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Abstract

This study examines the influence of NASA Cyclone Global Navigation Satellite System
(CyGNSS) Level 2-derived 10 m (near-surface) wind speed over the ocean on numerical weather
prediction (NWP) analyses and forecasts within the NOAA operational Hurricane Analysis and
Forecast System (HAFS). HAFS is coupled with a regional configuration of the HYCOM ocean
model. The primary advantages of data from the CyGNSS constellation of satellites in the
analysis and prediction of tropical cyclones (TCs) include higher revisit frequency compared to
polar-orbiting satellites, and the availability of reliable wind observations over the ocean surface
during convective precipitation. In addition, CyGNSS data are available early in the life cycle of
TCs when aerial reconnaissance observations are not available. We focus on TCs whose
forecasts were initialized when the TC was a tropical storm or depression. In the present study,
we find first, that assimilation of CyGNSS near-surface winds improves storm track, intensity,
and structure statistics in the analysis and early in the forecast. Second, we find that assimilation
of CyGNSS observations provides additional insights into the evolution of air-sea interaction in
intensifying TCs: In effect, the ocean responds in the coupled model to modifications in the
initial 10 m wind field, thereby impacting forecasts of intensity, storm structure, and sea surface
height, as demonstrated by two case studies.
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1. Introduction

Improving 10 m wind analyses is crucial to improving forecasts of potential hazards from
tropical cyclones (TCs) such as wind gusts and, in particular, perhaps the deadliest TC hazard,
storm surge (Rappaport et al. 2009; Powell and Reinhold 2007). Storm surge in recent US
landfalling TCs has accounted for more deaths than any other cause. For example, the National
Hurricane Center (NHC), in its end-of-season report on landfall damage from Hurricane lan,
states, “lan was responsible for at least 156 fatalities, 66 of which were considered deaths
directly caused by the storm. [...] Storm surge was the deadliest hazard, claiming 41 lives, with
36 of the 41 surge fatalities occurring in Lee County, Florida. [... Of other causes, only] 4 were
related to wind, and 1 was due to rough surf.” (NHC 2023). In the present study, we will see that
assimilating near-surface wind data can significantly influence forecasts of TC intensity, of the
ocean conditions beneath the TC, and ultimately, the initial conditions upon which storm surge
forecasts are based.

Extensive literature shows that satellite 10 m wind observations over the ocean help to improve
the accuracy of numerical weather analyses and forecasts (Atlas et al. 2001; Atlas 1997; Candy
et al. 2009; Leidner et al. 2003; Schulz et al. 2007). However, most existing satellite observing
systems have limited temporal resolution (e.g., 1-2 overpasses per day), and some of those based
on scatterometry may saturate at higher wind speeds, and may provide less accurate ocean 10 m
high wind speed data when there is precipitation. Scatterometry performance depends on the type
of scatterometer: C-band scatterometers (e.g., ASCAT) perform well in precipitation, but usually
have smaller swaths, while Ku-band scatterometers (e.g., QSCAT, OSCAT) experience
significant attenuation in precipitation. Both types of scatterometers, however, tend to saturate at
high wind speed (Dani et al. (2023)).

Of satellite remote sensing instruments, only L-band receivers, such as those on the NASA
Cyclone Global Navigation Satellite System (CyGNSS; Ruf et al. 2016a), can observe winds in
the presence of heavy rain - a ubiquitous feature within the core and feeder bands of a TC. Thus,
CyGNSS has the potential to mitigate some of the previous shortcomings in the temporal and
spatial sampling of the 10 m wind field in TCs (Rappaport et al. 2009). CyGNSS also provides
more frequent wind speed retrieval than other systems, which can be critical in sampling the
rapid evolution of TC wind structure (Rogers et al. 2013), especially during rapid intensification
(R1) or eyewall replacement cycles. These features of CyGNSS also have the potential to
improve the accuracy of the forecast wind products which are required for operational and
research storm surge models, e.g., the Coastal and Estuarine Storm Tide (CEST; Xiao et al.
2006) and the Sea, Lake, and Overland Surges from Hurricane (SLOSH; Glahn et al. 2009)
models.
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Due to coordinated efforts such as the Hurricane Forecast Improvement Project (HFIP;
Gopalakrishnan et al., 2021), operational TC forecasting has improved markedly over the last 15
years. The accuracy of TC track forecasts has continued to improve, particularly at longer lead
times (4 and 5 d, e.g., Landsea and Cangialosi, 2018). Furthermore, research programs have
recently also improved intensity forecasts as measured by either maximum 10 m winds or
minimum central pressure (Cangialosi et al., 2020; Alaka et al. 2024). Finally, recent research
has focused on other metrics important to forecasting TC hazards, such as wind radii (e.g.,
Cangialosi and Landsea, 2016).

The current study presents the results of an observing system experiment (OSE), building upon
previous research which used observing system simulation experiments (OSSESs). Numerous
studies have explored the effects of simulated CyGNSS-derived winds through regional OSSEs
(McNoldy et al., 2017; Zhang et al., 2017; Annane et al., 2018; Leidner et al., 2018). OSSEs
operate on the same principle as OSEs, but utilize observations derived from a simulated
atmosphere to assess observations that are not yet available (e.g., Hoffman and Atlas, 2016). The
four CyGNSS OSSE studies mentioned earlier employed a regional OSSE system, wherein the
Hurricane Weather Research and Forecasting (HWRF) limited-area model was utilized to
generate TC forecasts using simulated observations.

McNoldy et al. (2017) and Zhang et al. (2017) investigated scalar winds' impact and identified
enhancements in the analyses and forecasts of track, storm intensity, and storm structure.
McNoldy et al. (2017) proposed that incorporating a directional component may improve results.
Annane et al. (2018) observed positive impacts on track and intensity forecasts from scalar and
vector winds, particularly when cycling every 3 h compared to 1- or 6-h cycling intervals.
Leidner et al. (2018), on the other hand, noted more consistent improvements from wind data
assimilation in storm intensity (2-5 knots) than in track forecasts, but their findings also showed
that vector winds were more beneficial than scalar winds in improving model representation of
10 m wind field structures. Analyses without directional wind components were found to be
more susceptible to dynamic imbalances and non-physical storm structure asymmetries.

This study focuses on the impact of CyGNSS-derived 10 m wind speed observations over the
ocean on numerical weather prediction (NWP) analyses and forecasts of the NOAA operational
Hurricane Analysis and Forecast System (HAFS). The aim of the present study is, first, to look at
the impacts of CyGNSS on statistics for storm track, intensity, and structure, then, second, to
analyze the effects of CyGNSS on the evolution of air-sea interaction in intensifying TCs. In the
discussion below, we also briefly note that such data can contribute to improving NWP model
parameterizations for surface air-sea fluxes (wind stress and sensible and latent heat). However,
such improvements are beyond the scope of the present work. The paper is structured as follows:
Section 2 outlines the OSE framework and presents the experimental design, while Section 3
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discusses the results. Section 4 summarizes this study, focusing on its findings and limitations,
and briefly outlines future planned studies.

2. Data and Methods

Since a global modeling system is heavily parameterized and cannot sufficiently resolve the
small scales that are significant contributors to the rapid intensification processes of TCs, a
regional model specifically developed for TCs is utilized in this study (Mueller et al. 2021). A
version of the operational HAFS model is chosen (see Sec. 2.2). This approach enables the
assessment of the impact of CyGNSS Level 2 data through improved HAFS initial conditions
(ICs). We evaluated impacts of assimilating CyGNSS data on TC intensity and structure
forecasts from the “B” configuration (hereafter, HFSB) of NOAA HAFS v1.0 (Hazelton et al.
2023) using two experiments (see Table 1). Initialization for all experiments occurs at the
specified time indicated in column 2 of Table 2, until reaching the date and time specified in
column 3. For each 5-day forecast within a given OSE experiment, Error metrics are computed
every 6 h with respect to the Best Track data, where error is defined as the difference between
the experiment and the Best Track data. The initial four cycles (full day) of the experimental
period for each storm is used to initialize the model state with CyGNSS observations, while
subsequent days are utilized to generate TC statistics.

2.1 CyGNSS

The CyGNSS constellation, comprising GPS receivers aboard eight minisats launched on
December 17, 2016, captures reflected ocean surface signals of opportunity emitted by existing
GPS satellites (level-1). Unlike traditional scatterometers with a monostatic setup, where the
transmitter and receiver are collocated, CyGNSS utilizes a bistatic configuration as depicted in
Fig. 1, where the transmitter and receiver are positioned on separate platforms. CyGNSS Level 2
data comprises 10 m derived winds extracted from the level-1 data. These level-1 data represent
the raw scattered GPS radio signals collected by CyGNSS receivers, initially processed into
Level-1 observables such as normalized bistatic radar cross-section and leading-edge slope
(Gleason et al., 2016, 2019; Clarizia and Ruf, 2016b).

Various CyGNSS-retrieved ocean surface data versions are generated through different
processing and calibration methods applied to the CyGNSS Level I data. The geophysical model
functions (GMFs) used to convert Level-1 to Level-2 data vary based on the sea state (Ruf and
Balasubramaniam, 2019). We have two sea states: young seas with limited fetch (YSLF),
characterized by rapidly changing wind and sea state, often observed in stormy weather
conditions, and fully developed seas (FDS), characterized by mature periodic waves without
rapid changes in wind or sea state. For this study, winds retrieved using the YSLF algorithm
were chosen because YSLF conditions prevail over a large portion of the ocean surface where
the HAFS storm-following moving nest operates.

The CyGNSS Level 2 wind speed data (Version 3.1) is extracted from the NETCDF files
available at the following link: https://podaac.jpl.nasa.gov/dataset/CyGNSS L2 V3.1. The data
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undergoes quality control, where only winds with errors less than or equal to 3 m/s are retained.
After this filtering, we are left with a relatively small sample, particularly at high wind speeds.
Discrepancies in error statistics are observed when comparing different versions of CyGNSS
Level 2 winds, as discussed by Pu et al. (2022). The latest operational versions, v3.0 and v3.1,
show an increase in high wind speeds relative to v2; however, they also come with larger
uncertainties. The 6-hourly prepbufr files required by HAFS DA are generated from CYGNSS
for the times listed in Table 2.

Incorporating CY GNSS data into assimilation poses a challenge due to its spatial measurement
density, which stands at 6 km along the specular path. This leads to notable overlap between
consecutive observations, sampling much of the same ocean surface area within seconds, thereby
introducing a correlation between observations. Using all these observations without adjustments
risks overfitting the model state to the data. In our OSE, we choose not to thin the CyGNSS data
but to utilize all available data and inflate the errors associated with CyGNSS relative to other
observation sources with smaller observation samples, to avoid overfitting with CyGNSS. This
follows the approach outlined by Mueller et al. 2021. Figure 2 depicts an example of CyGNSS
Level 2 10 m winds for the analysis time of 0060 UTC on October 7, 2018.
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Figure 1. The geometry of bistatic radar measurement involving GPS-based quasi-specular
surface scattering is depicted. The GPS direct signal, the transmitter, furnishes location, timing,
and frequency references. Conversely, the forward scattered signal, received by CyGNSS as the
receiver, carries ocean surface information. Image credit: Claziria and Zavorotny (2015).
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Figure 2. CyGNSS Level 2 10 m winds for analysis time: 0060 UTC 7 Oct 2018. Assimilation windows
span 6 hours (+/- 3 hr) and are centered at the analysis times. Each individual point on the plot
corresponds to observations at specular points. Due to the scale of the plots, these points may appear to
create lines, commonly referred to as specular point tracks.

2.2 Hurricane Analysis and Forecast System

The HFSB configuration of NOAA HAFS v1.0 was made operational in 2023. HAFS is a
hurricane application of NOAA’s Unified Forecast System (UFS) framework, which couples a
regional configuration of the FV3 finite-volume atmospheric model (Lin and Rood, 1996; Lin,
2004) using assimilation of atmospheric observations, with the Hybrid-Coordinate Ocean Model
(HYCOM) (Bleck et al. 2002) through the Community Mediator for Earth Prediction Systems
(CMEPS). The HFSB version of HAFS incorporates updated parameterizations for planetary
boundary layer (PBL) mass flux and atmospheric microphysics. HFSB uses a fixed, storm-
centric, 75x75 degree outer regional atmospheric domain based on Extended Schmidt Gnomonic
(ESG) projection with horizontal resolution of 6 km. Coupled with this outer domain is a moving
nest of about 12x12 degrees at 2 km horizontal resolution. The moving nest vertical grid has 81
vertical levels reaching 2 hPa. The HYCOM domain is fixed (non-storm centric) and covers the
NHC'’s areas of responsibility for the North Atlantic, Eastern North Pacific & Central North
Pacific basins, at 1/12-degree horizontal grid spacing with 41 vertical ocean levels.
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Figure 3. The black box represents the outer domain (fixed, initially storm-centric with 6-km grid
spacing). The red box indicates the storm-centered moving nest with 2-km grid spacing. The
HYCOM ocean domain (with 9-km grid spacing) is depicted in blue.

The Global Forecasting System version 16 (GFSv16) provides atmospheric initial conditions and
3-hourly lateral boundary conditions for the outer domain. HFSB also features vortex
initialization (e.g., Lin, 2004), comprising vortex relocation for all cases and vortex modification
(intensity and size) when initial TC intensity is >= 30 m/s. Techniques used to assimilate
atmospheric observations include four-dimensional ensemble variational (4DEnVar, using
GDAS ENKF ensemble members) and First-Guess at Appropriate Time (FGAT). HAFS also
implements self-cycling (warm-cycling) for the atmospheric model, initializing subsequent
forecast cycles utilizing the previous cycle. HAFS currently only performs DA on the inner
moving atmospheric nest. Ocean initial conditions come from the operational Real Time Ocean
Forecasting System (RTOFSv2; Garraffo et al. 2020), which performs ocean DA; HAFS
HYCOM itself performs no ocean DA. At each coupling time step, FV3 and HYCOM exchange
coupling variables as outlined in the companion paper by Gramer et al. (submitted, in this issue).
HFSB uses atmospheric physics parameterization options as documented in Hazelton et al. 2023,
including the scale-aware Simplified Arakawa-Schubert (SAS) convective scheme (Han et al.,
2017), the turbulent-kinetic-energy (TKE)-based eddy diffusivity mass flux (EDMF-TKE) PBL
scheme (Han and Bretherton, 2019), and the Thompson microphysics scheme (Thompson et al.,
2004). See Hazelton et al. (2023) for further details.

The version of HAFS described here can be obtained from the production/hafs.v1 branch of the
HAFS GitHub repository, https://github.com/hafs-community/HAFS.
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To assess the impact of CyGNSS, we generated forecasts from the time of cyclogenesis for each
TC case, taking advantage of self-cycling atmospheric DA. The CyGNSS forecasts utilized an
identical atmospheric model configuration to that described above, including atmospheric DA,
but also incorporating CyGNSS v3.1 data as described above.

2.3 Experimental Setup

Two experiments (Table 1) are conducted to evaluate the simulated impact of CyGNSS
observations on hurricane analysis and forecasting. Firstly, a control DA experiment (CNTL)
assimilates standard conventional data routinely integrated into the 2023 HAFS Global DA
System (GDAS). This includes radiosondes, tail Doppler radar, ground-based radar, atmospheric
motion vectors, and various satellite-based observations, as listed in Zhan et al. (2021), but
excludes CyGNSS data. The second experiment (CV31) involves adding CyGNSS v3.1 Level 2
wind speeds to the control.

Table 1. List of experiments.

Experiment Name Data Assimilated

CNTL All data assimilated operationally: Conventional, Radiances.
no CyGNSS data
Cvil Conventional, Radiances, with CyGNSS v3.1

2.4 Case Selection

Two criteria guide the selection of case studies for this analysis, aiming to showcase the potential
impact of CyGNSS data:

1. Intensity Forecast Errors: Based on previous OSSE results, cases where the operational
HWRF model exhibited notable errors in intensity forecasting were chosen. The objective
is to assess whether CyGNSS data can enhance these forecasts..

2. Early-Stage TCs: Specifically targeting initial forecasts of tropical depressions and
tropical storms, which often lack adequate observation (e.g., TC Larry). Leveraging
CyGNSS's frequent revisit time, valuable insights into the structure of these developing
systems can be obtained. However, CYGNSS winds are not reliable at higher wind
speeds (see above). In addition, many of the TCs in this study began to display some
subtropical and extratropical features later in their life cycles, making it increasingly less
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likely that ocean impacts would be important. For both of these reasons, the full lifecycle
of most TCs was not evaluated, except for lan.

All TCs listed in Table 2 meet the two criteria above and are included in this data impact study.
In each experiment, a five-day HAFS forecast is initiated every 6 hours, with verification against

the NHC Best Track conducted for each case.

Table 2: All forecast cycles (87 total) analyzed for the present study

Year, Storm ID, Name | First Cycle Last Cycle Total # of Cycles
2021 12L Larry 2021/08/31 187 2021/09/03 06Z 10

2021 18L Sam 2021/09/23 00Z 2021/09/24 06Z 5

2022 06L Earl 2022/09/03 00Z 2022/09/06 002 13

2022 07L Fiona 2022/09/14 127 2022/09/18 06Z 15

2022 09L lan 2022/09/23 06Z 2022/09/28 187 27

2022 13L Julia 2022/10/07 182 2022/10/09 00z 6

2022 15L Lisa 2022/10/30 187 2022/11/02 06Z 11

2.5 Diagnostic and Evaluation Methods

The TCs analyzed are illustrated in Fig. 4. All TCs occurred between 2021 and 2022. Tracking
of TCs was performed using the latest version of the GFDL vortex tracker (Marchok, 2021).
Forecast verification was conducted using Best Track data from the NHC HURDAT-2 database
(Landsea & Franklin, 2013). These Best Track data provided TC location in increments of 0.1
degree for latitude and longitude, maximum 10 m winds in increments of 5 kt, and minimum sea-
level pressure in increments of 1 hPa. The results presented are based on homogeneous samples
of all analyzed forecasts for that experiment, and were verified every 6 h. Additional forecast
metrics presented below include the consistency metric, described in Ditchek et al. (2023), and
other commonly calculated mean absolute error (MAE) and bias statistics. MAE skill, as referred
to below, is the ratio between MAES for two experiments, expressed as a percentage.

Additional statistics were defined as follows: we calculated 100 km annular “footprint” averages
and standard deviations, centered at the forecast storm center, for each of sea surface temperature
(SST), total latent and sensible heat fluxes at the air-sea interface, planetary boundary layer
(PBL) height, and (average only) warm core anomaly. PBL heights were determined based on
mean height of zero inflow (radial) velocity, following the method of Zhang et al. (2020). The
definition of warm core anomaly used here is the difference between the azimuthal mean
potential temperature profile at each radial distance bin, and that of the azimuthal mean potential
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temperature averaged in the 200-300 km annulus from the center of the storm (Stern and Zhang,
2012; Zhang et al. 2020).
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Figure 4.Storm track from NHC Best Track (black lines) and intensity category (colored dots)
for TCs investigated in this study: (a) lan 2022AL09, (b) Fiona 2022AL07, (c)Lisa (2022AL15),
(d) Sam (2021AL18), (e) Earl 2022AL06 , (f) Julia (2022AL13), (g) Larry (2021AL12). Data
was obtained from NHC Best Track. Colored dots denote TC center location at 0000, 0600, 1200
and 1800 UTC every day.

3. Results

The outcomes of the experiments are presented in two parts: First, we analyze forecast metrics
from each experiment across all cycles (see Table 2 above), including absolute positional errors,
intensity in the form of minimum central pressure (PMIN), radius from the TC center at which
maximum 10 m wind occurs (radius of maximum wind or RMW), and radii averaged over all
four cardinal quadrants for 34, 50, and 64 kts, respectively (R34, R50, R64). We then examine
two individual forecast case studies, which for the CVV31 experiment incorporate several
previous cycles of CyGNSS data, in order to elucidate likely mechanisms by which CyGNSS 10
m wind initialization impacted the above-mentioned forecast metrics. As outlined below, these
studies were chosen to represent both an open ocean TC in the Atlantic and a landfalling TC case
that transited the Gulf of Mexico. As we will see, the landfalling case, lan, assimilated aerial
reconnaissance observations as well as CyGNSS, but both cases show improvements with
CyGNSS.

3.1 Statistical forecast results

11
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Figure 5: Mean Absolute Error (MAE, top panels) and MAE skill (bottom panels) for the CV31 (green)
and CNTL (red) experiments for absolute track error. Shaded boxes between the MAE and MAE skill
panels indicate, for individual forecast lead times, whether results were fully consistent (dark green),
marginally consistent (light green to light orange), or not consistent (dark red, none in this figure). Sample
size is given below the x axis in each panel. Mean relative skill percentage is highlighted in boxes at the
lower right of each panel.

Fig. 5 compares the overall results of the CNTL (red) and CV31 (green) experiments.. We see
improvements in absolute track accuracy across more than half of all lead times, excepting hours
0 and 24 h. Overall, the MAE track skill showed a 4.7 improvement over CNTL.

12
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Figure 6: The MAE (top panels) and MAE skill (bottom panels) for the CVV31 (green) and CNTL
(red) experiments for (a) minimum central pressure (PMIN) , (b) maximum wind speed
(VMAX). Shaded boxes between the MAE and MAE skill panels indicate consistency for each
forecast lead time, as in Fig. 5. The sample size is given below the x axis in each panel. Mean
relative skill percentage is highlighted in boxes at the lower right of each panel.

Fig. 6 compares the overall results of the CNTL (red) and CV31 (green) experiments. In the
panel at left, we see enhanced performance of CV31 for PMIN in the initial state (Fig. 6a), and
improvement in eight of the 22 forecast periods (every 6 h through forecast hour 126), peaking at
20% MAE skill at hours 0 and 84. In addition, in the panel at right, we see improvements in
maximum surface wind speed accuracy across more than half of all lead times, with the
exception of hours 0, 6, 24, 42, 48, and 90 h. Overall, the MAE skill for PMIN in CV31 showed
a 4.3% improvement over CNTL; for MAE VMAX skill, this improvement was 5.8%.

. Statistical results for RMW, R34, R50, and R64 (figures not shown) indicated mixed outcomes
when comparing CV31 to CNTL. At the time of analysis, when DA has the most significant
impact, both RMW and R34 for CVV31 demonstrated improvements over CNTL..

Overall, we find that CyGNSS data enhanced initial TC intensity forecasts statistically (Fig. 6)
relative to CNTL. Forecast track was also improved at most forecast hours throughout 5 d
forecasts with the assimilation of CyGNSS data (Fig. 5). . Additional statistical analyses for two
case studies follow in the succeeding sections.

3.2 Case study - TC lan

13
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In this subsection, we will delve into TC lan, which made landfall in Florida as a Category 4
hurricane, one of the most impactful hurricanes of 2022 (NHC 2023). lan originated over the
Caribbean Sea in late September and underwent rapid intensification before crossing western
Cuba. It then further intensified into a Category 5 hurricane in the Gulf of Mexico before hitting
southwest Florida with powerful winds, heavy rainfall, and destructive storm surges. Fig. 4a
illustrates Ian’s track. Aerial reconnaissance for Ian was initiated on September 21 when it was
an INVEST, but regular flights did not begin until after 09:38 UTC on September 23.

Initialization for the lan case study starts at 06 UTC on September 23, 2022, incorporating a
CyGNSS overpass into the CV31 experiment. A five-day HAFS forecast was initiated every 6
hours. Cycling continued until 18 UTC on September 28, resulting in a total of 27 analyses and
forecasts. Verification against the Best Track was performed for each experiment.

In Fig. 7, we look at statistical results for all forecasts of TC lan considered in this study. We see
overall enhancements from CV31 relative to CNTL, in consistency metrics for track, intensity,
R34, and R64 during the initial 24 hours of all forecasts, followed by varying outcomes
thereafter. Significant degradation is only seen in one parameter, R64 at forecast hour 48. By
contrast, we see moderate improvements with CV31 for track throughout much of the 5 day
forecasts represented in the figure, and persistent improvements in R34 within the first 2 days of
each forecast. Overall, we see nine periods of improvement for CV31 in track, seven periods of
improvement in PMIN including fully consistent improvement during the first forecast period,
and eight periods of improvement in R34.
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Figure 7. A consistency scorecard detailing CyGNSS's direct influence on all TC lan forecasts
considered for the present study, covering track, VMAX, PMIN, R34, R50, R64, and RMW error
metrics, arranged in descending order. Box colors are as described in Fig. 5, with shades of green
indicating improvement in the CV31 results vs. CNTL.
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We now examine in more detail, as a case study, a single forecast for lan initialized on
September 27, 2022, at 18:00 UTC, because it shows the impact of 4 d of accumulated cycled
DA with CyGNSS on a TC which is also close to landfall. (Note that the prior statistical results
in Fig. 7 included a number of forecasts where lan was primarily over the Caribbean, and where
the track bias in HFSB tended to bring lan to the west and north of its final landfall location.)
Landfall in this forecast occurred between hours 21 and 24 in each of the CNTL and CV31,
matching NHC-reported landfall at 20:20 UTC on September 28 (NHC, 2023). The track for
both the CNTL forecast (plotted in red in Fig. 8a) and CV31 forecast (in blue) matched well with
the Best Track (in black) up through Ian’s landfall and passage over Florida.

The intensity (Fig. 8b) for the CNTL shows an increase relative to CVV31 and Best Track at
forecast hours 0-18, just prior to Ian’s landfall in west Florida. The CV31 experiment by contrast
matches the NHC Best Track intensity (plotted in black) more closely through landfall and the
rapid weakening which followed. After passage of the storm center onto land, 10 m winds for
CV31 decay less rapidly (9 h to decrease below hurricane intensity) than for CNTL (6 h),
matching the Best Track more closely for a period of 12 h. The 10 m wind field analysis for the
CNTL (Fig. 8c) shows broader 34 and 64 kt wind fields than CV31 (Fig. 8d), with CV 31
verifying more closely with Best Track (figure not shown). Both of these initial outer core wind
fields show pronounced asymmetry. However, the inner core winds for the CNTL (>83 kt,
shown in yellow and red) not only are broader than those of CV31 but also, unlike CV31, wrap
nearly the entire way around the center.
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Figure 9: Forecasts of net (sensible + latent) enthalpy fluxes at hours 6 (panels aand c) and 12 (b
and d) for CTRL (a,b) and CV31 (c,d).

We next examine the available enthalpy at the air-sea interface in the two coupled model
configurations, to identify differences which may be related to these disparate intensity forecasts.
In Fig. 9, we observe broader and more intense air-sea enthalpy fluxes (ASEF) around the
eyewall in the CNTL (left; brighter, broader yellows) as compared to CV31 (right; dimmer,
darker greens and yellows) throughout the initial period of the forecast. The enthalpy fluxes also
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show greater symmetry around the inner core for the CTRL. In the CTRL, these broader, more
symmetric features in the ASEF correlate well with a broader initial wind field, and greater
wind-field symmetry in the inner core (compare winds >83 kt, shown in yellow and red in Fig.
8c, with Fig. 9b) relative to CVV31 (compare Fig. 8d and Fig. 9d).
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Figure 10: 100-km azimuthal averages (solid lines) and standard deviations (dashed) for
2022092718 forecasts of lan from CTRL (red) and CV31 (blue). (a) SST, (b) ASEF, (c) PBL
height, (d) warm-core-anomaly.

In Fig. 10, we see azimuthal (“footprint”) averages within 100 km around the storm center at

each forecast hour, for SST (Fig. 10a), ASEF (Fig. 10b), and PBL height (Fig. 10c), as well as
warm-core temperature anomaly (WCA, Fig. 10d), for both CTRL (red) and CV31 (blue). Fig.
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10a shows identical footprint average SSTs between the two experiments at hour 0; however, the
average and standard deviations increase more rapidly for the CNTL in the first 18 h. We note
here that the two forecasts made landfall within approximately 3 h of one another, between
forecast hours 24 (CNTL) and 27 (CV31). Similarly, ASEF (Fig. 10b) for the CNTL is slightly
less than CV31 at hour 0, but then also increases much more rapidly, already surpassing CV31 at
hour 6. Finally, footprint statistics for PBL height (Fig. 10c) and WCA (Fig. 10d) for the CTRL
begin at lower values, but then increase more rapidly, surpassing CV31 by hour 12. As a result
of assimilating CyGNSS, Ian’s initial outer-core wind field in CV31 was weaker but more
symmetric (Fig. 8d) than the CTRL (Fig. 8c). The greater initial symmetry in the CVV31 winds
explains the fact that the footprint average ASEF for CV31 was slightly greater than for CNTL
(Fig 10b) at hour 0.
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462  Figure 11: (a,b) Differences at forecast hour 24 between CNTL and CV31 for TC lan, in (a) sea

463  surface height (m), and (b) SST (°C). (c,d) Sea surface height at forecast hour 48, just before
464  Florida landfall, in (c) CNTL and (d) CV3L1.
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Interestingly, CTRL’s broader and stronger initial wind field (Fig. 8c) relative to CV31 (Fig. 8d)
corresponds to a more rapid footprint SST warming in CNTL than in CV31 (Fig. 10a). The
reasons for this are apparent in the differences between sea-surface heights produced by the
ocean models in the two experiments over the west Florida ocean shelf (Fig. 11a). At forecast
hour 24, red areas along the southern Florida shelf break in Fig. 11a show that the larger,
stronger wind field of the CNTL was already forcing significant convergence in ocean surface
currents, resulting in a pronounced sea-surface “bulge” relative to CV31. Such bulges in shelf
sea surface height over one or more inertial periods are associated with the development of
coastal downwelling (Gramer et al. 2022), resulting in sustenance or enhancement of SST over
the shelf. The differences in SST between CNTL and CV31 at the same forecast hour (Fig. 11b)
bear this result out. As a final comment, we note again that the improvement in intensity in the
first 24 h of this CV31 forecast relative to CNTL, as seen in Fig. 8a, differs from the overall
intensity statistics as presented in Fig. 7.

The impact of the enhanced initial 10 m wind field in the CNTL was not limited to its greater
forecast maximum intensity: as Fig. 11c shows, the broader, stronger wind field in CNTL may
have produced a greater likelihood of widespread storm-flooding on Florida’s west coast than
CV31. The region of sea surface height above 1 m in the CNTL stretched from Tampa Bay to
Florida Bay, as compared with a narrower, shorter band of extreme sea-surface height increase
for CV31 (Fig. 11d). This is a direct consequence of the enhanced coastal Ekman convergence
associated with the wind fields in CNTL, and would have likely produced a forecast for more
widespread inundation than the corresponding CV31 forecast would have done. Corresponding
differences in the expected impacts to coastal and shelf marine ecosystems from the CNTL vs.
CV31 forecasts could have resulted as well.

The more rapid SST warming in CTRL in hours 3-18 (Fig. 10a), in combination with higher 10
m winds, led to more rapidly increasing ASEF in hours 6-18 (Fig. 9 and Fig. 10b). Greater ASEF
in the CTRL would have been consistent with more buoyant uplift near the surface and a higher
PBL (Fig. 9a) for hours 6 through landfall. Inflow of this increased buoyancy would have been
consistent with a more buoyant eyewall and greater WCA (Fig. 9b) for CNTL. The ensuant
deepening of convection associated with this enhanced WCA would very likely have contributed
to the anomalous over intensification of the CTRL forecast vs. CV31. The authors clearly
acknowledge however, that the anomalous intensification of the CTRL in the very early forecast
(hours 3-12) would have been driven largely by other differences in the near-storm environment
between the experiments, beyond the scope of the present analysis. Finally, the enhanced breadth
and strength of the wind field for CNTL produced greater convergence and larger areas of
enhanced sea-surface height near the coast (Fig. 11c) relative to CV31 (Fig. 11d). Although a
storm surge model was not a part of the present study, the sea-surface height difference just
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offshore of the coast highlighted here would have provided substantially different boundary
conditions for storm surge modeling.

3.3 Case study - TC Larry

TC Larry (12L) originated from a tropical wave that emerged off the coast of Africa, coalescing
into a tropical depression on 2021 August 31. Within a day, the depression intensified into a
tropical storm named Larry. Rapidly traversing the far eastern tropical Atlantic, it escalated into
a Category 1 hurricane by the morning of September 2. After a period of swift intensification,
Larry surged to a major Category 3 hurricane early on September 4. Fig. 4g illustrates Larry’s
track. Aerial reconnaissance for Larry was not initiated until September 5.

Initialization for the Larry case study started at 18 UTC on August 31, 2021. A five-day HAFS
forecast was initiated every 6 hours. Cycling continued until 12 UTC on September 3, resulting
in a total of 12 analyses. Verification against the Best Track data was performed for each
experiment.
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Larry is a TC which intensified rapidly over the open, tropical ocean. For our second case study
we examine the forecast of Larry initialized on 2021 September 03 at 12Z, when several
overpasses of CyGNSS had previously provided surface winds for atmospheric DA. For this
cycle, both experiments performed well in forecasting the center position relative to Best Track
throughout the 5 d forecasts (Fig. 12a). However, unlike in the case of lan, CV31 forecast a
stronger TC (Fig. 12b, blue) relative to CNTL (red). This stronger forecast verified better versus
Best Track (black) for hours 6-66, but worse thereafter.

The initial 10 m wind field for CNTL (Fig. 12c) was both smaller (narrow fields between 34 and
83 kts in cyan and green), and more intense (> 96 kts in the northwestern quadrant, bright red)
than that for CV31 (Fig. 12d). However, an important feature of the hour 0 wind field in CNTL
was the presence of 105 kts wind in the inner core (Fig. 12b, red), a feature which was not
present in either CV31 or the Best Track. The rapid intensification in the C\VV31 forecast occurred
within 9 h of initialization. Although this was a more rapid intensification than Best Track, it
does suggest that the improvement in intensity forecast was closely associated with the
additional information on the initial 10 m winds from CyGNSS.
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The impact of CyGNSS DA on the ocean and on the evolving structure of the TC is examined in
Fig. 13. The differences in initial 10 m wind fields between CNTL (Fig. 12c) and CV31 (Fig.
12d) led corresponding differences in the SST (Fig. 13a) and ASEF (Fig. 13b) beginning in
forecast hour 9. Although footprint SST at hours 3-18 cooled rapidly for both CNTL and CV31,
the patterns of this cooling differed between the experiments: initially, through hour 6, CV31
cooled more rapidly than CNTL. Nevertheless, by hour 9, this pattern reversed, with CNTL SST
continuing to cool rapidly, while CV31 cooling began to moderate. Again, this pattern follows
the intense “spin up” in 10 m winds in the CTRL at analysis time followed by a corresponding
spindown (Tong et al. 2018), But the impact of this spin-up and spindown then appears to have
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been reflected in the reduced ASEF in the CNTL (Fig. 13b) relative to CV31 for most of the
hours 9-48.

The result of the reduced 10 m wind in the CNTL forecast, together with the enhanced cooling
and reduced production of buoyancy by ASEF within 100 km of the center, was to significantly
reduce the PBL height within CNTL relative to CV31 (Fig. 13c) beginning at hour 18, reaching a
peak difference from CV31 at hour 42. The impact of an initial vortex imbalance was reflected
very quickly (by forecast hour 6) in the reduced WCA peak temperature in the CNTL relative to
CVa31 (Fig. 13d). However, this WCA difference was enhanced up to hour 18, and maintained
itself through hour 45. These features were all coincident with the weaker intensification of
CNTL relative to both CV31 and Best Track (Fig. 12b), but in particular, after hour 24, the
impact of the initial overforecast in CNTL on the ocean may have also contributed to these
intensity differences.

4. Conclusions

In this study, we utilized the Hurricane Analysis and Forecast System (HAFS) to assess the
impact of CyGNSS-derived scalar (CV31) near-surface winds on TC track, intensity, and storm
structure forecasts. The initial day of the experimental period for each storm was used to spin up
the model state with CyGNSS observations, while subsequent days were utilized for generating
TC statistics. All observational data were assimilated using the hybrid 4DEnVar, which was the
assimilation method employed in operational settings during the experimental period.
Observations were assimilated within 6-hour windows centered on four daily analysis times
(0000, 0600, 1200, and 1800 UTC).

As a newly established observing system, CyGNSS posed a challenge to the current study by
necessitating the consideration of serial correlation in the information content and errors inherent
in the 1-Hz CyGNSS specular point tracks of retrieved winds. Future research endeavors will
prioritize the development of a more foundational approach to address CyGNSS observation
error correlation within each specular point track and its integration into the operational model.

For the present study, seven TCs were selected for OSEs in the Atlantic Basin using HFSB, a
configuration of the coupled operational HAFS. These TCs covered a range of conditions such as
deep water, shelf, Gulf storms, weakening and intensifying storms (Table 2). A broad summary
of the conclusions in the present study included the following:

e CyGNSS enhanced initial TC intensity forecasts as evidenced by PMIN (Fig. 5, Fig. 7).

e Forecast track improved with the assimilation of CyGNSS data (Fig. 5).

e There was an enhancement in storm size (RMW) within the first six hours (Fig. 6).

e For one case study, that of TC lan, assimilating near-surface winds modified the

modeling of ocean mixing and transport (e.g., upwelling and downwelling) in such a way
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as to potentially contribute to an improved intensity forecast (Fig. 8), and modified the
sea-surface height forecast (Fig. 11) in a way which would have substantially modified
surge-model boundary conditions and so could well have significantly modified storm
surge forecasts (Dullaart et al. 2024; Powell and Reinhold 2007). A second case study
over the open ocean, TC Larry, also showed improvement in intensity and structure from
CyGNSS data.

e CyGNSS provided critical observations early in the TC lifecycle, when aerial
reconnaissance is seldom available.

Including CyGNSS led to improvements in average wind radii for the first six hours of forecasts
analyzed here. Mixed results at later forecast hours relative to Best Track, including times when
there were no aerial or ground observations of TC wind fields, will bear further examination in
future work. Previous analyses have acknowledged (Cangialosi and Landsea 2016) considerable
uncertainty in wind radii estimates from Best Track, particularly for TCs that are not yet
monitored by aircraft reconnaissance or ground radar, which are precisely the candidate cycles
we chose for the present work. We therefore hypothesize that, notwithstanding the limitations to
structure validation statistics for the present study, CyGNSS data may actually prove useful to
improve the uncertainty in Best Track estimates of these important wind radii in further studies.

Understanding how these results align with previous efforts to enhance TC forecasts using
CyGNSS data is crucial. As outlined in section 1, prior OSSEs conducted with the Hurricane
Weather Research and Forecasting (HWRF) model (Annane et al., 2018; Leidner et al., 2018)
reported neutral impacts on track forecasts and modest improvements (generally <5 knots) in
maximum wind speed (Vmax) forecasts for individual TC case studies. Previous OSEs (Pu et al.,
2022; Cui et al., 2019), which also utilized HWRF, demonstrated generally neutral to positive
impacts on track and intensity forecasts, offering promising results. In the Mueller et al. (2021)
OSE, CyGNSS was globally assimilated, and this run was used as a lateral boundary condition
(LBC) in HWREF, also showing an improvement in track and intensity. The present study,
however, is the first that the authors are aware of that looks at operational HAFS retrospective
forecasts, and the first to examine over 50 individual forecasts spanning seven TCs.

The current study identified enhancements in track forecasts and improvements in intensity
metrics. A primary distinction between the findings of this study and those of previous studies is
the utilization of a coupled model that integrates HY COM, which may contribute to HAFS's
superiority over HWRF in providing greater skill at modeling the air-sea dynamics which can be
critical to TC forecasting (e.g., Kim et al. submitted to this Special Issue). As a result of the
considerations above, any direct comparisons between the outcomes of previous studies and this
study should be approached with caution, as the methodologies employed here represent a
significant break with past work.
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It is critical to point out that the impact of assimilating observations from CyGNSS for the initial
10 m wind field were not limited simply to improved intensity and structure forecasts. As both
case studies (TC lan in Fig. 11, TC Larry in Fig. 13) demonstrate, the near-surface wind structure
in hour 0 analysis can also significantly impact the evolution of the ocean beneath the storm. As
the lan case showed, storm flooding for landfalling TCs may also be significantly impacted as a
result. Corresponding differences in the forecast impact to marine ecosystems may also occur.
Verifying these hypotheses will require inputting surface wind and sea level data into storm
inundation models in future studies.

Finally, the present study highlights an important mechanism by which near-surface wind
analysis can impact both sea-surface height and TC intensity structure, namely by modifying the
air-sea enthalpy fluxes during early forecast hours. Changes in SST warming or cooling, in
combination with differing 10 m winds, can lead to significant differences in air-sea enthalpy
fluxes. These modified inputs of moisture and heat in turn result in modifications to the forecast
buoyant uplift within the PBL, and thus to modifications in the buoyancy in the TC core as
evidenced by warm-core anomaly differences in the present study (Fig. 11, Fig. 13). Finally,
moving forward, we hope that future observational studies utilizing CyGNSS as a component
will allow for improvement and verification of air-sea enthalpy parameterizations for TC
forecasting models. We further hope that future modeling studies will be able to provide
additional insights into the broader impacts of improving near-surface analyses using CyGNSS
and future observational systems.
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