
w;, is not a sensitive or effective means of affecting the
interpolation result; it is not worth the effort to mull
over the precise value of w; at every data point. If the
data coverage is reasonably dense but uneven, w; may
be chosen to be inversely proportional to the local den-
sity of the data points. If the data coverage is sparse
and most nodal cells have only one data or none, the
derivative constraint takes an assertive control over the
result; all w; may simply be set to unity.

The choice of boundary conditions, however, can
be very important to the analysis in a finite domain.
In meteorological applications, the boundaries of the
domain are often drawn in the middle of a continuing
physical space for artificial reasons. The boundary
conditions, then, are a substitute for the absence of
hard data outside the domain and must be set by the
analyst according to his best knowledge of physical cir-
cumstances. When the type 2 condition is assumed on
two adjacent sides of the rectangular domain, it is ad-
visable to impose an additional condition, u,, = 0, at
the corner, in order to prevent the “dog-eared” ap-
pearance of the interpolated field near the corner. This
corner condition can be added to (A28) with a Lagrange
multiplier.

If the data coverage is reasonably dense, the deriv-
ative constraint can be used as a spectral filter. The
order of the constraint gives a choice of steepness of
the cutoff taper, and the coefficient, through (A23),
specifies the cutoff wavelength. If a filter with a steeper
cutoff than the sixth degree is desired, a Fourier filter
or other commonly available digital filter may be used
on the interpolated field. However, the present method
has a decided advantage over others in application to
the nonperiodic finite domain. Combined with appro-
priate boundary conditions, the derivative constraint
is uniformly applied over the domain up to the bound-
ary, so that there is no need for special treatment near
the boundary or for the removal of the trend in ad-
vance.

If the data are sparse, the derivative constraint may
be used for controlling the overshooting that often
plagues the interpolation of irregularly distributed data.
As for aliasing, no method can correct it without ad-
ditional information on the structure of the true field.
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