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ABSTRACT

In this study, a two-dimensional variational analysis method (2DVAR) is applied to select a wind solution
from NASA Scatterometer (NSCAT) ambiguous winds. A 2DVAR method determines a ‘‘best’’ gridded surface
wind analysis by minimizing a cost function. The cost function measures the misfit to the observations, the
background, and the filtering and dynamical constraints. The ambiguity closest in direction to the minimizing
analysis is selected. The 2DVAR method, sensitivity, and numerical behavior are described. 2DVAR is used
with both NSCAT ambiguities and NSCAT backscatter values. Results are roughly comparable. When the
background field is poor, 2DVAR ambiguity removal often selects low probability ambiguities. To avoid this
behavior, an initial 2DVAR analysis, using only the two most likely ambiguities, provides the first guess for an
analysis using all the ambiguities or the backscatter data. 2DVAR and median filter-selected ambiguities usually
agree. Both methods require horizontal consistency, so disagreements occur in clumps, or as linear features. In
these cases, 2DVAR ambiguities are often more meteorologically reasonable and more consistent with satellite
imagery.

1. Introduction

Scatterometers are active radars designed to measure
the backscatter or normalized radar cross section
(NRCS) from the earth’s surface at moderate incidence
angles. The advantage of using moderate incidence an-
gles (208–708) is that the major mechanism for scattering
is then Bragg scattering from centimeter-scale waves,
which are, in most conditions, in equilibrium with the
local wind. Although the scatterometer winds are usu-
ally provided as neutral winds at some reference height,
the measurement is physically most closely connected
with surface stress (Brown 1986).

Scatterometers measure wind speed very accurately;
Freilich and Dunbar (1999) report that National Aero-
nautics and Space Administration (NASA) Scattero-
meter (NSCAT) measured wind speed to within 1.3 m
s21 in an rms sense, while Stoffelen and Anderson
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(1997b) suggest that the ERS-1 measurement error stan-
dard deviation is actually only 0.5 m s21. However, the
wind direction from scatterometers is not uniquely de-
termined. Wind speed and direction are inferred from a
number of closely collocated (both temporally and spa-
tially) radar measurements from a number of different
azimuth angles. The measured NRCS, denoted s 0,
varies with the relative azimuth angle between the an-
tenna and wind direction. An ‘‘upwind-crosswind’’ var-
iation exists because small, wind-generated gravity
waves on the ocean surface reflect more of the radar
signal when wave crests are perpendicular (i.e., ‘‘up-
wind’’) to the radar antenna than when wave crests are
parallel (i.e., ‘‘crosswind’’). The ‘‘upwind–downwind’’
signal is very small, because when fetch is not limited,
the orientation and amplitude of these waves is nearly
the same if the wind direction is shifted by 1808.

This paper reports on the use of a two-dimensional
variational analysis method (2DVAR) for removing the
directional ambiguity of NSCAT winds. 2DVAR gen-
erates a gridded surface wind analysis by minimizing
an objective function, which is a weighted sum of sev-
eral constraints on the difference between the analysis
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and the background, and between the analysis and the
data. While the ‘‘nudged’’ median filter uses a priori
information for initialization, 2DVAR uses such infor-
mation both for initialization and as part of the back-
ground constraints. 2DVAR was originally described by
Hoffman (1982) to analyze Seasat scatterometer (SASS)
data. In this first formulation, only observations from
conventional platforms (ships, buoys, radiosondes) and
from SASS were combined with an a priori or back-
ground wind field. 2DVAR was extended to include
smoothness (i.e., filtering) constraints and a dynamical
constraint by Hoffman (1984, hereafter H84). This study
extends the ambiguity method of H84 to use NSCAT
data, to use s 0 as an alternative to ambiguities, and to
use dual ambiguity processing as an initial step. Dual
ambiguity processing makes use of the relative likeli-
hoods of the ambiguities to avoid problems due to gross
directional errors in the background wind field.

Our approach to data analysis in 2DVAR is heuristic,
starting with the simple premise that the desired analysis
closely fits the available data and simultaneously closely
satisfies certain constraints that have a clear physical
interpretation. The 2DVAR constraints state that the
analysis should be close to the background, that the
analysis increments should be smooth, and that the an-
alyzed dynamical balance be close to that of the back-
ground. The first two are generic constraints that could
be applied to any problem, while the third is specifically
applicable to a surface wind field. 2DVAR is thus an
extension of the thin plate spline approach described by
Wahba and Wendelberger (1980). In such approaches
one must specify relative weights for the individual con-
straints. In the simplest case there is only one relative
weight that controls the trade-off between fidelity to data
and smoothness. This parameter (or a small set of such
parameters) may be chosen on a case-by-case or ensem-
ble basis using the method of generalized cross vali-
dation (Gu and Wahba 1991; Wahba et al. 1995) and
approximations thereof (Desroziers and Ivanov 2001).
As a result, 2DVAR is an ideal candidate for online
estimation of parameters as Dee and da Silva (1998)
and Dee et al. (1999) have proposed. This feature of
2DVAR has been exploited by Pegion et al. (2000) to
objectively tune these parameters. In the work described
here, these parameters are chosen subjectively based on
experimentation.

The outline of the rest of this paper is as follows.
First we define the NSCAT data and the usual processing
of the NSCAT data (section 2). We then describe the
2DVAR methodology for conventional data and for
NSCAT data, and discuss the numerical behavior and
the sensitivity of 2DVAR (section 3). We have improved
the quality of our ambiguity removal by using a first
stage in which only ‘‘dual ambiguities’’ are processed.
This method and our other quality control procedures
are presented in section 4. Experiments using ambigu-
ities and s 0 values are compared. With proper tuning
the results are similar (section 5). Examples of our dual-

ambiguity quality control (dual QC) method in 2DVAR
are shown in section 6. Then section 7 is a conclusion.
In a companion article (Henderson et al. 2003) the dual-
QC 2DVAR is applied to the entire NSCAT mission and
2DVAR ambiguity removal is compared to results from
the ‘‘nudged’’ median filter.

2. NSCAT data

Scatterometers have been mounted on stationary plat-
forms, aircraft, and satellites. Since 1991, satellite-borne
scatterometers have provided a wealth of wind data over
the World Ocean. Previous satellite scatterometers in-
clude Seasat-A Satellite Scatterometer in 1979; the ac-
tive microwave instruments on the first and second Eu-
ropean Remote Sensing satellites (ERS-1 and ERS-2),
during 1991–2000; and the NASA Scatterometer
(NSCAT) on the first Advanced Earth Observing Sat-
ellite (ADEOS-1) during 1996–97. Since 1999, Sea-
Winds on QuikSCAT has been operational.

The focus of this study is winds retrieved from
NSCAT. NSCAT was launched aboard the ADEOS-1
spacecraft on 16 August 1996 from Tanegashima Space
Center in Japan. Unfortunately, after only 9 months of
operation, the ADEOS-1 solar power array failed.
ADEOS-1 had a nearly polar sun-synchronous orbit at
a height of ;800 km, with a period of ;100 min.

NSCAT made observations covering two 600 km
swaths, one on either side of the spacecraft, separated
by a gap of ;330 km corresponding to low incidence
angles. On each side of the spacecraft, NSCAT operated
three 3-m-long, sticklike antennas at 13.995 GHz. The
foreward and aft antennas were vertically polarized,
while the mid antenna was both vertically and horizon-
tally polarized. Thus NSCAT made observations in se-
quence from eight beams, that is, from eight combi-
nations of antennas and polarizations. While the fore-
ward and aft antennas are separated by 908 as in the
ERS-1 design, the angles between the mid antenna and
the others are 208 and 708, whereas in the ERS-1 design
these angles are 458. The NSCAT antenna subsystems,
resolution, registration of observations, measurement
sequencing, hardware, and ground system are described
by Naderi et al. (1991).

Key components of the ground system are modeling
the backscatter measurements, wind retrieval, and am-
biguity removal. Geophysical model functions are em-
pirical relationships used to relate the backscatter to the
geophysical parameters, and are usually derived from
collocated observations (Jones et al. 1977). In current
model functions, the backscatter depends nonlinearly on
wind speed and direction. Models developed from air-
craft flights have been used as baseline model functions
for satellite instruments. However, substantial post-
launch modifications and refinements were needed for
SASS (Boggs 1981) and for ERS-1 (Offiler 1994; Stof-
felen and Anderson 1997b). The prelaunch NSCAT
model function, denoted NSCAT-0 or SASS2, was de-



MAY 2003 587H O F F M A N E T A L .

veloped by Wentz et al. (1984) from the Seasat dataset
by matching the statistics of the observed s 0 and those
simulated assuming that the ocean surface winds follow
a one parameter Weibull distribution (Conradsen et al.
1984). The fitting procedure used six parameters at each
polarization and incidence angle. The first postlaunch
NSCAT model function, denoted NSCAT-1, was de-
veloped using a combination of Special Sensor Micro-
wave Imager (SSM/I), National Centers for Environ-
mental Prediction (NCEP), and European Centre for
Medium-Range Weather Forecasts (ECMWF) winds
collocated with NSCAT s 0 observations. A further re-
finement, denoted NSCAT-2, has been developed by
Wentz and Smith (1999), based on collocations with
SSM/I and ECMWF winds.

In the ground processing, the individual backscatter
observations associated with the different beams are or-
ganized by a grid oriented along the satellite track. Usu-
ally there are 4 or 16 backscatter observations in a 25-
or 50-km wind vector cell (WVC). The WVC coordi-
nates along, and perpendicular to, the satellite track are
called row and cell, respectively. Each cell is associated
with a nearly constant incidence angle for each antenna,
with the values being equal for the fore and aft antennas.
Modeled s 0 values are computed from a geophysical
model function that requires spacecraft position and ori-
entation (known) and wind speed and direction (un-
knowns) as inputs. Within each WVC containing a suf-
ficient number of quality controlled backscatter obser-
vations, the normalized squared differences between
measured and modeled s 0 values are summed as part
of the objective function of a maximum likelihood es-
timator (MLE). Then, wind speed and direction are var-
ied to maximize the likelihood. However, over the range
of possible wind speeds and directions (i.e., 0–50 m s21

and 08–3608), the MLE produces from two to six local
maxima, and it is not possible to determine the wind
uniquely from the MLE alone. Examples of the likeli-
hood function are described in section 3a. The wind
vectors corresponding to the likelihood maxima are
called ‘‘ambiguities.’’ The ambiguities are ordered by
likelihood. The first ambiguity is the ambiguity with the
highest likelihood; it is most consistent with the back-
scatter data. The second ambiguity is usually of nearly
equal speed and consistency, but of nearly opposite di-
rection.

For operational numerical weather prediction (NWP),
and for other purposes, it is necessary to choose one
ambiguity at each location in a meteorologically con-
sistent manner. Once we have chosen a single ambiguity,
we call the result a ‘‘unique’’ wind. Since the wind
retrieval is performed for each WVC individually and
since there is little to distinguish the first two ambi-
guities, a wind field of first ambiguities will generally
be very irregular with many wind reversals. Spatial fil-
tering can be used to produce a horizontally consistent
wind field and resolve the directional ambiguity. A va-
riety of approaches have been used. These include the

work of H84, Schroeder et al. (1985), Schultz (1990),
Shaffer et al. (1991), Wentz (1991), Badran et al. (1991),
Offiler (1992), Thépaut et al. (1993a), Long (1993),
Stoffelen and Anderson (1997a), Jones et al. (1999),
Figa and Stoffelen (2000), and de Vries and Stoffelen
(2000).

Simulation studies for NSCAT established that a me-
dian filter operating autonomously, that is, with no a
priori information, would provide excellent ambiguity
selection (Schultz 1990; Shaffer et al. 1991). The me-
dian filter must be initialized or seeded with some initial
choice of ambiguities. In autonomous mode the seed is
the first ambiguity. In practice this choice did not per-
form as well as expected. Better performance was ob-
tained by initializing the scatterometer wind field with
the ambiguity closest to the operational gridded surface
wind field analysis from NCEP. This product is referred
to as the nudged wind product since an outside source
is used to initialize (or ‘‘nudge’’) the median filter. No
further reference to the background is made. At the end
of the process the chosen winds are consistent with
backscatter observations in the WVC and horizontally
consistent with neighboring WVCs, but are not neces-
sarily close to the background. The median filter method
has been quite successful (Gonzales and Long 1999).
Differences between autonomous and nudged results
show that the median filter has multiple solutions. Thus
spatial filtering does not resolve all ambiguity in the
sense that multiple horizontally consistent wind fields
are plausible. Further, the median filter occasionally se-
lects physically unrealistic winds. Patches of unrealistic
winds in the scatterometer data might have a disastrous
impact on the quality of analyses and NWP forecasts.
Careful quality control (QC) is required, of course, but
is problematic if the model winds were used in the am-
biguity removal.

It should be noted that there are several NSCAT data
products available. These differ in resolution (25 or 50
km); geophysical model function (NSCAT-0, NSCAT-
1, or NSCAT-2), and ambiguity selection procedure (au-
tonomous or nudged median filter). All Jet Propulsion
Laboratory (JPL) NSCAT datasets use the median filter
described by Shaffer et al. (1991). The 25-km resolution
datasets based on the NSCAT-2 model function and the
nudged median filter are the most current. Some of the
preliminary results presented here, however, use other
versions of the NSCAT data.

3. 2DVAR method

2DVAR finds the minimum of an objective function,
denoted J. The objective function depends on the surface
wind field. Given any wind field the objective function
measures the difference between the given field and the
observations, and between the given field and the a
priori or background wind field. The minimizer of the
objective function is therefore the wind field, which
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optimally fits the observed and a priori data. We write
the 2DVAR objective function as

J 5 J 1 J .b o (1)

Here J is the total cost function, Jb is the background
cost function, and Jo is the observation cost function.
As in any analysis method, specification of the error
characteristics of the data and the background are vitally
important. Our implementation of 2DVAR employs a
heuristic model of forecast error statistics. In this study,

J 5 l J 1 l J 1 l J 1 l Jb VWM VWM LAP LAP DIV DIV VOR VOR

1 l J , andDYN DYN (2)

J 5 l J 1 l J 1 l Jo CONV CONV AMB AMB SPD SPD

1 l J . (3)NRCS NRCS

Each constraint function, Jm, is a scalar that measures
the difference between the analysis and background us-
ing the mth constraint. The constraints include filtering
and dynamical consistency. The lambda weights, de-
noted lm, control the amount of influence each con-
straint has on the final analysis. It should be noted that
these are weak constraints and therefore the lm are not
Lagrangian multipliers. The constraint function sub-
scripts are mnemonics: JVWM is the background con-
straint on the vector wind magnitude, JLAP on the La-
placian of the wind components, JDIV on the divergence,
and JVOR on the vorticity; JDYN is the dynamic constraint
on the vorticity tendency; and JCONV is the observation
function for the conventional data, JAMB for the ambig-
uous winds, JSPD for the scatterometer wind speed, and
JNRCS for the backscatter.

Details of the calculation of Jo and Jb and the behavior
of 2DVAR are given in the following sections and in
the appendices. The combination of the Jm constraints
in (2) mimicks the usual Jb term in 3D-VAR or 4D-
VAR (e.g., Thépaut et al. 1993b). Therefore, 2DVAR
as described here may be considered to be a speciali-
zation of 3D-VAR to ocean surface wind. The approach
we have taken in developing the 2DVAR may seem
very different than the usual approach in data analysis.
There are in fact a number of parallels to the usual
approach. However, in formal approaches, the under-
lying assumptions and tuning may not be as apparent
as in our exposition of 2DVAR. The validity of the
assumptions and the appropriateness of the tuning are
critical to the success of the methods. In a formal ap-
proach, one begins by seeking the maximum likelihood
estimate as calculated by Bayes’ theorem. For a linear
problem, if the various errors have a zero mean Gaussian
distribution, then the MLE is the best unbiased linear
estimator in the strict statistical sense. However, these
assumptions are usually not realized. The next difficulty
is in estimating the various statistical quantities that
define the MLE. Simplifying assumptions must be
made. Although the statistics no doubt depend on syn-
optic situation, season, latitude, time of day, topography,

etc., data samples are rarely of sufficient size and quality
for anything more than a cursory stratification. It is not
unusual to make one’s best attempt at specifying the
statistics, and then to introduce a scaling, or then to tune
certain parameters in the models of the statistics in order
to get subjectively agreeable results.

As mentioned in section 1, the lm values are chosen
subjectively in this study, but techniques to tune them
objectively have been developed. Values of the lm that
were used for various experiments are reported below.
After subjective tuning, the 2DVAR heuristic model of
forecast error statistics produces results similar to con-
ventional error models, but has the potential advantage
of being specified by a small number of parameters. In
principle, these parameters might vary with geographic
location, with synoptic situation and might even be
tuned online, using current or recent data. We choose
these parameters subjectively based on experimentation.
However, some of our results address how to tune these
parameters to get similar results when changing the anal-
ysis resolution, data density, or data representation (see
section 5).

Since H84 2DVAR has undergone several develop-
ments. These include the optional use of 12-point bi-
cubic interpolation to the observation locations (section
3a), the use of s 0 values (section 3a), and the refor-
mulation of the constraint terms (section 3b). 2DVAR
may combine both wind retrieval and ambiguity re-
moval by analyzing the s 0 data directly. For both ERS-
1,-2 and NSCAT, in addition to the possibility of ana-
lyzing s 0 data, the ambiguities may be treated in the
same manner as SASS data were treated by H84, or
unique winds may be treated as buoy observations.
2DVAR has been used to produce several long running
datasets for oceanographic research. First, 2DVAR was
adapted for use with time-binned wind observations by
Florida State University researchers including Legler et
al. (1989), Meyers et al. (1994), Jones et al. (1995), and
Pegion et al. (2000). Later, 2DVAR was extended to
SSM/I wind magnitude data by Atlas et al. (1991, 1996).

The order of the steps taken in 2DVAR is flexible
and the subject of ongoing tuning. The usual and min-
imal preparation for the minimization is to define the
geometry of the analysis grid, and on this grid the back-
ground wind field, and the initial estimate for the anal-
ysis; to read the observation datasets, making necessary
conversions and performing gross QC; and to quality
control the observation based on simulated values from
the background. These preparations may be modified in
several ways. The initial estimate is usually equal to the
background, but may be an arbitrary wind field. For
example, after a preliminary analysis, the analysis and
background can be interpolated to a finer grid. Also,
after a preliminary analysis, all data may be subjected
to a second QC, accepting some data that were initially
rejected but are corroborated by nearby data. In these
cases the minimization restarts, using the preliminary
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analysis as the initial estimate. The dual-QC approach
of section 4c is a similar modification.

In order to minimize the objective function J we must
be able to calculate it for any physically reasonable
value of the control variable vector X, which here rep-
resents the surface wind field. We must specify the map-
ping M,

V 5 M(X),a (4)

from the control vector X to a complete gridded wind
field Va. In the current formulation X contains those
values of the gridded wind components (u, y) that are
independent and free to vary. Not all points in the grid-
ded wind fields are allowed to vary. Such fixed points
at or near the boundaries are part of Va but are not part
of X. Note that Va is the 10-m neutral stability wind
field and that all observed winds should be translated
into a 10-m neutral stability wind. If only the height of
the observation is known, then the neutral logarithmic
wind profile may be used to adjust the wind observation
to 10 m.

Efficient minimization also requires the calculation
of the gradient of J, that is, ]J/]X. This is accomplished
by the adjoint of the routines that calculate J (Hoffman
et al. 1992). The minimization procedure we use is a
version of the limited-memory quasi-Newton algorithm
(Liu and Nocedal 1989), which was described and eval-
uated by Navon and Legler (1987). The algorithm it-
erates until the size of ]J/]X is small—smaller than e
times the size of X—or until a maximum number of
function evaluations have been used, whichever occurs
first.

We have been unsuccessful at preconditioning the
minimization. Usually several hundred iterations are re-
quired to satisfy our very strict convergence criterion.
In a typical experiment the rms difference in the u or
y wind components between the solution after 250 and
after 225 function calls is ;0.02 m s21, with maximum
differences of ;0.5 m s21. Our experiments use rela-
tively small samples and computer timings are suffi-
ciently fast. The reason for the slow convergence is due
to the step-by-step expansion of the region of influence
of the data (section 3c). A regridding process speeds
convergence (appendix B2). An operational implemen-
tation might use less strict convergence criteria, and
regrid or possibly remap the control vector X into spec-
tral space to increase efficiency. With a spectral rep-
resentation, the mapping from X to Va would be more
complicated, but some of the Jb terms would be easier
to calculate, and the minimization might converge more
quickly.

a. Observation functions

In general, the total observation function Jo is the
weighted sum of individual observation operators for
each data class. The data classes are defined for con-
venience. For example, we might divide ships into spe-

cial research ships and all others, and buoys into Trop-
ical Atmosphere–Ocean buoys and all others, or we
might lump all these data into the conventional platform
class. Here we report experiments with only one type
of data so that some of the

l 5 (l , l , l , l )o CONV AMB SPD NRCS (5)

are set to zero. Usually the observation function is given
by the sum of squared differences between simulated
(i.e., calculated from the analysis) and data values nor-
malized by the estimated observation (and representa-
tiveness) error(s). For example, for conventional data,

2 2(u 2 u ) (y 2 y )a o a oJ 5 1 . (6)OCONV 2 2s su u

Here (ua, y a) is the analyzed wind interpolated to the
observation locations, (uo, y o) is the observed wind, and
su is the wind component error standard deviation.

The horizontal interpolation is either bilinear or bi-
cubic using a 12-point mask, following Ritchie et al.
(1995, their Fig. 2). Since the interpolated value is a
linear function of the data values at the grid points, we
simplify the adjoint calculation by formulating the in-
terpolation as a weighted sum of gridpoint values. In-
terpolating in one dimension and then in the other shows
the weight for a grid value is the product of the weights
for interpolating in each single dimension. In a single
dimension, the weights are most easily determined from
the Lagrangian multiplier representation of the collo-
cating polynomial,

x 2 xif (x) 5 f , (7)O P j[ ]x 2 xj i±j j i

where f j are the data at locations xj. The sum and prod-
uct in (7) are from 1 to N 1 1, where N is the order of
the polynomial. [Note that when x is equal to one of
the xj, the weights in (7) reduce to one for j and zero
otherwise.]

If observation errors within the data class are cor-
related in a known way, these correlations can be ac-
counted for as described by Thépaut et al. (1993a) by
setting JCONV 5 ZTO21Z. Here Z is the vector of nor-
malized departures, and O is the matrix of observation
error correlations. An entry for each wind component
of each observation would be contained in Z. In the
2DVAR experiments reported here, observation error
correlations are ignored since our knowledge of these
statistics is limited. Currently su is taken to be a constant
1 m s21 and knowledge of the observation error standard
deviation is absorbed into lCONV.

For scatterometer data, we use either the observed
backscatter values or the retrieved scatterometer wind
ambiguities. The original formulation of H84 uses two
observation functions—JAMB and JSPD—for the wind am-
biguities. At each WVC,
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K

22 2 2 2J 5 s d [1 2 exp(2d /d )], (8)O PAMB NSCAT o k o
k51

where the sum is over all ambiguities, and
2 2 2d 5 (u 2 u ) 1 (y 2 y ) .k a k a k (9)

Here K is the number of ambiguities, k is the index of
the ambiguities, (uk, y k) is the kth wind ambiguity, dk

is the magnitude of the vector difference between anal-
ysis and ambiguity k, do is the wind speed scale for the
observation, and sNSCAT is the wind component standard
deviation for the WVC. The typical value for sNSCAT is
1 m s21. The wind speed scale, do, is defined by

d 5 V /g.o o (10)

Here Vo is the representative wind speed for the obser-
vation, and g is the scaling factor for the wind speed.
The typical value for g is 2. The variability in wind
speed among ambiguities for a single WVC is relatively
small (H84). Therefore, the representative wind speed
Vo is defined as the mean wind speed over the K am-
biguities. For a single WVC, when the analysis is close
to one of the ambiguities, the misfit measured by JAMB

approximates the squared vector differences between the
ambiguity closest to the analysis and the analysis. Away
from the ambiguities JAMB approaches a constant.

The wind speed observation function is designed to
take advantage of the relatively unambiguous wind
speed information in scatterometer data. In analogy to
(6) we define JSPD as,

2(V 2 V )a oJ 5 . (11)OSPD 2sV

Here Va is the analyzed wind speed, Vo is the observed
wind speed, and sV is the wind speed error standard
deviation. For NSCAT data Vo is defined above as the
mean wind speed at a single WVC, but (11) might be
used for any measurement of wind speed.

The second formulation for scatterometer data uses
the observed backscatter values in JNRCS (15). For a
single location, the misfit measured by JNRCS is the like-
lihood function used to retrieve ambiguities. For each
backscatter observation, the normalized departure is

0 0s 2 so az 5 . (12)s ss

Here is the backscatter observation, is the sim-0 0s so a

ulated backscatter observation, and ss is the standard
deviation of the s 0 observation. The s 0 values are di-
mensionless ratios of radar power (backscattered/emit-
ted), and are often reported in decibels.

A model function or forward model is used to sim-
ulate s 0. As described in section 2, the model function
calculates s 0 as a function of wind speed and direction
and the geometry and polarization of the observation.
The geometry is specified in terms of the pointing di-
rection of the antenna and the incidence angle. For
NSCAT the NSCAT-2 model function is preferred.

Theoretical estimates of the standard deviation of
scatterometer measurements show that

0s 5 K ss p (13)

(Fischer 1972). Here Kp is a dimensionless quantity with
typical values between 0.05 and 0.30. The subscript p
is used because Kp is originally defined in terms of the
radar power. The JPL model for the standard deviation
of the NSCAT s 0 observation extends this model to

2 0 2 0s 5 K (s ) 1 K s 1 Ks pA pB pC (14)

(Long et al. 1988). [For ERS-1,-2 see Stoffelen and
Anderson (1997c).] When evaluating ss, s 0 may be the
observed value or the simulated value. If the simulated
value is used, a logarithm term should be added to the
loss function to be consistent with maximum likelihood
estimation theory. That is,

2J 5 [z 1 ln(s )]. (15)ONRCS s s

The term in brackets comes about from taking the log-
arithm of minus the normal probability function of 0s a

given . In practice the logarithmic term is not used.0s o

In simulation it was found to introduce a bias in the
retrieved wind speeds (F. Wentz 2002, personal com-
munication).

Alternative formulations have been suggested for the
loss function for scatterometer data. Thépaut et al.
(1993a) used a slightly simplified form of JNRCS. Stof-
felen and Anderson (1997a) describes the observation
function used for operational use of ERS-1 and ERS-2
data at ECMWF. H84 describes a wind speed functional
that is equivalent to (11) if sV is multiplied by the factor

, where V0 is a constant 2 m s21, and if VoÏ1 1 V /Vo 0

is defined as the rms (instead of the mean) wind speed
for the ambiguities at the WVC. This has the effect of
giving more weight to low wind speed reports. Note
that JSPD may be used in combination with JAMB, or
alone, if there is little or no wind direction information
(e.g., Atlas et al. 1991, 1996, for SSM/I observations).

Example plots of JNRCS, JAMB and the ECMWF for-
mulation are given in Fig. 1 for a single WVC. If s 0

values are used directly in 2DVAR, the loss function
due to a single WVC is the MLE (Fig. 1a). This surface
shows the complexity of the highly nonlinear wind re-
trieval problem. Note that the center of the figure is not
contoured because the values there are very large,
O(105), compared to those plotted in the vicinity of the
minima, O(100–102). The MLE has multiple minima,
four in this case, which correspond to the ambiguous
wind solutions. The minima are distributed in an annulus
of near-minimum values at roughly the same wind
speed. The four minima are not equally deep, which
implies that each solution has a slightly different like-
lihood of being the true wind.

If ambiguous winds are used in 2DVAR, then the loss
function of a single WVC is JAMB (Fig. 1b). This ap-
proximation of JNRCS loses some of the structure seen
in Fig. 1a, but still reflects the four wind solutions as



MAY 2003 591H O F F M A N E T A L .

FIG. 1. 2DVAR observation operators (dimensionless) evaluated for one WVC using (a) s 0 values directly and (b)
ambiguous winds. (c) The combination of JAMB 1 JSPD. (d) For reference, the corresponding two-wind observation
operator in use at ECMWF (Stoffelen and Anderson 1997a).

minima. The strong nonlinearity near the origin is re-
moved. Note that if the background wind field is close
to one of the four wind solutions, the influence of other
observations or meteorological constraints will be nec-
essary to shift the analysis from near one minimum to
another during the 2DVAR minimization. Figure 1
shows that JAMB is only grossly similar to JNRCS, which
is a precise description of the likelihood of the wind
vector given the s 0 observations. Adding JSPD to JAMB

(Fig. 1c) improves this similarity somewhat.
The JAMB formulation was originally developed for

SASS for which all ambiguities were roughly equally
likely. NSCAT likelihood values have significant skill
for identifying the correct ambiguity. For example in
Fig. 1a the eastward and westward ambiguities have
deeper minima in the plot of JNRCS because they are more
likely. This information could be included in an ad hoc
way in JAMB, but our experiments show that both the

JNRCS and JAMB formulation tend to suffer from the same
deficiency, namely, that the minimizer tends to get
trapped by whichever relative minimum is closest to the
initial estimate. Our solution is dual ambiguity pro-
cessing (section 4c).

For comparison, we also show the two-wind loss
function of Stoffelen and Anderson (1997a) used at
ECMWF for ERS (Fig. 1d). [A similar formulation but
allowing more than two ambiguities for NSCAT is de-
scribed by Figa and Stoffelen (2000).] This is the best
behaved of the three functions, but it is also the crudest
approximation to the MLE. Only the two most likely
winds are used since one of these solutions is very close
to the true wind more than 90% of the time. The smooth
nature of this function allows the analysis to be moved
from one minimum to another during the assimilation
more easily than either the MLE or H84 formulation.
However, this formulation may also permit an analysis
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FIG. 2. Analyzed wind field for 1/28 resolution, fully converged
for the nominal case described in section 3c. Here, and in the figures
that follow, the wind barbs are in knots and all results are presented
on a 18 grid. Wind speeds are contoured every 5 m s21.

solution that is not very close to either minimum be-
cause of its smoothness.

b. Background constraints

As given in (2), the background function, Jb is a
weighted sum of several constraints, each providing a
measure of the difference between the analysis and
background wind field. The simplest constraint mea-
sures the square of the vector wind magnitude:

2T
2J 5 (V 2 V ) dA. (16)VWM E a b4L A

The effect of JVWM is to constrain the size of the analysis
increments. The length and timescales, L and T, are
introduced for convenience only to make the Jm non-
dimensional and of comparable magnitude. [If these
were not concerns, these scales might be absorbed into
lm since the adjustable parameter lm multiplies Jm in
(2).] We use synoptic timescales and length scales, T 5
105 s and L 5 106 m.

The other background constraints are given by

2 2 2 2 2J 5 T [¹ (u 2 u )] 1 [¹ (y 2 y )] dA, (17)LAP E a b a b

A

2T
2J 5 [= · (V 2 V )] dA, (18)DIV E a b2L A

2T
2J 5 [= · k 3 (V 2 V )] dA, and (19)VOR E a b2L A

24T ]z ]z
J 5 2 dA. (20)DYN E2 1 ) ) 2L ]t ]tA a b

Here (ub, y b) is the background wind, z is the relative
vorticity, and k is the unit vertical vector. In physical
terms, JLAP, JDIV, and JVOR measure the roughness of the
increments of the wind components, the irrotational
wind potential function, and the nondivergent wind
streamfunction, respectively. Alternatively, JDIV and
JVOR measure the variability of the divergence and vor-
ticity of the increments, respectively. Finally, JDYN mea-
sures the variability of the analysis minus background
difference of the time rate of change of the vorticity of
the surface wind. Details of the calculation of Jb are
given in appendix A.

c. Filtering characteristics of 2DVAR

Experiments with a single conventional wind obser-
vation show the filtering characteristics of 2DVAR. We
summarize the results here, and further descriptions are
given in appendix B. The nominal case is shown in Fig.
2. The reported wind is 30 m s21 from 2108.

The 2DVAR solution (after sufficient iterations) is
only weakly dependent on grid resolution as shown by
Fig. 3. At high resolution, finite difference errors in

evaluating Jb become very small and the errors due to
horizontal interpolation to the observation locations in
evalutaing Jo become noticeable. Bicubic interpolation
should be used to avoid this. A high-resolution analysis
requires greater data density and less weight given to
the filtering and dynamic constraints. With this adjust-
ment to the lambda weights, the response of 2DVAR is
spatially narrower.

The convergence rate of the 2DVAR minimization as
presently implemented is slow, especially as resolution
increases. Figure 4 shows that the number of iterations
required must grow at least linearly with the number of
grid intervals required to traverse the domain. Therefore
the multigrid strategy of solving the same problem with
increasing grid resolution initialized from the previous
solution should be generally useful, and is an alternative
to using a spectral representation.

4. Scatterometer quality control

a. Gross checks

Gross checking is performed when the data is read
from source files and prevents nonsensical or nonphys-
ical values from being used by 2DVAR. For example,
NSCAT values of s 0 . 30 dB are eliminated. Small
negative values of s 0 are nonphysical but are indicative
of very light winds (Pierson 1989). Such values can be
used in (12) with appropriately inflated Kp values, but
in 2DVAR these are replaced with a small positive value
equivalent to 260 dB.

b. Background and analysis checks

Background and analysis checks are done by com-
paring observations to simulated observations from the
current analysis. At the start of the process, when the
current analysis is the background, this procedure is a
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FIG. 3. Differences, scaled by 10, from the result for 1/88 resolution, for the results for 28, 18, 1/28, and 1/48 resolution. The panel labeled
‘‘1/2 degree resolution’’ corresponds to the results shown in Fig. 2.

background check. Later it is a preliminary analysis
check. Data failing the background check may be con-
sidered by a later (and more strict) analysis check. This
allows some of the data eliminated by earlier QC back
into the analysis.

Collocation studies show that scatterometer obser-
vation errors may be modeled in terms of wind com-
ponents (Stoffelen 1998), wind vectors (Freilich and
Dunbar 1999), or wind speed and direction (Atlas et al.
1999). The uncertainties exhibited in JNRCS show that
wind speed and direction are an appropriate context for
QC. Therefore, and as in H84, if the magnitude of the
difference between wind vectors (or wind speeds) is
greater than the average of the observed and analyzed
wind speed, the observation fails QC. If the difference
between the wind directions is .608, the observation
fails QC. However, very small or zero winds are handled
as a special case, so that when both observation and
analysis indicate calm conditions, the previous checks
are bypassed. The background and analysis checks apply
to conventional data as well as to scatterometer winds.
For ambiguities, only the ambiguity closest (i.e., with

the smallest vector difference) to the current analysis is
checked. For NSCAT s 0 data, we use a simple departure
test for each s 0 measurement in decibel space,

0 0s 2 s . g .o a NSCAT (21)

We have used gNSCAT 5 9 dB for both background and
analysis checks, which typically eliminates ;5% of the
data.

c. Dual-ambiguity processing

Often more than two winds are retrieved for a WVC.
However, one of the two ambiguities with the highest
MLE values is very likely (.90%) to be closest to the
true wind (JPL 1997). This implies that ,10% of the
third and fourth ranked ambiguities are closest to the
true wind. This information can be used to QC the
NSCAT data, and improve ambiguity removal.

We observed that using all available ambiguities in
2DVAR, or equivalently using the s 0 values, leads to
patches of poor ambiguity selection. This is especially
true where there are four ambiguities and the direction
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FIG. 4. The sequence of results for increasing number of iterations for 1/28 resolution, starting from a zero initial estimate.

of the third or fourth ambiguity is close to the direction
of the background wind field. Using ‘‘dual ambiguities’’
(i.e., the two ambiguities with the highest MLE values)
narrows the choice to one of the two most likely pos-
sibilities. This allows for larger (.458) wind direction
corrections to the background field. Using dual ambi-
guities only, however, naturally limits ambiguity selec-
tion to the first or second ranked ambiguity since the
analysis will generally be drawn toward one or the other.

To allow for selection from all ambiguities, we have
developed a two-stage analysis procedure that blends
the use of dual and all ambiguities. In the first stage,
we use dual ambiguities for 50 iterations of the mini-
mizer to draw the analysis toward one of the two most
likely observed winds. In the second stage, we include
all ambiguities and continue to minimize until the con-
vergence criteria are met. An alternative is to switch to
s 0 values after the first stage. The second stage allows
for readjustment of the analysis in the few locations
where the third or fourth ranked ambiguity is closest to
the true wind.

During the first stage, we use only dual ambiguities

that pass dual-ambiguity quality control or ‘‘dual QC.’’
Dual QC is based on a conceptual model of dual am-
biguities. Typically, we expect the wind directions of
dual ambiguities to be opposed by ;1808. If not, the
retrieved winds are suspect and are not included in the
first stage of dual ambiguity processing. Specifically,
retrieved winds fail dual QC and are not used in the
first minimization if the directions of the two most likely
ambiguities are within 1358 of each other. Dual QC
usually eliminates ;20% of WVCs from the first min-
imization.

5. Use of ambiguous winds versus s 0 observations

When using s 0 observations, the 2DVAR method es-
sentially carries out a simultaneous retrieval of NSCAT
winds for all data presented to the analysis. While the
use of JNRCS is computationally more expensive that
JAMB, it effectively removes the WVC boundaries and
links the wind retrieval problem of adjacent WVCs.
(Conventional scatterometer wind retrieval solves each
WVC independently.) Also, use of JNRCS is a necessary
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stepping stone toward simultaneous retrival of winds
and ocean surface properties. (The instruments on
ADEOS-II will take collocated active and multispectral
passive microwave measurements of the sea surface.
These can be used to not only improve wind retrieval,
but to determine ocean surface properties as well.) If
NSCAT ambiguous winds and s 0 data represent the
same geophysical information, namely, ocean surface
wind stress, we expect 2DVAR to produce similar wind
analyses using either data source. If this is correct, sep-
arate sets of lambda weights for ambiguous wind and
s 0 data that produce similar analyses should exist. To
determine such lambda weights for ambiguous winds
and s 0 data, we vary the lambda weights, and examine
the misfit of the resulting analysis to the median filter–
selected ambiguity.

In these examples, we vary the lambda weights, but
the comparisons cannot tell us the optimal weights. A
comparison with independent data would be needed for
that. Note that differences between wind-based and s 0-
based analyses will also arise for other reasons. First,
quality control decisions made for s 0 and wind data
may result in different data being used. Second, WVCs
with no ambiguities may contain valid s 0 data. Third,
the ambiguous wind observation loss function, JAMB, is
an approximation to the s 0 data loss function (JNRCS)
(cf. Figs. 1a and 1b). The first two reasons will only
affect a small fraction of the data presented to 2DVAR
while the third reason may effect all data to a small
degree. With respect to the second reason, note that a
single s 0 value is not sufficient to infer a set of am-
biguities but is sufficient to refine the background wind
in 2DVAR. With respect to the third reason, the s 0 loss
function (JNRCS) will permit a wider variety of wind
directions and a smaller range of wind speeds in the
minimizing analysis compared to the ambiguous winds
loss function (JAMB), because of the shapes of the func-
tions surfaces. That is, JNRCS has an annulus of minimum
values (all wind directions) with secondary local min-
ima embedded while the minima in JAMB are more clear-
ly separated in direction. To maximize the similarity of
JAMB and JNRCS we do not use dual-ambiguity processing
in these experiments.

To evaluate the analysis fit to the data, we use the
rms wind speed difference between the 2DVAR analysis
interpolated to NSCAT WVCs and the median filter–
selected ambiguity. For two North Atlantic cases, Hur-
ricane Lili in the western Atlantic on 19 September 1996
and a cyclone west of Ireland on 27 October 1996, anal-
yses using ambiguous winds and s 0 data were created
using a range of lambda weights. In these experiments
a 18 3 18 grid over an area 208 latitude 3 208 longitude
is centered over an NSCAT data swath. The background
field is linearly interpolated in time to the average time
of the NSCAT data from 6-hourly NCEP 1000-hPa wind
analyses. The lm for background constraints are held
fixed for all analyses at

T T(l , l , l , l , l ) 5 (1, 1, 4, 1, 16) .VWM LAP DIV VOR DYN

The minimizations were allowed to run until the gra-
dient test was satisfied (with e 5 1023). The lambda
weights used for the winds and s 0 analyses are

lAMB,NRCS

1 1 1 1 1
5 , , , , , 1, 4, 16, 64, 256, 1024.

1024 256 64 16 4

Smaller lambda weights for scatterometer data required
fewer iterations to reach convergence (typically 10–30),
and larger lambda weights required more (200–600).
The stronger constraint imposed by larger lambda
weights (.4) often caused the minimization to fail,
since a new search direction could not be found to re-
duce the cost function any further. Since the minimizer
is solving a problem with multiple minima, many so-
lutions have the potential to be a local minimum. But
the large decrease (.90%) and asymptotic behavior of
the observation cost function values (JAMB or JNRCS) dur-
ing the minimization suggests that dramatically lower
minima probably do not exist.

Figure 5 shows the rms analysis 2 NSCAT observa-
tions difference as a function of lambda weight for both
ambiguous wind (w) and s 0 (s) analyses for the 27 Oc-
tober case. For very small lambda weights, the analyses
of wind and s 0 data are scarcely changed and fit the wind
observations equally poorly (;4 m s21). For large lamb-
da weights (.4), the analyses of wind and s 0 data fit
the wind observations much more closely, and again,
equally (;1.5 m s21). The lower limit of the rms fit is
governed by our choice of lm for the background con-
straints. If the background constraints were weakened
(i.e., smaller lVWM, lLAP, lDIV, lVOR), the fit of the analysis
to wind observations would improve. The lower limit of
rms fit, in this case, is also dependent on the robustness
of the minimizer. The minimizations in analyses with
lNRCS $ 1/4 and lAMB $ 256 fail to converge sufficiently
as mentioned earlier. This explains why the fit to s 0 does
not improve for lNRCS $ 1 in Fig. 5.

To illustrate that ambiguous winds and s 0 data rep-
resent the same information, Fig. 6 shows analyses and
increments for lAMB 5 4 and lNRCS 5 1/4 for the case
of 2230 UTC 27 October 1996. The upper panels show
2DVAR analyses and the lower panels show analysis
increments amplified by 10. The analyses are very sim-
ilar in pattern and magnitude. While the analysis domain
rms vector magnitude is 3.144 m s21 for the wind-based
analysis increments and 2.198 m s21 for the s 0-based
analysis increments, it is 1.856 m s21 for the difference
of the two analyses. Differences between the analyses
are subtle compared to the analysis increments. The cen-
ter of the low is displaced very slightly to the east in
the ambiguous winds analysis relative to the background
and the s 0 analysis. Also, in the region south of Ireland,
winds from the southwest in the background are changed
to more southerly winds in the ambiguous winds anal-
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FIG. 5. The rms fit of analyses to NSCAT wind observations as a function of log10(l) weight for the 27 Oct 1996 case
(rev 1025). Curves for analyses using ambiguous wind (w) and s 0 (s) observations are shown.

ysis (easily seen in the increments, lower panels). This
change produces a circulation pattern around the cy-
clone that is slightly less circular than in the s 0 analysis.
This is very likely due to the difference in the obser-
vation loss functions, that is, that JNRCS tends to allow
any solution within the annulus of minimum values.
Apart from these minor differences, it is clear that wind
and s 0 data, while handled very differently by 2DVAR,
produce nearly the same result given an appropriate
choice of lAMB and lNRCS.

6. Dual-QC ambiguity removal examples

To show the usefulness of 2DVAR with dual QC for
ambiguity removal, we compare our results to JPL am-
biguity removal results based on the NWP-initialized or
‘‘nudged’’ median filter. 2DVAR winds and median fil-
ter winds agree in a large proportion of the WVCs,
usually 95% or more. Note that 2DVAR uses ECMWF
analyses as backgrounds while the JPL median filter is
nudged with NCEP analyses. For a 51-day period, Hen-
derson et al. (2003) present detailed statistical compar-
isons of the 2DVAR versus JPL-selected ambiguities
obtained by using the same NCEP analyses in 2DVAR
as the JPL product. They also present comparisons for
the whole NSCAT mission for the 2DVAR ambiguity
selections based on the ECMWF backgrounds.

In cases of disagreement both sets of winds are still
horizontally coherent. In our synoptic evaluation, we
find 2DVAR winds tend to be more meteorologically
reasonable. Recall that both methods are nonlinear and
have multiple solutions. Because 2DVAR requires dy-
namic consistency and the median filter does not, so-
lutions of the median filter are not necessarily solutions
of 2DVAR. For example, two blocks of winds with
opposite directions can satisfy the median filter, but not
2DVAR.

As a test of our dual-QC procedure we initially pro-
cessed 234 orbits of NSCAT data based on the NSCAT-
1 model function during the period 15 October–5 No-
vember 1996. JPL and 2DVAR ambiguity selection dif-
ferences are predominately at lower wind speeds (Table
1). To further assess the performance of 2DVAR, we
use GOES-8 imagery to locate mesoscale meteorolog-
ical features in the North Atlantic, for the subset of 29
orbits passing over the North Atlantic when the sun
elevation angle was sufficient to make use of the GOES
visible channel (Grassotti et al. 1999). We examined 11
North Atlantic scenes where JPL and 2DVAR ambiguity
selection differed. From the 11 scenes, 29 subregions
were examined in detail. For brevity, we present one of
the subregions below and then summarize the results of
all 29.
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FIG. 6. Comparison of VAM analyses using (left) ambiguous winds (lAMB 5 4) and (right) s 0 observations (lNRCS 5 1/4), valid at 2230
UTC 27 Oct 1996. (top) Analyses and (bottom) analysis increments (analysis minus background times 10). NSCAT swaths are shaded.

TABLE 1. Differences between JPL and 2DVAR ambiguity selection
as a function of wind speed for 15 Oct–5 Nov 1996. The column
labeled N gives the number of comparisons in each wind speed bin.

Wind speed
(m s21) N

Percent
difference

0–2
2–4
4–16

.16

260 521
836 017

5 867 770
142 815

18.379
11.169

3.807
1.438

All 7 107 123 5.141

a. Case of 26 October 1996

At 1314 UTC 26 October 1996 NSCAT passed 308N
traveling toward the equator in the North Atlantic. Dif-
ferences between JPL and 2DVAR-selected ambiguities
occur in small patches near (298N, 358W), (418N,
378W), (458N, 308W), and (578N, 328W). Although
most of the ambiguities agree we focus on one of these
patches of disagreement near a mature cyclone at 418N,
368W. Figure 7 shows ECMWF (magenta barbs) and
2DVAR (black barbs) wind analyses in this area over
an image of GOES-8 IR brightness temperature valid at
1315 UTC 26 October 1996. NSCAT WVC locations
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FIG. 7. ECMWF (magenta barbs) and 2DVAR (black barbs) wind analyses overlaid on GOES-8 IR bright-
ness temperature. NSCAT WVC locations are marked by fine black dots. Blue circles with white centers
mark WVCs where JPL and 2DVAR ambiguity selection differ.

are marked by small black circles, and points where JPL
and 2DVAR ambiguity selection differ are marked by
larger blue circles with white centers. It is interesting
to note several effects of the NSCAT data on 2DVAR
surface wind analysis. The circulation center in the
2DVAR analysis is moved north and east of the center
in the ECMWF analysis. The placement in the 2DVAR
analysis is in better agreement with the satellite image.
Also, the wind speeds around the cyclone are higher
(roughly doubled) in the 2DVAR analysis than in the
ECMWF analysis.

All JPL ambiguities in subregion A of Fig. 7 are
plotted in Fig. 8. The ambiguous winds are consistent
with a cyclone centered at 418N, 368W. Figure 9 shows
JPL and 2DVAR-selected ambiguities for subregion A.
A physically unlikely east–west wind shift exists in the
JPL ambiguities in the northwest quadrant of the storm
(41.58N, 378W) (Fig. 9a). The satellite imagery is more
consistent with the circular wind flow around the cy-
clone center evident in the 2DVAR selected ambiguities
(Fig. 9b). Note that 2DVAR positions the center of cir-

culation $50 km south of the wind shift in the JPL-
selected ambiguities.

b. Summary of all cases with collocated GOES
imagery

The 29 cases where 2DVAR and JPL ambiguity se-
lection differ that were examined include cloudy and
clear scenes, Tropics and midlatitudes, and coastal and
open water regions. The results from each subregion are
categorized by the differences between the JPL and
2DVAR selected ambiguities. Using GOES-8 imagery
and general knowledge of the local wind field from
ECMWF analyses, 2DVAR selected ambiguities are de-
termined to be either 1) clearly improved over JPL se-
lected ambiguities, 2) different from JPL but equally
plausible, or 3) clearly worse than JPL selected ambi-
guities. For reference, 2DVAR-selected ambiguities
were determined to be a clear improvement over JPL-
selected ambiguities for the subregion presented in sec-
tion 6a. For the 29 subregions we examined, 10 sub-
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FIG. 8. All JPL ambiguities and GOES-8 IR brightness temperature in subregion A indicated in Fig. 7. Otherwise
as in Fig. 7.

regions are clearly improved over JPL-selected ambi-
guities; 16 subregions are different from JPL but equally
plausible; and three subregions are clearly worse than
JPL-selected ambiguities. Cases classified as ‘‘equally
plausible’’ often occur when the evidence from the im-
agery is not decisive. For example, sometimes a front
is aligned with a cloud feature in both 2DVAR and JPL
selections but displaced one or two WVCs in the per-
pendicular direction. In other ‘‘equally plausible’’ cases
all ambiguities are inconsistent with the imagery.

7. Concluding remarks

2DVAR provides an alternative method of ambiguity
removal for NSCAT data. In this paper we describe both
2DVAR and its application to NSCAT data. 2DVAR
analyses are used to select ambiguities by choosing the
ambiguous wind closest to the analyzed wind field at
each WVC location. Comparisons between the use of
ambiguities and backscatter in 2DVAR show the near
equivalence of these two data for this purpose and also

demonstrate tuning the lambda weights. Whether using
ambiguities or backscatter, the objective function is
highly nonlinear—multiple solutions are possible. The
analysis tends to settle on the ambiguity closest to the
background field. When the background quality is not
sufficient, the fraction of third and fourth ambiguities
chosen is larger than expected: NSCAT and buoy col-
locations show that more than 90% of selected ambi-
guities should be the first or second ambiguity. This
leads to the concept of ‘‘dual-ambiguities’’ processing
that uses a preliminary analysis based on the two most
likely ambiguities as the initial estimate for a final re-
fined analysis based on all ambiguities.

Ambiguity removal using 2DVAR shows promise and
may have advantages over median filter techniques.
While JPL and 2DVAR ambiguity selection differ for
only ;5% of WVCs, the differences tend to occur in
patches. Patches of poorly selected winds can be more
harmful to analysis and forecasting systems than scat-
tered errors if not properly quality controlled. In ;30%
of the cases examined, 2DVAR selected ambiguities are
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FIG. 9. (a) JPL and (b) 2DVAR selected ambiguities. Otherwise as in Fig. 8.

a clear improvement over JPL selected ambiguities. In
;60% of these cases, there was either insufficient in-
formation to determine which choice was more likely
or a reasonable solution was not present in the ambi-
guities. In the remaining ;10% of these cases, the JPL-
selected ambiguities are preferred. Note that 2DVAR
used ECMWF backgrounds and JPL used NCEP back-
grounds. In a companion article, Henderson et al. (2003)
investigate the effect of the choice of background, and
process the entire 9-month mission.

Ambiguity removal remains a difficult problem in a
small but important percentage of cases involving fronts
or small mobile storms associated with positional errors
in the background field and/or rain contamination. Since
a background field is required for effective ambiguity
removal, positional errors in the background field can
have a substantial effect on ambiguity selection. Scat-
terometer data might be used to correct such errors using
the ‘‘feature calibration and alignment’’ technique
(Hoffman and Grassotti 1996; Nehrkorn et al. 2003).
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TABLE A1. Scales and operators for the background constraints.

m Sm R m Qm

VWM
LAP
DIV
VOR
DYN

T22L4

T22

T22L2

T22L2

T24L2

V
(¹2u, ¹2y)
= · V
2= · k 3 V
]z/]t

—
—
V
k 3 V
2(z 1 f ) V 2 k 3 F

Rain contamination should be identified and removed
before ambiguity removal. For NSCAT, the effect of
removing flagged WVCs on ambiguity removal using
2DVAR was generally found to be small by Grassotti
et al. (1999), but occasionally large differences result
from eliminating just one WVC. For SeaWinds, rain
effects seem to be more important. The first SeaWinds
on QuikSCAT flies alone but several innovative rain
flags have been developed (Jones et al. 2000; Mears et
al. 2000; Boukabara et al. 2002). The advanced scanning
microwave radiometer aboard ADEOS-2 should provide
an accurate rain estimate for the second SeaWinds, being
readied for launch at the time of this writing.
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APPENDIX A

Calculation of the Background Constraints

The background constraints of section 3b are all for-
mulated as

1
2J 5 [R (V ) 2 R (V )] dA. (A1)m E m a m bSm A

Several of the operators R m are put in the form,

R 5 = ·Q. (A2)

In numerical experiments, we found that this version of
the Laplacian leads to an instability in the minimization.
Instead the Laplacian is calculated at each grid point
and then JVWM and JLAP are calculated in the same way,
by averaging four adjacent gridpoint values to estimate
the value at the center of the grid box (section c, ap-
pendix A). The background constraints and scales are
specified in terms of Sm, R m, and Qm in Table A1. Here
f is the Coriolis parameter, and F is the surface friction
term in the momentum equation. Other terms in Table
A1 are defined in section 3b.

The definitions of the Qm for JDIV and JVOR follow

immediately from the definitions of the R m and the vec-
tor identities. To compute the dynamic constraint and
to determine the QDYN, we start with the equations from
Bourke et al. (1977) for the time rate of change of vor-
ticity. We then eliminate horizontal (but not surface)
friction and vertical advection terms. Horizontal friction
is negligible at synoptic scales. Formally the vertical
velocity in sigma coordinates is zero at the surface. The
friction term F is calculated as in H84. An improvement
would be to use the Louis (1979) boundary layer model
based on Monin–Obukhov similarity theory (Monin and
Obukhov 1954), and the Charnock (1955) surface
roughness relationship. One would have to assume neu-
tral stability, but the effects on ambiguity removal of
this assumption would be small (Hoffman and Louis
1990).

a. Grid organization

In our implementation the grid is specified in terms
of longitude and latitude denoted for convenience by
the variables x and y, respectively. We evaluate all the
functionals over a rectangular region in x and y. How-
ever, the data acceptance window for evaluating the Jo

terms and the integration domain for evaluating the Jb

terms might be specified separately. For both x and y
there is a starting location, an increment d, and a number
of grid boxes n. These grid boxes are numbered from
1 to n and the corresponding grid points are numbered
from 0 to n. To evaluate some of the finite difference
operators and to allow higher-order horizontal inter-
polation, a boundary zone one grid box wide is added
to the grid. The gridpoint indices therefore run from 21
to n 1 1, and the boundary grid boxes are numbered 0
and n 1 1. Schematically,

Grid box 0 1 2 · · · n n 1 1

Grid point 21 0 1 2 · · · n21 n n 1 1

Grid points 0 and n at the integration boundary may be either
active or passive, that is, allowed to vary during the minimization
or held fixed. If they are held fixed, they are part of the boundary.
In the experiments reported here they are active and part of the
control vector. The domain may be periodic in the x direction. In
this case grid points i and i 1 2p/d are the same. Our imple-
mentation does not allow pole points.

b. Finite differencing

Simple finite difference forms are used. If the com-
ponents of Q are (p, q), then in spherical geometry,

tanf
= · Q ø p 1 q 2 q, and (A3)x y a

=q 5 (q , q ), (A4)x y

where for any p and q,
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p 2 p q 2 qi11, j i21, j i, j11 i, j21p 5 , q 5 . (A5)x,i j y,i j2a cos(y )dx 2adyj

These finite difference forms are applied directly at a
grid point to evaluate z. However, the R are evaluated
at the center of the grid box. Instead of applying (A5)
directly in (A3) at the grid points and then averaging,
we apply (A3) at the center of the grid box. We evaluate

by first averaging in y and then differencing in x.px

The overbar indicates a value at the center of the grid-
box. Similarly, we evaluate by first averaging in xqy

and then differencing in y. For q, we again take the
average of the corner gridpoint values.

c. Evaluation of integrals

All integrals are put in the form of (A1). For JVWM

and JLAP there are two integrals of this form—one for
each wind component. We discretize each integral as

2˜J 5 (DR ) A , (A6)Om ij i j
i, j

where DR̃ij is the estimate of R m(Va) 2 R m(Vb) at the
middle of grid box ij, and Aij is the area of grid box ij.
As mentioned for JVWM and JLAP, the R̃m are estimated
as the average of the four corner gridpoint values. For
the other constraints, the R̃m are estimated as described
in appendix A, section b.

d. The gradient calculation

We identify the best analysis as the minimizer of the
discrete formulation of J. Thus we may easily subsume
the approximation errors introduced by the finite dif-
ference and integration formula into the assumption that
minimizing J provides the optimal analysis. These con-
siderations suggest choosing simple averaging and dif-
ference forms. However, it is vital that once the finite-
difference version of J is chosen, the gradient of J be
calculated as exactly and precisely as possible. In coding
the adjoint it is important to note that some points in
the gridded wind field are not independent. In a global
field points at longitudes 08 and 3608 are the same. Only
one copy would be present in the control vector X.

The calculation of Jb and its gradient is made efficient,
both in terms of calculations and memory, as follows.
Since both the analysis and background fields are grid-
ded, it is possible to evaluate all of the constraints by
sweeping from south to north in latitude. In addition the
total background function may be considered to be the
weighted sum of many partial cost functions, one for
each constraint and each grid box. Since the weights
are fixed and known a priori, it is possible to accumulate
the contributions of these partial cost functions to the
sensitivities of the total background function in the same
sweep over latitude.

APPENDIX B

Response to a Single Ship Observation

Most of the results presented in this appendix are
based on 2DVAR analyses for a single ship at 428N,
508W, observing 30 m s21, from 2108. For these ex-
periments the background field is taken to be totally
calm. The resulting analyses are essentially Green’s
functions, that is, the response of the analysis to a single
impulse. All analyses are done on a grid large enough
that boundary effects should be small. The grid runs
from 2908 to 3308E, and from 248 to 608N. For graphical
output we thinned (or interpolated) the analysis grid to
18 resolution in the window 3028–3228E and 358–508N.
Most results are for

Tl 5 (l , l , l , l , l , l )CONV VWM LAP DIV VOR DYN

T5 (20, 1/4, 1, 4, 1, 16) ,

and the single ship observation. These l values are iden-
tical to those used elsewhere except that JVWM is given
a weight of 1/4 instead of a weight of 1. Therefore,
these experiments are similar to those in H84 except
that less weight is given to the background, resulting in
somewhat larger analysis increments. However, results
of the current experiments are somewhat at odds with
the earlier conclusions because H84 was overly opti-
mistic about the convergence of the 2DVAR minimi-
zation and did not always use sufficient iterations in
high-resolution experiments.

Results for the current nominal case are given in Fig.
2. The 2DVAR response is elongated in the direction
of the wind observation, and at sufficient distance in
the perpendicular direction, there is a return flow, most
significantly to the northwest. The response is nearly 20
m s21 at the observation location.

a. Effect of grid resolution

Runs were made with grid increments of 28, 18, 1/28,
1/48, and 1/88 using various methods of initialization
and stopping criteria. For resolutions from 18 to 1/88 the
solutions are nearly the same. That is, if everything else
is fixed (weights, data, domain, . . . ), 2DVAR produces
the same answer independent of resolution, if it is al-
lowed to iterate sufficiently. The 28 solution has some-
what jagged contours and exhibits less return flow, but
is similar to the higher-resolution solutions. In Fig. 3
differences with respect to the 1/88 solution are dis-
played. Clearly, the solutions obtained are approaching
a limit as the resolution is increased. Differences are
concentrated at the observation location. These differ-
ences are small and in obtaining these results it is critical
that the 2DVAR minimization has converged.

b. Convergence of the minimization

The reason for the slow convergence of the 2DVAR
minimization at high resolution is illustrated by Fig. 4.
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This shows the results at 1/28 resolution, beginning with
a zero initial estimate, after 25, 50, 100, and 200 iter-
ations. 2DVAR initially attempts to fit the ship obser-
vation locally. At any iteration, if a grid point currently
has a zero analysis wind increment (relative to the back-
ground) and if all its neighbors do also, then all the
constraints are perfectly satisfied and there will be no
change during the next iteration. As a result the pattern
of the solution slowly expands and grows during the
iteration.

Many iterations were needed to show that the nu-
merical solution is approaching a limiting (presumably
true) solution. However for practical purposes it is suf-
ficient to iterate 25 times at 28, interpolate to 18, iterate
25 more times, and continue this process to the desired
resolution. We call this process regridding. Regridding
with only 25 iterates per resolution step provides agree-
ment to the most accurate solution to within 1 m s21 at
resolutions of 1/28 and better, and agreement to the con-
verged solution for the same grid increment to 1 m s21

or better at all resolutions.

c. Sensitivity to the lambda weights

Analyses varying the lambda weights by a factor of
4 were made using 1/28 resolution. Changing the ob-
servation weight changes the amplitude of the response,
but does not change the shape or scale of the response.
Increasing the filtering and dynamic constraints gives a
solution of larger spatial scale, with smaller amplitude
and less return flow to the right and left of the wind
observation. Decreasing the weight given the fit to the
background provides a generally bigger response of the
same shape, but larger spatial scale, relative to the nom-
inal case.

The half-width at half-height of the 2DVAR response
to a single observation might be used to define the ef-
fective resolution of the analysis. This resolution is con-
trolled by the weight given the filtering and dynamic
constraints relative to the background constraint. On the
other hand, the amplitude of the 2DVAR response can
be controlled by varying lCONV. For the nominal case
changing some of the lm by a factor of 4 results in a
25%–30% change in amplitude or scale of the response.

In general, eliminating a constraint increases the rel-
ative observation weight and hence the amplitude of the
analysis. Eliminating the divergence and vorticity pen-
alty functions gives a solution of similar spatial scale,
with larger amplitude and greater return flow to the right
and left of the wind observation. Eliminating the dy-
namic constraint results in a less elongated solution, less
return flow, and larger amplitude at the observation lo-
cation. Eliminating both the divergence and vorticity
penalty functions and the dynamic constraint gives a
very symmetric pattern with no variation in wind di-
rection. In this case the problem for each velocity com-
ponent is effectively decoupled. In the cases without the
dynamic constraint, there is no dependence on the Cor-

iolis parameter or indeed on location, and the solutions
are symmetric about the line defined by the observed
wind vector.

d. Effect of interpolation

We found that bilinear interpolation is adequate for
most purposes. Comparing experiments in which the
observation location is a grid location to experiments
in which the observation is in the interior of a grid cell
allows us to differentiate the effects of errors of inter-
polation to the observation location in evaluating Jo

from the effects of finite-difference errors in evaluating
Jb. Bilinear interpolation errors are the same size or
smaller than finite-difference resolution errors for grid
sizes larger than 1/28. Cubic interpolation errors are
small compared to the effects of finite difference errors
for all grid sizes examined.

e. Solutions with two observations

A second observation at 458N, 508W, of 27 m s21

from 3508 is added to our nominal experiment. The two
observations are similar to the two critical observations
close to the center of the QEII storm studied by Hoffman
(1982). The response of 2DVAR to each observation
by itself is analogous to the results of the nominal case.
That is, the response is aligned with the observed wind
direction, and is proportional to the observed wind
speed. The solution due to two observations is quali-
tatively in agreement with, but stronger than, the sum
of the two solutions found for each observation sepa-
rately.
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