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Abstract 24 

 25 

This study examines the influence of NASA Cyclone Global Navigation Satellite System 26 

(CyGNSS) Level 2-derived 10 m (near-surface) wind speed over the ocean on numerical weather 27 

prediction (NWP) analyses and forecasts within the NOAA operational Hurricane Analysis and 28 

Forecast System (HAFS). HAFS is coupled with a regional configuration of the HYCOM ocean 29 

model. The primary advantages of data from the CyGNSS constellation of satellites in the 30 

analysis and prediction of tropical cyclones (TCs) include higher revisit frequency compared to 31 

polar-orbiting satellites, and the availability of reliable wind observations over the ocean surface 32 

during convective precipitation. In addition, CyGNSS data are available early in the life cycle of 33 

TCs when aerial reconnaissance observations are not available. We focus on TCs whose 34 

forecasts were initialized when the TC was a tropical storm or depression. In the present study, 35 

we find first, that assimilation of CyGNSS near-surface winds improves storm track, intensity, 36 

and structure statistics in the analysis and early in the forecast. Second, we find that assimilation 37 

of CyGNSS observations provides additional insights into the evolution of air-sea interaction in 38 

intensifying TCs: In effect, the ocean responds in the coupled model to modifications in the 39 

initial 10 m wind field, thereby impacting forecasts of intensity,  storm structure, and sea surface 40 

height, as demonstrated by two case studies.  41 
 42 
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1. Introduction 43 

 44 

Improving 10 m wind analyses is crucial to improving forecasts of potential hazards from 45 

tropical cyclones (TCs) such as wind gusts and, in particular, perhaps the deadliest TC hazard, 46 

storm surge (Rappaport et al.  2009; Powell and Reinhold 2007). Storm surge in recent US 47 

landfalling TCs has accounted for more deaths than any other cause. For example, the National 48 

Hurricane Center (NHC), in its end-of-season report on landfall damage from Hurricane Ian, 49 

states, “Ian was responsible for at least 156 fatalities, 66 of which were considered deaths 50 

directly caused by the storm. [...] Storm surge was the deadliest hazard, claiming 41 lives, with 51 

36 of the 41 surge fatalities occurring in Lee County, Florida. [... Of other causes, only] 4 were 52 

related to wind, and 1 was due to rough surf.” (NHC 2023). In the present study, we will see that 53 

assimilating near-surface wind data can significantly influence forecasts of TC intensity, of the 54 

ocean conditions beneath the TC, and ultimately, the initial conditions upon which storm surge 55 

forecasts are based. 56 

 57 

Extensive literature shows that satellite 10 m wind observations over the ocean help to improve 58 

the accuracy of numerical weather analyses and forecasts (Atlas et al. 2001; Atlas 1997; Candy 59 

et al. 2009; Leidner et al. 2003; Schulz et al.  2007). However, most existing satellite observing 60 

systems have limited temporal resolution (e.g., 1–2 overpasses per day), and some of those based 61 

on scatterometry may saturate at higher wind speeds, and may provide less accurate ocean 10 m 62 

high wind speed data when there is precipitation. Scatterometry performance depends on the type 63 

of scatterometer: C-band scatterometers (e.g., ASCAT) perform well in precipitation, but usually 64 

have smaller swaths, while Ku-band scatterometers (e.g., QSCAT, OSCAT) experience 65 

significant attenuation in precipitation. Both types of scatterometers, however, tend to saturate at 66 

high wind speed (Dani et al. (2023)).  67 

 68 

Of satellite remote sensing instruments, only L-band receivers, such as those on the NASA 69 

Cyclone Global Navigation Satellite System (CyGNSS; Ruf et al. 2016a), can observe winds in 70 

the presence of heavy rain - a ubiquitous feature within the core and feeder bands of a TC. Thus, 71 

CyGNSS has the potential to mitigate some of the previous shortcomings in the temporal and 72 

spatial sampling of the 10 m wind field in TCs (Rappaport et al. 2009). CyGNSS also provides 73 

more frequent wind speed retrieval than other systems, which can be critical in sampling the 74 

rapid evolution of TC wind structure (Rogers et al. 2013), especially during rapid intensification 75 

(RI) or eyewall replacement cycles. These features of CyGNSS also have the potential to 76 

improve the accuracy of the forecast wind products which are required for operational and 77 

research storm surge models, e.g., the Coastal and Estuarine Storm Tide (CEST; Xiao et al. 78 

2006) and the Sea, Lake, and Overland Surges from Hurricane (SLOSH; Glahn et al. 2009) 79 

models. 80 

 81 
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Due to coordinated efforts such as the Hurricane Forecast Improvement Project (HFIP; 82 

Gopalakrishnan et al., 2021), operational TC forecasting has improved markedly over the last 15 83 

years. The accuracy of TC track forecasts has continued to improve, particularly at longer lead 84 

times (4 and 5 d, e.g., Landsea and Cangialosi, 2018). Furthermore, research programs have 85 

recently also improved intensity forecasts as measured by either maximum 10 m winds or 86 

minimum central pressure (Cangialosi et al., 2020; Alaka et al. 2024). Finally, recent research 87 

has focused on other metrics important to forecasting TC hazards, such as wind radii (e.g., 88 

Cangialosi and Landsea, 2016). 89 

 90 

The current study presents the results of an observing system experiment (OSE), building upon 91 

previous research which used observing system simulation experiments (OSSEs). Numerous 92 

studies have explored the effects of simulated CyGNSS-derived winds through regional OSSEs 93 

(McNoldy et al., 2017; Zhang et al., 2017; Annane et al., 2018; Leidner et al., 2018). OSSEs 94 

operate on the same principle as OSEs, but utilize observations derived from a simulated 95 

atmosphere to assess observations that are not yet available (e.g., Hoffman and Atlas, 2016). The 96 

four CyGNSS OSSE studies mentioned earlier employed a regional OSSE system, wherein the 97 

Hurricane Weather Research and Forecasting (HWRF) limited-area model was utilized to 98 

generate TC forecasts using simulated observations.  99 

 100 

McNoldy et al. (2017) and Zhang et al. (2017) investigated scalar winds' impact and identified 101 

enhancements in the analyses and forecasts of track, storm intensity, and storm structure. 102 

McNoldy et al. (2017) proposed that incorporating a directional component may improve results. 103 

Annane et al. (2018) observed positive impacts on track and intensity forecasts from scalar and 104 

vector winds, particularly when cycling every 3 h compared to 1- or 6-h cycling intervals. 105 

Leidner et al. (2018), on the other hand, noted more consistent improvements from wind data 106 

assimilation in storm intensity (2-5 knots) than in track forecasts, but their findings also showed 107 

that vector winds were more beneficial than scalar winds in improving model representation of 108 

10 m wind field structures. Analyses without directional wind components were found to be 109 

more susceptible to dynamic imbalances and non-physical storm structure asymmetries. 110 

 111 

This study focuses on the impact of CyGNSS-derived 10 m wind speed observations over the 112 

ocean on numerical weather prediction (NWP) analyses and forecasts of the NOAA operational 113 

Hurricane Analysis and Forecast System (HAFS). The aim of the present study is, first, to look at 114 

the impacts of CyGNSS on statistics for storm track, intensity, and structure, then, second, to 115 

analyze the effects of CyGNSS on the evolution of air-sea interaction in intensifying TCs. In the 116 

discussion below, we also briefly note that such data can contribute to improving NWP model 117 

parameterizations for surface air-sea fluxes (wind stress and sensible and latent heat). However, 118 

such improvements are beyond the scope of the present work. The paper is structured as follows: 119 

Section 2 outlines the OSE framework and presents the experimental design, while Section 3 120 
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discusses the results. Section 4 summarizes this study, focusing on its findings and limitations, 121 

and briefly outlines future planned studies. 122 

 123 

 124 

2. Data and Methods 125 

 126 

Since a global modeling system is heavily parameterized and cannot sufficiently resolve the 127 

small scales that are significant contributors to the rapid intensification processes of TCs, a 128 

regional model specifically developed for TCs is utilized in this study (Mueller et al. 2021). A 129 

version of the operational HAFS model is chosen (see Sec. 2.2). This approach enables the 130 

assessment of the impact of CyGNSS Level 2 data through improved HAFS initial conditions 131 

(ICs). We evaluated impacts of assimilating CyGNSS data on TC intensity and structure 132 

forecasts from the “B” configuration (hereafter, HFSB) of NOAA HAFS v1.0 (Hazelton et al. 133 

2023) using two experiments (see Table 1). Initialization for all experiments occurs at the 134 

specified time indicated in column 2 of Table 2, until reaching the date and time specified in 135 

column 3. For each 5-day forecast within a given OSE experiment, Error metrics are computed 136 

every 6 h with respect to the Best Track data, where error is defined as the difference between 137 

the experiment and the Best Track data. The initial four cycles (full day) of the experimental 138 

period for each storm is used to initialize the model state with CyGNSS observations, while 139 

subsequent days are utilized to generate TC statistics. 140 

 141 

2.1 CyGNSS 142 

 143 

The CyGNSS constellation, comprising GPS receivers aboard eight minisats launched on 144 

December 17, 2016, captures reflected ocean surface signals of opportunity emitted by existing 145 

GPS satellites (level-1). Unlike traditional scatterometers with a monostatic setup, where the 146 

transmitter and receiver are collocated, CyGNSS utilizes a bistatic configuration as depicted in 147 

Fig. 1, where the transmitter and receiver are positioned on separate platforms. CyGNSS Level 2 148 

data comprises 10 m derived winds extracted from the level-1 data. These level-1 data represent 149 

the raw scattered GPS radio signals collected by CyGNSS receivers, initially processed into 150 

Level-1 observables such as normalized bistatic radar cross-section and leading-edge slope 151 

(Gleason et al., 2016, 2019; Clarizia and Ruf, 2016b). 152 

 153 

Various CyGNSS-retrieved ocean surface data versions are generated through different 154 

processing and calibration methods applied to the CyGNSS Level I data. The geophysical model 155 

functions (GMFs) used to convert Level-1 to Level-2 data vary based on the sea state (Ruf and 156 

Balasubramaniam, 2019). We have two sea states: young seas with limited fetch (YSLF), 157 

characterized by rapidly changing wind and sea state, often observed in stormy weather 158 

conditions, and fully developed seas (FDS), characterized by mature periodic waves without 159 

rapid changes in wind or sea state. For this study, winds retrieved using the YSLF algorithm 160 

were chosen because YSLF conditions prevail over a large portion of the ocean surface where 161 

the HAFS storm-following moving nest operates. 162 

 163 

The CyGNSS Level 2 wind speed data (Version 3.1) is extracted from the NETCDF files 164 

available at the following link: https://podaac.jpl.nasa.gov/dataset/CyGNSS_L2_V3.1. The data 165 



5 

undergoes quality control, where only winds with errors less than or equal to 3 m/s are retained. 166 

After this filtering, we are left with a relatively small sample, particularly at high wind speeds. 167 

Discrepancies in error statistics are observed when comparing different versions of CyGNSS 168 

Level 2 winds, as discussed by Pu et al. (2022). The latest operational versions, v3.0 and v3.1, 169 

show an increase in high wind speeds relative to v2; however, they also come with larger 170 

uncertainties. The 6-hourly prepbufr files required by HAFS DA are generated from CYGNSS 171 

for the times listed in Table 2.  172 

 173 

Incorporating CYGNSS data into assimilation poses a challenge due to its spatial measurement 174 

density, which stands at 6 km along the specular path. This leads to notable overlap between 175 

consecutive observations, sampling much of the same ocean surface area within seconds, thereby 176 

introducing a correlation between observations. Using all these observations without adjustments 177 

risks overfitting the model state to the data. In our OSE, we choose not to thin the CyGNSS data 178 

but to utilize all available data and inflate the errors associated with CyGNSS relative to other 179 

observation sources with smaller observation samples, to avoid overfitting with CyGNSS. This 180 

follows the approach outlined by Mueller et al. 2021. Figure 2 depicts an example of CyGNSS 181 

Level 2 10 m winds for the analysis time of 0060 UTC on October 7, 2018. 182 

 183 

 184 

 185 

 186 
Figure 1. The geometry of bistatic radar measurement involving GPS-based quasi-specular 187 

surface scattering is depicted. The GPS direct signal, the transmitter, furnishes location, timing, 188 

and frequency references. Conversely, the forward scattered signal, received by CyGNSS as the 189 

receiver, carries ocean surface information. Image credit: Claziria and Zavorotny (2015). 190 

 191 

 192 
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 193 

 194 

 195 
Figure 2. CyGNSS Level 2 10 m winds  for analysis time: 0060 UTC 7 Oct 2018. Assimilation windows 196 

span 6 hours (+/- 3 hr) and are centered at the analysis times. Each individual point on the plot 197 

corresponds to observations at specular points. Due to the scale of the plots, these points may appear to 198 

create lines, commonly referred to as specular point tracks. 199 

 200 

2.2 Hurricane Analysis and Forecast System 201 

 202 

The HFSB configuration of NOAA HAFS v1.0 was made operational in 2023.  HAFS  is a 203 

hurricane application of NOAA’s Unified Forecast System (UFS) framework, which couples a 204 

regional configuration of the FV3 finite-volume atmospheric model (Lin and Rood, 1996; Lin, 205 

2004) using assimilation of  atmospheric observations, with the Hybrid-Coordinate Ocean Model 206 

(HYCOM) (Bleck et al. 2002) through the Community Mediator for Earth Prediction Systems 207 

(CMEPS). The HFSB version of HAFS incorporates updated parameterizations for planetary 208 

boundary layer (PBL) mass flux and atmospheric microphysics. HFSB uses a fixed, storm-209 

centric, 75x75 degree outer regional atmospheric domain based on Extended Schmidt Gnomonic 210 

(ESG) projection with horizontal resolution of 6 km. Coupled with this outer domain is a moving 211 

nest of about 12x12 degrees at 2 km horizontal resolution. The moving nest vertical grid has 81 212 

vertical levels reaching 2 hPa. The HYCOM domain is fixed (non-storm centric) and covers the 213 

NHC’s areas of responsibility for the North Atlantic, Eastern North Pacific & Central North 214 

Pacific basins, at 1/12-degree horizontal grid spacing with 41 vertical ocean levels. 215 

 216 
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 217 

Figure 3. The black box represents the outer domain (fixed, initially storm-centric with 6-km grid 218 

spacing). The red box indicates the storm-centered moving nest with 2-km grid spacing. The 219 

HYCOM ocean domain (with 9-km grid spacing) is depicted in blue. 220 

 221 

The Global Forecasting System version 16 (GFSv16) provides atmospheric initial conditions and 222 

3-hourly lateral boundary conditions for the outer domain. HFSB also features vortex 223 

initialization (e.g., Lin, 2004), comprising vortex relocation for all cases and vortex modification 224 

(intensity and size) when initial TC intensity is >= 30 m/s. Techniques used to assimilate 225 

atmospheric observations include four-dimensional ensemble variational (4DEnVar, using 226 

GDAS ENKF ensemble members) and First-Guess at Appropriate Time (FGAT). HAFS also 227 

implements self-cycling (warm-cycling) for the atmospheric model, initializing subsequent 228 

forecast cycles utilizing the previous cycle. HAFS currently only performs DA on the inner 229 

moving atmospheric nest. Ocean initial conditions come from the operational Real Time Ocean 230 

Forecasting System (RTOFSv2; Garraffo et al. 2020), which performs ocean DA; HAFS 231 

HYCOM itself performs no ocean DA. At each coupling time step, FV3 and HYCOM exchange 232 

coupling variables as outlined in the companion paper by Gramer et al. (submitted, in this issue). 233 

HFSB uses atmospheric physics parameterization options as documented in Hazelton et al. 2023, 234 

including the scale-aware Simplified Arakawa-Schubert (SAS) convective scheme (Han et al., 235 

2017), the turbulent-kinetic-energy (TKE)-based eddy diffusivity mass flux (EDMF-TKE) PBL 236 

scheme (Han and Bretherton, 2019), and the Thompson microphysics scheme (Thompson et al., 237 

2004). See Hazelton et al. (2023) for further details. 238 

 239 

The version of HAFS described here can be obtained from the production/hafs.v1 branch of the  240 

HAFS GitHub repository, https://github.com/hafs-community/HAFS.  241 

 242 
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To assess the impact of CyGNSS, we generated forecasts from the time of cyclogenesis for each 243 

TC case, taking advantage of self-cycling atmospheric DA. The CyGNSS forecasts utilized an 244 

identical atmospheric model configuration to that described above, including atmospheric DA, 245 

but also incorporating CyGNSS v3.1 data as described above. 246 

 247 

2.3 Experimental Setup 248 

 249 

Two experiments (Table 1) are conducted to evaluate the simulated impact of CyGNSS 250 

observations on hurricane analysis and forecasting. Firstly, a control DA experiment (CNTL) 251 

assimilates standard conventional data routinely integrated into the 2023 HAFS Global DA 252 

System (GDAS). This includes radiosondes, tail Doppler radar, ground-based radar, atmospheric 253 

motion vectors, and various satellite-based observations, as listed in Zhan et al. (2021), but 254 

excludes CyGNSS data. The second experiment (CV31) involves adding CyGNSS v3.1 Level 2 255 

wind speeds to the control. 256 

 257 

 Table 1. List of experiments. 258 

Experiment Name Data Assimilated 

CNTL All data assimilated operationally: Conventional, Radiances. 

no CyGNSS data 

CV31 Conventional, Radiances, with CyGNSS v3.1 

 259 

 260 

 261 

 262 

 263 

 264 

2.4 Case Selection 265 

 266 

Two criteria guide the selection of case studies for this analysis, aiming to showcase the potential 267 

impact of CyGNSS data: 268 

1. Intensity Forecast Errors: Based on previous OSSE results, cases where the operational 269 

HWRF model exhibited notable errors in intensity forecasting were chosen. The objective 270 

is to assess whether CyGNSS data can enhance these forecasts.. 271 

2. Early-Stage TCs: Specifically targeting initial forecasts of tropical depressions and 272 

tropical storms, which often lack adequate observation (e.g., TC Larry). Leveraging 273 

CyGNSS's frequent revisit time, valuable insights into the structure of these developing 274 

systems can be obtained. However, CYGNSS winds are not reliable at higher wind 275 

speeds (see above). In addition, many of the TCs in this study began to display some 276 

subtropical and extratropical features later in their life cycles, making it increasingly less 277 
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likely that ocean impacts would be important. For both of these reasons, the full lifecycle 278 

of most TCs was not evaluated, except for Ian. 279 

 280 

All TCs listed in Table 2 meet the two criteria above and are included in this data impact study. 281 

In each experiment, a five-day HAFS forecast is initiated every 6 hours, with verification against 282 

the NHC Best Track conducted for each case. 283 

 284 

Table 2: All forecast cycles (87 total) analyzed for the present study 285 

Year, Storm ID, Name First Cycle Last Cycle Total # of Cycles 

2021 12L Larry 2021/08/31 18Z   2021/09/03 06Z 10 

2021 18L Sam 2021/09/23 00Z   2021/09/24 06Z 5 

2022 06L Earl 2022/09/03 00Z    2022/09/06 00Z 13 

2022 07L Fiona 2022/09/14 12Z    2022/09/18 06Z 15 

2022 09L Ian 2022/09/23 06Z    2022/09/28 18Z 27 

2022 13L Julia 2022/10/07 18Z   2022/10/09 00Z 6 

2022 15L Lisa 2022/10/30 18Z   2022/11/02 06Z 11 

 286 

2.5 Diagnostic and Evaluation Methods 287 

 288 

The TCs analyzed are illustrated in Fig. 4. All TCs occurred between 2021 and 2022. Tracking 289 

of TCs was performed using the latest version of the GFDL vortex tracker (Marchok, 2021). 290 

Forecast verification was conducted using Best Track data from the NHC HURDAT-2 database 291 

(Landsea & Franklin, 2013). These Best Track data provided TC location in increments of 0.1 292 

degree for latitude and longitude, maximum 10 m winds in increments of 5 kt, and minimum sea-293 

level pressure in increments of 1 hPa. The results presented are based on homogeneous samples 294 

of all analyzed forecasts for that experiment, and were verified every 6 h. Additional forecast 295 

metrics presented below include the consistency metric, described in Ditchek et al. (2023), and 296 

other commonly calculated mean absolute error (MAE) and bias statistics. MAE skill, as referred 297 

to below, is the ratio between MAEs for two experiments, expressed as a percentage. 298 

 299 

Additional statistics were defined as follows: we calculated 100 km annular “footprint” averages 300 

and standard deviations, centered at the forecast storm center, for each of sea surface temperature 301 

(SST), total latent and sensible heat fluxes at the air-sea interface, planetary boundary layer 302 

(PBL) height, and (average only) warm core anomaly. PBL heights were determined based on 303 

mean height of zero inflow (radial) velocity, following the method of Zhang et al. (2020). The 304 

definition of warm core anomaly used here is the difference between the azimuthal mean 305 

potential temperature profile at each radial distance bin, and that of the azimuthal mean potential 306 
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temperature averaged in the 200-300 km annulus from the center of the storm (Stern and Zhang, 307 

2012; Zhang et al. 2020).308 
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 309 

Figure 4.Storm track from NHC Best Track (black lines) and intensity category (colored dots) 310 

for TCs investigated in this study: (a) Ian 2022AL09, (b) Fiona 2022AL07, (c)Lisa (2022AL15), 311 

(d) Sam (2021AL18) , (e) Earl 2022AL06 , (f) Julia (2022AL13), (g) Larry (2021AL12). Data 312 

was obtained from NHC Best Track. Colored dots denote TC center location at 0000, 0600, 1200 313 

and 1800 UTC every day.   314 

 315 

3.  Results 316 

 317 

The outcomes of the experiments are presented in two parts: First, we analyze forecast metrics 318 

from each experiment across all cycles (see Table 2 above), including absolute positional errors, 319 

intensity in the form of minimum central pressure (PMIN), radius from the TC center at which 320 

maximum 10 m wind occurs (radius of maximum wind or RMW), and radii averaged over all 321 

four cardinal quadrants for 34, 50, and 64 kts, respectively (R34, R50, R64). We then examine 322 

two individual forecast case studies, which for the CV31 experiment incorporate several 323 

previous cycles of CyGNSS data, in order to elucidate likely mechanisms by which CyGNSS 10 324 

m wind initialization impacted the above-mentioned forecast metrics. As outlined below, these 325 

studies were chosen to represent both an open ocean TC in the Atlantic and a landfalling TC case 326 

that transited the Gulf of Mexico. As we will see, the landfalling case, Ian, assimilated aerial 327 

reconnaissance observations as well as CyGNSS, but both cases show improvements with 328 

CyGNSS. 329 

 330 

3.1 Statistical forecast results 331 
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ab  332 

Figure 5: Mean Absolute Error (MAE, top panels) and MAE skill (bottom panels) for the CV31 (green) 333 

and CNTL (red) experiments for  absolute track error. Shaded boxes between the MAE and MAE skill 334 

panels indicate, for individual forecast lead times, whether results were fully consistent (dark green), 335 

marginally consistent (light green to light orange), or not consistent (dark red, none in this figure). Sample 336 

size is given below the x axis in each panel. Mean relative skill percentage is highlighted in boxes at the 337 

lower right of each panel.  338 

 339 

Fig. 5 compares the overall results of the CNTL (red) and CV31 (green) experiments.. We see 340 

improvements in absolute track accuracy across more than half of all lead times, excepting hours 341 

0 and 24 h. Overall,  the MAE track skill showed  a 4.7 improvement over CNTL.  342 

 343 
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a b  344 

Figure 6: The MAE (top panels) and MAE skill (bottom panels) for the CV31 (green) and CNTL 345 

(red) experiments for (a) minimum central pressure (PMIN) , (b) maximum  wind speed 346 

(VMAX). Shaded boxes between the MAE and MAE skill panels indicate consistency for each 347 

forecast lead time, as in Fig. 5. The sample size is given below the x axis in each panel. Mean 348 

relative skill percentage is highlighted in boxes at the lower right of each panel. 349 

 350 

Fig. 6 compares the overall results of the CNTL (red) and CV31 (green) experiments. In the  351 

panel at left, we see enhanced performance of CV31 for PMIN in the initial state (Fig. 6a), and 352 

improvement in eight of the 22 forecast periods (every 6 h through forecast hour 126), peaking at 353 

20% MAE skill at hours 0 and 84. In addition, in the panel at right, we see improvements in 354 

maximum surface wind speed accuracy across more than half of all lead times, with the 355 

exception of hours 0, 6, 24, 42, 48, and 90 h. Overall, the MAE skill for PMIN in CV31 showed 356 

a 4.3% improvement over CNTL; for MAE VMAX skill, this improvement was 5.8%.  357 

. Statistical results for RMW, R34, R50, and R64 (figures not shown) indicated mixed outcomes 358 

when comparing CV31 to CNTL. At the time of analysis, when DA has the most significant 359 

impact, both RMW and R34 for CV31 demonstrated improvements over CNTL.. 360 

 361 

Overall, we find that CyGNSS data enhanced initial TC intensity forecasts statistically (Fig. 6) 362 

relative to CNTL. Forecast track was also improved at most forecast hours throughout 5 d 363 

forecasts with the assimilation of CyGNSS data (Fig. 5). . Additional statistical analyses for two 364 

case studies follow in the succeeding sections. 365 

 366 

3.2 Case study - TC Ian 367 

 368 
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In this subsection, we will delve into TC Ian, which made landfall in Florida as a Category 4 369 

hurricane, one of the most impactful hurricanes of 2022 (NHC 2023). Ian originated over the 370 

Caribbean Sea in late September and underwent rapid intensification before crossing western 371 

Cuba. It then further intensified into a Category 5 hurricane in the Gulf of Mexico before hitting 372 

southwest Florida with powerful winds, heavy rainfall, and destructive storm surges. Fig. 4a  373 

illustrates Ian’s track. Aerial reconnaissance for Ian was initiated on September 21 when it was 374 

an INVEST, but regular flights did not begin until after 09:38 UTC on September 23. 375 

 376 

Initialization for the Ian case study starts at 06 UTC on September 23, 2022, incorporating a 377 

CyGNSS overpass into the CV31 experiment. A five-day HAFS forecast was initiated every 6 378 

hours. Cycling continued until 18 UTC on September 28, resulting in a total of 27 analyses and 379 

forecasts. Verification against the Best Track was performed for each experiment. 380 

 381 

In Fig. 7, we look at statistical results for all forecasts of TC Ian considered in this study. We see 382 

overall enhancements from CV31 relative to CNTL, in consistency metrics for track, intensity, 383 

R34, and R64 during the initial 24 hours of all forecasts, followed by varying outcomes 384 

thereafter. Significant degradation is only seen in one parameter, R64 at forecast hour 48. By 385 

contrast, we see moderate improvements with CV31 for track throughout much of the 5 day 386 

forecasts represented in the figure, and persistent improvements in R34 within the first 2 days of 387 

each forecast. Overall, we see nine periods of improvement for CV31 in track, seven periods of 388 

improvement in PMIN including fully consistent improvement during the first forecast period, 389 

and eight periods of improvement in R34.  390 
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 391 

Figure 7. A consistency scorecard detailing CyGNSS's direct influence on all TC Ian forecasts 392 

considered for the present study, covering track, VMAX, PMIN, R34, R50, R64, and RMW error 393 

metrics, arranged in descending order. Box colors are as described in Fig. 5, with shades of green 394 

indicating improvement in the CV31 results vs. CNTL. 395 

 396 
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397 

Figure 8: Hurricane Ian forecasts initialized on September 27, 2022, at 18:00 UTC. (a) Track 398 

from NHC Best Track (black), CV31 (blue), and CNTL (red). (b) Intensity in kts. Wind field at 399 

analysis time for (c) CNTL, and (d) CV31. 400 

  401 
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 402 

 403 

We now examine in more detail, as a case study, a single forecast for Ian initialized on 404 

September 27, 2022, at 18:00 UTC, because it shows the impact of 4 d of accumulated cycled 405 

DA with CyGNSS on a TC which is also close to landfall. (Note that the prior statistical results 406 

in Fig. 7 included a number of forecasts where Ian was primarily over the Caribbean, and where 407 

the track bias in HFSB tended to bring Ian to the west and north of its final landfall location.) 408 

Landfall in this forecast occurred between hours 21 and 24 in each of the CNTL and CV31, 409 

matching NHC-reported landfall at 20:20 UTC on September 28 (NHC, 2023). The track for 410 

both the CNTL forecast (plotted in red in Fig. 8a) and CV31 forecast (in blue) matched well with 411 

the Best Track (in black) up through Ian’s landfall and passage over Florida.  412 

 413 

The intensity (Fig. 8b) for the CNTL shows an increase relative to CV31 and Best Track at 414 

forecast hours 0-18, just prior to Ian’s landfall in west Florida. The CV31 experiment by contrast 415 

matches the NHC Best Track intensity (plotted in black) more closely through landfall and the 416 

rapid weakening which followed. After passage of the storm center onto land, 10 m winds for 417 

CV31 decay less rapidly (9 h to decrease below hurricane intensity) than for CNTL (6 h), 418 

matching the Best Track more closely for a period of 12 h. The 10 m wind field analysis for the 419 

CNTL (Fig. 8c) shows broader 34  and 64 kt wind fields than CV31 (Fig. 8d), with CV 31 420 

verifying more closely with Best Track (figure not shown). Both of these initial outer core wind 421 

fields show pronounced asymmetry. However, the inner core winds for the CNTL (>83 kt, 422 

shown in yellow and red) not only are broader than those of CV31 but also, unlike CV31, wrap 423 

nearly the entire way around the center. 424 

 425 

 426 
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427 

Figure 9: Forecasts of net (sensible + latent) enthalpy fluxes at hours 6 (panels a and c) and 12 (b 428 

and d) for CTRL (a,b) and CV31 (c,d). 429 

 430 

We next examine the available enthalpy at the air-sea interface in the two coupled model 431 

configurations, to identify differences which may be related to these disparate intensity forecasts. 432 

In Fig. 9, we observe broader and more intense air-sea enthalpy fluxes (ASEF) around the 433 

eyewall in the CNTL (left; brighter, broader yellows) as compared to CV31 (right; dimmer, 434 

darker greens and yellows) throughout the initial period of the forecast. The enthalpy fluxes also 435 
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show greater symmetry around the inner core for the CTRL. In the CTRL, these broader, more 436 

symmetric features in the ASEF correlate well with a broader initial wind field, and greater 437 

wind-field symmetry in the inner core (compare winds >83 kt, shown in yellow and red in Fig. 438 

8c, with Fig. 9b) relative to CV31 (compare Fig. 8d and Fig. 9d). 439 

 440 

441 

Figure 10: 100-km azimuthal averages (solid lines) and standard deviations (dashed) for 442 

2022092718 forecasts of Ian from CTRL (red) and CV31 (blue). (a) SST, (b) ASEF, (c) PBL 443 

height, (d) warm-core-anomaly. 444 

 445 

In Fig. 10, we see azimuthal (“footprint”) averages within 100 km around the storm center at 446 

each forecast hour, for SST (Fig. 10a), ASEF (Fig. 10b), and PBL height (Fig. 10c), as well as 447 

warm-core temperature anomaly (WCA, Fig. 10d), for both CTRL (red) and CV31 (blue). Fig. 448 
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10a shows identical footprint average SSTs between the two experiments at hour 0; however, the 449 

average and standard deviations increase more rapidly for the CNTL in the first 18 h. We note 450 

here that the two forecasts made landfall within approximately 3 h of one another, between 451 

forecast hours 24 (CNTL) and 27 (CV31). Similarly, ASEF (Fig. 10b) for the CNTL is slightly 452 

less than CV31 at hour 0, but then also increases much more rapidly, already surpassing CV31 at 453 

hour 6.  Finally, footprint statistics for PBL height (Fig. 10c) and WCA (Fig. 10d) for the CTRL 454 

begin at  lower values, but then increase more rapidly, surpassing CV31 by hour 12. As a result 455 

of assimilating CyGNSS, Ian’s initial outer-core wind field in CV31 was weaker but more 456 

symmetric (Fig. 8d) than the CTRL (Fig. 8c). The greater initial symmetry in the CV31 winds 457 

explains the fact that the footprint average ASEF for CV31 was slightly greater than for CNTL 458 

(Fig 10b) at hour 0. 459 

  460 
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461 

Figure 11: (a,b) Differences at forecast hour 24 between CNTL and CV31 for TC Ian, in (a) sea 462 

surface height (m), and (b) SST (°C). (c,d) Sea surface height at forecast hour 48, just before 463 

Florida landfall, in (c) CNTL and (d) CV31. 464 
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 465 

Interestingly, CTRL’s broader and stronger initial wind field (Fig. 8c) relative to CV31 (Fig. 8d) 466 

corresponds to a more rapid footprint SST warming in CNTL than in CV31 (Fig. 10a). The 467 

reasons for this are apparent in the differences between sea-surface heights produced by the 468 

ocean models in the two experiments over the west Florida ocean shelf (Fig. 11a). At forecast 469 

hour 24, red areas along the southern Florida shelf break in Fig. 11a show that the larger, 470 

stronger wind field of the CNTL was already forcing significant convergence in ocean surface 471 

currents, resulting in a pronounced sea-surface “bulge” relative to CV31. Such bulges in shelf 472 

sea surface height over one or more inertial periods are associated with the development of 473 

coastal downwelling (Gramer et al. 2022), resulting in sustenance or enhancement of SST over 474 

the shelf. The differences in SST between CNTL and CV31 at the same forecast hour (Fig. 11b) 475 

bear this result out. As a final comment, we note again that the improvement in intensity in the 476 

first 24 h of this CV31 forecast relative to CNTL, as seen in Fig. 8a, differs from the overall 477 

intensity statistics as presented in Fig. 7. 478 

 479 

The impact of the enhanced initial 10 m wind field in the CNTL was not limited to its greater 480 

forecast maximum intensity: as Fig. 11c shows, the broader, stronger wind field in CNTL may 481 

have produced a greater likelihood of widespread storm-flooding on Florida’s west coast than 482 

CV31. The region of sea surface height above 1 m in the CNTL stretched from Tampa Bay to 483 

Florida Bay, as compared with a narrower, shorter band of extreme sea-surface height increase 484 

for CV31 (Fig. 11d). This is a direct consequence of the enhanced coastal Ekman convergence 485 

associated with the wind fields in CNTL, and would have likely produced a forecast for more 486 

widespread inundation than the corresponding CV31 forecast would have done. Corresponding 487 

differences in the expected impacts to coastal and shelf marine ecosystems from the CNTL vs. 488 

CV31 forecasts could have resulted as well. 489 

 490 

The more rapid SST warming in CTRL in hours 3-18 (Fig. 10a), in combination with higher 10 491 

m winds, led to more rapidly increasing ASEF in hours 6-18 (Fig. 9 and Fig. 10b). Greater ASEF 492 

in the CTRL would have been consistent with more buoyant uplift near the surface and a higher 493 

PBL (Fig. 9a) for hours 6 through landfall. Inflow of this increased buoyancy would have been 494 

consistent with a more buoyant eyewall and greater WCA (Fig. 9b) for CNTL. The ensuant 495 

deepening of convection associated with this enhanced WCA would very likely have contributed 496 

to the anomalous over intensification of the CTRL forecast vs. CV31. The authors clearly 497 

acknowledge however, that the anomalous intensification of the CTRL in the very early forecast 498 

(hours 3-12) would have been driven largely by other differences in the near-storm environment 499 

between the experiments, beyond the scope of the present analysis. Finally, the enhanced breadth 500 

and strength of the wind field for CNTL  produced greater convergence and larger areas of 501 

enhanced sea-surface height near the coast (Fig. 11c) relative to CV31 (Fig. 11d). Although a 502 

storm surge model was not a part of the present study, the sea-surface height difference just 503 
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offshore of the coast highlighted here would have provided substantially different boundary 504 

conditions for storm surge modeling. 505 

 506 

3.3 Case study - TC Larry 507 

 508 

TC Larry (12L) originated from a tropical wave that emerged off the coast of Africa, coalescing 509 

into a tropical depression on 2021 August 31. Within a day, the depression intensified into a 510 

tropical storm named Larry. Rapidly traversing the far eastern tropical Atlantic, it escalated into 511 

a Category 1 hurricane by the morning of September 2. After a period of swift intensification, 512 

Larry surged to a major Category 3 hurricane early on September 4. Fig. 4g  illustrates Larry’s 513 

track. Aerial reconnaissance for Larry was not initiated until September 5. 514 

 515 

Initialization for the Larry case study started at 18 UTC on August 31, 2021. A five-day HAFS 516 

forecast was initiated every 6 hours. Cycling continued until 12 UTC on September 3, resulting 517 

in a total of 12 analyses. Verification against the Best Track data was performed for each 518 

experiment. 519 

 520 
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521 

Figure 12: Larry forecasts initialized 2021 September 03 at 12Z.  (a) Track from NHC Best 522 

Track (black), CV31 (blue), and CNTL (red). (b) Intensity in kts. Wind field at analysis time for 523 

(c) CNTL, and (d) CV31.  524 

 525 
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Larry is a TC which intensified rapidly over the open, tropical ocean. For our second case study 526 

we examine the forecast of Larry initialized on 2021 September 03 at 12Z, when several 527 

overpasses of CyGNSS had previously provided surface winds for atmospheric DA. For this 528 

cycle, both experiments performed well in forecasting the center position relative to Best Track 529 

throughout the 5 d forecasts (Fig. 12a). However, unlike in the case of Ian, CV31 forecast a 530 

stronger TC (Fig. 12b, blue) relative to CNTL (red). This stronger forecast verified better versus 531 

Best Track (black) for hours 6-66, but worse thereafter.  532 

 533 

The initial 10 m wind field for CNTL (Fig. 12c) was both smaller (narrow fields between 34 and 534 

83 kts in cyan and green), and more intense (> 96 kts in the northwestern quadrant, bright red) 535 

than that for CV31 (Fig. 12d). However, an important feature of the hour 0 wind field in CNTL 536 

was the presence of 105 kts wind in the inner core (Fig. 12b, red), a feature which was not 537 

present in either CV31 or the Best Track. The rapid intensification in the CV31 forecast occurred 538 

within 9 h of initialization. Although this was a more rapid intensification than Best Track, it 539 

does suggest that the improvement in intensity forecast was closely associated with the 540 

additional information on the  initial 10 m winds from CyGNSS. 541 

 542 
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543 

Figure 13: 100-km azimuthal averages (solid lines) and standard deviations (dashed) for 2021 544 

September 03 12Z forecasts of Larry from CTRL (red) and CV31 (blue). (a) SST, (b) ASEF, (c) 545 

PBL height, (d) warm-core-anomaly. 546 

 547 

The impact of CyGNSS DA on the ocean and on the evolving structure of the TC is examined in 548 

Fig. 13. The differences in initial 10 m wind fields between CNTL (Fig. 12c) and CV31 (Fig. 549 

12d) led corresponding differences in the SST (Fig. 13a) and ASEF (Fig. 13b) beginning in 550 

forecast hour 9. Although footprint SST at hours 3-18 cooled rapidly for both CNTL and CV31, 551 

the patterns of this cooling differed between the experiments: initially, through hour 6, CV31 552 

cooled more rapidly than CNTL. Nevertheless, by hour 9, this pattern reversed, with CNTL SST 553 

continuing to cool rapidly, while CV31 cooling began to moderate. Again, this pattern follows 554 

the intense “spin up” in 10 m winds in the CTRL at analysis time followed by a corresponding 555 

spindown (Tong et al. 2018), But the impact of this spin-up and spindown  then appears to have 556 
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been reflected in the reduced ASEF in the CNTL (Fig. 13b) relative to CV31 for most of the 557 

hours 9-48.  558 

 559 

The result of the reduced 10 m wind in the CNTL forecast, together with the enhanced cooling 560 

and reduced production of buoyancy by ASEF within 100 km of the center, was to significantly 561 

reduce the PBL height within CNTL relative to CV31 (Fig. 13c) beginning at hour 18, reaching a 562 

peak difference from CV31 at hour 42. The impact of an initial vortex imbalance was reflected 563 

very quickly (by forecast hour 6) in the reduced WCA peak temperature in the CNTL relative to 564 

CV31 (Fig. 13d). However, this WCA difference was enhanced up to hour 18, and maintained 565 

itself through hour 45. These features were all coincident with the weaker intensification of 566 

CNTL relative to both CV31 and Best Track (Fig. 12b), but in particular, after hour 24, the 567 

impact of the initial overforecast in CNTL on the ocean may have also contributed to these 568 

intensity differences. 569 

 570 

4. Conclusions 571 

 572 

In this study, we utilized the Hurricane Analysis and Forecast System (HAFS) to assess the 573 

impact of CyGNSS-derived scalar (CV31) near-surface winds on TC track, intensity, and storm 574 

structure forecasts. The initial day of the experimental period for each storm was used to spin up 575 

the model state with CyGNSS observations, while subsequent days were utilized for generating 576 

TC statistics. All observational data were assimilated using the hybrid 4DEnVar, which was the 577 

assimilation method employed in operational settings during the experimental period. 578 

Observations were assimilated within 6-hour windows centered on four daily analysis times 579 

(0000, 0600, 1200, and 1800 UTC). 580 

 581 

As a newly established observing system, CyGNSS posed a challenge to the current study by 582 

necessitating the consideration of serial correlation in the information content and errors inherent 583 

in the 1-Hz CyGNSS specular point tracks of retrieved winds. Future research endeavors will 584 

prioritize the development of a more foundational approach to address CyGNSS observation 585 

error correlation within each specular point track and its integration into the operational model. 586 

 587 

For the present study, seven TCs were selected for OSEs in the Atlantic Basin using HFSB, a 588 

configuration of the coupled operational HAFS. These TCs covered a range of conditions such as 589 

deep water, shelf, Gulf storms, weakening and intensifying storms (Table 2). A broad summary 590 

of the conclusions in the present study included the following: 591 

● CyGNSS enhanced initial TC intensity forecasts as evidenced by PMIN (Fig. 5, Fig. 7). 592 

● Forecast track improved with the assimilation of CyGNSS data (Fig. 5). 593 

● There was an enhancement in storm size (RMW) within the first six hours (Fig. 6). 594 

● For one case study, that of TC Ian, assimilating near-surface winds modified the 595 

modeling of ocean mixing and transport (e.g., upwelling and downwelling) in such a way 596 
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as to potentially contribute to an improved intensity forecast (Fig. 8), and modified the 597 

sea-surface height forecast (Fig. 11) in a way which would have substantially modified 598 

surge-model boundary conditions and so could well have significantly modified storm 599 

surge forecasts (Dullaart et al. 2024; Powell and Reinhold 2007). A second case study 600 

over the open ocean, TC Larry, also showed improvement in intensity and structure from 601 

CyGNSS data. 602 

● CyGNSS provided critical observations early in the TC lifecycle, when aerial 603 

reconnaissance is seldom available. 604 

 605 

Including CyGNSS led to improvements in average wind radii for the first six hours of forecasts 606 

analyzed here. Mixed results at later forecast hours relative to Best Track, including times when 607 

there were no aerial or ground observations of TC wind fields, will bear further examination in 608 

future work. Previous analyses have acknowledged (Cangialosi and Landsea 2016) considerable 609 

uncertainty in wind radii estimates from Best Track, particularly for TCs that are not yet 610 

monitored by aircraft reconnaissance or ground radar, which are precisely the candidate cycles 611 

we chose for the present work. We therefore hypothesize that, notwithstanding the limitations to 612 

structure validation statistics for the present study, CyGNSS data may actually prove useful to 613 

improve the uncertainty in Best Track estimates of these important wind radii in further studies. 614 

 615 

Understanding how these results align with previous efforts to enhance TC forecasts using 616 

CyGNSS data is crucial. As outlined in section 1, prior OSSEs conducted with the Hurricane 617 

Weather Research and Forecasting (HWRF) model (Annane et al., 2018; Leidner et al., 2018) 618 

reported neutral impacts on track forecasts and modest improvements (generally ≤5 knots) in 619 

maximum wind speed (Vmax) forecasts for individual TC case studies. Previous OSEs (Pu et al., 620 

2022; Cui et al., 2019), which also utilized HWRF, demonstrated generally neutral to positive 621 

impacts on track and intensity forecasts, offering promising results. In the Mueller et al. (2021) 622 

OSE, CyGNSS was globally assimilated, and this run was used as a lateral boundary condition 623 

(LBC) in HWRF, also showing an improvement in track and intensity. The present study, 624 

however, is the first that the authors are aware of that looks at operational HAFS retrospective 625 

forecasts, and the first to examine over 50 individual forecasts spanning seven TCs. 626 

 627 

The current study identified enhancements in track forecasts and improvements in intensity 628 

metrics. A primary distinction between the findings of this study and those of previous studies is 629 

the utilization of a coupled model that integrates HYCOM, which may contribute to HAFS's 630 

superiority over HWRF in providing greater skill at modeling the air-sea dynamics which can be 631 

critical to TC forecasting (e.g., Kim et al. submitted to this Special Issue). As a result of the 632 

considerations above, any direct comparisons between the outcomes of previous studies and this 633 

study should be approached with caution, as the methodologies employed here represent a 634 

significant break with past work. 635 

 636 
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It is critical to point out that the impact of assimilating observations from CyGNSS for the initial 637 

10 m wind field were not limited simply to improved intensity and structure forecasts. As both 638 

case studies (TC Ian in Fig. 11, TC Larry in Fig. 13) demonstrate, the near-surface wind structure 639 

in hour 0 analysis can also significantly impact the evolution of the ocean beneath the storm. As 640 

the Ian case showed, storm flooding for landfalling TCs may also be significantly impacted as a 641 

result. Corresponding differences in the forecast impact to marine ecosystems may also occur.  642 

Verifying these hypotheses will require inputting surface wind and sea level data into storm 643 

inundation models in future studies. 644 

 645 

Finally, the present study highlights an important mechanism by which near-surface wind 646 

analysis can impact both sea-surface height and TC intensity structure, namely by modifying the 647 

air-sea enthalpy fluxes during early forecast hours. Changes in SST warming or cooling, in 648 

combination with differing 10 m winds, can lead to significant differences in air-sea enthalpy 649 

fluxes. These modified inputs of moisture and heat in turn result in modifications to the forecast 650 

buoyant uplift within the PBL, and thus to modifications in the buoyancy in the TC core as 651 

evidenced by warm-core anomaly differences in the present study (Fig. 11, Fig. 13). Finally, 652 

moving forward, we hope that future observational studies utilizing CyGNSS as a component 653 

will allow for improvement and verification of air-sea enthalpy parameterizations for TC 654 

forecasting models. We further hope that future modeling studies will be able to provide 655 

additional insights into the broader impacts of improving near-surface analyses using CyGNSS 656 

and future observational systems. 657 
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