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Abstract
For applications such as windstorm underwriting or storm-surge forecasting,
hurricane wind profiles are often approximated by continuous functions that are zero at
the vortex center, increase to a maximum in the eyewall, and then decrease asymp-
totically to zero far from the center. Comparisons between the most commonly used
functions and aircraft observations reveal systematic errors. Although winds near the
peak are too strong, they decrease too rapidly with distance away from the peak. Pres-

sure-wind relations for these profiles typically overestimate maximum winds.

A promising alternative is a family of sectionally continuous profiles in which the
wind increases as a power of radius inside the eye and decays exponentially outside the
eye after a smooth polynomial transition across the eyewall. Based upon a sample of 493
observed profiles, the mean exponent for the power law is 0.79 and the mean decay
length is 243 km. The database actually contains 606 aircraft sorties, but 113 of these
failed quality-control screening. Hurricanes stronger than Saffir-Simpson category 2
often require two exponentials to match the observed rapid decrease of wind with radius
just outside the eye and slower decrease farther away. Experimentation showed that a
fixed value of 25 km was satisfactory for the faster decay length. The mean value of the
slower was 295 km. The mean contribution of the faster exponential to the outer profile
was 0.10, but for the most intense hurricanes it sometimes exceeded 0.5. The power-law
exponent and proportion of the faster decay length increased with maximum wind speed
and decreased with latitude; whereas the slower decay length decreased with intensity
and increased with latitude, consistent with the qualitative observation that more intense

hurricanes in lower latitudes usually have more sharply peaked wind profiles.



1. Introduction

In the first paper of this series (Willoughby and Rahn 2004, hereafter Part I), we
showed that the most commonly used analytical representation of hurricane winds’ radial
structure (Holland 1980) suffers from systematic errors. Comparisons between
statistically fitted profiles and nearly 500 tropical cyclones observed by aircraft demon-
strated that, although the analytical profiles overestimate the width of the eyewall wind
maximum, the wind decreases too rapidly with distance from the maximum both inside
and outside the eye. Since variants of Holland’s profile are fundamental to applications
such as modeling of storm surge (Jelesnianski 1967) or windstorm risk (e.g. Vickery and
Twisdale, 1995), these shortcomings highlight the need for a more realistic alternative.

Tropical cyclones are nearly circular vortices with damaging winds concentrated
in and around the eyewall. The geometric center of the clear eye or the stagnation point
inside the eye defines a vortex center that can be tracked objectively. Thus, the center
position and intensity, measured in terms of maximum wind or minimum sea-level
pressure, provide a first-order characterization of tropical cyclones. Indeed, the
HURDAT file (Jarvinen et al. 1984), which constitutes the authoritative long-term
hurricane climatology, contains exactly that information. The role of “parametric”
profiles is to convert position and intensity into a geographical distribution of winds. The
Holland profile employs three parameters, maximum wind, radius of maximum wind, and
B an exponent that sets the sharpness of the eyewall wind maximum. A key result of Part
I was that, even for an optimally chosen B, the second derivative of the wind with respect
to radius is too small near the radius of maximum where the profile is concave downward

and too large away from the maximum where the profile is concave upward. Here we



propose a new family of parametric profiles that do not suffer from these limitations. The
profile wind is proportional to a power of radius inside the eye and decays exponentially
outside the eye with a smooth transition across the eyewall. Least squares fits of these
profiles to the same sample of aircraft observations used in Part | validates them and
provides statistical estimates of their parameters. Section 2 of this paper formulates the
new family of profiles and describes the least-squares fitting procedure. Subsequent
sections present profiles with a single outer exponential decay length, and with a
superposition of two outer exponentials. Section 5 considers alternative profile
formulations and addresses hydrodynamic stability of the fitted vortices. Section 6
summarizes results and draws conclusions.
2. Analysis
a. Profile formulation

Piecewise continuous wind profiles (e.g. Willoughby 1995) show promise as an
alternative to the Holland model. They are composed of analytical segments patched
smoothly together (Fig. 1). Inside the eye the wind increases in proportion to a power of
radius. Outside the eye, the wind decays exponentially with a radial e-folding distance
that changes from storm to storm. The transition across the radius of maximum wind
from the inner to outer profiles is accomplished with a smooth, radially varying

polynomial ramp function.
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Here V;, V., and V, are the tangential wind component in the eye, in the eyewall
transition, and beyond the transition zone, which lies between » = R; and » = R,. Vimax and
Rmax are the maximum wind and radius at which the maximum wind occurs. Xj is the
exponential decay length in the outer vortex and » is the exponent for the power law
inside the eye. Note that both V; and ¥, are defined throughout the transition zone and
that both are equal to Viax at ¥ = Rmax.

The weighting function, w, is expressed in terms of a nondimensional argument
E=(—R)I(R,—R). When £<0,w=0;when &>1 w=1. In the subomain 0<¢ <1,
the weighting is defined as the polynomial:

w(&) =126&£° — 420£° + 54087 —3158° +70£° 2)
which ramps up smoothly from zero to one between R; and R,. As described in the

Appendix, the weighting function is derived by integration of a bell-shaped polynomial
curve given by C[£(1-&)] when (0 < & <1) and zero elsewhere. The coefficient C is
chosen to make w(l) =1, and the exponent £ is the “order” of the bell and ramp curves,
even though the resulting polynomials are of order 2k and 2k + 1, respectively. We have
coined the term “bellramp” functions to denote this family of polynomials.

Based upon parameters Rmax, Vmax, X1, and n, the full wind profile is constructed
as follows. First, the width of the transition R, — R, is specified a-priori at a value
between 10 and 25 km. Then, the location of the transition zone is determined by
requiring the radial derivative of (1.2) to vanish at » = Rmax , recognizing that
Vi(Row) =V, (R

) =V - This condition yields the value of w at the wind maximum:
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which may be solved for R; through numerical inversion of (2).

As shown subsequently, in many situations the profile described by (1.1-1.3)
suffers from the problem that vexed the Holland profile in Part I. Relatively large values
of X; chosen to generate profiles that match the outer part of the vortex may fail to
capture the rapid decrease of wind just outside the eyewall; conversely smaller values of
X, generate profiles that match the steep gradient outside the eyewall decrease too rapidly
farther from the center. Often there is no intermediate value that can fit the observations
in both parts of the domain. Although this difficulty is a less pronounced than for the
Holland profile, it is still problematic. A remedy entails replacement of the single

exponential with the sum two exponentials with e-folding lengths X; and X>.

Vonma{(l—A)exp{—r_;max} +Aexp{—r_;maXH, (R, <r), (4

1 2

where the parameter A sets the relative contribution of the two exponentials to the profile.
Figure 2 illustrates application of (4) to Hurricane Diana of 1984. Clearly, the dual-
exponential profile captures the profile’s sharpness at the radius of maximum wind as
well as the more gradual decrease of wind at radii farther from the eyewall.

There is an issue of non-uniqueness in this formulation. Several different
combinations of X1, X> and 4 can often fit a given set of observations equally well. This
situation complicates statistical estimation of the profile parameters, so that we generally

fit 4 and one variable decay length, keeping the other decay length, usually the shorter



one, fixed. Thus, most of this paper will deal with either single-exponential profiles or
dual-exponential profiles with one predetermined decay length.

In this formulation, unlike the Holland profile, there is no closed-form relation for
the gradient-balance geopotential height in terms of the vortex parameters. Thus, the
geopotential height is computed through outward numerical integration of the gradient
wind acceleration from the observed height at the vortex center of the standard isobaric

surface nearest flight level.
r 2 1
20)=7,+ 2] [LTM fV(r')}fr' , ©)
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where Z(r) is the height of the specified surface, Z. is Z(0), and g is the acceleration of
gravity. Setting the upper bound on the integral to infinity in (5) produces a gradient

balance estimate of the undisturbed geopotential around the storm, Z, = Z(r — ).

Based this integral it is possible to relate Vimaxt0 Z. — Z. in order to devise height-wind
relations for the single exponential and dual exponential profiles. A key advantage of
using exponential functions to describe the outer profile is that it guarantees a well-
behaved height-wind relationship as well as finite values for vortex total relative angular
momentum and Kinetic energy.

b. Profile fitting.

Single-exponential profiles have four parameters Ryax, Vmax, X7, and n. Dual-
exponential profiles with one predetermined decay length have five parameters (Rmax,
Vmax, X1, 4, and n), and dual-exponenetial profiles with both decay lengths free have six
parameters (Rmax, Vmax» X1, X2, A, and n). As in Part I, Vimax and Rmax are determined by

scanning each profile for the strongest reported wind and its radial position. This



procedure leaves the single-exponential, constrained dual-exponential, and free dual-
exponential profiles, respectively, with two, three and four parameters that require least-

squares fitting to the data. The cost function is the same as that used in Part I,

K

S2 = Z(Vo(rk) —Vg(l"k,l’l,Xl,.,,))z +g(zo(rk) _Z(rk,n’Xl’m))ZL;l . (6)

P
It is the summed squares of the differences between the profile and observed tangential
wind and between the computed geopotential height (5) and the observed height of the
isobaric surface nearest the aircraft flight level. Since the parameter space has relatively
few dimensions and the cost function is essentially a parabola, we use the simplex
algorithm (Nelder and Meade 1965, Press et al. 1986) to find the minimum value of 5°.
L.is a Lagrange multiplier that sets the strength of the gradient balance constraint and
also makes (6) dimensionally homogeneous with units of velocity squared. Here we set

L_=1Km, the same value used in Part I.

Ranges of the fitted parameters are constrained with Lagrange multipliers, for

example, 0.4<n<240r0< 4<1, to prevent the algorithm from wandering into

physically unrealistic parts of the parameter space. Typical minimum values of $” are a
few hundred to a few thousand m? s, and the penalties imposed outside the preferred
subdomain by the Lagrangian constraints are 2-5H10° m? s. The constraints generally
have limited effect on the fitted parameters inasmuch as the simplex algorithm almost
always finds values within the preferred subdomain. Two exceptions to this generality are
A =0 or 1, which characterize profiles where X; or X, can represent the shape of the
“dual exponential” outer profile completely. The constraint on the minimum decay
lengths generally is set for values greater than 50-100 km, but the minimization algorithm

seldom selects values that small. By contrast, the upper bound on decay lengths does



exert significant control over the fitted profiles. In some tropical cyclones where the
wind remains fairly constant from just outside the eyewall to the sampling domain
boundary, the unconstrained algorithm will seek decay lengths >1000 km. Since the
values of Z, that result from integration of (5) in these situations can be greater than, Z,,
from climatologically representative soundings (Jordan 1958, Sheets 1969), we generally
set an upper bound of few hundred kilometers on the longer decay length. Tuning of this
constraint is discussed extensively in the next two sections, inasmuch as it is important to
obtaining realistic fits.

The data for the least-squares fits are the same as those used in Part I. They
contain 606 logical sorties into Atlantic and Eastern Pacific tropical storms and
hurricanes flown by NOAA and Air Force Reserve aircraft between 1977 and 2000 and
are representative in terms of its geographical and seasonal distribution. They are divided
into “logical sorties,” each a series of successive transects across the tropical-cyclone
center at fixed altitude, usually flown by one aircraft during the course of a few hours.
Although there are a few sorties with 300 km domains, most extend to < 150 km. The
variables are expressed in a cylindrical coordinate system that moves along the
objectively determined cyclone track. The observed dynamic and kinematic variables are
transformed into vortex-centered coordinates and averaged azimuthally around the vortex
to produce a profile composite (PCMP) file for each sortie. The least squares fits use the
PCMP files. Predominant flight levels were 850 and 700 hPa (1.5 and 3 km), but some
missions (generally in weaker storms) were flown as low as 950 hPa (500 m) and as high
as 400 hPa (7 km). Although depressions and weak tropical storms are underrepresented,

the sample is reasonably representative in terms of cyclone intensity. Of the original



sample, 113 failed quality control (QC) criteria that screened out profiles where the
radius of maximum was more than half the sampling domain or where the data fail to
describe a well-defined dynamic center inside the eye. The 493 PCMP files that met the
QC criteria are homogeneous with the sample used in Part I.
2. Single-exponential profile

The single-exponential profile is the simplest of the new functional forms. Since
the Lagrange-multiplier constraint on the maximum value of X; is the only tuning
required, we examine its effect first, by a series of five least-squares fits to the entire
sample with X; <200, 400, 600, 800 and 1000 km (Fig 3a). The mean value of X;
increases from 203 to 249 km over this range of upper bounds. For most individual
sorties, the constraint has no effect, but for a few the fitting algorithm selects larger
values of X3, increasing the sample average, as the constrained upper bound increases. If
one compares the average difference between Z,, the computed environmental
geopotential height from (5) and Z,, the climatologically expected value, the computed
values are always too low, despite the problem with too-large values of X; for some
sorties. The value of Z,— Z, increases from -18.3 m when the constraint requires X1 <
200 km to -5.4 m when X; < 1000 (Fig. 3b). Most of the increase happens between

X, <200 kmand X, < 600 km. Itisimportant to recognize that the decrease in mag-

nitude of the negative environmental-height bias stems from compensating errors. For
most PCMP files, the single-exponential fitting algorithm selects too-small values of X3
that lead to underestimated values of Z.. Relaxing the upper constraint on X; causes a
few PCMP files to produce overestimates of Z,, which increases the average toward the

hoped-for zero bias. For this reason, we set the decay length Lagrange multiplier



constraint to 50 < X7 <600 km which produces Z. — Z,=—7 .4 m. This value of the
constraint produces mean parameters, n = 0.79 + 0.34 and X; = 243 + 141 km. The mean
difference between the fitted and observed winds is essentially zero, and the rms error is
2.5 m s (dependant data). The bias and rms errors in geopotential height are 1.3 and
10.4 m. The positive Z bias is confined inside the 150 km domain where the curve fitting
is done. The bias reverses as integral in (5) is continued beyond 150 km, where '
decreases too rapidly with distance from the vortex center.

For Hurricane Anita of 1977 (Fig. 4) , chronologically the first tropical cyclone in
the data base, the fitting algorithm selects » = 1.16 and X; = 100.7 km as the optimum fit.
The rms wind and height errors are larger than average for single-exponential profiles,
4.6 mstand 18.8 m, respectively, with essentially zero wind bias and 5.4 m positive
height bias. Comparison of the wind and geopotential height variations shows a negative
height bias due to underestimation of the wind inside the eye. The bias changes over to
positive beyond about twice the eye radius because the fitted winds are too strong outside
the eye. Farther from the center, the negative height bias decreases in magnitude slowly
because the fitted winds are too weak beyond 100 km radius. It is disappointing to see
this pattern of errors emerge here because it is similar, though less pronounced, to the one
that characterized the Holland profile in Part I.

The single-exponential profile depicts other tropical cyclones with somewhat
more fidelity. In Part I, Hurricane Mitch of 1998 was one of the most successful Holland-
profile fits. Here, the single-exponential fit (Fig 5a, » = 0.69, X1 = 119 km) does about as
well, although the wind maximum is too actually narrow. The Holland fit to Hurricane

Hugo of 1989 was a less successful because the fitted wind maximum was too broad and

10



the wind decreased too rapidly with radius beyond 80 km radius. The corresponding
single-exponential profile (Fig 5b, n = 1.67, X3 = 145 km) fitted both the primary wind
maximum and the profile within 120 km of the center closely, but could not represent the
outer wind maximum present beyond 120 km radius. Despite improvements with the
sectionally continuous fitted profiles, both Mitch and Hugo exhibit the same error that
appeared in Anita and in the Holland profiles.

Edouard of 1996 was another successful Holland profile because its broad wind
maximum and gradual decrease of wind outside the eye could be fitted by the Holland
profile with a relatively small value of B = 0.86. The single-exponential fit (Fig 5c, n =
0.41, X1 =588 km), with its small exponent inside the eye and long decay length, captures
most features of the data except for the broad shoulder of the profile inward from the
wind maximum. Erika of 1997 was a relatively unsuccessful Holland fit because the
Holland profile was unable to match its sharp wind maximum, even with a relatively
large B = 1.17. The single-exponential profile (Fig. 5d, » = 0.581, X; = 178 km) was able
to represent its shape more accurately. Thus, despite some limitations, the added degrees
of freedom here produce significant improvement over the Holland formulation.

Description of hurricane wind profiles in terms the sample-mean values of » and
X1 misses systematic variations of vortex structure because all four parameters of the
single-exponential profile are correlated with each other. A regression line fitted to X;
decreases from 368 km to 86 km as Vmax increases from 10 to 70 m s™ (Fig 6a). Over the
same interval, n increases from 0.43 to 1.24 (Fig 6b). Although the slopes of both curves
differ from zero at better than 1% significance, there is considerable scatter around the

regression lines. In Fig. 6a, the points that cluster near X3 = 600 km and Vnax between 10
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and 42 m s have values limited by the Lagrange multiplier constraint; whereas the others
are unaffected. Only a few of the » values in Fig. 6b approach the Lagrange multiplier
limits.

The means, standard deviations, and the correlation matrix among the parameters
(Table 1a) summarize all possible linear relations. As shown in Part I, these statistics
contain enough information to prepare linear estimators of the parameters. The
eigenvalues and eigenvectors of the correlation matrix (Table 1b) reveal systematic
patterns of variation. The leading eigenvector, £1, which explains >50% of the
parameter standardized variance, delineates increasing » and decreasing X1 correlated
with increasing Vmax, decreasing latitude, and decreasing In Rmax . In qualitative terms, E1
depicts shrinking of the eye and sharpening of the eyewall wind maximum with
increasing intensity and lower latitude. It is the same physical association as the
“convective ring” leading eigenvector in Part | where decreasing Rmax and increasing B
were associated with intensification and lower latitude. In both cases, sharpening of the
eyewall wind maximum and shrinking of the eye in more intense hurricanes is consistent
with the response of balanced hurricane-like vortices to heating around the eye (Smith
1981, Shapiro and Willoughby 1982, and Schubert and Hack 1982). The second
eigenvector, E2, projects almost entirely onto latitude, associated to some exptent with
intensity. The qualitative impression is that tropical cyclones in the early and late stages
of their life cycles, where intensification through convective heating is either not well
established or has run its course, project onto £2. EI and E2 combined explain > 70% of

the standardized parameter variance. It is difficult to advance physical interpretations for
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the remaining eigenvectors, which together explain <30% of the standardized parameter
variance.
The correlations in Table 1a can be manipulated to produce linear regression

relations to predict In Rmax, 1, and X; based upon knowledge of V. and 7.

R, =46.4exp{-0.0155V_ +0.0169¢p}, (7.1)
X, =270.5-4.78V_ +6.176¢, (7.2)
n=0.431+0.136V,,, —0.006¢ . (7.3)

All of the coefficients in (7.1-7.3) differ from zero with better than 1% statistical
significance.

Substitution from (7.1-7.3) into (5) and continuation of the integral to large (1200
km) radius for incrementing values of maximum wind, produces a table of (Z, - Z.) as a
function of Vnax. Since an algebraic relation between minimum height and maximum
wind is more useful than a table, we fit the tabular output with power-law expressions
similar to that used by Atkinson and Holliday (1977). For example, at 25EN, the relation
between minimum isobaric height and maximum wind is:

Voo =0.652(Z, - 7,)". (8)
This relation takes into account the sharpening of the profile with intensity embodied in
E1; whereas if one substitutes mean values of Rmax, 7, X;, and ninto (7.1-7.3), the
profiles scale only as Vnax SO that there is a “universal” height-wind relation with wind

proportional to the square root of the height fall:

Vi =2.163/Z, - Z. . (9)
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In Part I, an empirical fit of maximum wind to height fall, yielded a similar relation with
a coefficient of 2.10, based upon all the PCMP files---which includes the 113 profiles
excluded here because they failed the QC criteria. The next section will deal more
completely with the dynamically calculated height-wind relations for dual-exponential
profiles.

As in Part |, bootstrap comparisons among subsets of the data provide an
assessment of fitted profiles ability to represent independent data. The sample is divided
into three subsets, spanning the years 1977-1989, 1990-1995, and 1996-2000, inclusive.
Regression relations analogous to (7.1-7.3) were computed based upon all possible pairs
of subsets and used to model the profiles in the subset excluded from each pair. In Part I,
comparison of histograms of wind speed for both dependant and bootstrap data showed
that the Holland profile exaggerated the occurrence of wind speeds > 50 m s™ by 20-50%.
The Holland profile also overstated the occurrence of winds < 10 m s™ and understated
that of winds between 20 and 40 ms™.

With dependant data (Fig 7a), in which the parameters are applied on a profile-by-
profile basis to the data from which they were computed, the single-exponential profile
also overestimates the occurrence of winds > 40 m s, but by < 10%. For weaker winds,
over and underestimation are mixed, with some preponderance of the latter. With
dependant-data linear modeling of the parameters based upon all profiles that passed QC,
the pattern is much the same, although occurrences of winds > 70 ms™ and < 10 ms™
are underestimated. Linearly modeled bootstrap parameters applied to the complete data
set (Fig. 7b) are consistent with the dependant data results, but understate the occurrence

of weak winds to a somewhat greater extent. Use of mean values of the parameters
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greatly overstates the frequency of winds > 40 m s™. Thus, while the sectionally
continuous, single-exponential profile fixes some of the Holland profile’s limitations,
there is still room for improvement.

3. Dual-exponential profiles

Although the principle of least hypothesis makes the single-exponential profiles
seem attractive, their tendency toward too-gradual radial decrease of wind with
increasing radius just outside the eyewall and too rapid decrease at large radius, their
systematic underestimation of the geopotential height fall from the vortex surroundings to
center, and their overstating of the frequency of very strong and very weak winds, lead us
to seek alternatives. The simplest option is inclusion of a second exponential in the outer
vortex. Our original idea was to include a fixed slowly decaying exponential in order to
flatten the profile at large radius and then to determine the faster decay length and its
relative contribution with the fitting algorithm. The difficulty with this strategy lies in the
ambiguous separation between the roles of the two exponentials in the cost-function
minimization algorithm. Section 4 summarizes both this formulation and one where both
decay lengths are determined variationally.

After some experimentation, we found that best version of (4) employed these
outer-vortex parameters: X5, the fixed rapid decay length, X , the fitted slower decay
length, and 4, the fitted contribution of the of the faster exponential to the profile.
Subjective tuning showed that a wider transition, 25 km instead of 10 km, was required
to avoid understating the frequency of the strongest winds with this formulation. Since
smaller values of X, produced smaller rms differences between the observed and fitted

wind profiles and smaller relative contributions by X; to the fitted profile, we selected the
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most rapid decay length that seemed physically reasonable, 25 km, and applied a
Lagrange multiplier constraint to keep X; > 100 km. The upper bound on X; was adjusted
experimentally to bring the average value of (Z, — Z.) close to zero (Fig. 8a). The value
that met this criterion was X; < 450 km. As the upper constraint on .X; relaxed, the
average value increased (Fig 8b), but 4 remained essentially constant (Fig 8c). The
average fitted values of n, X; and A4 are 0.85, 288.5 km, and 0.10. The rms and bias wind
and height differences between the fitted and observed profiles are 2.03 m s, -0.07 m s™,
11.1 m, and 1.15 m. These values were relatively insensitive to the upper bound on X;
provided that it was > 400 km. Thus, use of two exponentials reduces the rms wind error
by about 20% relative to the single exponential formulation, but reduces the wind bias
and height errors by only a small amount. Because the faster decay length can fit the
rapid decrease of wind speed outside the eyewall, the fitting algorithm usually selects
larger value of X; so that stronger winds extend farther from the center and integration of
(5) to 1200 km radius produces zero average difference between the calaculated and
climatologically expected environmental geopotential height.

In only 167 of the cases that passed QC did the fitting algorithm select 4 > 0. In
the other 326 cases—about 2/3 of the total— 4 = 0 produced the smallest $° so that the
single exponential fit was superior to the dual-exponential fit. The average nonzero value
of 4 was 0.26. Cyclones with nonzero A were stronger, average V.= 43.8 ms™,
compared to those with 4 = 0, average V.= 33.1 ms™.

Despite the relatively small improvement in wind errors, the qualitative
appearance of many fitted profiles was more realistic. In Hurricane Anita, where the

algorithm selected X; = 301 km and 4 = 0.41, the fitted and observed profiles are
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virtually identical (Fig. 9); whereas the single exponential fit with X; = 100 km was only
slightly better than the corresponding Holland fit. For Hurricane Mitch (Fig 10a), the dual
exponential fit selected X; =156 km and 4 = 0.14. The new X; was only 30% larger than
the corresponding single-exponential value, but the dual-exponential fit was noticeably
better beyond 40 km radius. In both Hugo (Fig. 10b) and Edouard (Fig. 10c), the fitting
algorithm chose 4 = 0. The single exponential fit was optimum in these cyclones and the
fitted profiles were identical to those shown in Fig. 5, apart from the effect of the wider
transition zone. For Erika (Fig. 10c), the algorithm again chose a relatively small value of
A =0.13, and a relatively larger value of X; = 318 km, approximately double the single-
exponential value in Fig. 5. Figures 9 and 10 are typical of the dual-exponential fits. For
some hurricanes, generally those with Vs> 55 m s™*, nonzero values of 4 produce
substantially more realistic fits. For some weaker hurricanes values of 4 between the
sample average and zero produce incremental improvements. A key advantage of this
formulation is that the fitting algorithm can select 4 = 0 for cyclones where the single-
exponential fit is optimum, as illustrated for Hugo and Edouard.

Scatter diagrams of 4, X;, and » as functions of V. are consistent with this
interpretation. Values on a regression line fitted to X; decrease from 352 km to 211 km as
Vmax increases from 5 to 75 m s™. Although few values of X; are limited by the Lagrange
multiplier minimum constraint 100 km < X, ~25% of them cluster along the maximum
constraint X; < 450 km (Fig. 11a). The reason for this difference from the single-
exponential case (Fig. 6) lies the tighter constraint and the dual-exponential profiles’
ability to represent sharp gradients near the eyewall with the X, part of the profile while

representing the outer vortex with larger values of X;. Nonzero values of A correspond to
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partial projection onto the X, component. The regression line for this parameter is not
allowed to extend to negative values so that 4 = 0 for Vi <20 m s and increases to
0.29 at Vinax = 75 m st Still, in roughly two-thirds of the sorties, 4 ~ 0, so that the
single-exponential profile is actually the optimum fit, as discussed above and illustrated
in Figs. 9 and 10. The exponent of the power-law profile inside the eye is a bit larger
than in the single-exponential profile because of the wider transition region. Only about
4% of the values are greater than two.

The parameter correlation matrix (Table 2a) is for the most part consistent with
that for the single-exponential and Holland profiles. Here, 4, X1, and » play the same role
as B in the Holland profile. The leading eigenvector, which explains > 40% of the
standardized parameter variance, is the same as the one recognized in the previous
situations. It describes sharpening of the wind maximum and shrinking of the radius of
maximum wind in more intense tropical cyclones---the convective ring phenomenon.
This eigenvector has a larger eigenvalue than the corresponding single-exponential
eigenvector, but it explains less of the variance because the total standardized parameter
variance is 6 instead of 5. A key difference between the single- and dual-exponential
profiles is the stronger projection of this eigenvector onto 4 and » compared with X.
The second eigenvector describes simultaneous reduction in X1 and 4 associated (weakly)
with increasing intensity. It may reflect the non-uniqueness inherent in approximation of
curves by sums of exponentials. That is, a smaller variable decay length with less
contribution from the fixed decay length may fit a given profile just as well as a larger
variable decay length with more contribution from the fixed exponential. The third

eigenvector is the same as the second eigenvector identified in the Holland and single-
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exponential cases. It projects almost entirely onto latitude. Together, these first three
eigenvectors explain nearly 80% of the parameters’ standardized variance.

As in the single-exponential case, the correlations in Table 2a yield linear
regression relations to predict In Rmnax, 7, X; and 4 based upon knowledge of the
variables that characterize hurricanes in the HURDAT file, Vmax and 2. Since the

regression relation for Rnyax IS identical with (7.1), it is not repeated here

X, =317.1-2.026V +1.915¢, (10.1)
n=0.4067 +0.01447__ —0.0038¢, (10.2)
A=0.0696+0.0049V__ —0.0064¢, (4>0), (10.3)

The coefficients in (10.1-10.3) differ from zero at better than 1% significance, except for

the last (¢ ) coefficients in 10.1 and 10.2, which are significant at 1.4% and 16%,

respectively. Alternative regression relations that use radius of maximum wind as an
independent variable in addition to maximum wind and latitude are:

X, =287.6-1.942V, +7.799In R, +1.819¢, (11.1)
n=2.1340+0.0077V,,, —0.4522In R, —0.0038¢, (11.2)
A=05913+0.00297, —0.1361InR,, —0.0042p, (4>0).  (11.3)

As above, all of the coefficients differ from zero at better than 1%, except for the next-to-
last coefficient (In R,..) in (11.1), 50%, and the last (@ )coefficients in (11.1) and (11.2),
2.5% and 8.5%, respectively. The coefficients are so different between these two sets of

equations because in (10.1-10.3) variations of the dependant variables that would project

onto In Rmax ---if it were an independent variable--- project instead onto Viyax and 77

through their correlations with In Rmax.
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Here we treat in more detail derivation of height-wind relations based upon the
regression relations for the parameters. As in Section 2, substitution from (10.1-10.3) into
(5) and integrating to 1200 km radius produces Z. — Z. a function of V.. Algebraic
relations between minimum height and maximum wind are derived by fitting power-law

expressions to the resulting tabular data:

v..=0929(Z, -27)"%, (p=15°N), (12.1)
v =0661(Z 7)™, (p=25°N), (12.2)
v .=0508(Z,-2)"", (¢=35°N), (12.3)
v..=0410(Z,- 7)™, (¢p=45°N), (12.4)
Vo = 2.20\/ﬁ, (mean In Ryax, 17, n, X; and A). (12.5).

Although the coefficients in these relations vary considerably, the actual values are
surprisingly consistent, both with each other and with observed Vmax as a function of Z, —
Z. (Fig, 12). The mean and rms errors with (12.1-12.4) using data stratified by 10°
latitude bands are 0.85 + 5.92 m s™. With the pooled-data square-root relationship the
error is 1.48 + 5.87 m s™. These errors are essentially the same as those with the
dependant—data height wind relations fitted to the complete data set in Part . Not
surprisingly, (12.5), the mean-parameter height wind relation overestimates the maximum
wind in weaker tropical cyclones and underestimates it in stronger ones because it fails to
account for the statistical sharpening of the profile with intensity. The scatter of the actual
maximum winds as a function of height difference is greater than can be accounted for by
latitude differences in (12.1-12.4), and much of it is due to random variations of the

parameters not captured by the regression relations. The errors from (12.1-12.4) are
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significantly smaller than the corresponding errors with the Holland profile using linearly
estimated B in Part I, —2.53 + 6.48 m s, From the combined analysis here and in Part I,
it appears difficult to derive a height-wind relationship that can estimate maximum wind

with an rms error appreciably smaller than 6 m s™.

Dependant-data histograms of the observed and fitted-profile winds show
gratifying agreement (Fig. 13a) using both profile-specific parameters and linearly
estimated parameters. The only noticeable problems are overstatement of the frequency
of winds between 60 and 70 m s™* and understating the frequency of winds between 70
and 80 m s™ by ~10%. Bootstrap validation with linearly estimated parameters (Fig. 13b)
increases the overestimation of wind occurrence in the 60-70 m s™ bin, causes
underestimation in the < 10 m s™ bin, and reduces the error in the 70-80 m s™ bin.
Consistent with the Holland and single-exponential experience, average values of the
parameters overestmate occurrences on both the high- and low-speed tails of the wind
distribution.

4. Discussion
a. Other formulations

Two other ways to fit dual exponentials to the outer-profile data involve setting X,
to a fixed value of 300-500 km and searching variationally for 4 and X; with the latter
parameter limited to values < 25-150 km. This approach has 5 parameters, the same
number as in Section 3. Alternatively, both X; and X, may be sought through a free dual-
exponential variational search. This approach has a total of 6 parameters: Vimax, Rmax, 7,
X, A, and X5, four of which must be sought with the fitting algorithm. Both of these

approaches are compromised by the proliferation of potentially spurious correlations
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among parameters and the multiple ways that different combinations of parameters can fit
the same data equally well.

Figure 14 shows scatter diagrams of the free dual-exponential outer-vortex
parameters with Lagrange multiplier constraints 100 < X; <450 and 25 < X, <75 km.
The regression relation for X; behaves much as it did in Section 3, decreasing from > 300
km to < 200 km as Viax increases from 5 to 75 m s (Fig 14a). About 14 % of values are
limited by the 450 m s upper Lagrange multiplier constraint, and unlike the analysis in
Section 3, about 2% are limited by the lower constraint. 4 on the other hand behaves
differently (Fig 14b). Only 55% of the values are zero, implying that here single
exponential fits are optimum in somewhat fewer cases than previously. The algorithm
also produces ~2% of cases with 4 = 1, implying that in those case X2, which is
constrained within the domain 25 < X, < 75 km, can completely describe the vortex
outside the eye. Despite the lack of a consistent pattern in the dual-exponential fit, its
regression relation for A4 is similar to that for the dual exponential fit with fixed X, = 25
km, but without the identically zero values when the previous regression line was
negative for Vmax < 20 m s, The X, scatter diagram shows erratic variation. About 47%
of the X; values are at the lower Lagrange multiplier limit, 25 km, so that the fits to these
profiles are the same as in Section 3. Another 18% of the X; values are > 75 km where
they are significantly penalized by the upper X constraint. These instances reflect
ambiguity as the roles of the longer and shorter decay lengths overlap.

As a consequence, the regression line describes X as a constant value of ~45 km,
independent of Vnax. Despite the additional degrees of freedom, the free dual-exponential

fit has larger rms wind and height errors, 2.81 m s™ and 12.20 m, compared with 2.03
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m s™and 11.06 m in with X, fixed at 25 m s™. A similarly vexing ambiguity problem
arises with the shorter decay length when one attempts to fit it, 4, and a fixed longer
decay length. The reason for these problems lies in local minima of the cost-function
that are distinct from the global minimum. Perhaps insightful application of different
constraints and a more sophisticated minimization algorithm can resolve these issues, but
for now, the dual exponential profile with a fixed shorter decay length seems to be the
simplest representation of the data.
b. Vortex stability

Since one potential application of these profiles is theoretical studies of vortex
dynamics, it is useful to explore their hydrodynamic stability properties. Figure 15 shows
the absolute vorticity and angular velocity for the dual-exponential profile fitted to
Hurricane Anita (Fig. 9). The vorticity is everywhere > 0 so that the profile is inertially
stable. It exhibits a relative minimum at the center and a pronounced maximum just
inside the radius the radius of maximum wind so that it meets the necessary condition for
barotropic instability (e.g. Schubert et al. 1999). The vortex angular velocity also exhibits
a maximum that causes the algebraically growing wavenumber-one instability described
by Nolan and Montgomery (2000). The vorticity and angular velocity maxima in Anita
arise partly because n > 1, but the way that the outer and inner profiles overlap in the
transition zone generally produces local maxima of these quantities near the eyewall even
when n < 1. In that case, the profile would have infinite angular velocity and vorticity at
the center if it were continued to » = 0. Difficulty with the singularity can be avoided in
these cases either by insertion of a patch of constant vorticity around the center or by

simply not computing vorticity or angular velocity at the center point.
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5. Conclusions

The dual-exponential profiles presented here provide an observationally-based
representation of the structure of the hurricane vortex to support such diverse
undertakings as theoretical vortex dynamics, storm-surge forecasting, and windstorm loss
modeling. The statistical estimates of the parameters given by (7.1, 10.1-10.3 and 11.1-
11.3) allow construction of axisymmetric hurricane vortices using (1.1-1.3 and 4). The
resulting wind variations are consistent with a large sample of aircraft observations and
have latitude-dependant height-wind relations (12.1-12.4). Although these relations take
into account the statistical sharpening of the wind maximum in more intense tropical
cyclones, maximum winds computed from them have an inherent uncertainty of ~6 m s™.

A key limitation of this study is exclusion of tropical cyclones that failed to meet
the QC criteria because they had large radii of maximum wind. Reanalysis including
hurricane that have occurred since the 2000 season, and using different QC criteria and
different Lagrange multiplier constraints promises to improve this situation. Other
unfinished work is calibration of the axisymmetric maximum wind in terms of the
HURDAT climatology and inclusion of secondary wind maxima in the statistical
representation.
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APPPENDIX: BELLRAMP FUNCTIONS

In Section 2, the transition between the outer exponential profile and the inner
power-law profile was accomplished with a polynomial that superficially resembled a
hyperbolic tangent, but had finite width and increased smoothly from zero to one as its
nondimensional argument, >, also increased from zero to one. This polynomial “ramp
function” was derived by integration of a polynomial “bell function” of the form:

b (£)=0, (£<00ri<é), (AL.1)

b (&) =Cle-8)]", (0<¢£<1). (Al.2)
Here & is the order of the bell function, although 4, is a polynomial of order 2k. The & 71%
derivative of b, is highest derivative that remains continuous at £ =0and & =1. Thus, for

b; only the function itself is continuous; for b, the function and first derivative are

continuous, and so forth. As shown below, the bell curves become narrower with
increasing order. [£(1—&)] has maximum value on (0 <& <1) of 2% at >= % so that
setting C, = 2°* would produce bell functions with unit amplitude.

A more interesting alternative involves integration of 5, from zero to one and

selection of C, to make the area under the bell curve unity. Here are the £ = 1 through 4

ramp functions produced by integration of »,(>) through b,(>) in a form convenient for

numerical calculation and accompanied by the coefficient needed to make w(1) = 1:
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w(£)=C&*(3-28), C =6, (A2.1)

w,(§) = C,&°(10-£(15-6¢)), C, =30, (A2.2)

wy(£) = C,&4 (35— £(84— £(70-20£))), C, =140, (A2.3)

w, (£) = C,&° (126 — £(420— £(540 - £(315-70¢)))), C,=630. (A2.4)
By definition, w, (£) =0when £<0, and w, (&) =1when 1< &.

Figures Ala and Alb illustrate &, (£) through b, (£)and w, (£) through w, (£) ,

respectively. As anticipated, the bell curves become narrower, and their amplitude
increases with increasing £ while the transition described by w; becomes sharper. Some
of these polynomials are familiar in other contexts. For example, (A2.1) is a Hermite
shape function used in finite-element analysis. In the limit of very large &, b, and wy
respectively approach Dirac delta and Heaviside functions, albeit gradually. Thus, it is
possible to produce highly differentiable finite-width bell and ramp curves by the method
outlined here. Because these curves are efficient to compute, they offer simple-to-use
alternatives to Gaussian or hyperbolic-tangents functions for constructing forcing
functions for theoretical models, representation of jet or shear flows, or patching together

piecewise continuous curves as we have done here.
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TABLES CAPTIONS
Table 1. (a.) Mean, standard deviation and correlation matrix for the single-exponential
profile variables computed from the 493 sorties that passed QC screening. For R, the
entries are the geometric mean in kilometers and the logarithmic standard deviation. (b.)
Eigenvalues and eigenvectors of the correlation matrix.
Table 2 (a.) Mean, standard deviation and correlation matrix for the dual-exponential
profile variables computed with X; fixed at 25 km from the 493 sorties that passed QC
screening. For R, the entries are the geometric mean in kilometers and the logarithmic

standard deviation. (b.) Eigenvalues and eigenvectors of the correlation matrix.
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TABLES
Table 1. (a.) Mean, standard deviation and correlation matrix for the single-exponential
profile variables computed from the 493 sorties that passed QC screening. For R, the
entries are the geometric mean in kilometers and the logarithmic standard deviation. (b.)

Eigenvalues and eigenvectors of the correlation matrix.

(@) Distribution Correlation Matrix
Mean SD Z1 Z> Z;3 Zy Zs

Zi(Viax) | 36.7 13.7 |1.000 -0.398 -0.018 -0.468 0.561

]Z;(Ir; 39.3 0.53 |[-0.398 1.000 0.200 0.454 -0.602

Zi(p) | 23.9 6.15 |-0.018 0.200 1.000 0.278 -0.115
Z4X;) | 2429 141.3 |-0.468 0.454 0.278 1.000 -0.424
Zs(n) | 0.79 0.34 ]0.561 -0.602 -0.115 -0.424 1.000

(b.) Eigenvector | E E2 E3 E4 ES5
Eigenvalue | 2,518 1.026 0.625 0.495  0.335
Z(Vma) | 0470  -0.346  -0450 0505 -0.449
Z(InR,a) | -0.497 -0.012 -0598 0372  0.507
Zs(p) | -0.197 -0.896 -0.014 -0.392  0.057
Z{X) | 0474 -0184 0565 0.602 -0.244
Zs(n) | 0518 -0.207 0.346  0.300  0.692
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Table 2 (a.) Mean, standard deviation and correlation matrix for the dual-exponential
profile variables computed with X; fixed at 25 km from the 493 sorties that passed QC
screening. For R, the entries are the geometric mean in kilometers and the logarithmic

standard deviation. (b.) Eigenvalues and eigenvectors of the correlation matrix.

(@) Distribution Correlation Matrix
Mean SD Z, Z> Z3 Zy Zs Zs
Zi(Vmax) | 36.7 13.7 | 1.000 -0.398 -0.018 -0.254 0.479 0.421
Zx(InRyax) | 39.3 0.53 |-0.398 1.000 0.200 0.152 -0.667 -0.572
Zi(p) | 23.9 6.15 [-0.018 0.200 1.000 0.112 -0.065 -0.251
Z4X;) |288.5 112.0-0.254 0.152 0.112 1.000 -0.143 0.165
Zs(n) | 0.85 0.42 | 0.479 -0.667 -0.065 -0.143 1.000 0.391
Zs(4) | 0.10 0.16 |0.421 -0.572-0.251 0.165 0.391 1.000
(b.) Eigenvector El E2 E3 E4 E5 E6
Eigenvalue | 2550 1.150 1.022 0.625 0417 0.235
Zi(Vmax) | -0.443  0.246 -0.239 0700 -0.324 0.302
Z(INR,uw) | 0536 0.054 -0.003 0.432 -0.348 -0.663
Zip) | 0.180 0.150 -0.907 -0.066 0.338 -0.061
Z4(X) | 0135 -0.835 -0.270 0.001 -0.382 0.255
Zs(n) | -0.504 0.087 -0.214 -0.466 -0.520 -0.451
Zs(4) | -0.460 -0.457 0.027 0.317 0.493 -0.484
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FIGURES
(a.) Schematic illustration of a sectionally continuous hurricane wind profile
constructed by joining an inner profile with swirling wind proportional to a power
of radius and an outer profile with swirling wind decaying exponentially with
distance outside the radius of maximum wind. In a zone spanning the radius of
maximum wind, a polynomial ramp weighting function (b.) is used to create a
smooth transition between the inner and outer profiles.
. A dual-exponential profile used to approximate the observed wind in Hurricane
Diana on 11 September 1984.
. Variation of (a.) outer exponential decay length and (b.) difference between
computed and climatological environmental geopotential heights as a function of
the Lagrange-multiplier constraint on the maximum decay length for single-
exponential profiles.
. Single-exponential (a.) wind and (b.) geopotential height profiles fitted to
Hurricane Anita of 1977.
. Single-exponential wind profiles fitted to Hurricanes (a.) Mitch of 1998, (b.)
Hugo of 1989, (c.) Edouard of 1996, and (d.) Erika of 1997.
. Scatter plots and regression lines for fitted (a.) single-exponential outer decay
length and (b.) power-law exponent as functions of maximum wind. Shaded
circles represent parameter values determined for individual profiles by the fitting
algorithm.
Histograms of observed and single-exponential profile wind speeds: (a.)

Dependant-data observed (gray), computed from profile-specific fitted parameters

32



10.

11.

12.

(cross-hatched), and computed from linearly estimated parameters for profiles that
passed QC (black). (b.) Complete-sample observed (gray), computed from
linearly estimated parameters (cross-hatched), and computed from sample mean
parameters (black). Both panels use observed radius of maximum wind.
Variation of (a.) difference between computed and climatological environmental
geopotential heights, (b) outer exponential decay length and (c.) fraction of the
profile contributed by the shorter exponential with 25 km decay length as
functions of the Lagrange-multiplier constraint on the maximum longer decay
length for dual-exponential profiles.

Dual-exponential (a.) wind and (b.) geopotential height profiles fitted to
Hurricane Anita of 1977.

Dual-exponential wind profiles fitted to Hurricanes (a.) Mitch of 1998, (b.) Hugo
of 1989, (c.) Edouard of 1996, and (d.) Erika of 1997.

Scatter plots and regression lines as functions of maximum wind for fitted (a.)
dual-exponential longer (solid) and shorter (dashed, fixed at 25 km) decay
lengths, (b.) fraction that the shorter decay length contributes to the outer profile,
and (c.) inner vortex power-law exponent. Shaded circles represent parameters
values determined by the fitting algorithm.

Height-wind relation computed from the dual-exponential profiles. Shaded circles
represent observed wind speed as a function of the difference between
climatological environmental geopotential height and observed central
geopotential height. Dashed curves are power-law approximations (12.1-12.4) to

the height difference computed from the gradient-wind relation using parameters
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estimated linearly from maximum wind and latitude at 15E, 25E, 35E, and 45E
latitude. The solid curve is the height-wind relation (12.5) computed with the
sample-mean values of the parameters.

13. Histograms of observed and dual-exponential profile with X, = 25 km wind
speeds: (a.) Dependant-data observed (gray), computed from profile-specific
fitted parameters (cross-hatched), and computed from linearly estimated
parameters for profiles that passed QC (black). (b.) Complete-sample observed
(gray), computed from linearly estimated parameters (cross-hatched), and
computed from sample mean parameters (black). Both panels use observed radius
of maximum wind.

14. Scatter plots and regression lines as functions of maximum wind for fitted (a.)
free, dual-exponential, longer decay length, (b.) fraction that the shorter decay
length contributes to the outer profile and (c.) free, dual-exponential, shorter
decay length. Shaded circles represent parameter values determined by the fitting
algorithm.

15. Vorticity (solid) and angular velocity (dashed) for the dual-exponential profile
with X, = 25 km fitted to Hurricane Anita of 1977, thin line separating white and
gray areas.

Al. Polynomial bell and ramp functions computed from (A1) and (A2).
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Sectionally Continuous Wind Profile
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Fig. 1. (a.) Schematic illustration of a sectionally continuous hurricane
wind profile constructed by joining an inner profile with swirling wind
proportional to a power of radius and an outer profile with swirling
wind decaying exponentially with distance outside the radius of
maximum wind. In a zone spanning the radius of maximum wind, a
polynomial ramp weighting function (b.) is used to create a smooth
transition between the inner and outer profiles.
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Fig. 2. A dual-exponential profile used to approximate the observed wind in
Hurricane Diana on 11 September 1984.
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Fig. 3. Variation of (a.) outer exponential decay length and (b.) difference
between computed and climatological environmental geopotential heights as a
function of the Lagrange-multiplier constraint on the maximum decay length

for single-exponential profiles.
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Fig. 4. Single-exponential (a.) wind and (b.) geopotential height
profiles fitted to Hurricane Anita of 1977.
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Fig. 5. Single-exponential wind profiles fitted to Hurricanes (a.) Mitch
of 1998, (b.) Hugo of 1989, (c.) Edouard of 1996, and (d.) Erika of
1997.
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Single-Exponential

Fig. 6. Scatter plots and regression lines for fitted (a.) single-
exponential outer decay length and (b.) power-law exponent as
functions of maximum wind. Shaded circles represent parameter
values determined for individual profiles by the fitting algorithm.
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Fig. 7. Histograms of observed and single-exponential profile wind
speeds: (a.) Dependant-data observed (gray), computed from profile-
specific fitted parameters (cross-hatched), and computed from linearly
estimated parameters for profiles that passed QC (black). (b.)
Complete-sample observed (gray), computed from linearly estimated
parameters (cross-hatched), and computed from sample mean
parameters (black). Both panels use observed radius of maximum wind.
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by the shorter exponential with 25 km decay length as functions of
the Lagrange-multiplier constraint on the maximum longer decay
length for dual-exponential profiles.
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Fig. 9. Dual-exponential (a.) wind and (b.) geopotential
height profiles fitted to Hurricane Anita of 1977.
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Fig. 10. Dual-exponential wind profiles fitted to Hurricanes (a.) Mitch of 1998, (b.)
Hugo of 1989, (c.) Edouard of 1996, and (d.) Erika of 1997.
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Dual-Exponential
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Fig. 11. Scatter plots and regression lines as functions of maximum wind
for fitted (a.) dual-exponential longer (solid) and shorter (dashed, fixed at
25 km) decay lengths, (b.) fraction that the shorter decay length
contributes to the outer profile, and (c.) inner vortex power-law exponent.
Shaded circles represent parameters values determined by the fitting
algorithm.
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Dual-Exponential Height-Wind Relation
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Fig. 12. Height-wind relation computed from the dual-exponential
profiles. Shaded circles represent observed wind speed as a function of
the difference between climatological environmental geopotential
height and observed central geopotential height. Dashed curves are
power-law approximations (12.1-12.4) to the height difference
computed from the gradient-wind relation using parameters estimated
linearly from maximum wind and latitude at 15E, 25E, 35E, and 45E
latitude. The solid curve is the height-wind relation (12.5) computed
with the sample-mean values of the parameters.
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QC-OK Dependant-Data
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Fig. 13. Histograms of observed and dual-exponential profile with X,
= 25 km wind speeds: (a.) Dependant-data observed (gray), computed
from profile-specific fitted parameters (cross-hatched), and computed
from linearly estimated parameters for profiles that passed QC
(black). (b.) Complete-sample observed (gray), computed from
linearly estimated parameters (cross-hatched), and computed from
sample mean parameters (black). Both panels use observed radius of
maximum wind.
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Free Dual-Exponential
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Fig. 14. Scatter plots and regression lines as functions of
maximum wind for fitted (a.) free, dual-exponential, longer
decay length, (b.) fraction that the shorter decay length
contributes to the outer profile and (c.) free, dual-exponential,
shorter decay length. Shaded circles represent parameter values
determined by the fitting algorithm.
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Anita Vorticity and Angular Velocity

70
. 60 - A
‘"
£ 50 -1 -
T
E 40 JEEE— .. T RCILT SITEITIN T LR R RIS L 0.008 -
< : : : "
S 30 fof ke =1 0.006 +
5 ¢ .
D) 20 Lo RN Y earaasnases E—— L 0.004 %3
s . : 2
=10 W NN R I L 0.002 2
S~ o
0 i : == 0.000 ~

0 20 40 60 80 100
Radius (km)

Fig. 15. Vorticity (solid) and angular velocity (dashed) for the dual-
exponential profile with X, = 25 km fitted to Hurricane Anita of 1977, thin
line separating white and gray areas.
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