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Abstract

Therecent massveincreaseinobservationswithinthetropica cycloneboundary-
layer has emphasised that a low-level wind speed maximum, or jet, commonly occurs
there. Two complementary tools are developed here to diagnose the boundary-layer
winds in atrandating tropicd cyclone: alinear analyticd model, and a high-resolution
numericd model with sophisticated parameterisations of the seaair transfers and

turbulence

The solution to the linea model has three @mponents: a symmetric one due to
the g/clone, and two asymmetric ones which result from the interadion of the moving
cyclonewiththe eaith’s surface The asymmetric componentsare shownto befrictionaly
stalled inertiawaves, while dl three @mponents are modified Ekman spirals. It isargued
that this smple Ekman-type model may be gopropriatein tropicd cyclones sncediurnal
effedsarewed or absent, turbulenceispredominantly shea-generated, and baroclinicity

iswed.

Thejet is smilar to the supergradient flow found at thetop of the dassca Ekman
spiral. It isonly afew percent supergradient in the linear model, because the neglea of
verticd advedion there substantially reduces the strength. The jet height scdes as
(2K/)¥2, where K istheturbulent diffusivity and | theinertial stability, istypicaly several
hundreds of metresin the g/clone @re, and increaseswith radius. Inamoving storm, the
jet is most supergradient — several times gronger than in a stationary storm — at the
eyewall to theleft (right) and front of the storm in the Northern (Southern) Hemisphere,
and extends into asignificant area aound to the left (right) of the storm. It is, however,
much lessmarked to the right (left), where the strongest nea-surfacewinds are found.

Theratio of nea-surfaceto gradient-wind speeal is siown to have asubstantial spatial



variability. Larger values are found near the eye, and there is a marked increase from

right to left (left to right) of the track of a moving storm.

The second tool used is a high resolution, full primitive equations, dry,
hydrostatic, numerical model. It relaxes the constraint of linearity and includes
sophisticated physical parameterisations. Strong inwardsadvection of angular momentum
produces a strong jet, typicaly from 10% to 25% supergradient near the radius of
maximum winds (RMW). The inflow is maintained against the outwards acceleration
resulting fromgradient-wind imbalancein astationary vortex mainly by vertical diffusion
and vertical advection. In a moving cyclone, horizontal advection also becomes
important. The jet height, motion-induced asymmetries, and spatial variability of the

surface-wind factor compare well in the two models.

Predictions from the modelling work are tested against observations in five
tropical cyclones. Hurricane Mitch (1998) had strongly azimuthal-mean supergradient
flow near the RMW from 400-m to 2-km height, while the flow in Hurricane Georges
(1998) was apparently close to balanced. This difference may be because Georges was
commencing aneyewall-replacement cycle. Theasymmetric part of thenear-eyewall flow
in both these stormsis shown to have asimilar structure to the frictionally stalled inertia
wave and numerical simulations, although the frictional asymmetry which forcesthisis
provided in Mitch by proximity to land rather than by motion. Severe Tropical Cyclone
Vance (1999) also showed a large area of supergradient flow at about 1.5 km height
ahead of and to the right of the storm, the strength and height of which was consistent

with numerical ssmulations.

The observed ratio of near-surface wind speed to thewind aloft is also shown to



be in good agreement with the models. In particular Hurricanes Hugo (1989), Andrew
(1992) and Georges displayed an increase of thisratio towards the centre of the storm,
and higher values on the left of the track than on the right. Hurricane Mitch had an
increasetowardsthe centre, but different asymmetry. The observed ratio waslower than
modelled inthe outer coreof Tropical Cyclone Vance. Theagreement could beimproved
by increasing the ocean-surface roughnessin the model to account for the shallow ocean

and limited fetch in this case.

vi
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