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ABSTRACT: An observing system experiment was conducted to assess the impact of wind products derived from the

Cyclone Global Navigation Satellite System (CYGNSS) on tropical cyclone track, maximum 10-m wind speed Vmax, and

minimum sea level pressure forecasts. The experiment used a global data assimilation and forecast system, and the impact of

bothCYGNSS-derived scalar and vectorwind retrievals was investigated. TheCYGNSS-derived vector wind products were

generated by optimally combining the scalar winds and a gridded a priori vector field. Additional tests investigated the

impact of CYGNSS data on a regional model through the impact of lateral boundary and initial conditions from the global

model during the developmental phase of Hurricane Michael (2018). In the global model, statistically significant track

forecast improvements of 20–40 kmwere found in the first 60 h. TheVmax forecasts showed some significant degradations of

;2 kt at a few lead times, especially in the first 24 h. At most lead times, impacts were not statistically significant.

Degradations in Vmax for Hurricane Michael in the global model were largely attributable to a failure of the CYGNSS-

derived scalar wind test to produce rapid intensification in the forecast initialized at 0000 UTC 7 October. The storm in this

test was notably less organized and symmetrical than in the control and CYGNSS-derived vector wind test. The regional

model used initial and lateral boundary conditions from the global control and CYGNSS scalar wind tests. The regional

forecasts showed large improvements in track, Vmax, and minimum sea level pressure.

KEYWORDS: Atmosphere; Tropical cyclones; Satellite observations; Data assimilation; Numerical weather

prediction/forecasting

1. Introduction

Tropical cyclones (TCs) are one of the most economically

destructive and deadly weather events (WHO 2020; WMO

2020). As a result, intensive research has been undertaken to

improve tropical cyclone forecasts (e.g., Leroux et al. 2018 and

references therein). Unfortunately, TC track and especially

intensity (e.g., maximum 10-m wind speed Vmax) have proven

difficult to forecast. While track forecasts have improved in the

past several decades, improvements in Vmax have been more

difficult to achieve. This difficulty is due in part to the fact that

TCs frequently develop in the often observation-sparse tropi-

cal oceans. Hence, a major task for atmospheric science is to fill

in the gaps of the global observing system, especially in the

vicinity of developing TCs over the tropical oceans.

Given the remoteness of these regions, frequent in situ ob-

servations are not feasible. Observational data from recon-

naissance missions can be obtained in some cases, but are not

continuously available. Instead, the key to better observations

of all phases of TC development is satellite-based remote

sensing. The global satellite-based observing system is cur-

rently primarily composed of instruments on geostationary and

polar-orbiting satellites that measure visible, infrared, and

microwave radiation. These observations are used in a variety

of ways to improve diagnosis and prognosis of TCs. For

instance, the intensity of a TC has to frequently be estimated in

the absence of in situ measurements using visible and infrared

satellite imagery to detect patterns in the central dense over-

cast and eye structure (Dvorak 1984; Velden et al. 2006). This

method has been continually evolving since first pioneered in

the 1970s and is still used extensively at TC forecast centers

such as the National Hurricane Center (NHC) and the Joint

Typhoon Warning Center (JTWC). In addition, prognosis of

global weather patterns has been improved over the last

several decades by ingesting satellite-based radiances into

global and regional data assimilation systems at numerical

modeling centers around the world (Kalnay 2002). This is

especially beneficial where in situ observations have tradi-

tionally been sparse (e.g., the Southern Hemisphere and over

the open ocean).

Other satellite-based sensors measure the refraction of radio

signals emitted by Global Navigation Satellite System (GNSS)

satellites as they pass through the atmosphere, a technique

known as radio occultation. This occurs when a receiving sat-

ellite rises or sets below Earth’s limb with respect to the GNSS

transmitter. One benefit of exploiting radio occultation for TC

forecasts is that radio waves at GNSS frequencies are mini-

mally affected by clouds and precipitation, making it a prom-

ising technique for further improvement of TC forecasts.

Research on the impact of radio occultation observations on

TC forecasts has so far yielded mixed results and has generally

focused on the impact of limited radio occultation datasets for

individual TC cases (e.g., Huang et al. 2005; Kuo et al. 2009;
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Huang et al. 2010; Liu et al. 2012; Anisetty et al. 2014; Chen

et al. 2015; Phunthirawuthi et al. 2016).

GNSS signals can also be used to measure the reflection of

the signals off Earth’s water surfaces. Through the principles of

reflectometry, the strength of forward-scattered GNSS signals

can be related to the surface roughness of water and therefore

near-surface wind speed. Generally, a weaker received signal is

indicative of a rougher water surface and stronger near-surface

winds (i.e., more scattering of the transmitted signal). For ex-

ample, the receivers aboard the Cyclone Global Navigation

Satellite System (CYGNSS) are designed to gather reflections

from radio signals emitted by global positioning system (GPS)

satellites from water surfaces on Earth (Ruf et al. 2013).

CYGNSS is a constellation of eight low-Earth-orbit small

satellites with orbits designed to maximize coverage and

sampling frequency between 388N and 388S latitude, ideal for

monitoring TC development, intensification, and decay (Ruf

et al. 2017). As in the case of radio occultation, the GPS radio

signals penetrate clouds and precipitation, offering unique

access to the near-surface environment of TCs.

While CYGNSS-derived near-surface wind speeds can be

helpful for diagnosis and prognosis of weather over otherwise

sparsely observed oceans, further information can be gath-

ered by applying a two-dimensional variational method

(VAM) to derive vector (i.e., directional) winds. Vector

wind fields are important because they provide information

about near-surface divergence, convergence, and vorticity.

This method was pioneered by Hoffman (1982, 1984) in

order to resolve the inherent wind-direction ambiguity in

retrieved scatterometer winds by optimally combining scatter-

ometer scalar wind retrievals with an a priori estimate of wind

direction. The approach has been used to produce optimal

wind field analyses (Leidner et al. 2018) and climatologies

of surface wind speeds over sparsely observed oceans (Atlas

et al. 1996, 2011).

The purpose of this study is to investigate the impact of

CYGNSS-derived near-surface scalar and vector winds on TC

forecasts in global and regional assimilation and forecast sys-

tems. To do this, we used a technique known as an observing

system experiment (OSE), also commonly known as a data

denial experiment. In an OSE, two types of tests are con-

ducted: 1) a control test in which a common suite of observa-

tions is assimilated and 2) further experimental tests that add

or remove the types of observations under study. To the au-

thors’ knowledge, the only study to date to attempt a similar

analysis for CYGNSS looked at the impact of CYGNSS-

derived scalar winds on Hurricanes Harvey and Irma in 2017

(Cui et al. 2019). That study used the regional Hurricane

Weather Research and Forecasting (HWRF; Biswas et al.

2017) Model to produce 126-h forecasts from analyses opti-

mized using the Gridpoint Statistical Interpolation (GSI) hy-

brid ensemble three-dimensional variational data assimilation

system (3DEnVar). When CYGNSS observations were

added to a control test, improvements were found in 38% of

Harvey track, maximum wind speed Vmax, and minimum sea

level pressure (MSLP) forecasts. Irma forecasts were im-

proved 48% of the time for track, 37% of the time for Vmax,

and 44% of the time for MSLP. Modest improvements in the

TC core structure were also found for some forecast lead

times, especially through better portrayal of vortex circu-

lation asymmetries.

In addition, prior to the launch of CYGNSS, several studies

investigated the impact of simulated CYGNSS-derived winds

using regional observing system simulation experiments (OSSEs;

McNoldy et al. 2017; Zhang et al. 2017; Annane et al. 2018;

Leidner et al. 2018). An OSSE is based on the same principle as

an OSE, but uses observations derived from a simulated atmo-

sphere to test observations that are not yet available (e.g.,

Hoffman and Atlas 2016). The four CYGNSS OSSE studies

previously cited used a regional OSSE system in which the

HWRF limited-area model was used to produce TC forecasts

using the simulated observations. McNoldy et al. (2017) and

Zhang et al. (2017) studied the impact of scalar winds and found

some improvements in analyses and forecasts of track, Vmax,

and storm structure. McNoldy et al. (2017) suggested that

adding a directional component may provide further im-

provements. Annane et al. (2018) found positive impacts for

both scalar and vector winds, especially when cycling every

3 h as compared with 1- or 6-h cycling. Leidner et al. (2018)

found more consistent improvement in Vmax (;2–5 kt) than

track forecasts, with vector winds more helpful than scalar

winds for the representation of surface wind field structures.

Without the directional wind components, analyses were

more susceptible to dynamic imbalances and storm structure

asymmetries.

The present study differs from previous similar studies in

that it conducted data impact tests in the context of a global

OSE and with a larger forecast sample size. CYGNSS-derived

scalar and vector winds were assimilated into an experimental-

resolution version of the National Centers for Environmental

Prediction (NCEP) operational global analysis and forecasting

system. In addition, the HWRF model was used to provide

further high-resolution results. The HWRF analysis and fore-

cast system used initial and lateral boundary conditions from

the global analysis and forecasting system.

Section 2 describes the method used for this study, including

details about themodeling and analysis system, CYGNSS data,

and experiments. Global and regional model results are dis-

cussed in section 3. Main conclusions and future work are

discussed in section 4.

2. Method

a. Atmospheric modeling and analysis system

This study was conducted by running week-long global

forecasts using an experimental version of NCEP’s Global

Forecast System with Finite-Volume Cubed-Sphere dynamical

core (FV3-GFS). Forecasts were initialized with analyses

generated using the GSI within the Global Data Assimilation

System (GDAS). The GSI employed a hybrid ensemble four-

dimensional variational assimilation method (4DEnVar), which

generated background error estimates using a 20-member en-

semble forecast. Analyses were generated at 0000, 0600, 1200,

and 1800UTC each day from 15 September to 15October 2018.

Assimilation cycles in September were used for model spinup.
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Global forecasts were initialized at 0000 UTC each day from

1 October to 15 October and run for 168 h. Producing only one

forecast per day was done to avoid the issue of serial correlation

since forecasts tend to be correlated with prior forecasts

(Aberson and DeMaria 1994).

Observations were assimilated in 6-h windows centered on

the analysis time (63 h). All observations assimilated in the

operational configuration (i.e., temperature, moisture, pres-

sure, u wind, y wind, radio occultation, and satellite radiances)

were also assimilated in our experiment. CYGNSS-derived

scalar winds were assimilated using a preexisting forward op-

erator designed for wind speed. CYGNSS- and VAM-derived

vector winds were assimilated using a preexisting forward op-

erator designed for wind reports from ships. The forward op-

erator for wind speed assigned the observation height at 20m

above the surface, which represents a small incompatibility

with CYGNSS-derived wind data, which are generally treated

as 10-m winds. The forward operator for vector winds used the

observation height of 10m.

The experimental versions of the FV3-GFS and GDAS used

in this study were of lower resolution than the operational

configuration. The FV3 core configures forecast output into a

cube with six equal sides; the resolution is denoted by the letter

C, followed by the number of horizontal and vertical grid

points on each face of the cube. Specifically, the experimental

FV3-GFS used in this study was of C384 resolution (3843 384

grid points on each cube face;;27-km horizontal spacing) and

the 20-member ensemble forecasts in the GDAS were of C192

resolution (;50-km horizontal spacing). In comparison, the

operational FV3-GFS in November 2019 was of C768 (;13-km

horizontal spacing) and the 80-member ensemble forecasts in

the GDAS were of C384 (;27-km horizontal spacing). Both

experimental and operational models used the same 65 vertical

levels. The lower resolution in the global model reduced its

ability to accurately reproduce the Vmax of a strong TC but

should not greatly impact the accuracy of track forecasts (e.g.,

Mueller et al. 2020).

To address the resolution challenge, we used the operational-

resolution HWRFModel to simulate HurricaneMichael during

its developmental phase using the experimental-resolution FV3-

GFS output for lateral boundary and initial conditions. We used

the H219 version of the HWRF system (Biswas et al. 2018). The

HWRF was composed of three domains: 1) a fixed 77.28 3 77.28
parent domain with 13.5-km grid spacing, 2) a vortex-following

17.88 3 17.88 middle domain with 4.5-km grid spacing, and 3) a

vortex-following 5.98 3 5.98 inner domain with 1.5-km grid

spacing. Although the parent domain was fixed during a given

forecast, its location was updated at each cycle to better capture

the large-scale features surrounding the TC. On the other

hand, the two nested domains were centered on the TC vortex

and therefore moved during the forecasts. There were 75

vertical levels with a 10-hPa model top for each domain.

Comprehensive details about the H219 system can be found

in Biswas et al. (2018).

b. CYGNSS data and processing

The raw scattered GPS radio signals collected by CYGNSS

receivers are first transformed into the Level-1 observables

normalized bistatic radar cross section and leading-edge slope

(Gleason et al. 2016, 2019). These Level-1 quantities are used

to retrieve the Level-2 estimates of 10-m winds (Clarizia and

Ruf 2016b). The geophysical model functions (GMFs; Ruf and

Balasubramaniam 2019) used to map between Level-1 and

Level-2 data are different for two sea states: fully developed

seas (FDS; characterized by mature periodic waves without

rapid changes in wind or sea state) and young seas with limited

fetch (YSLF; characterized by rapidly changing wind and sea

state, more common near stormy weather). We chose to use

winds retrieved using the FDS algorithm since 1) FDS condi-

tions prevail over much of the global ocean surface and 2) high-

wind areas typical of YSLF conditions currently make retrievals

difficult. The CYGNSS version-2.1 Level-2 data used in this

study were obtained through the Jet Propulsion Laboratory’s

Physical Oceanography Distributed Active Archive Center

(PODAAC; https://podaac.jpl.nasa.gov/dataset/CYGNSS_L2_

V2.1). Figure 1 shows the progression of CYGNSS coverage

for three assimilation cycles.

A limiting factor for the utility of CYGNSS data is that the

relationship between surface roughness and wind speed be-

comes more complex at higher wind speed and surface

roughness thresholds. For example, GMFs clearly map be-

tween surface roughness and wind speed while wind speeds are

below 15–20m s21 (Ruf et al. 2019). At higher wind speeds,

small changes in surface roughness map to larger ranges of

wind speed estimates; therefore, higher derived wind speeds

are more uncertain and may not be appropriate for assimilation

in this study. Further, there arewell-documented negative biases

in CYGNSS retrievedwind speeds. 15m s21 resulting from the

complex sea states produced by high winds and the localized

nature of such winds. As a result, we discarded all CYGNSS

observations . 15m s21. With the exclusive use of lower wind

speeds, themodulation of reflection by nonlocal swells can be an

issue; however, addressing this issue is an area of active scientific

research and lies outside the scope of this study.

A further challenge to assimilating CYGNSS data originates

in the spatial density of measurements. Each CYGNSS ob-

servation is represented at the point of maximum reflection on

the ocean surface (i.e., the specular point); however, the re-

ceived signal does not come exclusively from the specular

point, but from an elliptical area surrounding the specular

point that is 25–35 km along the major axis, depending on in-

cidence angle (Clarizia and Ruf 2016a,b). The challenge comes

from the fact that observations are collected about every 6 km

along the specular path. This leads to considerable overlap in

successive observations (i.e., adjacent observations sample

much of the same ocean surface area only seconds apart,

leading to correlation between the observations). Using all

these observations without any adjustments risks overfitting

the model state to the observations.

To overcome this issue, we inflated observation errors to

lessen the impact of individual observations on the analysis.

Alternatives such as a priori data thinning or superobbing

could be used in subsequent studies. Instead, we ingested all

observations, but inflated observation errors by a factor of 5 to

account for observation correlation and the mismatch between

the high-resolution dataset and the lower-resolution data
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assimilation system (i.e., representativeness error). The infla-

tion factor was the result of sensitivity tests that compared the

root-mean square (RMS) error of post-analysis residuals (ob-

servation minus analyses) from VAM analyses using thinned

data (independent samples) with VAM analyses that fit all of

the data (no thinning; correlated observations) with inflated

observation errors. The RMS post-analysis residuals using

thinned and not-thinned CYGNSS retrievals were equivalent

when the observation error used for the not-thinned data were

5 times as large. Because the observation gross error quality-

control algorithm in GSI was impacted by the supplied ob-

servation error, the rejection thresholds for CYGNSS were

adjusted to accommodate the increased observation error and

to roughly match the rejection rate of other ocean surface wind

data types (i.e., typically 1%–5%).

c. VAM details

Since this study investigated the impact of CYGNSS-derived

vector winds in addition to scalar winds, we implemented a

two-dimensional VAM to derive a vector wind field. TheVAM

created the vector wind field by optimizing the combination of

Level-2 scalar winds and an a priori wind vector field. The wind

field was then interpolated to the CYGNSS specular point lo-

cations. Hoffman et al. (2003) provides an in-depth description

of this method.

In this study, the a priori wind fields used with the VAMwere

analyses from the operational GFS. At the time of the experi-

ment (September–October 2018), the operational GFS used the

Global SpectralModel (GSM) core. Since theGSMand the FV3

used in this study are different dynamical cores, we deemed that

the GSM wind field was independent from the FV3 state.

d. Experimental design

To investigate the impact of CYGNSS-derived wind obser-

vations on TC forecasts, we conducted three main tests in the

global modeling system that 1) assimilated all operationally

assimilated observations (CTL), 2) assimilated control observations

plus CYGNSS-derived near-surface scalar winds (CYGSPD),

and 3) assimilated control observations plus CYGNSS-derived

near-surfaceVAMvector winds (CYGDIR). CTL andCYGSPD

were supplementedwith higher-resolutionHWRF forecasts using

the global forecasts as the source forHWRF initial conditions and

lateral boundary conditions. CYGNSS data were not assimilated

directly in HWRF in these supplemental tests. These tests are

referred to as HWRF_CTL and HWRF_SPD, respectively.

e. Verification

Forecast verification was based on best-track data from the

NHC HURDAT-2 database (Landsea and Franklin 2013) and

the JTWC database (Chu et al. 2002). The TCs used are Leslie,

Michael, and Nadine in the North Atlantic Ocean; Rosa,

Sergio, and Tara in the eastern PacificOcean; and Kong-Rey in

the western Pacific (Fig. 2). All TCs were from October 2018.

These best-track data represented TC location in increments of

0.18 latitude–longitude, Vmax in increments of 5 kt, and MSLP

in increments of 1 hPa.

Data for global forecast verification came from theGeophysical

Fluid Dynamics Laboratory’s (GFDL) vortex tracker embedded

within the FV3-GFS and GDAS experimental system. The

tracker was applied to the 0.258 3 0.258 (;27km) forecast output

grid. Known existing TCs were tracked using TC Vitals files in-

cluded in the experimental systemandused in operations.Data for

regional model verification came from the GFDL vortex tracker

applied to a regridded version of the parent 13.5-km domain. The

GFDL vortex tracker provided TC location in increments of 0.18

latitude and longitude, Vmax in increments of 1kt, and MSLP in

increments of 1 hPa for both global and regional model forecasts.

Verificationmetrics presented in this study were track,Vmax,

and MSLP errors. MSLP errors were presented for HWRF re-

sults only. To determine whether global CYGSPD or CYGDIR

impacts were statistically significant, we used a paired t test with

95% confidence intervals (Hamill 1999; Gilleland et al. 2018).

Any averaged difference (with respect to CTL) that fell outside

FIG. 1. Progression of CYGNSS coverage for three successive

analysis times: (a) 0000 UTC 7 Oct, (b) 0600 UTC 7 Oct, and

(c) 1200 UTC 7 Oct. Assimilation windows are 63 h centered on

the respective analysis times. Individual points represent obser-

vations at specular points. Because of the scale of the plots, dots

appear to form lines, which are known as specular point tracks.
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these intervals was statistically significant. The sample size of

HWRF Hurricane Michael forecasts (six forecasts) was insuffi-

cient to assign statistical significance.

3. OSE results

a. Assimilation statistics

Observation-minus-background (labeled o-b) and observation-

minus-analysis (labeled o-a) statistics for CYGNSS-derived

observations were compared with those of the Advanced

Scatterometer (ASCAT) for every cycle from 15 September

to 15 October 2018. ASCAT is another instrument that de-

termines wind speed and direction using electromagnetic

backscatter from water surfaces and those data are ingested

during operations using an established forward operator. By

comparing CYGNSS assimilation with ASCAT assimilation in

both CYGSPD and CYGDIR, we assessed whether the observa-

tion operators, inflated observation errors, and adjusted gross error

checks were working to assimilate CYGNSS data reasonably.

Assimilated observation counts per cycle for ASCAT during

this periodwere;15 000–20 000 betweenMetOp-A andMetOp-

B satellites and from 130 000 to 250 000 for CYGNSS. Rejection

rates for ASCAT decreased from ;3% relative to the back-

ground to 1.5% relative to the analysis in both CYGSPD and

CYGDIR tests, while CYGNSS rejection rates decreased from

1.5% to 0.5% in CYGSPD and from 0.75% to 0.25% in

CYGDIR (Figs. 3a,d). The lower rejection rates for CYGNSS

data were primarily because the winds were restricted to

#15m s21, and weaker winds had a lower overall rejection rate

than the full spectrum of ocean wind speeds represented in

the ASCAT data. Bias statistics also showed decreases from

o-b to o-a, with ASCAT decreasing from 0.2 to 0.15m s21 in

both tests, while CYGNSS decreased from 0.35 to 0.25m s21 in

CYGSPD and from 0.3 to 0.15m s21 in CYGDIR (Figs. 3b,e).

ASCAT RMS error statistics showed decreases from 1.9 to

1.2m s21 in both tests, whereas CYGNSS RMS error decreased

from 1.75 to 1.4m s21 in CYGSPD and from 1.5 to 1.05m s21 in

CYGDIR (Figs. 3c,f). As with the rejection rate, the lower

overall RMSerror ofCYGNSS innovation and residual statistics

relative to ASCAT partially was a result of the elimination of

CYGNSS winds$ 15m s21. These statistics were averages over

all cycles, and both ASCAT and CYGNSS sometimes exhibited

large cycle-to-cycle variability, most likely due to changes in

global sampling from the nodal precession of ASCAT and

CYGNSS orbits and the variability of observed weather pat-

terns. While such variability was generally larger for CYGNSS

observations, o-b bias and RMS error were reduced for every

cycle for both CYGNSS and ASCAT observations.

b. Global forecast impacts

Globally averaged results showed that assimilatingCYGNSS-

derived near-surface wind speed produced very small ;5-km

(not statistically significant) improvements in initial position at

0 h (Figs. 4a,b). Average (statistically significant) improvements

of 20–40 kmwere evident by 36–54 h. After 60 h, no track results

were statistically significant, with degradations from 96 to 108 h.

The Vmax forecast impacts were not statistically significant, ex-

cept for a significant;2-kt degradation at 6 h (Figs. 4c,d). After

the first 24h, impacts were generally less than 2 kt, with im-

provements common after 108 h.

Vector wind assimilation yielded slightly better results for

track forecasts at longer lead times (Figs. 5a,b). Perhaps the

largest difference relative to CYGSPD impact was that CYGDIR

average track errors were less than CTL after 96 h. Other than

significant improvements at 36 and 54h, impacts (mainly im-

provements)werenot statistically significant.Consistent 60–100-km

improvements were found after 120 h, with forecast sample sizes

FIG. 2. Storm track (lines) and intensity category (colors) for TCs

investigated in the study in the (a) North Atlantic, (b) eastern Pacific,

and (c) western Pacific basins; TC tracks are shown only after 1 Oct

2018 (investigation period) and do not include tracks from September.

Data are obtained fromHURDAT-2 (for Atlantic and eastern Pacific

basins) and JTWC (for western Pacific basin) databases. Black dots

denote TC center location at 0000 and 1200 UTC every day.
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FIG. 3. Statistics for every assimilation cycle forASCAT (black lines), (left) CYGSPD (red lines), and

(right) CYGDIR (green lines) wind retrievals: (a),(d) observation rejection rate; (b),(e) bias; and (c),(f)

rms error. Solid lines denote o-b statistics, and dashed lines denote o-a statistics (repeated in the left and

right columns).
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from 11 to 16. The Vmax impacts were also not statistically sig-

nificant except for ;2-kt statistically significant degradations at

0, 6, 24, and 72h (Figs. 5c,d). The remainder of lead times had

impacts of #2 kt with an equal mix of improvements and

degradations.

Although there were some notable impacts in CYGSPD for

individual TCs (Fig. 6), most impacts were small for most TCs

over most lead times. Among the notable impacts were large

200–500-km degradations for Kong-Rey track forecasts (mainly

from the along-track error component) after 78-h lead time and

large 150–300-km improvements for Tropical Storm Nadine

track forecasts (mainly from the cross-track error component)

after 42-h lead time (Figs. 6a,b). A notable Vmax impact was 10–

20-kt degradation for Hurricane Michael, especially for 48–84-h

lead times (Fig. 6c). The source of this degradation was one

forecast, initialized 0000 UTC 7 October, that is examined in-

depth in the next section. Note that the sample sizes for most

individual storms were very small, so statistical significance was

not calculated for single-storm investigations.

Individual storm statistics for CYGDIR were similar with

some exceptions (Fig. 7). Hurricane Michael track forecasts

were degraded by 50–70 km from 72 to 84 h (Fig. 7a) and Vmax

forecasts were not degraded from 48 to 72 h (Fig. 7b).

Conversely, Tropical Storm Nadine and Hurricane Sergio

track forecasts were improved over all lead times (Figs. 7c,d).

c. Hurricane Michael: Global model

Hurricane Michael was the first category-5 hurricane to

make landfall in the continental United States since Hurricane

Andrew in 1992. After developing as a tropical low in the

western Caribbean Sea, this storm underwent rapid intensifi-

cation as it moved northward through the eastern Gulf of

Mexico. The extreme impact of this storm to life and property

along the U.S. Gulf Coast and the impact of CYGNSS-derived

FIG. 4. Average forecast (top) error and (bottom) error difference statistics for (a),(b) track and (c),(d) Vmax.

Black lines denote CTL, and red lines denote CYGSPD. Asterisks denote statistically significant differences.

Average error differences (CYGSPD2CTL) in (b) and (d) are shown with 95% confidence interval bars. Forecast

sample size is also shown at each forecast lead time.
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near-surface wind speed on Vmax forecasts made it an out-

standing candidate for more in-depth study.

There were four GFS forecasts generated with initial times

prior to Michael’s landfall. These forecasts were initialized at

0000 UTC 7–10 October. In 8–10 October Vmax forecasts, all

three tests (CTL, CYGSPD, and CYGDIR) were similar at

most lead times with some improvements in CYGNSS tests

prior to landfall (Fig. 8). The most striking result was the

degradation in CYGSPD for the 7October forecast from 48- to

84-h lead time. Themagnitude of the degradation was 20–40 kt,

with maximum degradation just prior to landfall in the model

even though CYGSPD Vmax was more accurate than CTL and

CYGDIR at initialization time.

A closer look at the track and Vmax forecasts initialized at

0000 UTC 7 October at the 42-, 48-, and 78-h lead times re-

vealed similar tracks for all three tests and a much weaker

storm in CYGSPD (Fig. 9). All three tests resulted in landfall on

the Florida panhandle at ;84-h lead time, albeit farther west

than the best-track landfall. The storm’s greatest intensification

occurred between 42- and 48-h lead times inCTLandCYGDIR,

but did not occur in CYGSPD. While all three tests had similar

Vmax at 42h, the wind field for CYGSPD was much less sym-

metrical with Vmax located more than 100 km northeast of the

center (Fig. 9b). Furthermore, the CYGSPDMSLP was located

slightly to the west of the storm track center location. Since the

tracker used pressure and geopotential height fields at multiple

levels, this suggests a disorganized storm that was not vertically

stacked in the model representation. In contrast, both CTL and

CYGDIR produced compact wind fields and MSLP collocated

with the tracker centers.

By 48 h, both CTL and CYGDIR were positioned to begin

more rapid intensification, while CYGSPD produced a storm

that was still disorganized with an asymmetrical wind field and

MSLP displaced from the tracker-identified center (Figs. 9d–f).

At this time, all three model depictions showed that Michael

had emerged into the eastern Gulf of Mexico, away from any

possible interaction with land (i.e., Cuba) that might inhibit

intensification. By 78 h, all three forecasts were approaching

FIG. 5. As in Fig. 4, but for CTL (black lines) and CYGDIR (green lines).
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maximum Vmax just prior to landfall (Figs. 9g–i). While

CYGSPD produced a somewhat stronger and more organized

storm than at 48 h, it did not recover from earlier degradations

and consequently did not attain hurricane strength prior to

landfall. Both CTL and CYGDIR produced hurricanes with

Vmax in the eastern two quadrants of the storm.

For observations located within the Fig. 9 field of view, as-

similation of CYGNSS observations reduced the gap between

observation and model from background to analysis at 69% of

observation locations in CYGSPD and 68.7% of locations in

CYGDIR. This is as compared with 71.1% reduced for

CYGSPD and 68.2% reduced for CYGDIR globally, sug-

gesting that CYGDIR assimilation was not negatively im-

pacted near the developing low pressure. CYGSPD bias

reduction was successful at slightly fewer observation locations

near Michael than globally.

d. Hurricane Michael: Regional model

In addition to global models such as GFS, regional hurricane-

specificmodels like theHWRFmodel are frequently used by the

tropical cyclone forecasting community, especially for intensity

forecasts. Thus, the potential benefit of CYGNSS assimilation

into the global model is likely to be realized through the impact

on HWRF forecasts via initial conditions (ICs) and lateral

boundary conditions (LBCs). Thus, we used the CTL and

CYGSPD tests as the source for HWRF ICs and LBCs for six

120-h forecasts of Hurricane Michael (initialized 0000 UTC

7 October 2018–0600 UTC 8 October 2018). The TC vortex

FIG. 6. Average track errors for (a) Kong-Rey and (b) Nadine and (c) average Vmax errors for Michael for CTL

(black) and CYGSPD (red) tests.
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decayed after 96h and could not be tracked, so plots show the

first 96h only. These forecasts covered the development and

strengthening phase of a storm that experienced rapid intensi-

fication. Furthermore, the global CYGSPD test produced a

notable lack of rapid intensification, leading to degraded Vmax

forecasts, as discussed before. These factors guided the choice of

these cycles for the HWRF tests.

Track forecasts improved at every lead time after 0 h,

reaching a maximum at 24h with approximately 40nmi (75 km)

improvements (Fig. 10a). Improvements reduced to 5–10 nmi

(9–18 km) by 72 h. TheVmax andMSLP impacts were similar to

each other, as expected given the dynamic relationship between

central pressure and Vmax (Figs. 10b,c). In the first 36h, impacts

were mainly improvements within 2 hPa and 4 kt. From 42h

through landfall, the improvements increased substantially

to ;18 hPa and 22 kt for MSLP and Vmax, respectively. The

HWRF results with CYGNSS-influenced LBCs and ICs were

far more promising than those from the GFS alone.

4. Conclusions

In this study, we used NCEP’s Global Data Assimilation

System and Global Forecast System in conjunction with the

Hurricane Weather Research and Forecasting Model to in-

vestigate the impact of CYGNSS-derived scalar (CYGSPD)

and vector (CYGDIR) near-surface winds on TC track and

intensity forecasts. The GFS version used in this study incor-

porated the Finite-Volume Cubed-Sphere Dynamical Core

(FV3-GFS), a choice that was meant to reflect the configura-

tion of the GFS as of November 2019. The first 15 days of the

FIG. 7. Average (a) track errors for Michael, (b) Vmax errors for Michael, (c) track errors for Nadine, and (d) track

errors for Sergio for CTL (black) and CYGDIR (green) tests.
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experimental period (15 September–30 September 2018) were

used to spin up the model state with the CYGNSS observa-

tions. The following 15 days (1October–15October 2018) were

used to produce TC forecasts.

All observational data in the GDAS/GFS was assimilated

via the hybrid four-dimensional ensemble variational tech-

nique (4DEnVar), the assimilation method employed in op-

erations during the experimental period. Observations were

assimilated in 6-h windows centered on four daily analysis

times (0000, 0600, 1200, and 1800 UTC). Week-long GFS

forecasts were initialized at 0000 UTC each day to avoid

forecast error serial correlation. The GFS forecasts were used

to provide ICs and LBCs for HWRF forecasts initialized every

6 h from 0000 UTC 7 October to 0600 UTC 8 October for

Hurricane Michael. Additional GFS forecasts at 0600, 1200,

and 1800 UTC were produced to accommodate the HWRF

forecast cycle. The analysis of HWRF results included track,

Vmax, and MSLP.

This study found the following:

1) CYGNSS assimilation statistics were comparable to those

of the Advanced Scatterometer, a similar instrument well

established in operational assimilation cycles. Bias and

root-mean-square error for both CYGNSS tests were

shown to be reduced through assimilation by ratios similar

to ASCAT. Additionally, CYGNSS cycle-to-cycle vari-

ability was larger than that for ASCAT. This suggests

CYGNSS data were properly (although perhaps not opti-

mally) assimilated in the global analysis system.

2) Global track and Vmax forecasts were impacted at all lead

times, although most results were not statistically signifi-

cant. This is not surprising since there are already so many

observations in the global observing system; however,

track forecasts were statistically significantly improved

in CYGSPD from 36- to 54-h lead time and in CYGDIR at

36- and 54-h lead times. The Vmax impacts were even more

subtle, with statistically significant;2-kt degradations at one

lead time in CYGSPD and four lead times in CYGDIR.

3) The impacts for most TC forecasts were mixed with some

improvements and some degradations. TheHurricaneMichael

Vmax forecasts initialized on 7 October revealed large 20–40-kt

degradations in the CYGSPD global model test. This resulted

froma lackof rapid intensification in the 2days prior to landfall.

This, in turn, was traced back to a lack of well-defined structure

in the CYGSPD storm prior to the time when rapid intensifi-

cation actually occurred.

4) HWRF forecasts based on ICs and LBCs from the CTL and

CYGSPD tests showed modest improvements for track

and dramatic improvements for intensity metrics MSLP

and Vmax, especially during the period of rapid intensifica-

tion. The improvements in intensity metrics in the HWRF

system relative to the global model system were not sur-

prising given the intrinsic limitations of the global model’s

lower resolution and TC-specific strengths of HWRFmodel

physics.

It is important to understand how these results fit within the

context of previous attempts to improve TC forecasts by using

CYGNSS data. As mentioned in section 1, previous OSSEs

(Annane et al. 2018; Leidner et al. 2018) using HWRF found

neutral impacts for tracks and some improvements (generally

5 kt or less) for Vmax forecasts for single TC case studies. The

previous OSE (Cui et al. 2019) also used HWRF but fea-

tured different metrics than this study. Its findings of generally

neutral to positive impacts for track and Vmax for two TC cases

were promising. Similarly, the present study found improve-

ments in track forecasts in both global and regional models and

improvements in intensity metrics in the high-resolution re-

gional model. The main difference between the results of this

study and previous studies is the presence of neutral to nega-

tive impacts on Vmax forecasts in the global model, which may

FIG. 8. Time series for Hurricane Michael Vmax forecasts initialized

at 0000UTC (a) 7Oct, (b) 8Oct, (c) 9Oct, and (d) 10Oct for best track

(yellow), CTL (black), CYGSPD (red), and CYGDIR (green).
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FIG. 9. Surface pressure and 10-m wind speed forecasts for (left) CTL, (center) CYGSPD, and (right) CYGDIR at

(a)–(c) 42-, (d)–(f) 48-, and (g)–(i) 78-h lead times from the forecast initialized 0000UTC 7Oct 2018. Also plotted are

best tracks (tan) and CTL (black), CYGSPD (red), and CYGDIR (green) track forecasts with symbols every 6 h.

Assimilated CYGNSS observations are plotted with red dots (o-a larger than o-b) and blue dots (o-a smaller than

o-b).
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be due to HWRF providing superior physical representation of

the TC inner core by virtue of higher resolution and more

appropriate model physics. Any direct comparisons between

previous studies and this study should be considered with

caution. Plenty of methodological differences exist between

them, perhaps most importantly that previous studies assimi-

lated CYGNSS data directly into the HWRF data assimilation

system, while in this studyCYGNSSwas assimilated only in the

global model with the impact on HWRF forecasts due to the

influence of ICs and LBCs.

An important caveat for these conclusions is that the global

modeling and analysis system was run at lower-than-operational

resolution, which was most potentially detrimental for Vmax

forecasts. While track forecast impacts from the global model

tests are likely reliable, caution is warranted for interpretation of

Vmax results. In addition to model representation of fields that

require higher resolution, the physical development of these

fields depend on small-scale dynamics and thermodynamics that

may not be present in the model (Goldenberg et al. 2015). To

help overcome this issue, we used the HWRF at operational

resolution with global model ICs and LBCs, showing a much

more promising outcome.A further caveat is that the gross error

quality control parameters were tuned but not optimized for

CYGNSS observations prior to running the tests. Preexisting

observation operators were used to generate bias and spread

statistics for four assimilation cycles. These statistics were

compared with ASCAT statistics to arrive at gross error quality

control check parameters empirically. Work on further opti-

mizing gross error thresholds for CYGNSS data in the global

systemwill be needed to fully realize the potential benefit of the

data. The last caveat is that only wind speeds # 15m s21 were

assimilated.

As a new observing system, CYGNSS presented some

challenges to the current study, including 1) characterizing

observation error in the context of atmospheric data assimi-

lation systems at very different resolutions (i.e., global vs

nested regional); 2) accounting for serial correlation in the

information content and errors present in the 1-Hz CYGNSS

specular point tracks of retrieved winds; and 3) how to handle

CYGNSS retrieved winds . 15ms21, since the wind speed re-

trieval errors become very large at higher wind speeds. Future

research should address the interplay of CYGNSS information

between global and regional-scale models, devise a more funda-

mental treatment of CYGNSS observation error correlation

within each specular point track, and find approaches to assimilate

CYGNSS wind retrievals in environments with winds. 15ms21.
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FIG. 10. Average HWRF error statistics for (a) track (in nautical

miles), (b) MSLP, and (c) Vmax for HWRF_CTL (black) and

HWRF_SPD (green). Sample sizes shown in blue as N 2 1, where

N is number of forecasts.
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