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N umerical hurricane loss models have become
widely used in the insurance industry as a tool
for determining loss costs. Loss cost is defined

as the annualized dollar amount of loss a given expo-
sure will suffer over time, in other words, how much
money must be set aside each year to offset losses for
a given exposure. Loss costs are used as the basis for
establishing the premiums to be paid by the con-
sumer. The models presently in use in the insurance
industry are proprietary, which raises difficult issues
for state insurance regulators charged with assuring
that rates are fair, reasonable, and nondiscriminatory.
There is a need to establish the limitations and per-
formance of these models in an objective manner to
provide users of loss-costs data with an understand-
ing of the technology, especially given that the inner
workings of the models are not available to general
users (those who have not executed confidentiality

agreements). Moreover, the sheer complexity of the
models makes it difficult even for a sophisticated user
to accomplish a proper evaluation. This paper reports
the results of a comprehensive study of loss costs con-
ducted under the sponsorship of the North Carolina
Department of Insurance (Watson and Johnson 2003,
available online at www.methaz.com/ncdoi/). The ob-
jectives of the study were to create an assessment of
the “state of the art” of loss modeling, create a dataset
of losses for North Carolina, and to create a method
for evaluating individual model results as might be re-
ceived in insurance rate filings.

The basic approach was to identify nine wind
models, four surface friction models, and nine dam-
age models drawn from the published literature (me-
teorology, engineering, and insurance) leading to 324
combinations of models. Each of these combinations
was assessed against hurricane losses reported by a
major insurance company. Annual loss costs were
then computed using these 324 combinations of mod-
els for both North Carolina and Florida, and com-
pared with publicly available proprietary model re-
sults in Florida. As is shown here, there is a considerable
need to improve these models. Although this study
did not formally establish a baseline reference model
(Pielke et al. 1999), the “simple” models (such as based
on the Rankine Vortex wind model) with no adjust-
ments for terrain performed as well as more complex
combinations.

HURRICANE LOSS ESTIMATION
MODELS

Opportunities for Improving the State of the Art

BY CHARLES C. WATSON JR. AND MARK E. JOHNSON

Hurricane loss models, in particular, the wind models and historical hurricane parameters,

must be improved before users and regulators can apply these models with confidence.

AFFILIATIONS: WATSON—Kinetic Analysis Corporation, Savannah,
Georgia; JOHNSON—Department of Statistics, University of Central
Florida, Orlando, Florida
CORRESPONDING AUTHOR: Charles C. Watson Jr., Kinetic
Analysis Corporation, 330 Columbus Dr., Savannah, GA 31405-4205
E-mail: ccwatson@mail.methaz.net
DOI:10.1175/BAMS-85-11-1713

In final form 14 May 2004
”2004 American Meteorological Society



1714 NOVEMBER 2004|

OVERVIEW OF LOSS MODELS. Hurricane loss
models generally consist of five major components:

1) input databases;
2) wind model;
3) boundary layer (surface friction and topography)

model;
4) damage or vulnerability function;
5) frequency of occurrence model.

Each of these components is described in turn.

Input databases. All models use a minimum of three
input datasets: land cover, historical storm tracks, and
an exposure dataset. Some models also use digital el-
evation models as well, and the level of detail required
in the land cover, track, and exposure datasets can
vary greatly depending on the needs of the model. For
example, the most basic land cover model can sim-
ply indicate if a given location is land or sea. A more
advanced land cover model, such as the one used in
the trajectory-based model, consists of 72 land cover
classifications, each with values for aerodynamic fric-
tion and debris-generating potential. Input datasets
should use timely data, and be matched to the mod-
els that use them.

Exposure datasets can contain not only the loca-
tion and value of the risk, but the construction type
and even effectiveness of code enforcement, which
can greatly influence the extent of damage. For esti-
mating total losses from an individual storm, the com-
plete ensemble of construction types may be unknown
so that modelers build datasets of the typical mix of
construction in a given area—in other words, the
percentage of wood frame, concrete block, or mobile
homes in an area. It is important that the spatial char-
acteristics of the exposure and the land cover datasets
match. For example, a zip code–level exposure dataset
that treats zip codes as points should not use a land
cover dataset at a vastly higher resolution (much less
than the width of a typical zip code—say a mile or
two), as the land cover at the exact point in which the
centroid falls may not be representative of the land
cover of the zip code.

For both the simulation of historical events and the
determination of frequency of occurrence, a library
of historical hurricane tracks and intensities is re-
quired. The U.S. National Hurricane Center main-
tains a library of historical storms, called the North
Atlantic hurricane database (HURDAT) [Jarvinen
et al. 1984), with updates through Landsea et al.
(2004a,b)]. This dataset, available through their Web
and FTP sites, is updated annually, and currently con-

tains tracks for the years 1851 through 2002. It is im-
portant to obtain the annual updates, as the National
Hurricane Center not only updates each year’s new
storms, but is conducting an extensive reanalysis of
historical storms and has revised many older tracks
[and not so old, as the revision last year of Andrew
(1992) to a category-5 storm indicates]. The sidebar
provides an analysis of the impact of the reanalysis on
damages produced by simple wind models.

Wind models. As with land cover models, wind mod-
els range from the extremely simple Rankine Vortex
to complex parametric models to full three-dimen-
sional physics models. Virtually all of the models in
use in the insurance loss modeling field are paramet-
ric models using simple storm parameters such as the
minimum central pressure, radius of maximum
winds, forward speed, and so forth. Wind models may
produce the wind at the surface or a gradient wind (a
wind at some altitude above the surface, generally
considered to be the top of the boundary layer—in a
hurricane, perhaps 1000 m above the terrain). Gradient
winds are stronger than surface winds due to friction
effects, whereas a surface wind already includes some
of this correction. Table 1 provides brief descriptions
of the nine wind field models considered in this study.

Boundary layer (surface friction). The raw winds pro-
duced by a parametric wind model usually need to be
corrected for surface conditions. The simplest method
for correcting winds to the surface is by a single mul-
tiplication factor. There is much debate in the litera-
ture as to the correct factor, with values over water
generally about 0.85, and over land 0.7, but values
from 0.5 to 1.1 have been suggested under various cir-
cumstances. More complex models use unique factors
for different terrain types, while the most sophisti-
cated models analyze the trajectory of the wind to
include both upstream land cover and topography, to
include ridge and valley effects (see Table 2).

Damage functions. The damage function (also called
the vulnerability or loss function) relates the wind
deposited on a site to the damage expected at the site.
Generally speaking, damage functions may be grouped
into three broad classes: claims-based, engineering
judgment, or theoretically based. The damage functions
are irrespective of monetary damages that also include
contributions from insured losses. For a general refer-
ence in this area see Malmquist and Michaels (2000).

Each class has advantages and disadvantages.
Claims-based functions are based on the analysis of
actual claims submitted to insurance companies.
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An interesting situation has been
created with respect to Hurricane
Andrew (1992). Andrew is probably
one of the best-observed modern
storms with respect to damage
surveys. Many modelers have stated in
their submissions and in publications
that they used computed winds in
conjunction with reported damages
from Andrew to construct their
damage functions, as well as for use in
their validation studies and in their
public marketing efforts. The National
Hurricane Center (NHC) has recently
changed the official “best fit” maximum
wind speed during the Florida landfall
from 125 to 145 kt (Landsea et al.
2004b). Depending on the combination
of wind and damage functions used, as
well as the method used to convert
the HURDAT track into a track for
use in a loss simulation, this could
result in significant changes to the
simulated damages from this event.
Table SB1, below, shows the results of
simulations using the original intensity
versus using the revised intensities for
our alpha, beta, gamma, and delta
models. For these simulations, we
limited the comparison to losses in 71
zip codes in the Florida landfall, from a
single insurance company. It is worth
noting that 274 of the 324 model
combinations produced results closer
to the reported loss using the revised
track.

During the process of conducting
these simulations, one fact became
clear: apparently minor design and input
data decisions can have significant
impacts on computed losses. For
example, it is widely assumed in many
simulations that the ambient environ-
mental (far field) pressure for hurri-
canes can be taken as a fixed value of
1013 mb, with the pressure drop (and
wind speed) computed using this fixed
value. The 1013 value is assumed in the
Florida Commission proceedings, and
the working assumption has been that
this value has little impact on the final
loss totals. However, an analysis of the
NHC data for storms between 1990
and 2001 reveals that the median is
1012 mb. To assess the impact of a
1-mb change in the assumed environ-
mental pressure, two sets of “Form B”

simulations were made using the alpha
model, holding all other factors
constant. The aggregate dollar value
loss for the 1013-mb run was
$3,488,065, while the 1012-mb run was
6.7% less, at $3,253,168. The results
for all 30 simulations, expressed as a
percent difference from the 1012-mb
run, are shown in Fig. SB1. For the
category-1 events, the differences in
overall losses are an astonishing 20% or
more! Of course, we expect the
greatest sensitivity to occur for the
weak storms since a 1-mb adjustment
has the greatest influence on the
pressure difference. Even for the
stronger category-3 events, differences
in losses range between 6% and 8%
higher for a far-field pressure of 1013
versus 1012 mb. For category-5 events,
the far-field pressure appears less
influential, but still results in significant
dollar value
differences due to
the large losses
inflicted by these
storms. Overall, a
1-mb difference in
the assumed
environmental
pressure would
result in a 5%
change in the loss
cost (and
therefore

premium paid by the consumer) using
this model, which is representative of
those used in the insurance industry.

This experiment also demonstrates
the extreme sensitivity of the damage
models to small changes in wind
speeds, due to the exponential nature
of damage functions. The peak wind
speed difference between simulations
of a given wind speed was approxi-
mately 1 kt, with the average differ-
ence being 0.75 kt. Given the uncer-
tainty in all parameters concerning
tropical cyclones, the current genera-
tion of loss models appears to be far
too sensitive to input parameters. In
addition, this exercise further demon-
strates the dangers of tuning models
to specific storms, as the understand-
ing of the intensity of the storm may
change with new data or better
analytical techniques.

HURRICANE ANDREW AND SENSITIVITY

Alpha –15.2 +0.9

Beta –18.2 +1.0

Gamma –32.3 –1.0

Delta –21.0 +3.0

TABLE SB1. Impact of Hurricane Andrew
revision on loss calculations.

Percent difference Percent difference
Model (original track) (revised track)

FIG. SB1. Percent difference in losses assuming 1012- vs 1013-mb far-
field pressure.
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While at first glance this may seem to be a logical, even
optimal approach, there are problems with this
method. In the rush of settling large numbers of
claims, there are administrative, political, and other
considerations that differ from storm to storm. Thus,
a structure suffering 20% damage may be paid out dif-
ferently depending on the storm, region of the coun-
try, individual adjuster, aggressiveness of the home-
owner, and even the time of day the adjuster views the
structure. Engineering-based functions are based on
the damage to the structure as determined by an en-
gineering survey. Again, individual interpretation
may vary, and care must be used in converting ob-
served damage from a survey to the amount paid in a
claim. For example, a structural engineer might view
a building as 40% damaged, but for zoning or other
reasons it may be impractical to repair it and in prac-
tice the claim would be for 100% of the value.

Theoretical functions are based on the physics of
the behavior of structures. While this approach re-
duces the influence of human judgment on the func-

tion, the human factors noted above must be catego-
rized and included in some way. Many functions are
hybrids, consisting of a mix of the three broad catego-
ries noted here. Care must be taken to ensure the as-
sumptions of the wind model, boundary layer/surface
friction model, and damage models are compatible.

In order to exploit the full historical storm set, the
simplification of relating maximum winds to physi-
cal damage is used. Clearly, for well-observed specific
storms, physical damage estimates could benefit from
the combination of maximum winds, strong wind du-
ration, and wind steadiness (Powell et al. 1995;
Dunion et al. 2003).

Some of the damage models (Table 3) were devel-
oped for housing stock outside of the Americas (e.g.,
the Australian damage function). We still include
these functions and note their performance with re-
spect to Atlantic basin storms.

Frequency of occurrence. The above components (in-
put database, wind model, friction model, and dam-

U.S. Air Force Global Brand et al. (1977) 4 Vmax Surface
Weather Command (AFGWC)

Standard project hurricane (SP) Schwerdt et al. (1979) 3 Delta P Gradient

Miller (MI) Miller (1962) 3 Vmax Either

Holton (HN) Holton (1992) 3 Vmax Either

Rankine Vortex (RV) Coastal Engineering Research 2 Vmax Either
Center (1984)

Bretschneider (BR) Bretschneider (1972) 3 Vmax Gradient

Sea, land, and oversea surges Jelesnianski et al. (1992) 2 or 3 Delta P Hybrid
from hurricane phenomena (SL)

TABLE 1. The wind fields used in the study. Intensity basis indicates the model uses the reported peak
wind (Vmax), the pressure difference (delta P), or both (hybrid) to compute winds. Surface/gradient
indicates if the model computes surface winds directly, or computes a gradient wind that must be
adjusted to the surface. Other parameters commonly used are the radius to maximum winds, environ-
mental or far field pressure, and radius to the environment or far field. Forward speed and direction are
also used but not included in the parameter count.

Wind field No. key Intensity Surface/
(abbreviation) Reference parameters basis gradient

No adjustment (NO) Schwerdt et al. (1979) Two wind values (over land; over water)

Cell (CE) Cook (1985) Adjusted according to land cover in cell

American Society of
Civil Engineers (ASCE)(AS) ASCE (2000) Follows method given in ASCE-7-98

Trajectory (TR) Watson (1995) Wind depends on upwind topography and land cover

TABLE 2. Four surface friction models were used to adjust wind speeds due to surface affects.

Method (abbr.) Reference Key aspect of method
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age function) answer the question of the magnitude
of the losses for a single given storm track. In order
to compute loss costs, the question “how often?” must
be answered as well. Therefore the question of fre-
quency arises. Three common approaches are 1) to
rely on historical events, 2) fit and smooth probabili-
ties along coastal segments, or 3) try to reproduce hurri-
cane formation and movement in a realistic fashion.

Approach 1 presumes that the future tropical cy-
clone activity will follow that which has occurred pre-
viously. Since estimated loss costs apply for the short-
term (imminent) future, long-term climatologic
trends would normally not be incorporated (of
course, if there were definitive evidence that hurricane
incidence and intensity were to spike in the next few
years, that is a different matter). The HURDAT da-
tabase noted earlier covers Atlantic basin events from
1851 through 2002, and includes the recent updates
for the period 1886–1910. Since this approach mim-
ics exactly the historical record, it is guaranteed that
modeled landfall frequencies match history. This is
the approach that is the basis for this paper. We men-
tion other approaches shortly for completeness.

Approach 2 involves taking the historical events
and then fitting the frequencies by coastal segments
to assure that modeled landfalls closely match the his-
torical record while “smoothing” the results to match
what meteorologists might expect in the long term.
The smoothing typically follows that given in National
Weather Service Report 23 (Schwerdt et al. 1979),
which is a weighted average along the coast from a
given site.

Approach 3 has been accomplished using two ap-
proaches, statistical or using climate models. In the
statistical method, future hurricane events are
launched from their initiation point in the Atlantic

basin according to historical information. A track is
then simulated following historical track and inten-
sity progressions such as the Climatology and Persis-
tence (CLIPER) and Statistical Hurricane Intensity
Forecast (SHIFOR) models (Hope and Neumann
1970). If these generated tracks are correct (resemble
reality), then the landfall frequencies should be ap-
propriate. The second method requires the use of cli-
mate models, and is extremely challenging
computationally. Other than in experimental research
and development efforts, it is not thought to have been
used operationally.

Figure 1 shows the historical tracks of tropical cy-
clones that have impacted North Carolina since 1851,
based on the HURDAT database. About 25 hurricanes
are included in this figure. It appears that virtually all
of the coastal Carolina areas, and many inland areas,
have been impacted by the storms’ swaths. Here we
assume that interest concerns both hurricanes and
other tropical events that produce damage in North
Carolina. The rationale is that a declared hurricane
(such as Hugo) can make landfall in another state and
then proceed to inflict damage on North Carolina at
a reduced intensity level (subhurricane).

Appropriate landfall frequencies are an essential
element in estimating loss costs as the frequency of
events goes hand in hand with loss costs (e.g., if fre-
quencies were to increase 10%, one would expect that
loss costs would also increase by 10% as a first ap-
proximation). By using the entire HURDAT database,
there is a possibility that owing to limited observations
in Florida, the occurrence rate may be underestimated
(Landsea et al. 2004a). Interestingly, the southwest
coast of Florida demonstrates somewhat higher hur-
ricane occurrence when the older (pre-1886) data
were included.

Australian (AUS) Leicester and Beresford (1978) Damage surveys

Foremost (FORM) Foremost Insurance Co. (1996) Claims

Friedman (FRIED) Friedman (1984) Claims

Clemson1 (CLEM1) Sill et al. (1997) Claims, engineering judgment

Clemson2 (CLEM2) Rosowsky et al. 1999 Claims

ProTeam (PT) FCHLPM (2002) Engineering judgment

X-Cubed (XCUB) Howard et al. (1972) Engineering judgment

Energy (ENER) Watson (2002b) Theoretical

Stubbs (STUB) Stubbs (1996) Theory, engineering judgment

TABLE 3. Damage functions translate the peak wind at the site (or, in the case of the energy-based
function, the amount of stress on the structure, which includes the duration of the stress) into the
damage to the structure.

Method (abbr.) Reference Basis of method
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Once the frequencies are estimated, various ap-
proaches can be applied to estimate loss costs. We
consider three in turn.

HISTORICAL STORM SET ESTIMATION. An obvious approach
that serves as a reasonable baseline is to simulate the
historical storm set based on the current exposure and
then divide the loss costs by 152. Recall that we are
using the 1851–2002 HURDAT dataset that consti-
tutes 152 yr, including 1288 tropical cyclones. For
each of the 324 combinations of public domain (PD)
models, we simulate each of the 1288 storms, collect-
ing damage information at the census block group
(CB) level for each. Aggregated damage for zip codes
is determined from those CBs in the appropriate zip
code. Aggregated damage at the county level is deter-
mined from those CBs in the appropriate county.
Unlike census blocks, which adhere to political
boundaries such as cities and counties, zip codes of-
ten cross such boundaries. Therefore, some CBs are
in a zip code belonging to a county other than the
county in which the CB resides!

MONTE CARLO SIMULATION AND ESTIMATION. An approach
popularized by Applied Insurance Research (AIR) in
the 1980s and used by other modeling companies fits
probability distributions to key characteristics of hur-
ricanes including landfall locations and frequencies
and individual hurricane characteristics (central pres-
sure, radius of maximum winds, forward speed, and

so forth, depending on the
specific model). These dis-
tributions are then used to
simulate a future of 50,000
yr or so of events, accumu-
lating damage for each
simulated storm. There are
additional variants of sam-
pling methods used by
modeling companies that
can be gleaned from their
public submissions.

MAXIMUM LIKELIHOOD ESTIMA-
TION APPROACH. This ap-
proach was developed by
the authors of this study to
handle wind, wave, and
storm surge perils in the
Caribbean (Johnson and
Watson 1999). In validating
this approach, it became
apparent that the method

was applicable throughout the Atlantic basin. More-
over, this approach can be viewed in some respects
as a compromise between the historical storm set and
Monte Carlo approaches. The starting point is to use
the historical storm set and simulate every storm and
record the maximum wind from each storm at each
site (for this study every CB). Next the set of 1288 data
values are reduced to the annual maxima, and the
Weibull probability distribution is fit by maximum
likelihood estimation (MLE) to the 152 values at each
site. The median of the fitted distribution represents
next year’s most plausible extreme wind that then can
be converted to loss costs. For this study we are using
the approach solely for a 1-yr forecast, but the method
can be used to estimate return periods, as well.
Validation data and a further discussion of the MLE
Weibull method is contained in the North Carolina
Department of Insurance (NCDOI) report, and in
Johnson (1997).

Table 4 summarizes the differences and similari-
ties of the three aforementioned approaches. In the
NCDOI analysis, we use both the historical and MLE
Weibull methods, indicating where necessary which
is employed for each upcoming table or figure.

METHODOLOGY. The computer simulations
conducted for the study were made using the Wind
Damage Prediction and Evaluation Package
(WDPEP; Watson 2002a), a program implemented
by the authors to compare hurricane wind and loss

FIG. 1. Historical tropical cyclone tracks near North Carolina.
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models. All of the techniques used in the program are
readily available in the published literature. The latest
version of WDPEP includes 12 wind fields, 6 boundary
layer models, and 10 damage functions. Some of the
more advanced or experimental methods were not
used in this study, as the data required to support
them were not available for historical storms. As noted
in the section titled “Overview of loss models,” nine
wind models, four boundary layer models, and nine
damage functions were used. The specific techniques
used are further documented in the NCDOI study,
which along with output data from the simulations are
available online at www.methaz.com/ncdoi.

COMPARISON WITH OBSERVED LOSSES.
Each technique (wind, boundary layer, damage model)
is implemented in WDPEP as a Fortran90 module.
During the process of creating the WDPEP program,
the code for each model was manually compared with
results in the literature, as well as actual storm data
where appropriate. We have avoided the temptation
of tuning any individual model or combination to bet-
ter perform against the limited set of storm observa-
tions, preferring to leave the models to function as
published.

Assessing and reporting the performance of 324
distinct models presents a challenge. Here we briefly
review the performance of the models against re-
ported claims from two recent major hurricanes,
Andrew and Hugo. While most insurance data are
proprietary, there has been considerable dissemina-
tion of these data over time. For example, in the re-
port for the Sea Grant Consortium, Rosowsky et al.
(1999) reported zip code–level losses from a major in-
surance company. Through this and other sources,
such as reports to state insurance regulators, we have
assembled a dataset of losses for both storms. In ad-
dition, the National Hurricane Center reports storm
total (both insured and uninsured) losses for storms

in their preliminary storm reports and in their “dead-
liest and costliest” publications (Jerrell et al. 2001). We
have tested models against a variety of recent storms
using the storm total losses with great success, but as
the focus of this study is on insured losses, we will con-
centrate on the Hugo and Andrew data. Given the dif-
ferences in these two storms in size and geometry, this
is considered to be an adequate base. Table 5 shows
the top 20 models for each storm. Note that good per-
formance on one storm does not imply good perfor-
mance on the other.

The NCDOI report cites additional simulations for
Hurricanes Fran, Bertha, Floyd, Opal, Erin, and Bob.
Fortunately for Atlantic basin residents, there have
been few modern storms causing truly catastrophic
(over $5 billion) losses. However, this absence pre-
cludes further improving the state of the art of hurri-
cane risk analysis. Therefore, given the fact that mod-
els are easily “tuned” to match the performance of
small sets of storms, these data may be encouraging
but not necessarily definitive.

During the course of the NCDOI study, Hurricane
Isabel made landfall on the North Carolina coast. We
took advantage of this opportunity to run the 324
(public domain) combinations of models in real time.
The median of these estimates was $1.13 billion.
According to media reports, the estimated insured
losses for Isabel will be approximately $1 billion.
During the 2004 season we established a Web site to
make real time damage estimates based on the offi-
cial forecasts available online at http://hurricane.
methaz.org.

COMPARISON WITH PROPRIETARY
MODELS. Virtually all of the models used for in-
surance rate making are proprietary, and thus not
subject to detailed evaluation or comparison.
However, the state of Florida requires these propri-
etary modeling companies to submit the results of

Historical storm set Exact match with None needed No restrictions
estimation historical data

Monte Carlo Generally no statistically All hurricane frequencies May need adjustments
significant differences and tracks and individual for various models
with historical data hurricane characteristics
(one time effort)

MLE Weibull Close to historical storm Annual maxima at each site No restrictions
set estimation results

TABLE 4. Summary of statistical approaches.

Consistency with Applicability of various
Method historical data Distribution fitting hurricane models
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controlled tests on their models as part of their ap-
proval process. These datasets, which are in the pub-
lic domain and published on the Florida State Board
of Administration Web site (www.sba.state.fl.us), are
a rich resource for evaluating the performance of pro-
prietary models, as well as a reference for compar-
ing them to public domain methods. Complete de-
tails on these evaluations are available in the annual
“Report of Activities,” also available on the Web site.
While we are confident that most, if not all, of the
models used here would pass the Florida Commis-
sion on Hurricane Loss Projection Methodology
(FCHLPM) standards (FCHLPM 2002), it should be
noted that we did not conduct all of the tests or evalu-
ations in the standards as many did not apply to this
study. Our opinion on likely compliance is based on
our own experience with audits for the FCHLPM,
which emphasize a scientific literature basis for the
physical models.

The major evaluation instrument of interest here
is the “Form D” test from the 2002 Florida Commis-

sion standards. In this evaluation, modelers are re-
quired to provide the maximum, minimum, and
weighted average loss cost for each of Florida’s 67
counties for various policy and construction types. In-
surance companies have only recently begun to record
detailed information on individual properties, such as
construction type. Because of limited validation data
on the performance of specific construction types, we
made our comparison using the zero-deductible wood
frame analysis (which is of roughly average perfor-
mance) and compared the range of results of the pub-
lic domain methods with the four proprietary mod-
els approved by the commission in 2003. Figure 2
shows the results of the comparison. All loss costs in
this report are in losses per $1,000 of exposure. It
should be noted that our simulations used historical
storm data from the entire current HURDAT dataset
(1851–2002), while the proprietary modelers restricted
their statistical base to the 1900–2002 time frame.

In Fig. 2, the black vertical lines reflect the range
of the public domain models. The black dashes are the

1 GE TR CLEM1 0.02 MI TR PT  0.06

2 AF AS AUS 0.25 HO CE CLEM2 0.22

3 SL TR FRIED 0.47 AF TR ENER 0.46

4 BR AS FRIED 0.50 HN CE PT 0.49

5 RN NO STUB 0.59 SP AS ENER 0.79

6 SP CE FRIED 0.62 RN CE FORM 1.50

7 GE TR XCUB 0.74 AF AS PT 1.83

8 MI CE FORM 0.78 MI AS PT 1.84

9 MI CE PROT 0.80 HN AS AUS 2.03

10 AF TR FORM 0.85 HO AS STUB 2.12

11 HN TR CLEM2 0.89 AF AS ENER 2.25

12 HN NO CLEM2 1.09 RN CE ENER 2.42

13 RN CE STUB 1.50 SP TR ENER 2.55

14 HO AS AUS 1.63 HN AS XCUB 2.59

15 SP CE CLEM1 2.34 MI AS STUB 2.65

16 SL TR ENER 2.35 SL AS CLEM2 2.98

17 HN NO AUS 2.43 HN TR AUS 3.17

18 BR AS XCUB 2.57 SP TR FORM 3.41

19 HN TR FORM 2.73 MI TR ENER 3.91

20 BR AS CLEM1 3.53 MI TR STUB 4.48

TABLE 5. Top 20 models for Hurricane Andrew and Hugo.

Andrew Hugo

Rank Wind Friction Damage Percent error* Wind Friction Damage Percent error*

*Percent error is the difference between reported and model-generated loss.
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medians of the public domain models, while the
color-coded symbols are the results of the various pro-
prietary models. It is comforting and interesting to
note that the range of public domain model results
closely mirrors the range of results provided by the
proprietary methods. This is, on the whole, not sur-
prising, given that from what has been revealed by the
proprietary modelers in their publications and Florida
submissions, they are using techniques based on the
same published techniques as used in the public do-
main models.

Given the results of both the simulation of histori-
cal storm losses and the comparison with outputs of
commercial models as reported to the Florida Loss
Commission, we are confident in asserting that the
public domain models are producing reasonable re-
sults that reflect the state of the art of hurricane loss
modeling.

LOSS COSTS FROM THE TOP FOUR
MODELS. A basic, implicit premise in the hurricane
modeling industry (as exemplified by the proprietary
modelers) is that models that capture the features of
historical storms (both wind field and loss-costs

agreements with actual values) will provide accurate
and reliable estimates of future annual loss costs. If
this assumption were true, one would think intuitively
that well-performing models should produce similar
loss costs. To examine this premise more closely in
the context of the 324 combinations of public domain
models, we extracted detailed data for the top four
performing models with respect to the root-mean-
square error (rmse) for all 1288 simulations against ob-
served data (incurred losses across all states). The four
leading models are given in more detail in Table 6.

These four models are relatively indistinguishable
regarding rmse, although they vary as to best and
worst performance on individual storms. It is inter-
esting that the most accurately simulated storms are
arguably the most extensively observed storms (cer-
tainly from a loss standpoint), while the less well ob-
served storms, Opal and Floyd, each had unique as-
pects to their meteorology and losses (Opal, for the
rapid collapse of the storm before and during land-
fall; Floyd, for the unusual flooding associated with
the event that potentially distorted the wind loss fig-
ures). It is also interesting to note that none of the top
four models were in the top five “best” for any single

FIG. 2. Comparison of public domain and proprietary models in Florida. Loss cost per $1000 of exposure by county
as computed by public domain and proprietary models in Florida.
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storm event. However, given their overall perfor-
mance against observations, we feel justified in say-
ing that any of these models does an acceptable job
of reproducing observations, and are reflective of the
performance obtained from proprietary models. Note
that the “gamma” model is very close to being a simple
baseline model—the wind model is the simplest used
(Rankine), wind friction is very basic, and the dam-
age model is a simple fit to reported damage in
Hurricane Hugo.

Figure 3 provides the associated loss costs for each
of the four “winners” while Fig. 4 gives details for four
important counties in the state. Viewed indepen-
dently, each dataset appears reasonable, demonstrat-
ing a logical relation to risk via smooth transitions,
largest risks in coastal zones, and so forth.

The above maps and data may be discouraging for
the users of insurance loss models. While coastal loss
costs for the top two models (alpha and beta) differ
by “only” 12%, in the important inland area of Wake
County (which contains the state capital of Raleigh)
the difference is nearly a factor of 6—the range
among all four is larger. Note that these model re-
sults share common assumptions for landfall fre-
quencies, decay rates, the exposure database, and so
forth. Were differing, yet equally valid assumptions
for these additional variables used, the results would
probably be even more divergent. One might argue
that the inland areas are less important; however,
given the distribution of exposures and the premi-
ums paid, these areas contribute significant income
to insurance companies (and losses, as Hugo and
more recently Isabel demonstrated).

Two points need to be made with respect the pre-
vious paragraph’s perspective. First, the results from
computer models are potentially a significant im-
provement in reliability over previous econometric
approaches relying on historical losses alone. Second,
the disparities at the county level across models are
ameliorated to some extent by aggregating to larger
domains. However, aggregation can have the effect of
suggesting homogeneity of risk where, in fact, risks

may be different, and given the politically charged at-
mosphere of insurance rate determination, large dif-
ferences in loss costs created by scientifically defen-
sible models is problematic in the public approval
process (Watson et al. 2004).

ASSESSMENT OF MODEL-TO-MODEL
VARIABILITY. The previous section demonstrated
that seemingly equally viable models (with respect to
rmse against observed losses) can produce rather dif-
ferent estimated loss costs. This range presents a ma-
jor problem for regulators, government officials, and
consumers, as the choice of model could result in pre-
miums differing by several hundred dollars a year for
a typical home. The bottom line is that the state of the
art is insufficient to produce sufficiently tight group-
ings of results to allow users to apply model results
with confidence. How best can the state of the art be
improved to achieve a tighter understanding of loss
costs?

Understanding the various sources of variation in
this study sheds light on the critical components con-
tributing to loss-cost results. The loss-cost maps in the
previous section reveal the obvious conclusion that
the expected loss costs vary spatially (Outer Banks
have higher rates than the interior). Hence, we focus
on individual locations as a start. The 324 model com-
binations represent what is known as a three-factor
crossed design, with the factors being wind field (nine
levels), friction (four levels), and damage (nine lev-
els). A convenient way to display this information is
a variability chart as given in Fig. 5. We are interested
in how loss costs (the vertical scale on the topmost
graph) vary depending on damage function (AUST,
CLEM1, . . . , XCUBE, see Table 3) of which there are
nine possibilities. For each damage function, there are
nine wind fields (AP, BR, . . . , SP). For each damage
function–wind field combination, there are four fric-
tion functions, represented by the little vertical lines
in the graph. There is very little spread across the four
friction factors regardless of the damage–wind field
combination. For loss-cost estimation, friction does

Alpha AFGWC Trajectory Foremost 0.0593 0.01% (Andrew) 7.50% (Opal)

Beta AFGWC Trajectory ProTeam 0.0595 0.30% (Hugo) 9.21% (Opal)

Gamma Rankin Cell Clemson2 0.0633 0.03% (Hugo) 15.94% (Floyd)

Delta Standard project ASCE-7 ProTeam 0.0676 0.40% (Hugo) 12.33% (Floyd)

TABLE 6. Top four models with respect to rmse.

Model Best relative Worst relative
name Wind field Friction Damage Rmse match (storm) match (storm)
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not appear to be an influential factor. On the other
hand, two damage functions stand out as being rela-
tively high, namely, CLEM1 and FRID. These two also
behave very similarly in conjunction with common
wind fields. In fact, the patterns are quite common
across all damage functions, the vertical scale, and lo-
cation changing to some extent. Moving down the
plot to the table labeled “variance components,” a nu-
merical summary of the components of the variation

matches the visual inspection. Damage function is the
primary contributor to the variation in loss costs fol-
lowed by wind field. Friction (equivalent to “within”
in the variance components table) is almost negligible.
This result is at first surprising, given the critical fac-
tor friction plays in the performance of models on in-
dividual storms. However, upon further reflection it
does make sense, as different storms deposit peak
winds on a given location from different directions,

FIG. 3. Loss costs per $1,000 for top four models identified in Table 3.

FIG. 4. Loss cost per $1,000 of exposure for four counties.
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thus potentially averaging out the impact of surface fric-
tion over many storms.

In the NCDOI study, many more variability charts were
generated and examined. The basic pattern of damage
function as the dominant source of variation and wind
field as the runner-up was consistent. The standard devia-
tion plot provides further insight, especially for the fric-
tion component (indicated by the “within” variance com-
ponent). The Georgiou (1985) and Sea, Lake and Overland
Surges from Hurricanes (SLOSH) wind fields have the
greatest variability across friction choices; while the Holton
(1992) has the least variability.

CONCLUSIONS AND DIRECTIONS FOR FU-
TURE RESEARCH. Proprietary models are currently
used in the insurance industry as the basis for setting pre-
miums and reinsurance rates for hurricane wind perils.
Good-faith efforts of the modelers in their choices of com-
ponents still lead to disparate loss costs across models. By
considering public domain components, 324 combina-
tions of models were used to span the range of plausible
loss costs and determined that these results bracketed
closely the proprietary results. The range in loss costs can
be large depending on the level of aggregation (a 3-to-1-
or-greater ratio is not uncommon in considering the 90th
to 10th percentile of results at a given site). In looking at
the four “winning” models with respect to rmse across sev-

eral historical storms, the subsequent loss costs di-
verged considerably, especially for inland areas. The
dominant contributor to variation was the choice of
damage function, followed by the wind field. Friction
effects are relatively negligible for overall loss costs yet
are highly influential for individual storms.

Damage functions are highly nonlinear: average
structural damage could be 10% at 100 mph, 25% at
130 mph, and 80% at 160 mph. Inaccuracies and un-
certainties in the wind field propagate dramatically
into the damage calculations, making improvements
in damage functions unlikely in the absence of signifi-
cant improvements in the understanding and mod-
eling of the distribution of winds in hurricanes.

The extent of variance reduction from improved
scientific, physical, and database improvements in
conjunction with improved meteorological modeling
would be beneficial to many decision analysts. What
can be done to further reduce the variation in loss
costs as exhibited in this study? Based on our analy-
sis, we offer the following specific challenges to the
meteorological research community.

1) Develop a more refined set of historical hurricane
parameters. The models are restricted by the
availability and accuracy of input conditions in-
cluding radius of maximum wind, environmen-

FIG. 5. Variability analysis for census BG 3802. See text for details.
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tal pressure, and distance to the environment.
While the Tropical Prediction Center’s (TPC)
Automated Tropical Cyclone Forecast (ATCF)
system files have this data, and are now available
online, they only have detailed data since 1990.
In addition, these are not “best fit” data but are
based on real-time observations. Based on our
return-period analyses, it does not appear that
further extending the current HURDAT data
back in time, as TPC is currently doing, will nec-
essarily reduce the variation observed in loss
costs, and could in fact increase this variation if
only track data and storms of uncertain intensity
are included. This is not meant to disparage the
reanalysis effort, which is meritorious on other
grounds, but to point out that it may not help the
problems discussed here. A reviewer has further
suggested that the development of reliable data-
bases on tropical cyclones ought to follow exist-
ing standards (in particular, World Meteorologi-
cal Organization standards) in development, a
point with which we enthusiastically agree. Along
these lines, a centralized database of observed
wind speeds could assist in the evaluation of dif-
ferent wind fields.

2) Assess the uncertainty in the estimated hurricane
parameters. For example, the radius of maximum
winds for a category-4 storm that could be any-
where from 11 to 17 km would swamp wind field
model refinements. Best-fit datasets should always
incorporate an estimate of the uncertainty in each
value provided, on an observation-by-observation
basis. Uncertainty analyses in general ought to be
a vital aspect of the next generation of models and
model-to-model comparisons.

3) Wind field models have characteristic shapes and
structures, which may or may not match actual
storms. The available data on actual storms is
piecemeal and dominated by observations over
water. Improved observations (especially
stormwide “snapshots”) of the entire wind field,
especially in a variety of boundary layers, are
greatly needed.

4) Industrywide loss and damage data published in
the public domain could settle some of the issues
regarding disparate models fitting historical loss
costs comparably. Such a disclosure may be po-
litically difficult due to the ownership of the data
by the insurance companies and their inconsistent
data gathering and maintenance policies, but
mechanisms to compile and distribute these data
while protecting the identity of the underlying in-
surance companies can and should be developed,

perhaps under the Department of Commerce as
suggested by Changnon (2003). In any event, the
lack of consistent insurance loss datasets is an in-
hibitor to investigating further model-to-model
variation.

Reliable loss modeling has important implications
for the emergency management, insurance, and re-
insurance sectors, and can have profound impacts on
the economy. Multibillion dollar decisions are made
on the basis of these models, yet the state of the art of
the technology does not lead to narrow ranges of re-
sults, even at the multicounty level of aggregation
(Watson et al. 2004). Until the winds experienced by
a structure can be reliably computed, improvements
in damage functions are limited (due in part to the
nonlinearity of damage functions). Therefore, the pri-
mary opportunities for improvement reside in the
field of meteorology. Researchers in meteorology can
make vital contributions to improving these models,
and thus make an important contribution to improv-
ing the stability and rationality of the insurance mar-
kets and economic planning arenas.
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