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ABSTRACT

An investigation is made of the role of the translation of a hurricane in determining the distribution of
boundary layer winds and in the organization of convection. A slab boundary layer model of constant depth
is used to analyze the steady flow under a specified translating symmetric vortex in gradient balance. A
truncated spectral formulation is used, including asymmetries through wavenumber 2. The role of linear
and nonlinear asymmetric effects in the determination of the boundary Jayer response is diagnosed. These
effects are relevant to relatively slowly and rapidly translating hurricanes, respectively.

The analysis is compared to observations of Hurricanes Frederic of 1979 and Allen of 1980, as well as
to other observational and theoretical studies. Allen's translation speed was approximately twice that of
Frederic. It is found that the simple boundary layer formulation simulates the qualitative features of the
wind field observed in Frederic. The distribution of convection in Frederic and Allen compares favorably
with boundary layer convergence diagnosed from the model.

1. Introduction

The structure and evolution of a hurricane are con-
trolled by a complex interaction between convective,
mesoscale and synoptic-scale processes. Convergence
of moisture in the planetary boundary layer is a pri-
mary mechanism for organization of the convection

in the inner core of an intense hurricane (Ooyama, -

1982). The convection, in turn, provides the diabatic
heating necessary to sustain the hurricane. The dis-
tribution of winds in the boundary layer also deter-
mines much of the hurricane’s destructive potential.

A translating symmetric hurricane vortex will have
stronger winds relative to the earth on the right side
of the direction of motion, simply due to the addition
of the translation velocity to the storm circulation.
The asymmetric winds are accompanied by an asym-
metry in boundary layer frictional drag. The asym-
metry in drag forces an asymmetry in boundary layer
winds and convergence, and thus in the hurricane’s
distribution of convection.

This paper investigates the role of the translation
of a ‘hurricane in determination of the distribution
of boundary layer winds and in the organization of
the convection. A simple slab boundary layer model
is used to analyze the steady boundary layer flow
under a translating symmetric hurricane vortex. The
feedback of the induced asymmetric convective dis-
tribution to the structure of the hurricane is not in-
cluded. The results of the analysis are compared to
observational studies of moving hurricanes,

Previous observational and theoretical studies are
discussed in the next section. Section 3 presents the
physical model, with an evaluation of the symmetric

boundary layer flow under a stationary hurricane.
The formulation of a truncated spectral representa-
tion in Section 4 is followed by an evaluation of the
asymmetric flow under a moving hurricane in Section
5. Section 6 presents a simplified quasi-linear version
of the analysis, valid for a slowly moving hurricane.
The role of linear and nonlinear asymmetric effects
in determining the wind and convergence distribution
is diagnosed in Section 7. Section 8 presents a further
discussion of the results.

2. Previous Studies
a. Observations

Recent analyses of the boundary layer winds in
Hurricane Frederic of 1979 (Powell, 1982) have high-
lighted the relationship between the distribution of
winds and convection and the motion of the hurri-
cane. Fig. 1 (Mark Powell, personal communication,
1982) shows the observed isotach distribution in the
boundary layer of Frederic while it was over open
water in the Gulf of Mexico. The data and compos-
iting technique used in deriving the winds are de-
scribed in Powell (1982). In Fig. 1 the winds are ex-
pressed in a coordinate system that translates with
the hurricane at ~5 m s~ toward the NNW, as in-
dicated by the arrow. This translation speed is about
the average for all hurricanes. In the translating sys-
tem the winds are stronger to the left of the direction
of motion than to the right. Powell (1982, his Fig. 9)
found stronger winds to the right, relative to the earth.
In either case the isotach maximum is ahead of the
storm, with maximum winds 45 m s~! roughly 30 km
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FIG. 1. Isotachs of Hurricane Frederic composite relative to
translating hurricane. Dashed line delineates approximate area cov-
ered by Fig. 2. Courtesy of Mark Powell.

in front of the center of the circulation. Hughes (1952)
found maximum winds relative to the ground in the
right-rear quadrant of other hurricanes. It is difficult
to relate his results to the present study, however,
since he used a much coarser analysis.

The highly asymmetric wind field in Frederic is
associated with an asymmetric convective distribu-
tion, as illustrated by the radar presentation in Fig.
2. This figure, prepared by Dave Jorgensen and Frank
Marks (personal communication, 1982), is a time
composite derived from individual radar sweeps at
the 1.5 km level over an interval near the middle of
that covered by the wind composite in Fig. 1. The
dashed line in Fig. 1 delineates the approximate area
covered by Fig. 2. The relationship between boundary
layer convergence, convection and radar reflectivity
is not directly one-to-one. Nevertheless, the broad arc
of high reflectivity [>40 dB(Z)] in Fig. 2 does imply
enhanced boundary layer convergence oriented ahead
of the storm. This broken eyewall is nearly coincident
with the isotach maximum in Fig. 1. The convection
surrounds a nearly circular clear eye. A very similar
pattern of reflectivity was observed in Hurricane
David of 1979 (see Fig. 5, Willoughby et al., 1982)
and in Hurricane Floyd of 1981 (Dave Jorgensen,
personal communication, 1982), which were also
translating at ~5 m s™!. Frederic, during other time
intervals, had reflectivity patterns implying conver-
gence concentrated more in the right front quadrant
(cf. Fig. 8 of Powell, 1982). Hughes (1952) found
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maximum inflow in the right front quadrant. Powell
(1982) found maximum inflow angles in the right rear
quadrant, but did not evaluate the radial wind.

Fig. 3 shows a radar composite of Hurricane Allen
on 7 August 1980. At that time the hurricane’s surface
pressure was in a quasi-steady state, just following a
contraction phase in ‘a concentric eye cycle (Wil-
loughby ef al., 1982). A similar, but less distinct, dis-
tribution of radar reflectivity was evident on 8 August
(Fig. 13 of Willoughby et al., 1982). The hurricane
was translating to the west, in the direction of the
arrow, at ~9 m s !; the radius of maximum wind
(RMW) was ~20 km. The translation speed is about
twice that of Frederic. As in Frederic (Fig. 2), the
convection is concentrated ahead of the storm. There
is a secondary convective feature [35 dB(Z)] in the
left rear quadrant, and an indication of enhanced
convection {30 dB(Z)] in the right front. The clear
eye has an elliptical outline, with the major axis ori-
ented almost normal to the direction of motion.

b. Theoretical studies

The steady asymmetric boundary layer under a
moving hurricane has been studied theoretically by
Myers and Malkin (1961) and Chow (1971). Myers
and Malkin (1961) made a Lagrangian parcel trajec-
tory analysis to deduce the flow under a hurricane
vortex with a specified symmetric pressure distribu-
tion. They implicitly assumed that the hurricane
translated in the absence of a large-scale steering flow.
An empirically determined frictional drag was used,

NORTH

FIG. 2. Hurricane Frederic radar composite from 0135 GMT to
0336 GMT on 12 September 1979. Contours are in dB(Z). Domain
is 120 km X 120 km. Courtesy of Dave Jorgensen and Frank
Marks.
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FIG. 3. As in Fig. 2, but for Hurricane Allen from 1705 GMT
to 2135 GMT on 7 August 1980. -

with nearly equal tangential and normal components
proportional to the square of the wind speed. Myers
and Malkin found maximum convergence in the right
front quadrant for a hurricane moving at ~10 ms™".
When the translation speed was increased from 5 to
10 m s™! the isotach maximum (relative to the earth)
rotated from in front of the storm to the right front.
As the translation speed increased, the maximum in-
flow angle similarly rotated clockwise from in front
to the right front; there was also an indication that
the radius of maximum wind decreased.

Chow (1971), working under the direction of Vic
Ooyama at New York University, made a numerical
integration of the horizontal momentum equations
in Cartesian coordinates translating with the hurri-
cane vortex. As in Myers and Malkin’s analysis, Chow
specified a symmetric pressure distribution and a slab
boundary layer, but with a frictional drag parallel to
the (total) wind. The pressure field was in gradient
balance in a vortex with maximum wind of 42.5 m
s~! at a radius of 40 km. The vortex translated at 10
m s~'. Chow calculated the boundary layer wind and
convergence for cases with and without a large-scale
geostrophic steering current equal to the translation
velocity. In the former case, winds were greater on
the left than on the right, relative to a coordinate
system that translated with the storm; relative to the
earth, the winds were greater on the right than left.
The isotach maximum was in front. Maximum in-
flow and convergence were in the right front quad-
rant. The isotach distribution was very similar to that
of Hurricane Frederic.
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The physical model used in the present study is
very similar to that of Chow (1971). In the present
model, however, a truncated spectral analysis in cy-
lindrical coordinates is used to diagnose the boundary
layer wind field. Although algebraically more in-
volved, this method allows a simple separation andl.
diagnosis of various effects and facilitates interpre-
tation of the results. Particular attention is given to
the positions of the maximum wind, inflow and con-
vergence, and their dependence on the translation
speed of the hurricane. The results will be related to
the observations and theoretical analyses described
above.

3. Physical model: Solution for stationary hurricane

As in Chow (1971), the momentum equations are
solved for a slab boundary layer of constant depth
under an imposed symmetric pressure distribution.
The coordinate system translates with the hurricane
vortex, which is in gradient balance with the pressure
above the boundary layer. In cylindrical coordinates
the radial and tangential momentum equations are

Wy Y o0 00
ar roN or
'_ 2 _ﬁ_la_”) = ,
K(Vu 2T g + Flc,u) =0, (la)
“ar r u r ox
Y ) za_u) -
K(Vv r2+r26>\ + Flc,v) = 0. (1b)

A list of symbols used in the text is given in Appendix
A. The advective and diffusive terms in (1a) and (1b)
are derived in Batchelor (1967, his Appendix 2). The
hurricane vortex is translating with velocity c. In the
present analysis the background geostrophic wind
associated with a large-scale pressure gradient is as-
sumed to equal the translation velocity. Then, ¢ enters
only through the frictional drag F(c, u). Here (u, v)
are the (radial, tangential) components of the velocity
vector u, relative to the translating coordinate system,
in the (r, A) directions. The azimuth A is measured
counterclockwise from the east. The constant Coriolis
parameter f is evaluated at 20°N. The constant coef-
ficient of eddy diffusion is K, and

wal2(,2), 12
ror\ ar] r?*ox?

is the horizontal Laplacian operation. Vertical ad-
vection of momentum into the boundary layer is
small relative to horizontal advection, and is ne-
glected.

The frictional drag F is quadratic and parallel to
the total wind u + ¢ relative to the earth, i.e.,

(2)
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F(c,w) = th la + (3)

cl(u + ©).

The drag coeflicient Cj, is assumed linear,

» = (a + B+ ¢}) X 1073, 4)

where the wind speed is in m s™'. The linear relation
used is that of Deacon (Roll, 1965), where o = 1.1
and 8 = 0.04. The results of this study are not very
sensitive to the choice of @ and 8 within observational
tolerances. The boundary layer depth 4 is assumed
constant. This assumption, as well as the use of a
constant eddy diffusivity, are discussed later in this
section in the context of the numerical solution for
a stationary vortex.

The pressure distribution ¢ = ¢q(r) is assumed sym-
metric and in gradient balance with a specified vortex
with gradient wind v,(r), so that

8¢0 vér
—_— =4 .
a r foge-

)

The dashed line in Fig. 4 shows the gradient wind
profile v, that balances ¢ in (5). The maximum wind
is 42 m s™! at the radius 7. = 40 km. There is a
cubic spline transition zone 30 km wide connecting
the solid body rotation of the inner core to a
(r/ rmax)” 6 profile in the outer vortex, extending to r

= 1300 km.

Differences between the geostrophlc steering cur-
rent and the translation velocity, as well as variations

SYMMETRIC BOUNDARY LAYER
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FIG. 4. Symmetric boundary response to stationary gradient vor-
tex. Upper graph shows gradient wind (dashed line), and boundary
layer wind u , (solid lines). Lower graph shows boundary layer vor-
ticity {o and vertical velocity w, at top of boundary layer.
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in the Coriolis parameter, will force asymmetries in
the wind field (Willoughby, 1979), which are not in-
cluded in the present analysis. When the hurricane
vortex translates, the friction due to the translation
velocity ¢ in (3) induces an asymmetric component
to the flow. Asymmetric convergence, as noted in
Section 2, modifies the distribution of convection and
the structure of the hurricane. Nevertheless, the sur-
face pressure field of a moving hurricane appears
quite symmetric in comparison to the wind (cf.
Hawkins and Imbembo, 1976; Hawkins and Rub-
sam, 1968). Observations in Hurricane Gert of 1982
indicate that the asymmetric part of the geopotential
height had a typical maximum amplitude of 11 m
near the RMW (Willoughby, personal communica-
tion, 1982). A scaling analysis indicates that the forc-
ing near the RMW due to the asymmetry in geopo-
tential may in fact be comparable to that due to asym-
metric boundary layer friction. In any case, whatever
the nature of the asymmetry in ¢, the frictional re-
sponse to a translating symmetric pressure field ¢
= ¢o(r) will have a significant influence on the hur-
ricane’s distribution of boundary layer winds and
convergence. The analysis of the effect of surface pres-
sure asymmetries is beyond the scope of this present
study.

In order to keep the analysis as simple as possible,
a constant boundary layer depth 2 = 1 km is used
in this study, corresponding to the approximate depth
of the mixed layer in the undisturbed tropical at-
mosphere. It is recognized that 2 may in fact vary
strongly with radius near the core of the storm. Ob-
servations are not, however, sufficient to specify the
variation of & with any degree of confidence. In fact,
as the RMW is approached, the boundary layer itself
becomes ill-defined, as the air is pulled up into the
actxve convection. The boundary layer depth of h

= | km is the same as that used by Ooyama (1969)
and Chow (1971) in their numerical simulations. In
the present study, an assumed depth of h = 500 m
was found to lead to excessive radial velocities.
Anthes (1971) found that the use of a vertically-av-
eraged boundary layer model gave radial velocities
a factor of 2 larger than those obtained in a multi-
level model. For the present analysis the complica-
tions of either a multi-level model or a radially vary-
ing layer depth are considered beyond the level of
sophistication required and knowledge of physics
available. The essential conclusions of the present
analysis concerning the dependence of winds and
convergence distribution on the translation speed of
the hurricane would not be expected to be altered by
a more sophisticated boundary layer physics.

If the hurricane is stationary, ¢ = 0 so that the
symmetric pressure field drives a symmetric bound-
ary layer wind ung(r), with 3/6X = 0 in (1). The mo-
mentum equations are solved by integration of (1),
including time-derivative terms (du/dt, not shown) to
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a steady state for a specified ¢(r). A Matsuno two-
step time integration is used. This method (Matsuno,
1966) is second order, with no computational mode.
It has the advantage that the steady-state solution is
neutral. Since the method damps high-frequency os-
cillations in time, instability is manifested by steady
small-scale spatial oscillations (cf., Anthes, 1971). A
time step of 50 s is used. The grid spacing is variable,
with uniform grid interval Ar = 5 km in 0 < r
< 2rpax. In r > 2rq.,, the spacing increases linearly
with radius, with the domain extending to r = 1300
km. The vorticity, {; = r 'd(rve)/dr, and vertical
velocity at the top of the boundary layer, wp
= —hr '9(rup)/dr, are specified to equal zero at the
outer boundary; the symmetric wind u, = 0 at r
= (0. The minimum grid spacing Ar = 5 km > & so
that the assumption that the slab boundary layer is
much thinner than the horizontal scale of motion is
valid. Also, Ar is small enough to resolve the tran-
sition region between the inner and outer domains
of the vortex near ... A nearly steady state for u,
is achieved from an initial gradient vortex in less than
one simulated day.

The steady-state symmetric boundary layer re-
sponse using K = 5 X 10* m? s™! is shown in Fig. 4.
Similar solutions have been derlved by Anthes (1971)
and others. Anthes (1971) also summarized some
previous analyses. The wind is supergradient in- r
< rmax due to the inward radial advection of mo-
mentum inside the inertially stable core. The inertial
“wall,” evidenced by the rapid increase in vorticity
($o) just inside 7.y, leads to the rapid deceleration of
4 and strong boundary layer convergence. The max-
imum inflow is —t#, =~ 20 m s~! and the maximum
vertical velocity wp ~ 2 m s™!. The RMW, designated
by Juglmax in Fig. 4, has been moved slightly inward
by the penetration of uy into r < 7y, and by the
resulting supergradient wind.

The radial scale of the variation of u, near rn,,,
where radial gradients are large, is determined by a
balance between radial advection d(V2u,2)/dr and dif-
fusion Kd%up/dr>. Thus, the scale of variation is ér
~ 2 X (5% 10*m?s7!)/20 m s™! = 5 km, which is
compatible with the grid spacing Ar = 5 km. Use of
K one-half as large (not shown) leads to a scale of
variation too short to be resolved by the grid spacing.
In practice, small-scale spatial oscillations then de-
velop in the solutions. The use of a variable, defor-
mation-dependent X does not change the results sub-
stantively and only adds unnecessary complexity.
Anthes (1971), using Ar = 10 km, took values of K
ranging from 5 to 25 X 10* m?s™!, choosing the latter
as most realistic. This value is much greater than that
used in the present study.

4. Translating hurricane: Formulation

The relative wind is decomposed in a spectral rep-
resentation,
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u= uo(r) + uy(r, A) + ux(r, ), 6)

where the subscrlpts denote wavenumbers n=20,1
and 2. As in the previous section, the velocity vector
u represents the (radial, tangential) components of
the wind. The truncation of the series at n = 2 is valid
if the hurricane is not translating too rapidly, so that
the major part of the asymmetric flow is confined to
low wavenumbers. This approximation will be jus-
tified a posteriori in Section 5.

The solution for the symmetric part of the wind
(ug) was shown in Fig. 4 for a stationary hurricane.
Asymmetries modify this component of the flow for
a moving hurricane. The wavenumber n = 1 com-

_ponent of the wind is represented as

(7a)

including both a radial and a21mutha1 dependence.
Similarly,

u; = Ug(7r) sin2X + Ug(r) cos2ZA

u; = Uy(r) sin\ + U,(r) cosA,

(7b)

is the wavenumber 2 component. In what follows the
hurricane translates to the north, so that

¢ = (c sin}, ¢ cosA).

(7<)

The direction of motion is arbitrary since an f-plane
is used. Eqgs. (6) and (7) are substituted into (1) to
derive a set of momentum equations governing each
wavenumber. The radial and tangential equations
governing n = 0 are ‘

duy (v ) _9¢ _ ( _ @)
Uo~ar (r+fv° ar K\Viuo r?

+ NMuo) + K, uy) =0, (8a)
(5o + o~ K{ 200 — )

+ Nwo) + Flc, v) = 0. (8b)

The equations governing wavenumbers # = 1 and 2

are
duy | dug (Zvo ) Vo Oty
Uo 5y T 5y Un +f r o
U 2 dv
— VZ _n__ = __") -
K( U, 27 72 g0 + Nuy,)
+ F(c, u,) = 0, (9a)
av, Vo 6v,,
(6r + )+""(‘h°+f)+ N
v, 2 du,
- K(v2 —2 +3 ax) + NMv,)
+ Fe,v,) =0, (9b)

where n may take either the value 1 or 2.
In (8) and (9), contributions to advection from in-
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teractions with the symmetric component u, are ex-
plicitly included. Nonlinear advective interactions
between wavenumbers 1 and 2 that contribute to the
given component are denoted N. For example, N(uy)
includes contributions to [1(du/dr) — v’r~' + vr ' (du/
d))] from interactions between wavenumber n = 1
and itself (1 X 1) and n = 2 and itself (2 X 2). By
convention, this is denoted N(ig) = N(ug; 11, 22).
Also, N(vp) = Mwy; 11, 22). Similarly, for the other
components, N(u,) = Nu,; 12) and Nu,) = Mu,;
11). These terms are presented explicitly in Egs. (B1)-
(B3) of Appendix B. »

Frictional drag terms that contribute to the indi-
vidual components are denoted in a similar manner.
The contributions of wavenumbers 0 and 1 triple in-
teractions to n = 0 are denoted F(c, uy) = Flc, ug;
000, 011). Similarly, F(c, u;) = F(c, u,, 001, 111) and
F(c, uy) = Fl(c, uy; 011). These terms are derived in
Appéndix B and are given in Egs. (B11)-(B13).

Contributions to N(u) from wavenumbers > 2, and
contributions to F{(c, u) from wavenumbers > 1 have
been neglected. When the hurricane is stationary (c
= 0), u; = u; = 0. When the hurricane is translating,
u, is directly forced by F(c, u,) [cf., Eq. (B12)]. Then
uy, u; and u, are modified by asymmetric nonlinear
interactions. In the following section, the potential
error due to the neglect of higher order modes in F(c,
u) and N(u) will be evaluated from the solution itself.
In practice, the formulation is accurate to within
about 25% for a hurricane with maximum gradient
windof42ms!'andc= 10 ms™".

The system of equations (8) and (9) is solved for
u by integration to a steady state, as in the case of the
stationary vortex presented in Section 3. Since the
radial dependence of both the sine and cosine parts
of the n = 1 and n = 2 components must be evaluated,
a system of 10 equations is actually solved. The
‘boundary conditions on u, are as in Section 3. At the
outer boundary, the asymmetric part of the solution
matches the environment, —fv, + F(u,) = 0 and fu,
+ F(v,) = 0. At r =0, u, = 0, and u, is extrapolated
from the interior with w,(r = 0) = 2u,(r = Ar) — uy(r
= 2Ar). The initial condition used is the symmetric
solution for the stationary hurricane vortex shown in
Fig. 4. The winds u, and v, are initially zero. It was
necessary to average radially the last term in the
expression in parentheses after K in (9) for numerical
stability. Otherwise, the numerical method is exactly
as in Section 3.

5. Translating hurricane: Evaluation of boundary
layer flow

Using the method described in the previous sec-
tion, the boundary layer flow is evaluated for the hur-
ricane vortex translating at ¢ = 10 m s™!. Fig. 5 shows
the solution, including all wavenumbers through »
= 2 and all the nonlinear interactions specified in
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Section 4. The arrow in each panel points to the
north, the direction of motion. A circle has been
drawn at radius 7., = 40 km from the center of the
vortex. In Fig. 5a the radial wind relative to the trans-
lating vortex shows maximum inflow in the right-
front quadrant for r < r.. At large radius the wind
is from the east (right). As the air moves toward the
center of the vortex it spirals cyclonically, and the
maximum inflow rotates counterclockwise. The po-
sition of maximum inflow is consistent with the ob-
servations of Hughes (1952). Positive values of u in
the left rear imply overshooting of air, as can be seen
in the streamiines of Fig. 5b. As discussed in Section
6, the overall character of the wind distribution is not
substantially changed when ¢ = 5 m s™'. Thus, a com-
parison can be made between Figs. 5b and Sc, and
the distribution of winds in Hurricane Frederic,
which was translating at ~5 m s™'. The isotachs in
Fig. 5b show a pattern very similar to both those
observed in Hurricane Frederic (Fig. 1) and those
calculated by Chow (1971). Winds on the left are
stronger than those on the right. The isotach maxi-
mum, however, is ahead of the vortex, with maxi-
mum wind of 60 m s} at r ~ 23 km. Due to the
added translation velocity of the vortex, the winds
relative to the earth, shown in Fig. Sc, are stronger
on the right than on the left. Once again the pattern
is very similar to that in Hurricane Frederic (Fig. 9
of Powell, 1982). Near r = .., the inflow angle (not
shown) is maximum in the right-front quadrant. For
r 2 100 km, the maximum inflow angle is in the right
rear, agreeing with Powell’s (1982, his Fig. 6) analysis
of Frederic.

Convergence, shown in Fig. 5d, has a distribution
very similar to the result of Chow (1971). Maximum
convergence extends from ahead of the vortex center
into the right-front and right-rear quadrants. The
maximum value of 40 X 10™% s™! corresponds to w
=4 m s~! at the top of the boundary layer. A region
of weak divergence occurs to the south of the center,
implying an elongated hurricane eye.

The solutions shown in Fig. 5 are for¢ = 10 m s™,
about the same as Hurricane Allen’s speed of motion.
The comparison between convergence in Fig. 5d and
radar reflectivity in Fig. 3 is quite good, including the
concentration of convergence and convection in the
front to right-front quadrant [30 dB(Z), above] and
the elongated clear eye. Although the overall char-
acter of the wind distribution is not substantially
changed when ¢ = 5 m s™!, the wind gradients, and
thus the patterns of convergence, do change signifi-
cantly. The characteristics of the convective distri-
bution in Hurricane Frederic (Fig. 2) compare most
favorably with the quasi-linear solution in Section 6,
valid for a slowly moving vortex.

For a stronger, tighter vortex with v, = 60 m s™!
at ’max = 20 km, the solutions (not shown) have is-
otach and convergence distributions in r < rp,, very
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FIG. 5. (a) Radial velocity in complete (nonlinear) solution relative to translating vortex. Vortex is moving in direction of arrow at
10 m s~'. Circle is at 40 km radius from center of vortex. (b) As in Fig. 5a, but for isotachs relative to translating vortex. Dashed lines
are streamlines. (c) As in Fig. 5a, but for isotachs relative to earth. (d) As in Fig. 5a, but for convergence.

similar to those in Fig. 5. The strength of the wind
asymmetry is greater than that in Figs. 5a and b by
~50%, in proportion to the strength of the vortex.
Due to the greater wind asymmetry, winds on the left
are greater that those on the right relative to the earth,
in contrast with Fig. 5c. The distribution of conver-

gence is very much the same as that in Fig. 5d, with
the strength of the asymmetry about doubled.

In the formulation of Section 4 and Appendix B
several approximations were made that can be tested
a posteriori from the solution. Table 1 shows the
maximum amplitude of each wavenumber compo-
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TABLE 1. Maximum amplitude (m s“j of wavenumber 0, 1, and
2 components of solution. Translation speed ¢ = 10 m s™.

Nonlinear Linear friction Linear Quasi-linear -
U 21 19 19 19
i 27 22 32 22
U 14 11 10
vo 36 38 43 43
v, 19 15 20 15
v, 9 7 7

nent, occurring near the RMW. The first column re-
fers to the nonlinear! solution given in Fig. 5. Since
the magnitude of u; = 27 m s™! is greater than 1,
= 21 m s~!, the asymmetric part of the solution in
the boundary layer cannot be considered a small dis-
turbance on the symmetric vortex. Since u,/u; ~ Y,
the n = 2 contribution is relatively small, however.
In effect, the wavenumber n = 0 and n = 1 solutions
together comprise the “basic state,” to which an »
= 2 “perturbation” is added. The n» = 1 contribution
is directly forced by the motion, adding to the sym-
metric component; the n = 2 contribution is forced
indirectly through interaction among the lower-wave-
number components. Since n = 3 is forced by ad-
vective interaction between n = 1 and n = 2, we can
estimate u;/u, ~ (u; X w)/(u, X u) =~ u/u,
=~ 2. Thus, u3/u, ~ Y%, so that wavenumber 3 (and
higher) contributions to the solution may be ne-
glected up to an error of ~25%. At larger radius,
U, /u, is smaller so that the error is less. This degree
of approximation is consistent with the neglect of
terms in the expansion of the frictional drag given in
Appendix B.

Similarly, the neglect of n > 1 in the frictional drag
can be evaluated. The frictional drag F(u) ~ Gu,
where G is a drag coefficient associated with u, anal-
ogous to Cplu|/h; G is defined explicitly after (B13a)
in Appendix B. At large radius, u,/u, < 1, so that
F(wy)/F(u)) ~ Gu,/Gu; < 1. Near the RMW, u,/u,
< Y. Then, Gu, /(vou,/r) € ¥a by direct analysis of the
solution. Thus, the contribution of the # = 2 frictional
forcing to the momentum balance is small relative
to either the n = 1 frictional or advective contribu-
tion. Once again the potential error < 25%.

Recently, Vic Ooyama of NHRL (personal com-
munication, 1982) has made a numerical simulation
of the boundary layer response under a translating
vortex, using a spline method on a multi-nested
Cartesian grid. The simulation was made as a devel-
opmental test of the numerical model, which will later
be applied to more general forecast problems. The

" Throughout this paper, “nonlinear” will denote interactions
between asymmetric components. Interactions between the sym-
metric part of the flow and a single asymmetric component are
“linear.”
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specification of the physical parameters is identical
to that in the present analysis. The spline results in-
clude, implicitly, azimuthal wavenumber interactions
of much higher order than those contained in the
present truncated spectral formulation. Nevertheless,
a direct comparison of the solutions indicates that the
distribution of convergence is very much the same
in both formulations, except that in Ooyama’s result
the magnitude is reduced overall by ~5 X 107 s™!
relative to that shown in Fig. 5d, and the pattern is
rotated clockwise by ~20°. The good agreement be-
tween the solutions confirms that the truncated spec-
tral formulation approximates the fully nonlinear so-
lution (including all wavenumbers) to within better
than 25%. In Section 7 the role of asymmetric ad-
vective nonlinearities in limiting the amplitude of the
response and rotating the distribution of convergence
clockwise is described. The presence of stronger non-
linear interactions in Ooyama’s simulation is consis-
tent with this discussion. The qualitative results
shown in this paper do not depend on the nonlinear
interactions omitted in the present truncated spectral
formulation.

6. Quasi-linear analysis .

To simplify the analysis of the solution in Section
5, several ad hoc approximations will be made. First,
in order to isolate the effect of asymmetric interac-
tions on advection, the wave component interactions
O0X1X1land1 X 1 X 1 will be suppressed in the
frictional terms. Thus, F(c, uo) = F(c, uo; 000), F(c,
u;) = F(c, u;; 001) and F(c, u;) = 0. The qualitative
behavior of the solution is changed very little by this
simplification. In particular, the distribution of con-
vergence (not shown) is very similar to that of Fig.
5d. The magnitudes of the asymmetric wave com-
ponents, given in the second column of Table 1 as
the “linear friction” solution, are reduced by ~20%
due to the suppression of part of the frictional forcing.

Under the assumption that ¢, |u,f, ju] < |uel, a
formulation completely linear in the asymmetries can
be derived. In that case, M(ug) = Mu,) = Muy) = 0
so that |u,| oc ¢ and u, = 0. The linear solution does
not correctly match the environmental wind since ¢
> |ug| for large r. The linear approximation is not
accurate when ¢ = 10 m s™' since, as noted in Section
6, U; > Uy Near r = rya,. Nevertheless, a comparison
of the linear and nonlinear solutions allows a direct
evaluation of the effect of nonlinear asymmetric in-
teractions, which are completely absent in the linear
formulation. Moreover, for smaller translation veloc-
ities the linear approximation becomes more accu-
rate. For ¢ = 5 m s™! nonlinear effects are very small.

The third column of Table 1 indicates that for ¢
= 10 m s~! the magnitude of the n = 1 component
is greatly overestimated in the linear solution, with
|w,] (linear) > |u,| (linear friction) by ~40%. The
mechanism by which the amplitude of u, is limited
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by nonlinear asymmetric advective interactions is
discussed in Section 7. In order to visualize the entire
linear solution, the magnitude of u; will be artificially
reduced by a factor of 1.4 so as to agree with the
linear friction solution. Together, wavenumber
= 0 and n = 1 then comprise the basic state. The n
= 2 perturbation is forced only by a wavenumber 1
X 1 interaction; this interaction is completely absent

in the purely linear formulation. For the purpose of

completeness, N(u,; 11) will be retained, so that u,
# 0. Since N(ug) = N(u,) = 0 still, there is no feedback
from higher wavenumbers to lower ones. The mag-
nitude of the individual components in this quasi-
linear solution are given in the last column of Table
1. It must be emphasized that the reduction of the
amplitude of u; and inclusion of N(u,; 11) in the
quasi-linear solution is ad hoc. The purpose is to iso-
late and visualize the effect of nonlinear asymmetric
advective interactions on the n = 0 symmetric flow,
and on the n = 1 asymmetric flow induced by the
translation.

The quasi-linear solution is presented in Fig. 6. In
common with the nonlinear solution in Section 5,
maximum inflow (Fig. 6a) occurs in the right-front
quadrant; outflow is evident in the left rear (cf. Fig.
5a). Winds relative to the translating vortex (Fig. 6b)
are similarly stronger on the left than right, with
major asymmetry front to back (cf. Fig. 5b). The
RMW is at r ~ 30 km, farther out than in the non-
linear solution. Although the overall character of the
wind distribution in the nonlinear solution is simu-
lated in the quasi-linear context, differences are large
enough that the pattern of convergence is significantly
altered.  The concentration of convergence in the
right-front quadrant in r < ry,, seen in Fig. 5d is
replaced by a broad arc ahead, and slightly to the left,
of the vortex center near r = ry,, in Fig. 6¢. The
mechanism by which the RMW is moved radially
inward and convergence maximum is rotated clock-
wise by asymmetric interactions is discussed in the
following section.

As would be expected, fully nonlinear solutions for
¢ = 5 m's™! (not shown) closely resemble those in
Fig. 6 since the nonlinear effects are then very small.

The amplitude of the asymmetric part of the response-

is reduced, due to the slower storm translation speed.
Hurricane Frederic was moving at ~5 m s™!. The
distribution of high radar reflectivity in Fig. 2, with
the broad arc of convection ahead of the hurricane
and the nearly circular eye, compares favorably with
convergence in Fig. 6¢. Hurricane Floyd of 1981,
which was also moving at ~5 m s™', had a very sim-
ilar reflectivity pattern, with the arc of high reflectivity
oriented ~30° to the left of the direction of motion.

7. Diagnostic analysis v
In a slowly moving hurricane, dissipation of vor-
ticity in the boundary layer is balanced by production
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of vorticity by convergence. Thus, there is a broad
arc of convergence in front of the vortex in Fig. 6c.
For a faster moving hurricane, advective effects mod-
ify the flow. Comparison of Figs. 5 and 6 indicates
that faster translation of the hurricane tends to move
the RMW radially inward, as well as to concentrate
both gradients and convergence more toward the
right side of the storm. In this section the role of
advective nonlinearities in production of these ten-
dencies, as well as in limitation of the amplitude of
the asymmetries, will be analyzed.

Table 2 displays the dominant terms in the mo-
mentum balance for u; in the linear and quasi-linear
solutions of the previous section. The radial variation
of u, is determined by a balance among radial ad-
vection, centrifugal and Coriolis accelerations, tan-
gential advection, diffusion, and forcing by frictional
drag. At large radius (r = 200 km) the balance is
determined locally between frictional drag and tan-
gential advection, and centrifugal and Coriolis accel-
erations. Radial advection imports momentum for
r € 100 km, and dominates over frictional forcing in
the u, budget for r < 50 km. For r < r,, = 40 km
the inertial acceleration {ou, generated by the advec-
tion of u, into.the highly stable core is balanced by
tangential advection and diffusion of v,.

The amplitudes of the radial and tangential com-
ponents of u, in the linear solution are shown in Fig.
7. In the linear formulation uy(r) is the same as
the stationary solution in Fig. 4. At radii where
uy(du, /dr) can be neglected, it can be shown that the
phase angle where ¥, is a. maximum is at azimuth
A = O(u,), where
Go + tpr™!
3"00"_1 + f

O(u,) = tan™! gs' ~ Arctan( ) + , (10a)

cl

and that of v, is at

M) T (10b)

O, =~ Arctan( Gror +f) T2
Here G, = (alug| + Blup/)#~!, a drag coefficient as-
sociated with the symmetric wind, analogous to
Cpluglh™. G, is defined so that F(c, u;) ~ Go(c + uy).
When O(u,) and O(v,) increase, the wind direction
at a given azimuth tends to rotate counterclockwise.

Wind barbs depicting u, in geographical coordi-
nates are shown in Fig. 8 for r = 25, 40, 100, 150 and
500 km, at selected aximuths. At very large radius,
Jogrt + f = §o + vrt + f = f, and Gy, duy/dr,
Uy/r < f. The environmental flow is from the east
with O(u,) ~ 7 and O(v,) ~ /2. Thus, at r = 500
km the wind blows nearly from the right (east) at any
azimuth. As seen in Fig. 8, the direction of u, varies
to some extent with azimuth. At decreasing radius
in 7 > rpa, frictional drag (Gy) and duy/dr increase
so that O(u,) increases, rotating the wind direction
at a given aximuth counterclockwise. The direction
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b 30

RADIAL VELOCITY (ms™!)

ISOTACHS (ms™') RELATIVE TO MOVING VORTEX

QUASI-LINEAR

CONVERGENCE (107%s™")

FI1G. 6a—c. As in Figs. 5a, 5b and 5d, but for quasi-linear solution.

of u, tends to rotate from east to north. On the left,
u; adds to the symmetric vortex circulation u,, so
that |up + u,| is greater on the left than on the right
relative to the moving vortex.

Near 7 = rpyax, the magnitude of uy(du,/dr) becomes
so large that (10a) and (10b) are no longer valid. The
amplitude of u, is maximum in r < ry., where u,

is rapidly decelerating (duy/dr < 0); v, is maximum
where 1, itself approaches zero, at somewhat smaller
radius. Since the maximum of |u,| occurs in 7 < rpay,.
the isotach maximum moves inward due to the storm
translation. The RMW decreases from 7 ~ 38 km in
the stationary hurricane (Fig. 4) to 7 =~ 33 km in the
quasi-linear formulation (Fig. 6b). An independent
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TABLE 2. Momentum budgets for %, and v,; linear and quasi-
linear solution. Dominant terms in the momentum equations are
designated by one, two or three asterisks, in increasing ordér of
their contribution to the balance.

‘:‘*(‘:l':)s %ﬁ%"u. —(2%)+f)v. +v—:%—1(v2u| + Flc, w)
500 PTT Ty
200 . - T Ty s
100 ** = s es '

50 - * e .
30 » = T T T e

FB) g 9V
uo(*' + ﬂ) + o+ Hu + ==L = KV, + Fle, v)
r r oA

or
500 T . aex
200 . - sas
100 e 1% e see
50 ) % 't 1T %
30 e T "

analysis (not shown) confirms the role of radial ad-

vection in reducing the RMW in the quasi-linear so-

lutions; with 1, = 0, |u,| is maximum in r > 7.
Advection of u; by y; into the highly stable core

in r < rma has another effect on the position of the .

isotach maximum. In 7 < rp,,, { increases rapidly
(Fig. 4). Then, as implied by (10b), O(v,) decreases
rapidly inward [@O(v,)/dr > 0]. Thus at decreasing
radius for r < ryax, the direction of u, rotates clock-
wise, as seen in Fig. 8. The maximum of v, occurs
in the left-front quadrant. The isotach maximum oc-
curs more nearly in front of the storm (cf. Fig. 6b)
due to the additional contribution of #,. In the ab-
sence of radial advection of momentum into 7 < 7y,
the isotach maximum would shift in the counter-
clockwise direction. '
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NORTH

500km

FiG. 8. Wind barbs depicting linear response u, in geographical
coordinates for r = 25, 40, 100, 150 and 500 km at selected axi-
muths. A full barb represents 5 m s™', a half barb 2.5 m s™'. The
direction of storm translation is toward the top of figure.

Quasi-linear effects explain the wind and conver-
gence distribution for a hurricane vortex translating
at ¢ ~ 5 m s~'. Differences between Figs. 5 and 6
must be understood, however, in terms of the con-
tribution of nonlinear advective interactions for a
hurricane moving at ¢ = 10 m s™!, Two sets of terms
in the momentum equations, N(uo; 11, 22) and Mu,;
12), representing the feedback of n = 1 and n = 2

LINEAR SOLUTION Y,

(¢,
o L
i

:"I‘lu"lmx

FI1G. 7. Linear boundary layer response to translating vortex. Solid lines
are symmetric winds ug, as in Fig. 4. Dashed lines are amplitudes of

components of linear response u;.
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interactions to the structure of lower-order modes,
account for the differences. The contribution of each
of the two sets will be considered separately below.

Fig. 9 shows the solution for uy, both with and
without the M(uy; 11, 22) contribution included. The
latter case corresponds to the quasi-linear formula-
tion; the former includes modification of the sym-
metric component by rectification of the n = 1 (and,
to a much lesser extent, n = 2) asymmetry.

The largest values of Mug) appear in N(vy) near

the very sharp gradient of v, in Fig. 7 at r ~ 35 km.-

The dominant contribution to N(vy) is

With u, nearly from the north, it is easy to show that
NO%vo) oc 86(v,)/0r > 0, as noted above. N(vp) > 0
acts as a drag term, reducing the amplitude of the
peak in vy, as can be seen in Fig. 9. The sharpness
of the {; inertial wall in r < r,,, is thereby reduced,
allowing 1, to penetrate further inward. Thus the
deceleration of u,, (duy/dr)/uy, is significantly re-
duced near r,,.

The modification of uy by N(uo; 11, 22) described
above also affects u,, as shown in Fig. 10. The reduced
deceleration of 1, in r < rp,, reduces the acceleration
of u,. This is the mechanism by which the asym-
metric nonlinear interactions limit the amplitude of
u;. Since u, penetrates further into 7 < rp,, (Fig. 9),

Ixt, (2x2
_ NONLINEAR EFFECTS: Ny 2
ms o
50—
— LINEAR
or v A~ Ix], (2x2)
o\ ---INCLUDING Ny
/ . |\ (]

T
50 °

100
I max r

L
1]50 Km

FiG. 9. Effect of asymmetric nonlinear interactions Muo; 11, 22)
on symmetric boundary layer response. Solid lines are without
nonlinear interactions, as in Fig. 4. Dashed lines include nonlinear
advective terms.
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ms™! ,
S0 |
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4o}

X, (2%2)
--------- INCLUDING Nu0

FiG. 10. Effect of asymmetric nonlinear interactions on asym-
metric boundary layer response. Dashed lines are linear response
u,, as in Fig. 7. Dotted lines are response including nonlinear ad-
vective terms.

the maximum of |u,| also occurs further inward.
Thus, nonlinear interactions tend to move the RMW
inward of the quasi-linear solution. The net effect of
the translation of the vortex at 10 m s™! is to move
the RMW inward from r =~ 38 km for the stationary .
vortex to r ~ 28 km. The additional frictional drag
included in the nonlinear solution of Section 5 further
reduces the RMW to r =~ 23 km.

The value of u; is modified by wavenumber 1
X 2 interactions as well, included in N(u;; 12). In r
< 100 km, the direction of u, is such that v, advects
air on the right side of the storm against the sym-
metric wind v,. Thus, a “weakness” is induced on
the right side, allowing air parcels to move more di-
rectly into the center. This description is analogous
to one given by Myers and Malkin (1961). Also, u,
advects air inward, augmenting #, on the right side.
Thus, the maxima of u and w are rotated clockwise,
and also strengthened to the right of the direction of
translation.

8. Summary and discussion

The diagnosed asymmetry in the boundary layer
response is forced by the asymmetry in frictional drag,
due to the translation of the storm. The substantial
wind asymmetries near the storm center cannot, how-
ever, be evaluated as simply a local response to the
drag. Radial advection plays an important role, im-
porting momentum into the inner core. Influences
outside the boundary layer also contribute to the
asymmetry of a hurricane. Asymmetries in the large-
scale environment, convective heat release and the
structure of the winds above the boundary layer may
play a role. The simple slab model with constant
depth used in the present analysis cannot describe the
detailed structure of the boundary layer, especially
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near the convectively active eye wall. Nevertheless,
the characteristics of the quasi-linear and nonlinear
solutions in the present truncated spectral formula-
tion would be expected to be significant in determin-
"ing the asymmetric structure of 2 moving hurricane.

Detailed observations of asymmetries in the bound-
ary layer of translating hurricanes are quite limited.
Powell’s analysis of Hurricane Frederic is probably
the most complete. Radar observations of reflectivity,
from which the convective structure can be deduced,
are more readily available. Examples were given from

Hurricanes Frederic and Allen in Section 2. Although -

considerable variability exists in the convective struc-
ture of these storms, general agreement is found be-
tween the observed spatial distributions of convection
in the moving hurricanes and boundary layer con-
vergence determined by the present simple boundary
layer model.

For a relatively slowly moving hurricane (¢ € 5 m
s™!) the linear/quasi-linear formulation of Section 6
is valid. Inflow is maximum in the right-front quad-
rant (Fig. 6a). Convergence (Fig. 6¢) is large in a broad
arc ahead of the center of the storm. Divergence oc-

curs within a nearly circular eye. Winds relative to_

the moving vortex are stronger on the left than right
(Fig. 6b). The maximum winds lie nearly ahead of
the storm, due to the advection of momentum into
the highly stable core (Section 6). The distribution of
winds in Hurricane Frederic (Fig. 1; and Powell,
1982) as well as radar reflectivity (Fig. 2) agree qual-
itatively with these results.

When the translation speed is increased (¢ 2 10.m
s7!), nonlinear asymmetric advective interactions be-
come stronger. As the solution of Section 5 shows,
inflow (Fig. 5a) and convergence (Fig. 5d) become
concentrated more ahead and to the right of the
storm. The divergent eye becomes more elliptical.
The radar reflectivity distribution in Hurricane Allen
(Fig. 3), which was translating at about 10 m s/,
shows evidence of these characteristics. Due to in-

creased advection of momentum into the core, the -

RMW tends to contract. For the case shown in Fig.
5, the motion of the vortex decreased the RMW by
~15 km. In the present analysis, however, the dis-
tribution of pressure is specified. The feedback of the
modified distribution of convergence to the pressure
field has not been included. If the pressure did adjust,
the full predicted reduction of the RMW might not
actually occur.

Although the truncated spectral formulation used
in this paper includes only modes through wavenum-
ber 2, the a posteriori analysis in Section 5 indicates
that it approximates the fully nonlinear solution (in-
cluding all wavenumbers) to within ~25%. The so-
lution in Fig. S agrees overall with the fully nonlinear
simulation of Chow (1971), and with Ooyama’s re-
cent calculations. \

An obvious extension of the present analysis would
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be a study of the time evolution of the boundary layer
under a turning vortex. Here a fully nonlinear rather
than a spectral model would be appropriate. Com-
parison with observations would be even more dif-
ficult than in the present analysis, since composites
would not be as useful.
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APPENDIX A
List of Symbols

r radius - :
A azimuth, measured counterclockwise from
east

U = (4, v) (radial, tangential) velocity relative to
translating coordinate system
n azimuthal wavenumber
u, spectral components of horizontal velocity
(wavenumber n = 0, 1, 2)

U,(n), radial variation of sine (s) or cosine (c)
Ue(r) component of (radial, tangential) ve-
- . locity (wavenumber n = 1, 2)
f Coriolis parameter
¢ specified symmetric geopotential [=¢o(r)]
K eddy diffusion
c translation velocity of vortex
F(c, u) boundary layer frictional drag on u
Cp drag coefficient
a, B coeflicients in linear drag law
boundary layer depth
Vg gradient wind :
Fmax radius of maximum gradient wind
Ar grid spacing
o vorticity of symmetric wind
w vertical velocity at top of boundary layer
or radial scale of response
N(u) contribution of asymmetric nonlinear ad-

vective terms to u momentum balance
phase angle of maximum u, or v,
drag coefficients associated with u (defined
in Appendix B)
Gy drag coeflicient associated with u,
K, u,; ijk) contribution of wavenumber i X j
X k interactions to frictional drag on
u,

e(“l)
G, H
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Nu,; ij) contribution of wavenumber i X j in-

teractions to asymmetric nonlinear
adjective terms in u, momentum
balance.

APPENDIX B

Derivation of Advective and Frictional Terms
in Momentum Equations

Eq. (8a) in Section 4 is derived by substituting (6)
and (7) into (la) and collecting terms contributing
to n = 0. The contribution to advection, [u(du/ar)
— v2r ' + vr~(du/dN)], by interaction between asym-
metric components is N(u). It is straightforward to
derive

Muo) = Mup; 11, 22)
= (UgUy + U,Up + UpUly + UnU) 2
~(Vh+Vai+Va+VE2r+ (=UaVy
+ VU — 2UnVy + 2VoUgp)/2r, (Bla)

where a prime denotes differentiation with respect to
r. When terms contributing to n = 0 in (1b) are col-
lected, Eq. (8b) follows. The contribution to advec-
tion, {u[(dv/dr) + vr™'] + vr '(dv/d))}, by asymme-
tric component interactions is

N(vo) = N(vy; 11, 22)
=UaVa+ Va/n)+ Ua(Ve + Valn
+ Up(Vie + Va/r) + Un(Via + Va/N]/2.
: (B1b)
Similarly, for n = 1, Eqgs. (9a) and (9b) follow with
N(uy) = N(uy; 12) '
= [(UnUa — UnUa — UgUyp + UaU)/2
= (VaVa — VaVa)ir + (=2V, Uy
= 2VaUs + VU, + VoUa)/21]
X sin\ + [(UpUs, + UnUs + UgUsy
+ UaUa)2 = (VaVa + VaVo)/r
+ (=2VyUgq + 2V, U,
~ VUs + VaUg)/2r] cosh,  (B2a)

N, = Nv,; 12)
= [Ua{Ve + Valr}) = Ua{Via + Valr)
= Ua{Via + Valr} + Ua{Via + Valr))i2
+ (—VuVa — Vi Ve)/2r] sink
+ [(Up{Va + Valr} + Ua{Va + Va/r}
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+ Un{Va+ Valr} + Ua{Va + Va/r})/2

+ (VaVea — VaVa)/2r] cosA.  (B2b)
For n = 2,
N(uz) = N(up; 11)
= [(UaUs + UaUs)/2 = (VaVa)/2r

+ (VaUg — U, Vey)/2r] sin2)
+ [(~Un Uy + UaUs)/2 = (=VE + VE)2r
+ (VaU, + V,Uy)/2r) cos2A, (B3a)

N(v) = N(vz; 11)
=[(Ua{Va + Va/r} + Ua{Va + Valr})/2
+ (V3 — VZ)/2r] sin2\
+ [(CUa{Via + Va/r}
+ Ua{Via + Va/r})/2
+ (Vo Va)/r] cos2A. (B3b)

The derivation of the contribution of friction to
(8) and (9) requires further analysis. From (3), -

Flc, u) = Coh™'u + cj(u + ¢ sinX). (B4)
Using (4), .
Fle, u) = h\(elu + ¢| + Blu + c?)(u + c sin)), (BS)
whére
Ju+ el = [(u+ csinh? + (v + c cosN?]'2 (B6)

After substituting from (6) and (7) for # and v in (B6),
and assuming u, = 0, some algebra gives

[u+ ¢l =[4+ 5172, (B7)
where
S = 2(E + B sin\ + B, cosh-+ C;
X sin2\ + C. cos2)), (BS8)
and
A=ud+v}+U%+ U4+ V4 + V2)2)
2w
= (f ll'llzdk)/21r
0
E = (CUsl + CVcl)/2
BS = uOUsl + DOVH + uoC f . (B9)

B, = uyU,, + vV, + voC

Co= —(U% + V24 + (U% + V)[4
—cUy/2 + ¢V, /2

C.=(UyUy + VyVy+ cU,y + cVy)/2
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The term 4 > 0, so (B7) can be expanded in a Taylor
series,

4+ 8”2 =A‘/2(1 +i+ .- ) (B10)

24

By inspection, S/4 < 3 as a very conservative esti-
mate. Then, retention of only the first two terms in
the expansion (B10) results in an error of less than
25%. This degree of approximation is consistent with
the other approximations in this analysis, as deter-
mined in Section 5. Thus, the evaluation of [u + ¢
in (BS) includes only these two terms. Collecting
terms that contribute to » = 0 gives, after some al-
gebra,

e, up) = Flc, up; 000, 011)
= Guy + HA '[(c + Us1)B,/2
+ B,U. /2 + upE], (Blla)

where .
) -G = hYad'? + 84),

H=h"Y(ad"?+ 2B4).

Here G is a drag coefficient analogous to Cplu + ¢/
h, where A'? takes the place of |u + ¢|. Since c is a
wavenumber 1 component, interactions between ¢
and other components are formally equivalent to in-
teractions with u,. Similarly,

F(c, vo) = F(c, vo; 000, 011)
= Gvy + HA [V B,/2
+(c+ V4)B./2 + v,E]. (Bl }b)
Forn =1,

F(c, uy) = Flc, u,; 001, 111)
= {G(c + Uy) sin\ + GU,, cos\ + HA™!
X (o B, sin\ + uy B, cos\)} + HA™
X A{[-C.lc + Uy)/2 + CU, /2
+ (¢ + UyE] sin\ + [Ci(c + U,)/2
+ CcUc,/Z + U, E]cos\}, (Bl2a)

F(c, v)) = F(c, v;; 001, 111), 4
= {GV, sin\ + G(c + Vc.,) cosA + HA™!
X (Vo B sin\ + vy B, cosA)} + HA™!
XA{[-CVul2 + Cc+ Vy)/2 + Vi E]
X sin\ + [CV /2 + Colc + Vy)/2

+ (c+ Vo)E] cosA}. (B12b)
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Forn =2,
Fle, wy) = Flc, up; 011)
= HA "{[-B(c + Uy)/2
+ B.U, /2 + C.up) cos2h + [B;U, /2
+ B.(c + Ugy)/2 + Csup) sin2X}, (Bl3a)
Fle, v;) =

= HA{[-BV,1/2 — Bu(c + V)2 +0CJ)

F(C, Uy 01 1)>

X cos2X + [Bi(c + V)2

+ BV /2 4+ v,Cy sin2A}.  (B13b)

The neglect of wavenumber 7 > 1 is justified in Sec-
tion 5.

The expressions for advection [(B1), (B2) and (B3)]
and friction [(B11), (B12) and (B13)] enter the mo-
mentum equations (8) and (9) in Section 4.
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