2. Linear Theory*

2.1 Introduction

Here, alinea analyticd model of theboundary layer flow inatrandating tropicd
cyclone is presented and analysed. This model is an extension of the dassca Ekman
boundary layer model, and of ealier work on boundary layersin stationary vortices. It
will be agued that such an Ekman-type model is appropriate in tropica cyclones snce
diurna effeds are weak or absent, turbulence is dominantly shea-generated, and
baroclinicity iswegk. Themajor assumptions necessary to achieve an analyticd solution
are a smplified form of the verticd diffusion, the omisson of verticd advedion, and
lineaisation of the horizontal advedion, although relaxation of the second of these will
be discussed. The solutionis siown to have three @mponents, a symmetric one due to
the cyclone, and two asymmetric ones that result from the interadion of the moving
cyclonewiththe eath’s surface The asymmetric componentsare shownto be equivalent
to africtionaly stalled inertia wave, anchored in position by the asymmetric surface

friction.

Thejet inthe upper part of the boundary layer is smilar to the supergeostrophic
flow found at thetop of the dasscd Ekman spiral. It isonly afew percent supergradient
in the linear model, although it will be shown that the negled of verticd advedion
substantially reduces the strength. The jet height scaes as (2K/1)¥?, where K is the
turbulent diffusivity and | the inertial stability, modulated by a function of a
dimensionless parameter. This height is typicdly several hundreds of metres in the

cyclonecore, and increases with radius. In amoving storm, thejet ismost supergradient

'With the exception of sedion 2.5, most of the material in this chapter was
published as Kepert (2001).
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—several times gronger thanin astationary storm—at the gyewall to the left (right) and
front of the storm in the Northern (Southern) Hemisphere. It also extends over alarge
areato the left (right) of the storm. It is, however, much lessmarked to the right (left),

where the strongest nea-surfacewinds are found.

Current operation pradiseisthat the fador for reducing upper windsto anea-
surfaceequivalent depends on the static stabili ty and surfaceroughnessonly. Thisfador
will be shown to have asubstantial spatial variability, also. Larger values are found nea
the eye due to the symmetric component of the solution. Thereisaso amarked overall
increase from right to left (left to right) of the storm in the Northern (Southern)
Hemisphere; that is, the surfacewind reduction fadgor tendsto be stronger on the side

of the storm with wedker surfacewinds.
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2.2 Derivation of the Linear M odel

A linear analytical model for the boundary layer flow inatropical cycloneisnow
developed. The formulation and solutions have some featuresin common with the well-
known Ekman spiral model of the boundary layer, but with some important differences.
The symmetric part, applicable to a stationary vortex, is similar to the model proposed
by Eliassen and Lystad (1977, henceforth EL77), athough they obtained numerical
rather than analytical solutions. Their most intense vortex had a Rossby number of 207,
whichisbelow tropical cyclonestrength. However, their model hasbeen verifiedinmore
intense cyclones by Montgomery et al. (2001). The symmetric component was also
considered by Rosenthal (1962), athoughwith alessaccuratelinearisation of thesurface
boundary condition. The solution will be studied for a wider range of conditions than
wasdone by these earlier investigators. A significant advance hereisthat theasymmetric
components, which arise in a moving storm, do not appear to have been investigated

before.

The horizontal momentum equations for a steady-state vortex with constant
vertical turbulent diffusivity and no horizontal diffusion, in cylindrical coordinates

moving with the vortex, on an f-plane, are

2
u%+!%+w@—(f+ﬁ)v:—a_(p+K_au
or r di 0z r or 3z2 21
vV Vv v v vV, 3 (2.1)
U— + — — +W— + (f + =) U = K—
or r di 0z r 3z2

“Eliassen and Lystad (1977) used avortex given in dimensional terms by V(r) =
r Ro f/(2(1 + (r/r,)?) where r,, the radius of maximum winds, and f the Coriolis

parameter. Thusthe Rossby number is Ro = 4v,,/(fr,,), wherev,, isthe maximum wind,.
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The symmetric gradient-level flow, V, is assumed to be in balance with the pressure
gradient, fV + V#r = d¢/dr. Additionally, the vortex is assumed to move with the
environmental flow, U,, whichisin geostrophic balance. When subtracting off thevortex
motion to obtain (2.1), the corresponding environmental geostrophic pressure gradient
was also removed, so thereisno dg/d term. Equation (2.1) islinearised by replacing v
by V + v, assuming u, v, w << V and neglecting terms of second and higher order in u,

v and wto give

2
Va g+
r o r 3z2 22)
) .
Xﬂ+u(f+X+ﬂ):Kﬂ.
r o r or az?

Here, it has been additionally assumed that the base state vortex is symmetric and
barotropic, V = V(r). Inthe limit r -, (2.2) reduces to the classic Ekman equations in

Cartesian coordinates.

Equations (2.2) represent the radial flow balance between accelerations due to
azimuthal advection, gradient-wind imbalance, and turbulent transport, and the balance
for the azimuthal component, between the azimuthal and radial advection of absolute
angular momentum, and its turbulent transport, respectively. Thislinearization will not
be valid in the case of an inertially neutral storm, when the coefficient of u in the second
of (2.2) will become 0, and other processes will have to balance the turbulent transport
of v. Thiscase will be explored in chapter 3. Notethat Smith (1968) commented that the
removal of vertical advection is not supported by scale analysis. In particular, for a
symmetric vortex within the radius of maximum inflow, the continuity equation gives
W/H ~ VIR, where Wand V are scales for vertical and horizontal velocity, and H and R

arevertical and horizontal length scales. Then the vertical advectiontermsin (2.1) scale
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asWV/H ~ VAR, which isthe same order as other termsretained in (2.2). Thiswill later
be shownto be one of the major sourcesof differing predictionsby thislinear model, and
the numerical model to come. However, the linear model will be seen to contain useful

physical insight, even though the neglect of vertical advection is not strictly justified.

Equations (2.2) may be written as

2

om . a“m
2y — + 2ijyap o - — =0
Y 0 o (2.3)

where u and v have been combined into the complex variable

o= |Bu+iv (2.4)
o
and
1 2V
a=— (f+ =
ZK( r)
1 V dVv
= _— (f + = + 2=
p 2K( ; ar) (2.5)
y- LV
2K r

Expanding (2.3) as a Fourier series in azimuth gives

ok 2 = Y a2 e* (2.6)
K= —co

for complex coefficients a,(z), whence
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P (2 (v + V) 3@ - a/@ ) e = 0 @.7)

Equating coefficients of exp(ikk) to zero gives a family of second order ordinary
differential equationsin a,(2). Seeking solutions a,(2) = A, exp(p.2) for some cnstants

A and p,, yields

P = (1 + i) \/@ + ky. (2.8)

The solution with positive red part is immediately eliminated because of the
boundary condition that the perturbations u and v go to zero asz - «. Therequired root

will be written as

P, = _(1+i)V@+k1 @+ky>0 (29)
@ - i) Ky - oB, Ja + ky < 0.

To avoid the potential confusion of deciding which complex sguare root to take,
expressionswill awaysbewritten so only positive real numbers appear under the square
root sign. While the former case will prevail in the cyclone core for low wave numbers
|K|, the latter can occur anywhere for sufficiently large negative k but may occur outside
the core even for k = -1, in storms with a moderately peaked radial wind profile and
hence wesak relative vorticity. The implications of this change of sign will be discussed

further below. In the intermediate case (aff)¥? + ky = 0, both roots are zero.

The usual approach to solving the Ekman equations uses a no-dip lower
boundary condition, u(0) = 0, v(0) = -V. This does not well represent atmospheric

conditions and also grossly violates the linearization here. Instead, a dlip condition is
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applied near the surface, using a bulk formulation with drag coefficient C for the near-

surface stress after Taylor (1916),

K % = C J(usu)® + (Vv (u+uy)
~ : : (2.10)
K & =C \/(u+ut) + (V+v+v)? (V+v+y).

Thisis evaluated at some height in the surface layer, which for convenience istaken to

be z= 0. Here, (u, V) isthe cyclone trandation velocity, which is taken as being in the

positive x direction with speed U,, giving

u, = % U, " +e™
i . X (2.12)
V, = > Ut(e' - e
Assuming that U, <<V, (2.10) may be linearised to
B dau
CV(u(O) + ut)— Ka—
zZ,
v 20 (2.12)
CV(V+2V(O) +2vt>: K —
aZz:O

This assumption implies that the model is applicable only in the core region, or for very
sowly moving cyclones. Equations (2.12) cannot be written as an algebraic function of

®, SO it is necessary to separate out the real and imaginary parts of (2.6), giving
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_Z A( (1+.)m)

+igu('x+e’”‘) =0
2 K
(2.13)
| Z A(ZCV+(1+|)\/ ky)
K= oo
Ccv i AN
+?(ut(—ek+ek)+|v)]:o

A little careis needed in solving (2.13). Having taken real and imaginary parts, it is not
correct to simply equate coefficients of powers of exp(ikk) to 0. One route is to
substitute in some suitable values for A and solve the resulting system of equations. A
more elegant approach is to use the identities Re(2) = (z + z¥)/2, Im(2) = i(-z + Z¥)/2,
where Z* is the complex conjugate of z, to eliminate the Re and Im functions. The
coefficients of exp(ikk) in the pair of equations thus obtained from (2.13) must then be
0. This gives a system of linear equationsin A, and A*, which are straightforward to
solve. For [k| > 2, A, =0, since in a linear model with the present surface boundary

condition there is nothing to excite wave numbers above one. For |k| < 1 and (af)Y? -

'y>0,
N n[1—2@+(l+i)(1_m)\l’]ut
' JalB [ (2 + 2i)(1 + ny) + 3n + 3iy ]
_ o x [+l Vv
a 202 + 3y + 2 (239
W YD1+ 2/6B @A+ o]y,
! ValB [ (2 + 2)(1 + ny) + 3y + 3in ]
where
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N :cv’ 2
K\/@+Y K(V/I’+|)

cv 2
= = QCV|= 2.15
X K (@B | (2.15)

v- cv :CV’ 2
K \/@_'Y K|V/I’—||

are dimensionless numbers, and 12 = (f + 2V/r)(f + VIr + dV/ar) is the square of the

inertial stability. For (af)*? - y < 0 (or equivaently, | < V/r), adlightly different formis

obtained for the asymmetric components?

/ n[1-2/p+(1-0)2- )],

A - _
C VB[22 3@y - @2-2) ]
(2.16)
A w[1+2/B+(@+i)1+aB)n]V,
,1 -
JalB[2 -2 +3 (1 +y) + (2 +2) ny]
using A’instead of A to avoid ambiguity.
The boundary layer flow is thus given by
u*2 = u(r2 + u(2 + u.(r2
v(L2) = vll(x,z) + v;(z) + vfll()»,z) (2.17)

where u, and v, are respectively (o/p)"? = ((f + 2V/Ir) / (f + VIr + dV/or))“* timesthereal

®1f vy isreplaced by -iy for A, and by iy for A ; in (2.16), then (2.14) is obtained.
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part, and the imaginary part, of

0,2 = A eXp[ - %] (2.18)
0

The asymmetric components (u, v;) and (u_,, v_,) are similarly obtained from

1 +1iz

Alexp—6—+ix, | > ViIr
1
oA 2 =1 (2.19)
Alexp - L1 0Z g | < VIr
5
1
and
Alexp—%—ix, | > Vir
-1
® 0 2 = (2.20)
A/, expl - —(16‘ Z i, | < VIr
-1

The depth scales of the three components are

5 1 ) ’ 2K (221)
k — - .
\/@+ky || +kV/I’|

The solutions (2.19) are continuous at those radii where | = V/r, if such exist, athough

the radial gradients become large. The behaviour there will be discussed further below.

The frictionally-induced agradient flow has thus been decomposed into three
components. The two components with azimuthal wave-number one are proportional

to product of the trandation speed U, and the gradient wind speed V, while the
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symmetric component is proportional to V2. Each solution has adifferent depth scale 5,
which is greatest for k = -1, and least for k = 1. A physical explanation for these
different length scalesisgiven later. Note that because of the linearization of the surface
boundary condition in (2.12), and particularly the assumption U, <<V, the asymmetric
parts of the solution do not reduce to the Ekman limit for straight flow far from the
vortex, although the symmetric part does. Infact, asr - «, each of Ay/V?, A)/(VU,) and
A_,/(VU,) approach nonzero constants, so each of the (u,, v) ~ 0. However, in the
absence of that linearisation, the asymmetric components would become proportional
to U2 inthat limit, and so are valid only in that part of the vortex where V >> U,. Note
also that the limiting behaviour A, ~ V2 for small V follows from the semi-dlip boundary
condition, rather than the circular geometry. Exactly the same behaviour ariseswhenthe
classical Ekman equations in Cartesian coordinates are solved with this boundary

condition.

The symmetric and asymmetric components of the solution are now considered

Separately.
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2.3 Theboundary layer of a stationary vortex

2.3.1 Horizontal Flow

Here, only the symmetric part (u,, Vv,) of the solution applies. It differsfromthe
classical Ekman spiral in three ways. The firgt is that the depth scale is §, = (2K/I)*?,
which in the core of atropical cyclone is much less than &; = (2K/f)*. The effect of
storm rotation in reducing the depth of the boundary layer has been noted before, for
example by EL77, Anthes and Chang (1978) and Frank (1984), the latter two of whom
took the depth as being proportional to (f + 2V/r) 2 The analysis here, which will be
confirmed by the numerical modelling results in Chapter 3, suggests that (2K/1)*? isa

more appropriate scale.

The second important difference is that the square root termin (2.4) altersthe
degree of turning of wind direction with height from the classic solution. Inside the eye
of acyclone, thisterm will be closeto 1. However, outside the eye, VIr and &V/a have
opposite signsand will partially cancel, leading to astronger cross-isobaric component,
relative to the along-isobaric component, than in the solution for straight flow. Thiswill
become more marked as the inertial stability of the storm decreases towards neutrality,
until at the neutral limit (where the model ceasesto bevalid) p = 0. Further, the change
insign of oV/a at the radius of maximum winds will produce a marked radial gradient
in the near-surface inflow there, and hence substantial near-surface convergence. The

vertical velocity forcing implied by this solution will be discussed in detail below.

The final important difference lies in the coefficient A,, which affects the phase
and amplitude of the spiral. Thisisdifferent because of both the dip boundary condition,
and the arbitrary definition of z= 0 asbeing some height in the surface layer, rather than

the actual surface. While the first two of the differences noted here are due to the
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application to a vortex, this latter one is rather a consegquence of the surface boundary
condition. Indeed, the solution for horizontally homogeneous geostrophically balanced
straight flow in Cartesian coordinates with this surface boundary condition may be
recovered from (2.18) by replacing | by f in the definition (2.15) of y ,and setting the

coefficient (a/B)Y? used in extracting u from (2.18) equal to 1.

The variation of the dimensionless parameter y with wind speed is clearly of
interest. Unfortunately, determining thisis not easy, asC, Kand | will each vary with V.
Of these, the turbulent diffusivity is perhapsthe most difficult dependenceto assign. One
possibility isto take the turbulence length scale as proportional to height, on the grounds
that the turbulence is predominantly shear generated. Thusarepresentative length scale
for the whole boundary layer, as required here, is the boundary layer depth 3, and the

diffusivity can be parameterised as

K ~ (turbulent length scale)? | shear | ~ 32 al - 5,V 2.22)
0

Substituting this and the definition of &, into the second of (2.15) givesy ~ C. The
approximately linear increase of C with wind speed, at least up to 25 ms'?, is well
documented (e.g. Garrett 1977, Large and Pond 1981), athough there is some
disagreement about whether this increase is maintained at higher speeds (e.g. Frank

1984, Hubbert et al. 1991). Using (2.21) in (2.22) givesK ~ V41 and hence

5. ~

v
°

(2.23)

removing the dependence onturbulence parameters. Thisresult, while potentially useful,
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relies on a scaling argument for the turbulence parameters, and so should be used with

caution. This point is revisited in Chapter 3.

The height of the maximum azimuthal wind and the wind componentsthere may

be found by solving dv,/dz = 0, giving
z.. = 8, actan(-1 - 2/y)
e My o2 [

Ug(Z e =

0\ 5 22+ 3 +2 \B 2.24
o+ 3y

V(%’n)zvefarctan(fle/x) X /x2+2x+2

orma /2 2% + 3y + 2

Values for the arctan function here lie in the range n/2 to 3n/4, so the predse detail s of
the storm can vary the height of the jet by about 50% within our scade estimate of 3,
That uy(z,.,) < 0isimportant for two reasons: physicaly because it shows that thereis
inflow in the presence of supergradient azmuthal flow, and mathematicdly since it
showsthat V(2 isindeed amaximum, as 0%y AZ(Zay) = 2PUy(Zwey) < 0. Note herethat
an inertially more neutral storm will have ahigher jet, through both &, and the arctan
term, and that increasing the drag coefficient will | ower the jet. Further, the strength of
the et relative to the gradient flow is expressed entirely in terms of . Figure 2.1 shows
the effed of individually varying the five of six parameters (diffusivity, drag coefficient,
gradient wind speed, radius and inertial stability — the dfed of varying latitude is,
unsurprisingly, negligible) through a physicaly reasonable range, on jet height and
relative strength. Heretheinertial stabili ty is parameterised through avariable x, defined
by dV/ar = xVI/r, and the parameters are varied about the values K = 50n? st, C =
0.002 V=40ms*, f=3.77x10° s ! (for latitude 15°), r = 40 km, and x = -0.5 (Gray
and Sheal973.
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Figure 2.1: The variation of relative jet strength (top) and jet height (bottom) with
various parametersin the linear model, according to (2.24). For each pair of graphs,
the parameters not varying have valuesC =0.002, V=40ms ', K=50n?s* r =40

kmand x=-0.5.
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The jet in this linear model is typically from 2% to 4% supergradient and thus
substantially weaker than in the observations. It will be argued later in this chapter, and
confirmed in the next, that this is a consequence of the linear model, and that
incorporating the vertical advection produces a result more consistent with the

observations.

Aninteresting feature of Fig 2.1 isthat increasing the drag coefficient (over the
range given) markedly increasesthejet strength, with only aminor effect on the height.
This is because greater surface friction leads to stronger inflow through much of the
boundary layer, and hence greater inwards advection of angular momentum. This is
potentially important, because of both the poorly known wind speed dependence of the
drag coefficient at high winds, and the marked increase that (usually) occurs at landfall.
The time scale for the boundary layer to develop was shown by EL77 to be /1, and is
less than an hour for the inner part of a hurricane. This therefore suggests that the jet

may strengthen as strong winds cross the coast.

Increasing the gradient wind speed on its own is seen to lead to a shallower,
stronger jet. However, note that in the real atmosphere stronger winds would be
expected to lead also to an increase in turbulent diffusivity and drag coefficient. The
increase in K would tend to reverse this trend, while the increase in C would further

increase the strength, but dlightly increase the height.

Varying the radius atersthe inertial stability, leading to alower but weaker jet
for amore compact storm, al other things being equal. Finaly, the effect of varying the
radial profile of the gradient wind is that, in a more peaked, inertially neutral storm, x

will be closer to - 1, giving astronger but higher jet. Note also that just inside the radius



of maximum winds, where x is positive, the jet is predicted to belower and weaker than
just outside. However, care is neaded in interpreting this last pair of panels for in-eye

conditions as the gradient wind speed is held constant for them.

2.3.2 Vertical velocity forcing in a stationary vortex
The verticd velocity above the boundary layer can be found by integrating the

continuity equation verticaly and applying the surfaceboundary conditionw= 10, giving

w (r) = —ii(r ”udz)
r or 0
(2.25)
_ 1 d (rCV(V +2v0)
r or f + VIr + oVior
Here, (2.2) and (2.12) were used to write
“v(2) dz
[ u@ dz - J Vi) = Vi)
0 K(f + VIr + aVior) K(f + VIr + aVior) (2.26)

CV(V + 2v(0))
f + VIr + aVior

in astationary vortex. A smilar result was found by EL77. This has sveral interesting
consequences. Firgtly, it is nealy independent of K — only the we&k influence through
v(0) remains. Secondly, if the radial variation of (f + V/r + aVv/ar) ! in (2.25) can ke
negleded, it is clea that the Ekman pumping velocity is proportional to the airl of the
surfacestress asin the dasscd solution. However, negleding this gradient is clealy
invalid nea the eyewall, and also where the vorticity is small. Finaly, assuming for the
moment that v(0) is proportiona to V, it is easy to consider threeparticular cases:

° Solid body rotation VV = Qr, and w. isproportional to r; that is, frictional forcing

produces ascent proportional to radius in the eye. This result was also obtained
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by Eliassen (1971) and EL77.

° Rankine vortex dV/dr = -V/r, and w. is proportional to - 1/r® giving subsidence

increasing rapidly towards the centre of the storm. Thus storms with a highly
peaked wind profile will be subsident outside the radius of maximum winds
(RMW), although note that this case approaches the limits of applicability of the
linear model. The subsidence here is quite different to the predictions of the
standard Ekman model for this case, which predicts zero vertical velocity from
theirrotational gradient level flow. However, Carrier (1971, see correctionina
footnote dueto J. McWilliams) found subsidence proportional to r 2 in asimilar
vortex. Theweaker radial dependence found by them is due to their use of ano-
dip surface boundary condition.

o Typical cyclone with V proportional tor *and x = 1/2, and also oV/cr + Vir >>

f. This givesw, proportional to r * and hence to V, and upwards.
Comparing thelatter two of these caseswith thefirst confirmsthat the maximum updraft
must liein the vicinity of the RMW. Determining the precise location is somewhat more

difficult and the mgjor influences on it are discussed in section 2.3.5.

2.3.3 Surface wind reduction

Consider for simplicity the ratio of surface azimuthal wind component (rather
than full surface wind speed) to gradient wind. Thisis substantially different only in the
nearly inertially neutrality case, when the model is at the limits of its validity anyway.

Then the surface wind factor (SWF) is

V+v0) = Y +2y+2
\% 2P +3y+2

(2.27)

which decreases monotonically from 1 at y = 0 to a limiting value of 1/2 as y-e.
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Reasonable values of the parameters (nea the eyewall, C=0.002 V=40ms*, K =50
m? s, and | =103 s*) give afactor of 0.81, which is consistent with the studies cited
ealier. At larger radii, wherey is snaller, relatively wedker surfacewindswill be found.
The observational studies cited ealier have shown that there is no universal constant
surfacewind fador, and have tended to ascribe the differencesto stability effeds. Here,

it has been shown that dynamicd fadors play a substantial role.

2.3.4 Application to a typical cyclone

The &ove may reaily be gplied to any of the several analytica wind profiles
in the literature. That of Holland (1980 is adopted, sinceit isin aform which enables
easy adjustment of the storm intensity, maximum wind radius, and shape of the wind
profile outside the radius of maximumwinds, and it satisfiesknown constraintson radial
variation of angular momentum. In addition, it has been widely used and receved
consderable verification against observations, both in the origina paper and
subsequently (e.g. Harper et a. 1989 1993). The profile within the g/e is dightly
modified to removethe barotropic instabili ty present there. Thisisnot strictly necessary
here, but will beinthe next next chapter, and so isadopted here for consistency. Thefull

details are deferred until then.

Figure 2.2a shows the radial profiles of gradient wind from the Holland profile,
and “surface”wind speed components from the linea model here, for a g/clone with
maximum wind speed 40m s * at aradius of 40 km. The Holland b parameter, which
controlstheradial velocity gradient and hencethe inertial stabili ty outside the radius of
maximum winds, is 1.3, which is an average value for tropica cyclones. The inflow is
sean to increase inwards more slowly than the azmuthal wind, before deaeasing again

inside the radius of maximum winds. The surface amnuthal wind is about 77% of the
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gradient wind outside the RMW, but relatively much stronger at and inside of the RMW
(Fig. 2.2e). This follows from (2.27) and the radial variation of y, which is nearly
constant outsidethe RMW, whereV and 1 Y2 have similar radial tendencies, but decreases
rapidly to O at the centre, as V decreases and 12 remains large. The predicted near-
surface azimuthal flow isvery similar to theanalysisof Mitsutaet a. (1988), shown here

inFig 1.8.

The jet strength (Fig. 2.2¢) is quite weak, about 3% supergradient, outside the
RMW, decreasing rapidly inside the eye, while its height (Fig 2.2d) decreases nearly
linearly towardsthe centre. Thevertical velocity at three levelsis shownin Fig 2.2b; the
peak at the RMW and approximately linear dependenceinside are apparent, aspredicted
in the discussion above. An exact linear dependence is not found because the gradient
wind profile used does not have alinear dependence on radius here. It isinteresting that
the radial profiles of wat 200 m and 500 m are much more peaked than the one for the
limit as z-, and that the updraft Sopes outwards with height. Thisis partly areflection
of the shallower boundary layer towardsthe centre, but also that the radius of maximum
inflow tilts outwards with height. In fact, as was pointed out by Rosenthal (1962), the
radius of maximum horizontal convergence lies just within the RMW at the surface.
Further aloft, the maximum horizontal convergence movesfurther out, to approximately
aradiusof 150 km at a height of 1500 min this case. The lower boundary layer flow at
large radii is accelerating inwards, and so there is comparatively weak low-level

convergence there.

Figure 2.2f shows the diffusive forcing of inflow K d?u/dZ at the jet height. In
the present model, thisisall that balancesthe outwards acceleration dueto gradient wind

imbalance. In the real atmosphere, inflow is additionally forced by vertical advection
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Figure2.2: Radial profilesof (a) gradient wind (solid), surface azimuthal (dashed) and
inflow (dash-dotted) components; (b) vertical velocity at 200 m (dashed), 500 m(dash-
dot) and infinity (solid); (c) jet strength relative to the gradient wind; (d) jet height
(solid) and depth scale 5, (dashed); (e) surface wind reduction factor and (f) forcing
of inflow at the jet height by vertical diffusion (solid) and vertical advection (dashed).
The cyclone is prescribed by the analytic model of Holland (1980) withr,, = 40 km,
Vo =40 ms?, and b = 1.3, with the eye modification described in the next chapter.

Other parameters are C = 0.002, K = 50 n? s'%, latitude 15°N.
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-w du/dz, which is shown dashed in Fig 2.2f, using w calculated from the modelled
horizontal wind field by integrating the continuity equation. This is comparable to the
diffusive forcing of inflow, and had it been included in the model, a more strongly
supergradient flow could have been maintained in the upper boundary layer. Thus the
present model underestimatesthejet strengthinthe coreregion. Notethat thisargument
Isindicative rather than quantitative, as the vertical velocity field would be different in
a nonlinear model. Inclusion of a crude representation of vertical advection will be
considered in section 2.5, and it and the other nonlinear terms are considered in detail

in Chapter 3.

2.3.5 Thelocation of the maximum updr aft

Eliassen and Lystad (1977) found in their numerical results that the maximum
updraft was alwayslocated within the radius of maximumwinds of their vortex, and that
it moved outwards as the vortex became stronger, and inwards as the drag coefficient
increased. However, when the updraft for the parametric wind profile of Holland (1980)
was calculated, the location of the maximum updraft above the boundary layer fell
dightly outside of the radius of maximum winds. Here, the analytical model is used to
explain the sensitivity of updraft location to vortex strength and drag coefficient noted
by EL77, and show that the maximum updraft for storms stronger than they considered

lies outside the radius of maximum winds, in this model.

Using (2.27) in (2.25) gives

rCV?2 )

2y%+3y+2 I or f+VIr+oVlor

(2.28)
2P+ 4y+2) N Cv?
(2x2+3x+2)2 or f+Vir+aoVior
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Figure2.3: Theapproximate updraft w_"inthelimit C - O, for various Ro (as marked)
in the vortex of EL77. The position of the maximum updraft moves outwards with
increasing Ro, due to the change in relative importance of the planetary and relative

vorticities in the denominator of (2.29).
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EL77 svortex isgivenin dimensiona formby V=r Ro f/ (2(1 + (r/r.)?), where Ro is
the Rossy number and r,,, the radius of maximum winds. Ignoring for the moment the

radia variation of vy, the updraft is approximately proportiona to

1 rCv? _ CRo* 4 rs

d
roor f+ VIr + aVior rdr Ro + (1 + (r/r )%?

w(r) = (2.29)

Clealy, the shape of this curve a afunction of r/r ,, depends only upon Ro, and varying
the other parameters will change only the magnitude. It is plotted for four different
values of Ro in Fig 23, including EL77s maximum of Ro = 20; the outwards

displacement of the maximum for more intense vorticesis clea.

This placement of the maximum updraft outside of the RMW isin disagreement
with observations, which placeit immediately inside the RMW. This is partly because
the limit w, is being considered here, and the updraft dopes outward with height, as
shown in Fig 2.2b. It may aso be a ©nsequence of the negled in the linea model of
some terms in the radial momentum budget equation which might be expeded to be

important nea the RMW; in particular the verticd and radial advedion.

Figure 2.4 shows w, from (2.28) for the parametric vortex of EL77 with Ro =
20 and various C. As C increases, the maximum updraft moves inwards and broadens,
with w. being constant through much of the eg/e for C = 0.02. Note that the arvesin
Figs 2.3 and 24 are not exadly the same ain EL77, since

(i) in Fig 23 they are dfedively the limit asC - 0O,

(i) EL77 considered aslowly decaying vortex after the boundary layer was gpun
up, while these results are for a steady-state vortex,

(i) EL77 had an upper boundary at height 4.95,, and
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Figure2.4: Theupdaft w, for thevortex of EL77for Ro =20and C= 0.002, 0.006,
0.02, and the gproximate updraft w,’/C, labelled imC - 0. The parameter y at the

RMW is0.27, 0.82, and 274 respedively, for the aurves with nronzero C.
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(iv) EL77 sresultswere & thelevel of maximum upadraft, while herethey are &
z- «, and theupdraft sopes dightly outwardswith height. Indeed, theupdraft locations
givenin Table 2 of EL77 are dwaysinside of those cdculated with the present model,

except in the physicaly uninteresting C = 0.2, Ro < 10 cases.

To seewhy increasing drag coefficient displaces the maximum updraft inwards,

consider solid body rotation given by V =r Ro f /2 within the RMW, so that

y=rc | RO (2.30)
K T+ Fo

Is proportional to r. Then the first term of w._ in (2.28) is proportional to r for small r,
while the second behaves as r?, so w. is proportional to r at small radii. Asr - «, both
termstend to a constant limit. These dhanges in radial dependence ae summarised in
Table 2.1, and clealy are mntained entirely within the expressonsinvolving y. Closer
examination shows that w. beames close to constant oncey exceels about 2. If y is
much lessthat thisat the RMW, w, will be doseto proportional to r throughout the eye
and the maximum updaft will li e nea the RMW. Asy at the RMW increases, the large
r limit begins to be felt and so w. will i ncrease lessrapidly with radius. Oncey at the
RMW reades 2, the large r limit (i.e. that w. is constant with radius) applies and so
thereisanoticedleinwardsdisplacement and broadening of the maximumupdraft. Even
avery intense vortex with Ro =100, f = 3.8x10°s %, K=20nm? s, C=0.005and r =
30km, givesonly y = 1.57. However, EL77 alowed C upto 0.2, and found that the part
of the /e over which w, was proportiona to r becane smaller, and that the maximum
updraft moved inwards, as C increased. In Fig 24, the values of y at the RMW are 0,
0.27, 0.82 and 272, and only in the last does w, become gproximately constant with

radius in the outer part of the eye, consistent with this analysis.
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W _ x+2 19 rcv? . -2(x%+4y+2) Iy CV?

0

2)%+3y+2 T or 4G (2@ +3+2)? o+
Small r ~1 ~T ~-1 ~r2
Large r ~r 7l ~r ~or 2 ~r2

Table 2.1: Limiting behaviour of termsin (2.28) for small and larger, for the case
of solid body rotation.
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2.4 The boundary layer in a moving cyclone

Eadh of the azmuthal wave-number one cmponents in the agradient flow in
(2.19, 2.20) varies in height as an exponentially decging sinusoid. The decgy and
oscill ation depth scdesd, and 6_, arerespedively shorter and longer than the symmetric
component’s scae, §,. The phase of ead component rotates with height. For (u,, v,),
the imaginary parts of the wefficients of zand A in the agument to the exponential
function in (2.19) have opposite signs, so the phase rotates cyclonicdly with height.
Similarly, from (2.20), the phase of (u_,, v_,) rotates anticyclonicaly where | > V/r, and
cyclonicdly where | < V/r. Therate of rotation depends on the governing height scae,
so it is always quicker for (uy, v,) than (u_,, v ,), and is adso quicker in the inertialy
highly stable wre of the g/clone. Approading the limit | = V/r from either side, the
components become equal and constant with height, which corresponds to the double
root p, = 0. Physicdly, thisis a surprising result, as it suggests that this component of
the flow is not frictionally retarded. However, the other two components are retarded,
and this component scaes with the g/clone trandation speed which was necessrily
asumed to be much lessthan the gradient wind speed. Thusthe dsenceof shea inthis
component is not unredistic. A physicd interpretation of the differing phase rotation

with height and depth scaes follows later.

Figure 2.5 showsthe componentsof the asymmetric and total storm-relativeflow
at several heights, for the same gyclone asin Fig 22, but trandating to the west at 5 m
s*. Clealy (u ,, v,) is ®veral times gronger, and decays and rotates lessrapidly with
height, than (u,, v,). Insde the e/e, where | is large and greder than V/r, both
components have similar and relatively rapid rates of rotation with height, although in

opposite diredions.
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Figure2.5: Thetwo components of the asymmetric flow, (u_,, v_,) (left two columns)
and (uy, v,) (middle two columns), together with the total storm-relative radial and
azimuthal flow (last two columns) at the surface (bottom row), 500 m (second from
bottom), 1 km (second top), and 2 km (top), for the cyclonein Fig 2.2, moving to the
west at 5ms . The central circlesin all except the last column show the RMW, and
the domains are each 300 km square. The contour interval is 1 m s *in the first two
columns, 0.25 m s* in the next two, 2 m s* in the fifth, and 5 m s* in the lagt.

Negative contours are dashed, and the zero contour is bold.
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Theasymmetric part of theflow isdominated by (u_,, v ,), and consists of storm-
relative inflow in the right forward quedrant and outflow in the left rea, in good
agreament with observational studies (Shea ad Gray 1973 Frank 1984. The slow
anticyclonic rotation of this asymmetry with height is likewise mnsistent with Frank
(1984 seeFig 1.6 here). Above 1 km intheright rea quadrant, the asymmetric outflow
component u_, dominates the symmetric inflow component u,, due to its dower decay
with height, giving a significant areaof net outflow. This appeas smilar to the strong
outflow found by Marks et al. (1999 in Hurricane Fran. Interestingly, there ae two

small regions nea the surfacewhere u_, exceals the trandation speed U,.

The asymmetry in the azmuthal flow gives a maximum on the left side nea the
surfaceinthetotal storm-relativeflow, rotating towardsthefront with increasing height,
dueto therotation with height of the dominant asymmetric termv_;. The other term, v;,
makes a noticedle ntribution only very nea the surface Again, this aamuthal flow

Isin reasonable agreament with the previously cited observational studies.

The effed of the asymmetries on the jet for the same storm are shown in the
upper panels of Fig 26. The jet is grengthened in the left front quadrant where the
asymmetric component v_; is positive, and obliterated in the right rea. Here, the “jet
fador” is defined asthe ratio of the wind speed at the jet core to the gradient wind, in
aneath-relative mordinate system. The asymmetry in height islessmarked, particularly
in the core when the jet is neaer the surface This is because the bulk of the verticd
variation inwind isexplained by the symmetric part of the solution, with the asymmetric
parts either being much weégker in the cae of (u,, v,), or varying over a substantially
longer depth scdeinthe caeof (u 4, v ,). In either case, they producewedker verticd

shea than the symmetric component. Thus the height of the jet, where it exists, is not
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Figure 2.6: Jet strength, (left) and height (right), for the stormin Fig 2.5. Here, the
jet strengthisthe ratio of the maximum earth-relative wind speed in the profile, to the
gradient earth-relative wind speed. The central circles show the radius of maximum
winds. Contoursof jet height are discontinuousin the rear right quadrant of the storm,

asthereisno jet there.
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dramaticaly modified from the symmetric case, although its grength is.

The dfed of trandation on the verticd velocity and surfacewind fador are
shownin Fig 27. Above the boundary layer, the wave number 1 asymmetry induces an
enhanced updaft in the left forward quadrant, whil st eliminating the updraft at the right
rea. The we& anticyclonic spiral in the updaft is a cnsequence of the dominant
asymmetric (u_,, v_,) component. It is clealy not aforcing for spiral bands, but may be
partly responsible for convedive asymmetriesinthe e/e-wall. Thereisabroad left-right
gradient of the surfacewind reduction fador (SWF), with relatively stronger surface
winds on the wegker side of the storm, as well as the enhanced values nea the ceitre
noted ealier. The gradient is ¢ronger when cdculated with storm-relative winds than
with eath-relative, but is present in both cases. Thisleft-right asymmetry does not seem
to have been previoudly noted, and is another posshble dynamica explanation for the

aforementioned variation in observed surfacewind reduction fagors.

2.4.1 Physical interpretation of the asymmetries
If thetime derivativeisrestored and thefriction termsremoved fromtheorigina
linea equations (2.2), the resulting system has an infinite family of inertia waves as

solutions, given (to within arbitrary phase and amplitude) by

u(t,A) = f v 2vir co | + Vk t - kh
f + VIr + aVlor r

v(t,x):—sjr([HVTk)t—kx]

For the cae of interest |k| = 1, these have phase angular velocity V/r  [; that is, | in

(2.31)

either diredion, Doppler shifted by the g/clone’ s gradient flow. For the moment, these
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Figure2.7: Topleft: Vertical velocity at 2-km height for the same stormasin Fig 2.5.
Lower left: Surface-wind reduction factor (SWF) using storm-relative winds; that is,
the ratio of the storm-relative surface wind speed to the storm-relative gradient wind
speed. Lower right: SWF for earth-relative winds. (Note that the similar figure

showing the SWF in Kepert (2001) was incorrectly labelled as using earth-relative

winds when it wasin fact calculated from the storm-relative azimuthal components).
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will be cdled the“fast” and “Sow” waves, depending on whether they are propagating
with or against the flow, respedively. The fast wave dwaystravels cyclonicdly, while
the dow wave will propagate anticyclonicdly intheinertially highly stable oyclone wre,

but may go the other way or be stationary in regions of we& inertial stabili ty.

Although supported by the lineaised inviscid equations of motion, the waves
probably have little physicd significance athey stand. For instance, their phase angular
velocity is a strong function of radius, so the radial phase relationship will vary with
time. Moreover, the wave (2.31) is divergent. The pattern of divergence will have a
complex time evolution due to the radia variation of aazmuthal velocity V, but the
asociated masschanges have been eliminated by the lineaisation. The importance of
these waves is rather that they provide a physicd interpretation of the two asymmetric
components. It will now be shown that in the viscid case, the vertica structure of these

waves is such that friction brings them to a halt.

These waves have the same azmuthal structure & the solution components
(u,v;,) and (u ,,v,). The friction K3%3Z term in those cmponents is always in
quadrature with the velocity field, and lagging, relative to the diredion of propagation

of the corresponding wave. Thusfriction canonly retard the waves, and not changetheir

amplitude.
Moreover,

amplitude (u,) | V

= [ J—
K amplitude (5°u,/0z?) r

(2.32)
amplitude (u ,) B ‘ LV
K amplitude (c°u ,/0z%) r
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and similar relationships apply for the v components. This, in combination with the
quadrature phase relationship, shows that predsely enough friction is present to retard
the wave to stationarity. In the cae where | = V/r, the wave is drealy stationary, no

retardation of the wave isrequired, and so no verticd shea is present in (U_,, V_,).

Now, (u,, v;) corresponds to the fast wave, and thus requires relatively more
friction to stop it, than (u_,, v_;). Hencethe former has a shorter verticd length scde,
giving relatively stronger shea, than the latter. Moreover, sinceK is constant here, and
the amplitude of ead wave deaeases with height, it iseasy to seethat the verticd stress
divergence can only phase-lag the wave if the phase of the wave rotates in height in the
same diredion as it would have propagated in the absence of friction. Thus the phases

of (u,, v;) and (u_,, v_,) will generally rotate in opposite diredions, with height.

Thisphysicd interpretation can be extended to deducethe structure of the higher
wave-numbersin (2.6). While these ae not present in the aurrent model, they could be
excited by either nonlinea interadion of the wave-number one components, or by a
surfaceboundary condition containing higher wave-number asymmetries because, for
example, the g/clone was partly over land. For ead pair of wave-numbers k, the
diredion of the phase angular velocity ¢, = V/r + 1/k of theinviscid wave determinesthe
diredion of rotation with height of the mrresponding component of the solution to the
viscid equations. Sincel < f + 2V/r intropica cyclones’, absolute wave-numbersthree
and higher can be expeded to rotate g/clonicdly with height. For wave-number 2, the
anticyclonicdly rotating component is posshble only nea and within the RMW, with the
predse detail sdepending onthe Rossy number. Themagnitude|c,| of the phasevelocity
isinversely related to the height scde, with (2.21) giving 6, = (2K / k |c )™

“Except possbly for a small areawithin the RMW.
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2.5 Theimpact of vertical advection on thejet strength

Thehypothesisunder consideration isthat steady supergradient flow could exist
in the boundary layer of atropical cycloneonly if there was a mechanismto force inflow
in the presence of the jet against gradient adjustment, which would tend to destroy
inflow. In the linear model, inflow is forced at the jet height by upwards turbulent
transport of inflow from near the surface, and is sufficient to produce winds that were
afew percent supergradient. The forcing of inflow by the updraft was calculated and
found to be similar in magnitude to the turbulent forcing, so it was argued that the linear
model significantly underestimates the jet strength. In this section, the linear model is
extended to include a crude representation of vertical advection, and the salient

properties of the extended model are outlined.

Restoring the vertical advection termsin (2.3) gives

om

w d : kG
v§+E—m+ZI\/a_w——m=0 (2.33)

z 0z?

where w is the vertical velocity and other variables are as before. It is not in genera
possible to solve this directly with w determined from u and v through the continuity
equation, but it is straightforward if w is assumed to be constant with height. This will
clearly be invalid near the surface, but is approximately true near the jet, in the upper

boundary layer. Then, seeking as before solutions of the form

o(h2) = kZ ABXP(P,Z + 1K) (2.34)

for complex constants A,,, gives equations for the p,,
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with solutions

20 (ky + o) - 7 P, * Pay = O

(2.35)

1 wl* 1 w)?
+ o = + =
4\ 2K 2\ 2K

(2.36)

+ \'\'(\/@ sy s %(%)4 . %(%)2

Clealy taking the minus sgn herewill result in p,,, having anegativered part, necessary

for the solution to decay with height. For simplicity, attention is restricted to the most

important case (af)Y? + ky > 0, sincethe other cases are unlikely to be associated with

large values of w. Before goplying the surfaceboundary condition (2.12) to these, note

that the decegy and oscill ation length scaes of the solution are now different, because the

red and imaginary parts of p,, are unequal whenw # 0. Indeed, in an updraft,

Im(p,,,)|

[\

2 1 w)* 1 w)?
LR I -

2 1 w)* 1 w)? wl?  w
NCCRA B3I C I I
\\(‘/Q_BJ’kY)ZJ“%[Z—V;i“—%[Z_V;L2+(2_V;/<)2_R(2.37)

> 1 w)* 1 w)® w
v - 3] 3]

IRe(p,,,)|

while in a downdraft
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IRe(p,,)| =
2.38
> o + kyl &%)
= 5;1
In either case,
_ el s Y w1 w)?
umww\M@ ki) Z&ﬂ Z@J
< (@+k)2+£ﬂ2—iﬂ2
R TPl k) 2l x (2.39)
= {yaB + ky
= 5@1
Summarising,
| Re(p,) I > | Im(p,,) [t > § w>0
2.40
| Im(p,,) |t > 8, > | Re(p,) | w<0 (24

with equality applying if and only if w= 0.

Thus, while the oscillation length scale 1/[Im(p,,)| is aways lengthened by
vertical motion, the effect on the decay scale 1/|Re(p,,)| depends on the sign of w. Inan
updraft, the slower decay of the spiral with height will lead to a higher, more strongly
supergradient maximum in the upper boundary layer, thaninthew= 0 case. Conversely,
in adowndraft, the more rapid decay will result in aweaker (or absent) maximum at the

top of the boundary layer. This appliesto each of the three components of the solution.
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Applying the slip boundary condition (2.12) yields

O ol o o

(2.41)
3w
2+ 3.3 -w) +y? [2 - _]
2
Ay = 0, [Bla - 20 - wy sz - iy v ) + 2y (Bla-1)] U,
- [ 2(1 + iTL/TLxl - i\|1+/\|17)
| | (2.42)
B - wn (@ -y ) oy L+ i)
Sy - aw - wir) |
and
AL = V. [(\/B/=0c £ L - w2 - i)+ 20 /Bla - 1)] U,
- [ 2(1 - ianle + i\|1+/\|17)
| | (2.43)
B - wn(@ + i) (- inm))
(4 - aw, - wire) |
where
) cv
X =
K \'\'QB + 1[&)4 + 1[&)2
4l 2K 2| 2K
(2.44)
Ccv
=

107



1 w)* 1 w)?
$@”ﬁﬂﬂ*iﬂ

\ (2.45)
cVv '
1 w)* 1 w)?
\$@”“iﬂ‘iﬂ
cv
1 wl* 1 w)?
NCCERE -
(2.46)
cv
1 w)* 1 w)?
NCEEEES EI ¢
w, = (2.47)
T .

These reduce to (2.14, 2.15) whenw = 0.

Figure2.8 givesexamplesof profilesinasymmetric stationary stormfor positive,
zero and negative w. The features discussed above are apparent, in that the wind speed
maximum is raised and strengthened by the updraft, and practically eliminated in the
downdraft. Mathematically, this results from the inequality of the decay and oscillation
scales. However, thisis also physically consistent with the earlier discussion, inthat the
updraft cases have stronger inflow and greater angular momentum advection in the

lower part of the supergradient layer. Moreover, the steeper gradient du/dzinthe updraft

108



cases will provide stronger forcing of inflow by verticd advedion and dffusion there.
Note also that the layer of outflow abovethe jet, which results from an adjustment badk
to gradient balanceof the supergradient flow diffused and adveded upwards, is gronger
when an updraft is present. Conversely, the jet and outflow layer are weaened (or

nonexistent) and lower in a downdraft.

The continuity equation was not used in deriving these profiles — indedd, it is
violated becaise the verticd motion is constant with height. Moreover, this
approximation would be expeded to produce its largest errors nea the surface
However, the stronger nea-surfaceinflow inthe updraft caseswill tend to be assciated
with increased surface onvergencethere. Thusthis slution is broadly consistent with

continuity.

It is thus reasonable to speaulate that there is a positive feedbadk medhanism,
where an updaft results in stronger surfaceinflow and enhanced surface onvergence,
thereby reinforcing the updraft through continuity. This may be of importance in the
dynamics of rain-bands. Severa studies have investigated the dynamics of waveson a
tropicd-cyclone like basic state. For example, Willoughby (1977, 1978 showed spiral
rain-bands had feauresin common with inwardly propagating inertia-buoyancy waves.
Conversely, Guinnand Schubert (1993 have agued that vortex Rosdy waves provide
an explanation of the observed structure of inner bands, and that outer bands are formed
through the stretching out of potential vorticity anomalies. However, these studieshave

not included a boundary layer, and thus this possble dfed has been negleded.

In summary, the inclusion of verticd advedion — abeit not in a physicdly

redistic form —resultsin a higher, stronger jet in an updraft, and awedker or absent jet
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inadowndraft. Moreover, thereisanincreased lower boundary-layer inflow associated
with the updraft which may be part of a positive feedback mechanism relevant to the
dynamicsof rainbands. However, theseresultsshould beregarded asindicative only, due
to the unrealistic vertical velocity profile prescribed here. The numerical solution of the
full equations of motion, to be considered in the next chapter, will allow amorerealistic

treatment of the effects of vertical advection.
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Figure 2.8 Profiles of radial (left top) and azmuthal (right top) flow, together with a
hodograph (bottom) in a symmetric cyclone acording to (2.33, 2.38), forw=0.5m
s *(dash-dotted), w= 0.25ms * (dashed), w= 0 (solid) and w= -0.25m s * (dotted).
Other parametersareV=40ms?*, r=40 km, f=3.77x10°s*, C=0.002and K =

50" s *. The drcles on the hodographs are every 500 m of height.
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2.6 Concluding Remarks

The properties of asupergradient low-level jet have been examined using alinear
analytical model of the tropical cyclone boundary layer, which also enabled deductions
as to the driving mechanisms. This model diagnoses the boundary-layer flow as the
frictional response to an imposed, prescribed gradient flow characteristic of a cyclone,
but ignores the feedback from boundary-layer processes onto the cyclone as a whole.
The solution bears some resemblance to the well-known Ekman boundary-layer model.
However, it has three component: a symmetric one due to the cyclone, and two
asymmetric ones resulting from the interaction of the moving cyclone with the
underlying surface. Each hasadifferent depth scale, which vary fromthat of the classical
Ekman solution. There is also an asymmetry between the radia and azimuthal
components of the flow not present in the classic solution, which makes the radial
component relatively stronger than theazimuthal inall threecomponents. The symmetric
component is an improvement of the symmetric vortex models of Rosenthal (1962) and

EL77, while the asymmetric solution is believed to be new.

It was shown that strong inwards advection of absolute angular momentumwas
necessary to produce the jet. In the linear model, the required inflow was maintained
against gradient adjustment by vertical diffusion, and the wind maximum was found to
be a few percent supergradient in a stationary cyclone. It was argued that vertical
advection should be of similar size, and further strengthen the supergradient jet. It was
speculated that the outer side of arainband may be apreferred location for jet formation,
since here there is stronger inflow and angular momentum gradient, and a stronger

updraft.

The jet height was predicted to scale as §, = (2K/I)*2. It was argued that the
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introduction of vertical advection to the linear model would not bring any new height
scales but modify those already applying, and so this should also apply approximately in
a full nonlinear model. It was shown using a crude representation of the vertical
advection that the oscillation scale was always increased, while the decay length scale
increased in an updraft and decreased inadowndraft. Thisconfirmsthe above argument,
and suggests that a stronger jet would be expected in regions of significant upward

motion.

The Ekman spiral, at least in its origina form, is nowadays generally regarded
as afairly poor model of the atmospheric boundary layer, yet here a related model is
advanced as being appropriate in tropical cyclones. However, severa of the factors
which commonly disturb the classical Ekman spiral will apply to a much lesser degree
inthetropical cyclone boundary layer, and so the model is not thereby invalidated. The
first of these factors, the nondlip boundary condition, is here replaced by one of several

possible dlip conditions.

Second istherole of buoyancy in generating turbulence. In the strongly sheared
environment of thetropical cyclone boundary layer, turbulence would be expected to be
dominantly shear-generated. Thiswould lead to arelatively simple turbulent diffusivity
structure, not subject to large diurnal variations. In the normal atmospheric boundary
layer, the time scale 1/ for the establishment of an Ekman spiral is smilar to the time
over which diurnally induced variations in diffusivity occur. Hence it is perhaps hardly
surprising that it israrely observed over the land. Indeed, it isworth noting that Taylor
(1915), in his comparison of aircraft data to an Ekman spiral (with a dip boundary
condition), restricted attention to the strong wind case for precisely this reason. In a

tropical cyclone, on the other hand, significant diurnal changes in turbulent diffusivity
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do not occur, and the time scale 1/1 for boundary-layer adjustment is much shorter, so

the boundary-layer winds are much more likely to be in equilibrium with the diffusivity.

Another factor that can eliminate or even reverse the turning of thewindsin the
boundary layer isbaroclinicity. Thiswould belessimportant inatropical cyclone, asthe
near-surfacetemperature gradientsare weak (except near theeye) and tend to bealigned
perpendicular to theflow. Near the eye, the thermal shear will tend to be directed against
the gradient wind, and this will tend to sharpen the maximum in the upper boundary
layer. Moreover, thealtered scaling which resultsinamarkedly shallower boundary layer
here also reduces the extent to which temperature gradients can contributeto significant

wind change across the boundary layer.

A final factor which, in contrast to the others, does apply in the tropical cyclone
boundary layer, is the hydrodynamic instability of the Ekman spiral. For instance, the
numerical studies of Faller and Kaylor (1966) and Lilly (1966), and the analytical work
of Brown (1970, 1972a, 1972b), show that the classical Ekman spiral is unstable and
breaks down into longitudinal rolls, aigned a approximately 14° to 17° to the
geostrophic flow. Longitudina rolls are well known to occur in the atmospheric
boundary layer, and recently some evidence of their occurrence in the tropical cyclone

boundary layer has appeared (Wurman and Winslow, 1998).

Isthejet, then, nothing more than the weakly supergradient flow found near the
top of the Ekman boundary layer? In the context of the linear model, the answer is
essentially yes; albeit with the complication of three separate components in a moving
storm. However, it was indicated here, and will be confirmed in Chapter 3 using a

numerical model, that vertical advection playsacrucial rolein strengthening the jet, and
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that the supergradient component may be several times stronger than is predicted by the
linear model. The major role of upwards advection seems to be peculiar to intense
vortices and does not occur in more normally considered cases. This is because the
rapid, aimost step-like increase in inertial stability near the radius of maximum winds
produces an updraft which is much stronger than would be expected from the classical

theory, in which the updraft is proportional to the curl of the surface stress.

It wasalso shown that the distribution of vertical velocity outsidethe coreregion
may not follow the predictions of the classical Ekmantheory, as surface divergence may
prevail even in the presence of cyclonic relative vorticity, provided the inertial stability
Is weak. Within the eye, the updraft is proportional to radius, in agreement with the

results of Eliassen (1971) and EL77.

For amoving storm, it wasfound that the supergradient jet wasgenerally located
in the left forward quadrant of the storm (in the Northern Hemisphere), away from the
strongest (earth-relative) near-surface winds in the right forward quadrant. The jet was
substantially more supergradient than in the stationary case. The majority of the
asymmetric flow was shown to be contained in the deeper of the two asymmetric
components, with the shallower one being much weaker. The asymmetric components
wereinterpreted asfrictionally stalled inertiawaves, where the decay and rotation depth
scales adjust so as to provide precisely enough retardation to bring the wave to a halt.
The asymmetric components introduce a wave number one asymmetry to the vertical
motion, which is superimposed on that due to the symmetric component. The updraft
Is greatly strengthened in the right forward quadrant, while weak subsidence occursto
the left rear, in the Northern Hemisphere. This may contribute to the observed

convective asymmetries in the tropical cyclone eye wall.
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The ratio of the surface wind speed to the gradient wind speed is a useful
parameter which has been widely studied. The linear model predictsthat in a stationary
storm, this will increase from approximately 0.7 at large radii, to 0.9 or more at and
inside of the RMW. A similar trend is found in the observational analysis of Mitsuta et
al. (1988). For amoving storm, thereis additionally aleft-to-right gradient, with higher
values on the left side of the storm (Northern Hemisphere); that is, the side with the
weaker surface winds. The use of auniversal constant for surface wind reduction isthus
not supported by thelinear model. Asdiscussed inthefirst chapter, observational studies
have found wide variation in the surface wind factor, from approximately 0.55 to 1.
While some of this variation can be ascribed to stability variations, these are not present
here. Thus these dynamical factors appear to be a further cause of the observed

variability.
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