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Abstract 

For applications such as windstorm underwriting or storm-surge forecasting, 

hurricane wind profiles are often approximated by continuous functions  that are zero at 

the vortex center, increase to a maximum in the eyewall, and then decrease asymp-

totically to zero far from the center. Comparisons between the most commonly used 

functions and aircraft observations reveal systematic errors. Although winds near the 

peak are too strong, they decrease too rapidly with distance away from the peak.  Pres-

sure-wind relations for these profiles typically overestimate maximum winds.  

A promising alternative is a family of sectionally continuous profiles in which the 

wind increases as a power of radius inside the eye and decays exponentially outside the 

eye after a smooth polynomial transition across the eyewall. Based upon a sample of 493 

observed profiles, the mean exponent for the power law is 0.79 and the mean decay 

length is 243 km.  The database actually contains 606 aircraft sorties, but 113 of these 

failed quality-control screening.  Hurricanes stronger than Saffir-Simpson category 2 

often require two exponentials to match the observed rapid decrease of wind with radius 

just outside the eye and slower decrease farther away. Experimentation showed that a 

fixed value of 25 km was satisfactory for the faster decay length. The mean value of the 

slower was 295 km. The mean contribution of the faster exponential to the outer profile 

was 0.10, but for the most intense hurricanes it sometimes exceeded 0.5. The power-law 

exponent and proportion of the faster decay length increased with maximum wind speed 

and decreased with latitude; whereas the slower decay length decreased with intensity 

and increased with latitude, consistent with the qualitative observation that more intense 

hurricanes in lower latitudes usually have more sharply peaked wind profiles.  
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1. Introduction 

In the first paper of this series (Willoughby and Rahn 2004, hereafter Part I), we 

showed that the most commonly used analytical representation of hurricane winds’ radial 

structure (Holland 1980) suffers from systematic errors. Comparisons between 

statistically fitted profiles and nearly 500 tropical cyclones observed by aircraft demon-

strated that,  although the analytical profiles overestimate the width of the eyewall wind 

maximum, the wind decreases too rapidly with distance from the maximum both inside 

and outside the eye.  Since variants of Holland’s profile are fundamental to applications 

such as modeling of storm surge (Jelesnianski 1967) or windstorm risk (e.g. Vickery and 

Twisdale, 1995), these shortcomings highlight the need for a more realistic alternative. 

Tropical cyclones are nearly circular vortices with damaging winds concentrated 

in and around the eyewall.  The geometric center of the clear eye or the stagnation point 

inside the eye defines a vortex center that can be tracked objectively. Thus, the center 

position and intensity, measured in terms of maximum wind or minimum sea-level 

pressure, provide a first-order characterization of tropical cyclones. Indeed, the 

HURDAT file (Jarvinen et al. 1984), which constitutes the authoritative long-term 

hurricane climatology, contains exactly that information. The role of “parametric” 

profiles is to convert position and intensity into a geographical distribution of winds. The 

Holland profile employs three parameters, maximum wind, radius of maximum wind, and 

B an exponent that sets the sharpness of the eyewall wind maximum.  A key result of Part 

I was that, even for an optimally chosen B, the second derivative of the wind with respect 

to radius is too small near the radius of maximum where the profile is concave downward 

and too large away from the maximum where the profile is concave upward.  Here we 
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propose a new family of parametric profiles that do not suffer from these limitations. The 

profile wind is proportional to a power of radius inside the eye and decays exponentially 

outside the eye with a smooth transition across the eyewall. Least squares fits of these 

profiles to the same sample of aircraft observations used in Part I validates them and 

provides statistical estimates of their parameters. Section 2 of this paper formulates the 

new family of profiles and describes the least-squares fitting procedure.  Subsequent 

sections present profiles with a single outer exponential decay length, and with a 

superposition of two outer exponentials.  Section 5 considers alternative profile 

formulations and addresses hydrodynamic stability of the fitted vortices.  Section 6 

summarizes results and draws conclusions. 

2. Analysis  

a. Profile formulation 

Piecewise continuous wind profiles (e.g. Willoughby 1995) show promise as an 

alternative to the Holland model. They are composed of analytical segments patched 

smoothly together (Fig. 1). Inside the eye the wind increases in proportion to a power of 

radius.  Outside the eye, the wind decays exponentially with a radial e-folding distance 

that changes from storm to storm.  The transition across the radius of maximum wind 

from the inner to outer profiles is accomplished with a smooth, radially varying 

polynomial ramp function.   
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Here Vi, Ve, and Vo are the tangential wind component in the eye, in the eyewall 

transition, and beyond the transition zone, which lies between r = R1 and r = R2. Vmax and 

Rmax are the maximum wind and radius at which the maximum wind occurs.  X1 is the 

exponential decay length in the outer vortex and n is the exponent for the power law 

inside the eye.  Note that both Vi and Vo are defined throughout the transition zone and 

that both are equal to Vmax at r = Rmax.  

The weighting function, w, is expressed in terms of a nondimensional argument 

)./()( 121 RRRr −−=ξ  When 0,0 =≤ wξ ; when 1, 1.wξ ≥ =  In the subomain 10 ≤≤ ξ , 

the weighting is defined as the polynomial: 

 ,   (2)  98765 70315540420126)( ξξξξξξ +−+−=w

which ramps up smoothly from zero to one between R1 and R2.  As described in the 

Appendix, the weighting function is derived by integration of a bell-shaped polynomial 

curve given by when kC )]1([ ξξ − )10( ≤≤ ξ  and zero elsewhere.  The coefficient C is 

chosen to make , and the exponent k is the “order” of the bell and ramp curves, 

even though the resulting polynomials are of order 2k and 2k + 1, respectively.  We have 

coined the term “bellramp” functions to denote this family of polynomials.  

1)1( =w

Based upon parameters Rmax, Vmax, X1, and n, the full wind profile is constructed 

as follows.  First, the width of the transition 21 RR −  is specified a-priori at a value 

between 10 and 25 km.  Then, the location of the transition zone is determined by 

requiring the radial derivative of  (1.2) to vanish at r = Rmax , recognizing that  

. This condition yields the value of w at the wind maximum: maxmaxmax )()( VRVRV oi ==
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which may be solved for R1 through numerical inversion of (2).  

As shown subsequently, in many situations the profile described by (1.1-1.3) 

suffers from the problem that vexed the Holland profile in Part I. Relatively large values 

of X1 chosen to generate profiles that match the outer part of the vortex may fail to 

capture the rapid decrease of wind just outside the eyewall; conversely smaller values of  

X1 generate profiles that match the steep gradient outside the eyewall decrease too rapidly 

farther from the center. Often there is no intermediate value that can fit the observations 

in both parts of the domain.  Although this difficulty is a less pronounced than for the 

Holland profile, it is still problematic.  A remedy entails replacement of the single 

exponential with the sum two exponentials with e-folding lengths X1 and X2.  
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where the parameter A sets the relative contribution of the two exponentials to the profile. 

Figure 2 illustrates  application of (4)  to Hurricane Diana of 1984. Clearly, the dual-

exponential profile captures the profile’s sharpness at the radius of maximum wind as 

well as the more gradual decrease of wind at radii farther from the eyewall.  

There is an issue of non-uniqueness in this formulation.  Several different 

combinations of X1, X2  and A can often fit a given set of observations equally well. This 

situation complicates statistical estimation of the profile parameters, so that we generally 

fit A and one variable decay length, keeping the other decay length, usually the shorter 
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one, fixed.  Thus, most of this paper will deal with either single-exponential profiles or 

dual-exponential profiles with one predetermined decay length.  

In this formulation, unlike the Holland profile, there is no closed-form relation for 

the gradient-balance geopotential height in terms of the vortex parameters. Thus, the 

geopotential height is computed through outward numerical integration of the gradient 

wind acceleration from the observed height at the vortex center of the standard isobaric 

surface nearest flight level.  
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where Z(r)  is the height of the specified surface, Zc is Z(0), and g is the acceleration of 

gravity. Setting the upper bound on the integral to infinity in (5) produces a gradient 

balance estimate of the undisturbed geopotential around the storm, . 

Based this integral it is possible to relate V

)( ∞→= rZZe

max to Ze – Zc in order to devise height-wind 

relations for the single exponential and dual exponential profiles. A key advantage of 

using exponential functions to describe the outer profile is that it guarantees a well-

behaved height-wind relationship as well as finite values for vortex total relative angular 

momentum and kinetic energy.  

b. Profile fitting.  

Single-exponential profiles have four parameters Rmax, Vmax, X1, and n. Dual-

exponential profiles with one predetermined decay length have five parameters (Rmax, 

Vmax, X1, A, and  n), and dual-exponenetial profiles with both decay lengths free have six 

parameters (Rmax, Vmax, X1, X2, A, and  n). As in Part I, Vmax and Rmax are determined by 

scanning each profile for the strongest reported wind and its radial position. This 
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procedure leaves the single-exponential, constrained dual-exponential, and free dual-

exponential profiles, respectively, with two, three and four parameters that require least-

squares fitting to the data. The cost function is the same as that used in Part I,  
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It is the summed squares of the differences between the profile and observed tangential 

wind and between the computed geopotential height (5) and the observed height of the 

isobaric surface nearest the aircraft flight level.  Since the parameter space has relatively 

few dimensions and the cost function is essentially a parabola, we use the simplex 

algorithm (Nelder and Meade 1965, Press et al. 1986) to find the minimum value of S2.  

Lz is a Lagrange multiplier that sets the strength of the gradient balance constraint and 

also makes (6) dimensionally homogeneous with units of velocity squared. Here we set 

km, the same value used in Part I.  1=zL

 Ranges of the fitted parameters are constrained with Lagrange multipliers, for 

example, , to prevent the algorithm from wandering into 

physically unrealistic parts of the parameter space.  Typical minimum values of S

0.4 2.4 or 0 1n≤ ≤ ≤ ≤

2 are a 

few hundred to a few thousand  m2 s-2, and the penalties imposed outside the preferred 

subdomain by the Lagrangian constraints are 2-5H103 m2 s-2. The constraints generally 

have limited effect on the fitted parameters inasmuch as the simplex algorithm almost 

always finds values within the preferred subdomain. Two exceptions to this generality are 

A = 0 or 1, which characterize profiles where X1 or X2 can represent the shape of the 

“dual exponential” outer profile completely.  The constraint on the minimum decay 

lengths generally is set for values greater than 50-100 km, but the minimization algorithm 

seldom selects values that small.  By contrast, the upper bound on decay lengths does 
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exert significant control over the fitted profiles.  In some tropical cyclones where the 

wind remains fairly constant from just outside the eyewall to the sampling domain 

boundary, the unconstrained algorithm will seek decay lengths >1000 km.  Since the 

values of Ze that result from integration of (5) in these situations can be greater than, Za, 

from climatologically representative soundings (Jordan 1958, Sheets 1969), we generally 

set an upper bound of  few hundred kilometers on the longer decay length. Tuning of this 

constraint is discussed extensively in the next two sections, inasmuch as it is important to 

obtaining realistic fits. 

The data for the least-squares fits are the same as those used in Part I. They 

contain 606 logical sorties into Atlantic and Eastern Pacific tropical storms and 

hurricanes flown by NOAA and Air Force Reserve aircraft between 1977 and 2000 and 

are representative in terms of its geographical and seasonal distribution.  They are divided 

into “logical sorties,” each a series of successive transects across the tropical-cyclone 

center at fixed altitude, usually flown by one aircraft during the course of a few hours.  

Although there are a few sorties with 300 km domains, most extend to < 150 km.  The 

variables are expressed in a cylindrical coordinate system that moves along the 

objectively determined cyclone track.  The observed dynamic and kinematic variables are 

transformed into vortex-centered coordinates and averaged azimuthally around the vortex 

to produce a profile composite (PCMP) file for each sortie. The least squares fits use the 

PCMP files. Predominant flight levels were 850 and 700 hPa (1.5 and 3 km), but some 

missions (generally in weaker storms) were flown as low as 950 hPa (500 m) and as high 

as 400 hPa (7 km). Although depressions and weak tropical storms are underrepresented, 

the sample is reasonably  representative in terms of cyclone intensity. Of the original 
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sample, 113 failed quality control (QC) criteria that screened out profiles where the 

radius of maximum was more than half the sampling domain or where the data fail to 

describe a well-defined dynamic center inside the eye.  The 493 PCMP files that met the 

QC criteria are homogeneous with the sample used in Part I.  

2.  Single-exponential profile 

The single-exponential profile is the simplest of the new functional forms. Since 

the Lagrange-multiplier constraint on the maximum value of X1 is the only tuning 

required, we examine its effect first, by a series of five least-squares fits to the entire 

sample with X1  < 200, 400, 600, 800 and 1000 km (Fig 3a).  The mean value of   X1 

increases from 203 to 249 km over this range of upper bounds.  For most individual 

sorties, the constraint has no effect, but for a few the fitting algorithm selects larger 

values of X1, increasing the sample average, as the constrained upper bound increases. If 

one compares the average difference between Ze, the computed environmental 

geopotential height from (5) and Za, the climatologically expected value, the computed 

values are always too low, despite the problem with too-large values of X1 for some 

sorties.  The value of   Ze – Za increases from -18.3 m when the constraint requires X1  < 

200 km to –5.4 m when X1  < 1000 (Fig. 3b).  Most of the increase happens between 

km and  km.  It is important to recognize that the decrease in mag-

nitude of the negative environmental-height bias stems from compensating errors.  For 

most PCMP files, the single-exponential fitting algorithm selects too-small values of X

1 200 X ≤ 1  600X ≤

1 

that lead to underestimated values of Ze.  Relaxing the upper constraint on X1 causes a 

few PCMP files to produce overestimates of Ze, which increases the average toward the 

hoped-for zero bias.  For this reason, we set the decay length Lagrange multiplier 
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constraint to 50 < X1  < 600 km which produces Ze – Za = –7 .4 m. This value of the 

constraint produces mean parameters,  n = 0.79 + 0.34 and X1 = 243 + 141 km. The mean 

difference between the fitted and observed winds is essentially zero, and the rms error is 

2.5 m s-1 (dependant data). The bias and rms errors in geopotential height are 1.3 and  

10.4 m. The positive Z bias is confined inside the 150 km domain where the curve fitting 

is done. The bias reverses as integral in (5) is continued beyond 150 km, where V  

decreases too  rapidly with distance from the vortex center.  

For Hurricane Anita of 1977 (Fig. 4) , chronologically the first tropical cyclone in 

the data base, the fitting algorithm selects n = 1.16 and  X1 = 100.7 km as the optimum fit. 

The rms wind and height errors are larger than average for single-exponential profiles, 

4.6 m s-1 and 18.8 m, respectively, with essentially zero wind bias and 5.4 m positive 

height bias.  Comparison of the wind and geopotential height variations shows a negative 

height bias due to underestimation of the wind inside the eye.  The bias changes over to 

positive beyond about twice the eye radius because the fitted winds are too strong outside 

the eye. Farther from the center, the negative height bias decreases in magnitude slowly 

because the fitted winds are too weak beyond 100 km radius.  It is disappointing to see 

this pattern of errors emerge here because it is similar, though less pronounced, to the one 

that characterized the Holland profile in Part I. 

The single-exponential profile depicts other tropical cyclones with somewhat 

more fidelity. In Part I, Hurricane Mitch of 1998 was one of the most successful Holland-

profile fits. Here, the single-exponential fit  (Fig 5a, n = 0.69, X1 = 119 km) does about as 

well, although the wind maximum is too actually narrow.  The Holland fit to Hurricane 

Hugo of 1989 was a less successful because the fitted wind maximum was too broad and 
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the wind decreased too rapidly with radius beyond 80 km radius. The corresponding 

single-exponential profile  (Fig 5b, n = 1.67, X1 = 145 km) fitted both the primary wind 

maximum and the profile within 120 km of the center closely, but could not represent the 

outer wind maximum present beyond 120 km radius.  Despite improvements with the 

sectionally continuous fitted profiles, both Mitch and Hugo exhibit the same error that 

appeared in Anita and in the Holland profiles. 

Edouard of 1996 was another successful Holland profile because its broad wind 

maximum and gradual decrease of wind outside the eye could be fitted by the Holland 

profile with a relatively small value of B = 0.86.  The single-exponential fit (Fig 5c, n = 

0.41, X1 = 588 km), with its small exponent inside the eye and long decay length, captures 

most features of the data except for the broad shoulder of the profile inward from the 

wind maximum. Erika of 1997 was a relatively unsuccessful Holland fit because the 

Holland profile was unable to match its sharp wind maximum, even with a relatively 

large B = 1.17. The single-exponential profile (Fig. 5d, n = 0.581, X1 = 178 km) was able 

to represent its shape more accurately.  Thus, despite some limitations, the added degrees 

of freedom here produce significant improvement over the Holland formulation.  

Description of hurricane wind profiles in terms the sample-mean values of   n and 

X1 misses systematic variations of vortex structure because all four parameters of the 

single-exponential profile are correlated with each other.  A regression line fitted to X1 

decreases from 368 km to 86 km as Vmax   increases from 10 to 70 m s-1 (Fig 6a).  Over the 

same interval, n increases from 0.43 to 1.24 (Fig 6b). Although the slopes of both curves 

differ from zero at better than 1% significance, there is considerable scatter around the 

regression lines.  In Fig. 6a, the points that cluster near X1 = 600 km and Vmax between 10 
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and 42 m s-1 have values limited by the Lagrange multiplier constraint; whereas the others 

are unaffected.  Only a few of the n values in Fig. 6b approach the Lagrange multiplier 

limits. 

The means, standard deviations, and the correlation matrix among the parameters 

(Table 1a) summarize all possible linear relations.  As shown in Part I, these statistics 

contain enough information to prepare linear estimators of the parameters. The 

eigenvalues and eigenvectors of the correlation matrix (Table 1b) reveal systematic 

patterns of variation.  The leading eigenvector, E1, which explains >50% of the 

parameter standardized variance, delineates increasing n and decreasing X1 correlated 

with increasing Vmax, decreasing latitude, and decreasing ln Rmax . In qualitative terms,  E1 

depicts shrinking of the eye and sharpening of the eyewall wind maximum with 

increasing intensity and lower latitude.  It is the same physical association as the 

“convective ring” leading eigenvector in Part I where decreasing Rmax and increasing B 

were associated with intensification and lower latitude.  In both cases, sharpening of the 

eyewall wind maximum and shrinking of the eye in more intense hurricanes is consistent 

with the response of balanced hurricane-like vortices to heating around the eye (Smith 

1981, Shapiro and Willoughby 1982, and Schubert and Hack 1982).  The second 

eigenvector, E2, projects almost entirely onto latitude, associated to some exptent with 

intensity.  The qualitative impression is that tropical cyclones in the early and late stages 

of their life cycles, where intensification through convective heating is either not well 

established or has run its course, project onto E2.  E1 and E2 combined explain > 70% of 

the standardized parameter variance.  It is difficult to advance physical interpretations for 
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the remaining eigenvectors, which together explain <30% of the standardized parameter 

variance.  

The correlations in Table 1a can be manipulated to produce linear regression 

relations to predict ln Rmax,  n, and X1 based upon knowledge of  Vmax and n: 

max max46.4exp{ 0.0155 0.0169 }R V ϕ= − + ,    (7.1) 

1 max270.5 4.78 6.176X V ϕ= − + ,            (7.2) 

ϕ006.0136.0431.0 max −+= Vn .     (7.3) 

All of the coefficients in (7.1-7.3) differ from zero with better than 1% statistical 

significance. 

Substitution from (7.1-7.3) into (5) and continuation of the integral to large (1200 

km) radius for incrementing values of maximum wind, produces a table of (Ze – Zc) as a 

function of Vmax.  Since an algebraic relation between minimum height and maximum 

wind is more useful than a table, we fit the tabular output with power-law expressions 

similar to that used by Atkinson and Holliday (1977). For example, at 25EN,  the relation 

between minimum isobaric height and maximum wind is: 

0.724
max ) 0.652( ce ZZV −= .      (8) 

This relation takes into account the sharpening of the profile with intensity embodied in 

E1; whereas if one substitutes mean values of Rmax,  n, X1, and  n into (7.1-7.3), the 

profiles scale only as Vmax so that there is a “universal” height-wind relation with wind 

proportional to the square root of the height fall: 

cZV −= emax Z2.16 .       (9) 
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In Part I, an empirical fit of maximum wind to height fall, yielded a similar relation with 

a coefficient of 2.10, based upon all the PCMP files---which includes the 113 profiles 

excluded here because they failed the QC criteria.  The next section will deal more 

completely with the dynamically calculated height-wind relations for dual-exponential 

profiles. 

As in Part I, bootstrap comparisons among subsets of the data provide an 

assessment of fitted profiles ability to represent independent data.  The sample is divided 

into three subsets, spanning the years 1977-1989, 1990-1995, and 1996-2000, inclusive.  

Regression relations analogous to (7.1-7.3) were computed based upon all possible pairs 

of subsets and used to model the profiles in the subset excluded from each pair.  In Part I,  

comparison of histograms of wind speed for both dependant and bootstrap data showed 

that the Holland profile exaggerated the occurrence of wind speeds > 50 m s-1 by 20-50%. 

The Holland profile also overstated the occurrence of winds < 10 m s-1 and understated 

that of winds between 20 and 40 m s-1.  

With dependant data (Fig 7a), in which the parameters are applied on a profile-by-

profile basis to the data from which they were computed, the single-exponential profile 

also overestimates the occurrence of winds > 40 m s-1, but by < 10%.  For weaker winds, 

over and underestimation are mixed, with some preponderance of the latter.  With 

dependant-data linear modeling of the parameters based upon all profiles that passed QC, 

the pattern is much the same, although occurrences of winds > 70 m s-1  and < 10 m s-1  

are underestimated. Linearly modeled bootstrap parameters applied to the complete data 

set (Fig. 7b) are consistent with the dependant data results, but understate the occurrence 

of weak winds to a somewhat greater extent.  Use of mean values of the parameters 
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greatly overstates the frequency of winds > 40 m s-1.  Thus, while the sectionally 

continuous, single-exponential profile fixes some of the Holland profile’s limitations, 

there is still room for improvement. 

3. Dual-exponential profiles   

Although the principle of least hypothesis makes the single-exponential profiles 

seem attractive, their tendency toward  too-gradual radial decrease of wind with 

increasing radius just outside the eyewall and too rapid decrease at large radius, their 

systematic underestimation of the geopotential height fall from the vortex surroundings to 

center, and their overstating of the frequency of very strong and very weak winds, lead us 

to seek alternatives. The simplest option is inclusion of a second exponential in the outer 

vortex. Our original idea was to include a fixed slowly decaying exponential in order to 

flatten the profile at large radius and then to determine the faster decay length and its 

relative contribution with the fitting algorithm. The difficulty with this strategy lies in the 

ambiguous separation between the roles of the two exponentials in the cost-function 

minimization algorithm.  Section 4 summarizes both this formulation and one where both 

decay lengths are determined variationally.  

After some experimentation, we found that best version of (4) employed these 

outer-vortex parameters: X2, the fixed rapid decay length, X1 , the fitted slower decay 

length, and A, the fitted contribution of the of the faster exponential to the profile.  

Subjective tuning showed that a wider transition, 25 km instead of 10 km,  was required 

to avoid understating the frequency of the strongest winds with this formulation. Since 

smaller values of  X2 produced smaller rms differences between the observed and fitted 

wind profiles and smaller relative contributions by X2 to the fitted profile, we selected the 
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most rapid decay length that seemed physically reasonable, 25 km, and applied a 

Lagrange multiplier constraint to keep X1 > 100 km. The upper bound on X1 was adjusted 

experimentally to bring the average value of (Za – Ze) close to zero (Fig. 8a). The value 

that met this criterion was X1 < 450 km. As the upper constraint on X1 relaxed, the 

average value increased (Fig 8b), but A remained essentially constant (Fig 8c). The 

average fitted values of n,  X1 and A are 0.85, 288.5 km, and 0.10. The rms and bias wind 

and height differences between the fitted and observed profiles are 2.03 m s-1, -0.07 m s-1, 

11.1 m, and 1.15 m.  These values were relatively insensitive to the upper bound on X1 

provided that it was > 400 km.  Thus, use of two exponentials reduces the rms wind error 

by about 20% relative to the single exponential formulation, but reduces the wind bias 

and height errors by only a small amount.  Because the faster decay length can fit the 

rapid decrease of wind speed outside the eyewall, the fitting algorithm usually selects 

larger value of X1  so that stronger winds extend farther from the center and integration of 

(5) to 1200 km  radius produces zero average difference between the calaculated and 

climatologically expected environmental geopotential height. 

In only 167 of the cases that passed QC did the fitting algorithm select A > 0.  In 

the other 326 cases—about 2/3 of the total— A = 0 produced the smallest S2 so that the 

single exponential fit was superior to the dual-exponential fit.  The average nonzero value 

of A was 0.26.  Cyclones with nonzero A were stronger, average Vmax = 43.8 m s-1 , 

compared to those with A = 0, average Vmax = 33.1 m s-1. 

Despite the relatively small improvement in wind errors, the qualitative 

appearance of many fitted profiles was more realistic. In Hurricane Anita, where the 

algorithm selected X1 = 301 km and A = 0.41, the fitted and observed profiles are 
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virtually identical (Fig. 9); whereas the single exponential fit with X1 = 100 km was only 

slightly better than the corresponding Holland fit. For Hurricane Mitch (Fig 10a), the dual 

exponential fit selected  X1 = 156 km and A = 0.14. The new X1 was only 30% larger than 

the corresponding single-exponential value, but the dual-exponential fit was noticeably 

better beyond 40 km radius. In both Hugo (Fig. 10b) and Edouard (Fig. 10c), the fitting 

algorithm chose A = 0. The single exponential fit was optimum in these cyclones and the 

fitted profiles were identical to those shown in Fig. 5, apart from the effect of the wider 

transition zone. For Erika (Fig. 10c), the algorithm again chose a relatively small value of 

A = 0.13, and a relatively larger value of X1 = 318 km, approximately double the single-

exponential value in Fig. 5.  Figures 9 and 10 are typical of the dual-exponential fits. For 

some hurricanes, generally those with Vmax > 55 m s-1, nonzero values of A produce 

substantially more realistic fits. For some weaker hurricanes values of A between the 

sample average and zero produce incremental improvements. A key advantage of this 

formulation is that the fitting algorithm can select A = 0 for cyclones where the single-

exponential fit is optimum, as illustrated for Hugo and Edouard. 

Scatter diagrams of A, X1, and n as functions of Vmax are consistent with this 

interpretation. Values on a regression line fitted to X1 decrease from 352 km to 211 km as 

Vmax increases from  5 to 75 m s-1. Although few values of X1 are limited by the Lagrange 

multiplier minimum constraint 100 km <  X1, ~25% of them cluster along the maximum 

constraint X1 < 450 km (Fig. 11a).  The reason for this difference from the single-

exponential case (Fig. 6) lies the tighter constraint and the dual-exponential profiles’ 

ability to represent sharp gradients near the eyewall with the X2 part of the profile while 

representing the outer vortex with larger values of X1. Nonzero values of  A correspond to 

 17



partial projection onto the X2 component. The regression line for this parameter is not 

allowed to extend to negative values so that A = 0 for Vmax < 20 m s-1 and increases to 

0.29 at Vmax = 75 m s-1.  Still, in roughly two-thirds of the sorties, A ~ 0, so that the 

single-exponential profile is actually the optimum fit, as discussed above and illustrated 

in  Figs. 9 and 10. The exponent of the power-law profile inside the eye is a bit larger 

than in the single-exponential profile because of the wider transition region. Only  about 

4% of the values are greater than two.  

The parameter correlation matrix (Table 2a) is for the most part consistent with 

that for the single-exponential and Holland profiles. Here, A, X1, and n play the same role 

as B in the Holland profile. The leading eigenvector, which explains > 40% of the 

standardized parameter variance, is the same as the one recognized in the previous 

situations. It describes sharpening of the wind maximum and shrinking of the radius of 

maximum wind in more intense tropical cyclones---the convective ring phenomenon. 

This eigenvector has a larger eigenvalue than the corresponding single-exponential 

eigenvector, but it explains less of the variance because the total standardized parameter 

variance is 6 instead of 5. A key difference between the single- and dual-exponential 

profiles is the stronger projection of this eigenvector onto A and n compared with X1.  

The second eigenvector describes simultaneous reduction in X1 and A associated (weakly) 

with increasing intensity.  It may reflect the non-uniqueness inherent in approximation of 

curves by sums of exponentials.  That is, a smaller variable decay length with less 

contribution from the fixed decay length may fit a given profile just as well as a larger 

variable decay length with more contribution from the fixed exponential.  The third 

eigenvector is the same as the second eigenvector identified in the Holland and single-
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exponential cases.  It projects almost entirely onto latitude.  Together, these first three 

eigenvectors explain nearly 80% of the parameters’ standardized variance.  

As in the single-exponential case, the correlations in Table 2a yield  linear 

regression relations to predict ln Rmax,  n,  X1  and A based upon knowledge of the 

variables that characterize hurricanes in the HURDAT file,  Vmax and n. Since the 

regression relation for Rmax is identical with (7.1), it is not repeated here  

ϕ1.915 2.026317.1 max1 +−= VX ,     (10.1) 

ϕ0038.00.01440.4067 max −+= Vn ,     (10.2) 

)0(,0.00640.00490.0696 max ≥−+= AVA ϕ ,   (10.3) 

The coefficients in (10.1-10.3) differ from zero at better than 1% significance, except for 

the last (ϕ ) coefficients in 10.1 and 10.2, which are significant at 1.4% and 16%, 

respectively.  Alternative regression relations that use radius of maximum wind as an 

independent variable in addition to maximum wind and latitude are:  

ϕ1.8197.799ln 1.942287.6 maxmax1 ++−= RVX ,   (11.1) 

ϕ0.0038ln4522.00.00772.1340 maxmax −−+= RVn ,   (11.2) 

)0(,0.0042ln0.13610.00290.5913 maxmax ≥−−+= ARVA ϕ . (11.3) 

As above, all of the coefficients differ from zero at better than 1%, except for the next-to-

last coefficient (ln Rmax) in (11.1) , 50%, and the last (ϕ )coefficients in (11.1) and (11.2), 

2.5% and 8.5%, respectively. The coefficients are so different  between these two sets of 

equations because in (10.1-10.3) variations of the dependant variables that would project 

onto ln Rmax ---if it were an independent variable--- project instead onto Vmax and n 

through their correlations with ln Rmax. 

 19



Here we treat in more detail derivation of height-wind relations based upon the 

regression relations for the parameters. As in Section 2, substitution from (10.1-10.3) into 

(5) and integrating to 1200 km  radius produces Ze – Zc a function of Vmax. Algebraic 

relations between minimum height and maximum wind are derived by fitting power-law 

expressions to the resulting tabular data: 

)N15(,) 0.929( 0.659
max °=−= ϕce ZZV ,    (12.1) 

)N25(,) 0.661( 0.701
max °=−= ϕce ZZV ,    (12.2) 

)N35(,) 0.508( 0.730
max °=−= ϕce ZZV ,    (12.3) 

)N45(,) 0.410( 0.752
max °=−= ϕce ZZV ,    (12.4) 

cZV −= emax Z2.20 ,  (mean ln Rmax,  n , n, X1  and A).  (12.5). 

Although the coefficients in these relations vary considerably, the actual values are 

surprisingly consistent, both with each other and with observed Vmax as a function of  Za – 

Zc (Fig, 12). The mean and rms errors with (12.1-12.4) using data stratified by 10o 

latitude bands are 0.85 + 5.92 m s-1.  With the pooled-data square-root relationship the 

error is 1.48 + 5.87 m s-1.  These errors are essentially the same as those with the 

dependant–data height wind relations fitted to the complete data set in Part I.  Not 

surprisingly, (12.5), the mean-parameter height wind relation overestimates the maximum 

wind in weaker tropical cyclones and underestimates it in stronger ones because it fails to 

account for the statistical sharpening of the profile with intensity. The scatter of the actual 

maximum winds as a function of height difference is greater than can be accounted for by 

latitude differences in (12.1-12.4), and much of it is due to random variations of the 

parameters not captured by the regression relations.  The errors from (12.1-12.4) are 
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significantly smaller than the corresponding errors with the Holland profile using linearly 

estimated B in Part I,  –2.53 + 6.48 m s-1.  From the combined analysis here and in Part I, 

it appears difficult to derive a height-wind relationship that can estimate maximum wind 

with an rms error appreciably smaller than 6 m s-1. 

Dependant-data histograms of the observed and fitted-profile winds show 

gratifying agreement (Fig. 13a) using both profile-specific parameters and linearly 

estimated parameters. The only noticeable problems are overstatement of the frequency 

of winds between 60 and 70 m s-1 and understating the frequency of winds between 70 

and 80 m s-1 by ~10%.  Bootstrap validation with linearly estimated parameters (Fig. 13b) 

increases the overestimation of wind occurrence in  the 60-70 m s-1 bin, causes 

underestimation in the < 10 m s-1 bin, and reduces the error in the 70-80 m s-1 bin. 

Consistent with the Holland and single-exponential experience, average values of the 

parameters overestmate occurrences on both the high- and low-speed tails of the wind 

distribution.  

4. Discussion 

a. Other formulations 

Two other ways to fit dual exponentials to the outer-profile data involve setting X2 

to a fixed value of 300-500 km and searching variationally for A and X1 with the latter 

parameter limited to values < 25-150 km. This approach has 5 parameters, the same 

number as in Section 3. Alternatively, both X1 and X2 may be sought through a free dual-

exponential variational search. This approach has a total of 6 parameters: Vmax ,  Rmax,  n,  

X1,  A, and X2, four of which must be sought with the fitting algorithm. Both of these 

approaches are compromised by the proliferation of potentially spurious correlations 
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among parameters and the multiple ways that different combinations of parameters can fit 

the same data equally well. 

Figure 14 shows scatter diagrams of the free dual-exponential outer-vortex 

parameters with Lagrange multiplier constraints 100 <  X1 < 450 and 25 <  X2 < 75 km. 

The regression relation for X1 behaves much as it did in Section 3, decreasing from > 300 

km to < 200 km as Vmax increases from 5 to 75 m s-1 (Fig 14a). About 14 % of values are 

limited by the 450 m s-1 upper Lagrange multiplier constraint, and unlike the analysis in 

Section 3, about 2% are limited by the lower constraint. A on the other hand behaves 

differently (Fig 14b). Only 55% of the values are zero, implying that here single 

exponential fits are optimum in somewhat fewer cases than previously.  The algorithm 

also produces ~2% of cases with A = 1, implying that in those case X2, which is 

constrained within the domain 25 < X2 < 75 km,  can completely describe the vortex 

outside the eye. Despite the lack of a consistent pattern in the dual-exponential fit, its 

regression relation for A is similar to that for the dual exponential fit with fixed X2 = 25 

km, but without the identically zero values when the previous regression line was 

negative for  Vmax < 20 m s-1. The X2 scatter diagram shows erratic variation. About 47% 

of the X2 values are at the lower Lagrange multiplier limit, 25 km, so that the fits to these 

profiles are the same as in Section 3. Another 18% of the X2 values are > 75 km where 

they are significantly penalized by the upper X2 constraint. These instances reflect 

ambiguity as the roles of the longer and shorter decay lengths overlap. 

As a consequence, the regression line describes X2 as a constant value of ~45 km, 

independent of Vmax. Despite the additional degrees of freedom, the free dual-exponential 

fit has larger rms wind and height errors, 2.81 m s-1 and 12.20 m, compared with 2.03 
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m s-1 and 11.06 m in with X2 fixed at 25 m s-1.  A similarly vexing ambiguity problem 

arises with the shorter decay length when one attempts to fit it, A,  and a fixed longer 

decay length. The reason for these problems lies  in local minima  of the cost-function 

that are distinct from the global minimum. Perhaps insightful application of different 

constraints and a more sophisticated minimization algorithm can resolve these issues, but 

for now, the dual exponential profile with a fixed shorter decay length seems to be the 

simplest representation of the data.  

b. Vortex stability 

Since one potential application of these profiles is theoretical studies of vortex 

dynamics, it is useful to explore their hydrodynamic stability properties. Figure 15 shows 

the absolute vorticity and angular velocity for the dual-exponential profile fitted to 

Hurricane Anita (Fig. 9).  The vorticity is everywhere > 0 so that the profile is inertially 

stable. It exhibits a relative minimum at the center and a pronounced maximum just 

inside the radius the radius of maximum wind so that it meets the necessary condition for 

barotropic instability (e.g. Schubert et al. 1999). The vortex angular velocity also exhibits 

a maximum that causes the algebraically growing wavenumber-one instability described 

by Nolan and Montgomery (2000).  The vorticity and angular velocity maxima in Anita 

arise partly because n > 1, but the way that the outer and inner profiles overlap in the 

transition zone generally produces local maxima of these quantities near the eyewall even 

when n < 1.  In that case, the profile would have infinite angular velocity and vorticity at 

the center if it were continued to r = 0.  Difficulty with the singularity can be avoided in 

these cases either by insertion of a patch of constant vorticity around the center or by 

simply not computing vorticity or angular velocity at the center point.  
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5. Conclusions 

The dual-exponential profiles presented here provide an observationally-based 

representation of the structure of the hurricane vortex to support such diverse 

undertakings as theoretical vortex dynamics, storm-surge forecasting, and windstorm loss 

modeling. The statistical estimates of the parameters given by (7.1, 10.1-10.3 and 11.1-

11.3) allow construction of axisymmetric hurricane vortices using (1.1-1.3 and 4). The 

resulting wind variations are consistent with a large sample of aircraft observations and 

have latitude-dependant height-wind relations (12.1-12.4). Although these relations take 

into account the statistical sharpening of the wind maximum in more intense tropical 

cyclones, maximum winds computed from them have an inherent uncertainty of ~6 m s-1.  

A key limitation of this study is exclusion of tropical cyclones that failed to meet 

the QC criteria because they had large radii of maximum wind.  Reanalysis including 

hurricane that have occurred since the 2000 season, and using different QC criteria and 

different Lagrange multiplier constraints promises to improve this situation.  Other 

unfinished work is calibration of the axisymmetric maximum wind in terms of the 

HURDAT climatology and inclusion of secondary wind maxima in the statistical 

representation. 
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APPPENDIX: BELLRAMP FUNCTIONS 
 

In Section 2, the transition between the outer exponential profile and the inner 

power-law profile was accomplished with a polynomial that superficially resembled a 

hyperbolic tangent, but had finite width and increased smoothly from zero to one as its 

nondimensional argument, > , also increased from zero to one. This polynomial “ramp 

function” was derived by integration of a polynomial “bell function” of the form: 

( ) 0, ( 0 or 1 )kb ξ ξ= ≤ ≤ξ ,     (A1.1) 

( ) [ (1 )]k
k kb Cξ ξ ξ= − ,   ( 10 ≤≤ ξ ).     (A1.2)  

Here k is the order of the bell function, although bk is a polynomial of order 2k. The k!1st 

derivative of bk is highest derivative that remains continuous at 0=ξ and 1=ξ . Thus, for 

b1 only the function itself is continuous; for b2 the function and first derivative are 

continuous, and so forth. As shown below, the bell curves become narrower with 

increasing order.  has maximum value on (k)]1([ ξξ − 0 1)ξ≤ ≤ of 2-2k at > = ½  so that 

setting   would produce bell functions with unit amplitude.  22 k
kC =

A more interesting alternative involves integration of bk from zero to one and 

selection of  to make the area under the bell curve unity. Here are the k = 1 through 4 

ramp functions produced by integration of b

kC

1(> ) through b4(> ) in a form convenient for 

numerical calculation and accompanied by the coefficient needed to make wk(1) = 1: 
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2
1 1 1( ) (3 2 ), 6w C Cξ ξ ξ= − = ,     (A2.1) 

3
2 2 2( ) (10 (15 6 )), 30w C Cξ ξ ξ ξ= − − = ,    (A2.2) 

4
3 3 3( ) (35 (84 (70 20 ))), 140w C Cξ ξ ξ ξ ξ= − − − = ,   (A2.3) 

5
4 4 4( ) (126 (420 (540 (315 70 )))), 630w C Cξ ξ ξ ξ ξ ξ= − − − − = . (A2.4) 

By definition, 0)( =ξkw when 0≤ξ , and 1)( =ξkw when ξ≤1 . 

Figures A1a and A1b illustrate 1 ( )b ξ through 4 ( )b ξ and 1( )w ξ through 4 ( )w ξ , 

respectively.  As anticipated, the bell curves become narrower, and their amplitude 

increases with increasing k while the transition described by wk becomes sharper. Some 

of these polynomials are familiar in other contexts.  For example, (A2.1) is a Hermite 

shape function used in finite-element analysis.  In the limit of very large k, bk and wk 

respectively approach Dirac delta and Heaviside functions, albeit gradually. Thus, it is 

possible to produce highly differentiable finite-width bell and ramp curves by the method 

outlined here. Because these curves are efficient to compute, they offer simple-to-use 

alternatives to Gaussian or hyperbolic-tangents functions for constructing forcing 

functions for theoretical models, representation of jet or shear flows, or patching together 

piecewise continuous curves as we have done here.  
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TABLES CAPTIONS 

Table 1. (a.) Mean, standard deviation and correlation matrix for the single-exponential 

profile variables computed from the 493 sorties that passed QC screening. For Rmax the 

entries are the geometric mean in kilometers and the logarithmic standard deviation.  (b.) 

Eigenvalues and eigenvectors of the correlation matrix. 

Table 2 (a.) Mean, standard deviation and correlation matrix for the dual-exponential 

profile variables computed with X2 fixed at 25 km from the 493 sorties that passed QC 

screening. For Rmax the entries are the geometric mean in kilometers and the logarithmic 

standard deviation. (b.) Eigenvalues and eigenvectors of the correlation matrix. 
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TABLES 

Table 1. (a.) Mean, standard deviation and correlation matrix for the single-exponential 

profile variables computed from the 493 sorties that passed QC screening. For Rmax the 

entries are the geometric mean in kilometers and the logarithmic standard deviation.  (b.) 

Eigenvalues and eigenvectors of the correlation matrix. 

 
(a.) Distribution Correlation Matrix 
 Mean SD Z1 Z2 Z3 Z4 Z5

Z1(Vmax) 36.7 13.7 1.000 -0.398 -0.018 -0.468 0.561 
Z2(ln 
Rmax) 

39.3 0.53 -0.398 1.000 0.200 0.454 -0.602 

Z3(φ) 23.9 6.15 -0.018 0.200 1.000 0.278 -0.115 
Z4(X1) 242.9 141.3 -0.468 0.454 0.278 1.000 -0.424 
Z5(n) 0.79 0.34 0.561 -0.602 -0.115 -0.424 1.000 

 
   
 

(b.) Eigenvector E1 E2 E3 E4 E5 
Eigenvalue 2.518 1.026 0.625 0.495 0.335 

Z1(Vmax) 0.470 -0.346 -0.450 0.505 -0.449 
Z2(ln Rmax) -0.497 -0.012 -0.598 0.372 0.507 

Z3(φ) -0.197 -0.896 -0.014 -0.392 0.057 
Z4(X1) -0.474 -0.184 0.565 0.602 -0.244 
Z5(n) 0.518 -0.207 0.346 0.300 0.692 
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Table 2 (a.) Mean, standard deviation and correlation matrix for the dual-exponential 

profile variables computed with X2 fixed at 25 km from the 493 sorties that passed QC 

screening. For Rmax the entries are the geometric mean in kilometers and the logarithmic 

standard deviation. (b.) Eigenvalues and eigenvectors of the correlation matrix. 

 
(a.) Distribution Correlation Matrix 
 Mean SD Z1 Z2 Z3 Z4 Z5 Z6

Z1(Vmax) 36.7 13.7 1.000 -0.398 -0.018 -0.254 0.479 0.421 
Z2(ln Rmax) 39.3 0.53 -0.398 1.000 0.200 0.152 -0.667 -0.572 

Z3(φ) 23.9 6.15 -0.018 0.200 1.000 0.112 -0.065 -0.251 
Z4(X1) 288.5 112.0 -0.254 0.152 0.112 1.000 -0.143 0.165 
Z5(n) 0.85 0.42 0.479 -0.667 -0.065 -0.143 1.000 0.391 
Z6(A) 0.10 0.16 0.421 -0.572 -0.251 0.165 0.391 1.000 

 
   
 

(b.) Eigenvector E1 E2 E3 E4 E5 E6 
Eigenvalue 2.550 1.150 1.022 0.625 0.417 0.235 

Z1(Vmax) -0.443 0.246 -0.239 0.700 -0.324 0.302 
Z2(ln Rmax) 0.536 0.054 -0.003 0.432 -0.348 -0.663 

Z3(φ) 0.180 0.150 -0.907 -0.066 0.338 -0.061 
Z4(X1) 0.135 -0.835 -0.270 0.001 -0.382 0.255 
Z5(n) -0.504 0.087 -0.214 -0.466 -0.520 -0.451 
Z6(A) -0.460 -0.457 0.027 0.317 0.493 -0.484 
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FIGURES 
 

1. (a.) Schematic illustration of a sectionally continuous hurricane wind profile 

constructed by joining an inner profile with swirling wind proportional to a power 

of radius and an outer profile with swirling wind decaying exponentially with 

distance outside the radius of maximum wind.  In a zone spanning the radius of 

maximum wind, a polynomial ramp weighting function (b.) is used to create a 

smooth transition between the inner and outer profiles.  

2. A dual-exponential profile used to approximate the observed wind in Hurricane 

Diana on 11 September 1984. 

3. Variation of (a.) outer exponential decay length and (b.) difference between 

computed and climatological environmental geopotential heights as a function of 

the Lagrange-multiplier constraint on the maximum decay length for single-

exponential profiles. 

4. Single-exponential (a.) wind and (b.) geopotential height profiles fitted to 

Hurricane Anita of 1977. 

5. Single-exponential wind profiles fitted to Hurricanes (a.) Mitch of 1998, (b.) 

Hugo of 1989, (c.) Edouard of 1996, and (d.) Erika of 1997. 

6. Scatter plots and regression lines for fitted (a.) single-exponential outer decay 

length and (b.) power-law exponent as functions of maximum wind. Shaded 

circles represent parameter values determined for individual profiles by the fitting 

algorithm. 

7. Histograms of observed and single-exponential profile wind speeds: (a.) 

Dependant-data observed (gray), computed from profile-specific fitted parameters 
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(cross-hatched), and computed from linearly estimated parameters for profiles that 

passed QC (black).  (b.) Complete-sample observed (gray), computed from 

linearly estimated parameters (cross-hatched), and computed from sample mean 

parameters (black). Both panels use observed radius of maximum wind.  

8. Variation of (a.) difference between computed and climatological environmental 

geopotential heights, (b) outer exponential decay length and (c.) fraction of the 

profile contributed by the shorter exponential with 25 km decay length as 

functions of the Lagrange-multiplier constraint on the maximum longer decay 

length for dual-exponential profiles. 

9. Dual-exponential (a.) wind and (b.) geopotential height profiles fitted to 

Hurricane Anita of 1977. 

10. Dual-exponential wind profiles fitted to Hurricanes (a.) Mitch of 1998, (b.) Hugo 

of 1989, (c.) Edouard of 1996, and (d.) Erika of 1997. 

11. Scatter plots and regression lines as functions of maximum wind for fitted (a.) 

dual-exponential longer (solid) and shorter (dashed, fixed at 25 km) decay 

lengths,  (b.) fraction that the shorter decay length contributes to the outer profile, 

and (c.) inner vortex power-law exponent.  Shaded circles represent parameters 

values determined by the fitting algorithm. 

12. Height-wind relation computed from the dual-exponential profiles. Shaded circles 

represent observed wind speed as a function of the difference between 

climatological environmental geopotential height and observed central 

geopotential height. Dashed curves are power-law approximations (12.1-12.4) to 

the height difference computed from the gradient-wind relation using parameters 

 33



estimated linearly from maximum wind and latitude at 15E, 25E, 35E, and 45E 

latitude. The solid curve is the height-wind relation (12.5) computed with the 

sample-mean values of  the parameters.  

13. Histograms of observed and dual-exponential profile with X2 = 25 km wind 

speeds: (a.) Dependant-data observed (gray), computed from profile-specific 

fitted parameters (cross-hatched), and computed from linearly estimated 

parameters for profiles that passed QC (black).  (b.) Complete-sample observed 

(gray), computed from linearly estimated parameters (cross-hatched), and 

computed from sample mean parameters (black).  Both panels use observed radius 

of maximum wind. 

14. Scatter plots and regression lines as functions of maximum wind for fitted (a.) 

free, dual-exponential, longer decay length,  (b.) fraction that the shorter decay 

length contributes to the outer profile and (c.) free, dual-exponential, shorter 

decay length.  Shaded circles represent parameter values determined by the fitting 

algorithm. 

15. Vorticity (solid) and angular velocity (dashed) for the dual-exponential profile 

with X2 = 25 km fitted to Hurricane Anita of 1977, thin line separating  white and 

gray areas.   

A1.  Polynomial bell and ramp functions computed from (A1) and (A2). 
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Fig. 1.  (a.) Schematic illustration of a sectionally continuous hurricane 
wind profile constructed by joining an inner profile with swirling wind 
proportional to a power of radius and an outer profile with swirling 
wind decaying exponentially with distance outside the radius of 
maximum wind.  In a zone spanning the radius of maximum wind, a 
polynomial ramp weighting function (b.) is used to create a smooth 
transition between the inner and outer profiles. 
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Fig. 2.  A dual-exponential profile used to approximate the observed wind in 
Hurricane Diana on 11 September 1984. 
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Fig. 3. Variation of (a.) outer exponential decay length and (b.) difference 
between computed and climatological environmental geopotential heights as a 
function of the Lagrange-multiplier constraint on the maximum decay length 
for single-exponential profiles. 
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Fig. 4. Single-exponential (a.) wind and (b.) geopotential height 
profiles fitted to Hurricane Anita of 1977. 
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Fig. 5. Single-exponential wind profiles fitted to Hurricanes (a.) Mitch 
of 1998, (b.) Hugo of 1989, (c.) Edouard of 1996, and (d.) Erika of 
1997. 
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Fig. 6. Scatter plots and regression lines for fitted (a.) single-
exponential outer decay length and (b.) power-law exponent as 
functions of maximum wind. Shaded circles represent parameter 
values determined for individual profiles by the fitting algorithm. 
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Fig. 7.  Histograms of observed and single-exponential profile wind 
speeds: (a.) Dependant-data observed (gray), computed from profile-
specific fitted parameters (cross-hatched), and computed from linearly 
estimated parameters for profiles that passed QC (black).  (b.) 
Complete-sample observed (gray), computed from linearly estimated 
parameters (cross-hatched), and computed from sample mean 
parameters (black). Both panels use observed radius of maximum wind. 
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Fig. 8. Variation of (a.) difference between computed and 
climatological environmental geopotential heights, (b) outer 
exponential decay length and (c.) fraction of the profile contributed 
by the shorter exponential with 25 km decay length as functions of 
the Lagrange-multiplier constraint on the maximum longer decay 
length for dual-exponential profiles. 
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Fig. 9. Dual-exponential (a.) wind and (b.) geopotential 
height profiles fitted to Hurricane Anita of 1977. 
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Fig. 10. Dual-exponential wind profiles fitted to Hurricanes (a.) Mitch of 1998, (b.) 
Hugo of 1989, (c.) Edouard of 1996, and (d.) Erika of 1997. 



Fig. 11. Scatter plots and regression lines as functions of maximum wind 
for fitted (a.) dual-exponential longer (solid) and shorter (dashed, fixed at 
25 km) decay lengths,  (b.) fraction that the shorter decay length 
contributes to the outer profile, and (c.) inner vortex power-law exponent. 
Shaded circles represent parameters values determined by the fitting 
algorithm. 
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Fig. 12.  Height-wind relation computed from the dual-exponential 
profiles.  Shaded circles represent observed wind speed as a function of 
the difference between climatological environmental geopotential 
height and observed central geopotential height.  Dashed curves are 
power-law approximations (12.1-12.4) to the height difference 
computed from the gradient-wind relation using parameters estimated 
linearly from maximum wind and latitude at 15E, 25E, 35E, and 45E 
latitude. The solid curve is the height-wind relation (12.5) computed 
with the sample-mean values of the parameters.  



 

Fig. 13. Histograms of observed and dual-exponential profile with X2 
= 25 km wind speeds: (a.) Dependant-data observed (gray), computed 
from profile-specific fitted parameters (cross-hatched), and computed 
from linearly estimated parameters for profiles that passed QC 
(black).  (b.) Complete-sample observed (gray), computed from 
linearly estimated parameters (cross-hatched), and computed from 
sample mean parameters (black).  Both panels use observed radius of 
maximum wind. 
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Fig. 14. Scatter plots and regression lines as functions of 
maximum wind for fitted (a.) free, dual-exponential, longer 
decay length,  (b.) fraction that the shorter decay length 
contributes to the outer profile and (c.) free, dual-exponential, 
shorter decay length.  Shaded circles represent parameter values 
determined by the fitting algorithm. 
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Fig. 15. Vorticity (solid) and angular velocity (dashed) for the dual-
exponential profile with X2 = 25 km fitted to Hurricane Anita of 1977, thin 
line separating white and gray areas.   
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Fig. A1. Polynomial bell and ramp functions 
computed from (A1) and (A2). 
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