
1Material similar to  this chapter was published as Kepert and Wang (2001). The

lowest model level there was 22.5 m, while here it is the wind-measurement standard of

10 m. Thus the model “near-surface” winds, and related quantities, are slightly lighter

here, than in the original publication.
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3. Numerical Modelling1

3.1 Introduction

Low-level wind maxima have been frequently observed in the boundary layer of

tropical cyclones. In the introduction, a physical mechanism for producing such a jet was

described in which strong inwards advection of angular momentum leads to

supergradient flow. A key point was that some process must maintain the inflow against

the outward acceleration due to gradient adjustment. In Chapter 2, a linear analytical

model of the boundary layer of a moving tropical cyclone was presented, and used to

show that vertical diffusion could maintain inflow in the presence of a weakly

supergradient jet in the upper boundary layer. A significant short-coming was that the

jet was too weak. However calculation of the relevant forcing terms, and the

development of a supplementary model with a crude representation of the vertical

motion showed that this was probably due to the neglect of vertical advection there. In

a moving storm, it was found that the jet was stronger (more supergradient) on the left

side of a northern hemisphere cyclone. Surface-wind factors were also calculated, and

found to increase towards the centre of the storm. There was also a broad left-right

asymmetry in surface-wind factor, with larger values on the weaker, left (right) side of

the storm in the Northern (Southern) Hemisphere. The two components that made up

the motion-induced asymmetry were shown to be due to frictionally stalled inertia waves

with azimuthal wave-number one.



118

A high-resolution, full primitive equation dry hydrostatic numerical model of the

tropical cyclone boundary layer, forced by an imposed pressure gradient, will be

presented in this chapter. It relaxes the constraint of linearity from Chapter 2, includes

the full advection terms, and will be seen to produce a markedly stronger jet, more

consistent with the observations. The contribution of the various terms in the momentum

budget equations will be quantified, and it is confirmed that the vertical advection of

inflow is of major importance in jet dynamics. Its neglect was therefore the main reason

that the linear model produced too weak a jet. An analysis of the flow in the boundary

layer of an inertially neutral cyclone will be presented. This important case is beyond the

scope of the linear model. Other improvements include a much more realistic

representation of the turbulence, which is used to show that the jet is not a consequence

of frictional decoupling due to near-surface stabili sation resulting from the cold near-

surface conditions observed by Korolev et al. (1990), Black et al. (1993) and Cione et

al. (2000). 

It will be shown that the jet in a stationary storm is between 10% and 25%

supergradient near the RMW, depending on the particular characteristics of the storm.

The linear model height scale of (2K/I)1/2, where K is the turbulent diffusivity and I the

inertial stabili ty, is shown to fit the numerical modelli ng results well. In the case of a

moving Northern Hemisphere storm, the jet is shown to most supergradient – several

times stronger than in a stationary storm – at the eyewall to the left and front of the

storm, as well as extending into a significant area around to the left of the storm. It is,

however, much less marked to the right, where the strongest winds are found.  This

asymmetry is in good agreement with that found earlier, and is dominated by the wave

number 1 response forced by the asymmetric friction. The depth scales found in the

numerical results are analysed and found to be in good agreement with those predicted
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by the linear analysis.

The surface-wind factor will be shown to have a substantial spatial variability,

similar to that found in the linear model. In particular, larger values are found near the

eye, and there is an overall increase from right to left (left to right) of the storm in the

Northern (Southern) Hemisphere, both consistent with the linear theory.

The model is described in the next section. It is applied to stationary storms in

section 3.3, and moving storms in section 3.4. Particular attention will be paid to the

nonlinear terms and the relationship of the results to those from the linear theory.  The

final section of this chapter contains further discussion and conclusions.



120

3.2  Model Formulation

As in chapter 2, the tropical cyclone boundary-layer is regarded  as the frictional

response to some known, steady-state cyclone in the free atmosphere, which is

prescribed by an analytical profile. The influence that details of the boundary-layer

structure may have on the cyclone as a whole are explicitly excluded from the analysis.

While these clearly exist – for example, the pattern of boundary-layer convergence will

affect the distribution of convection and hence heating – the scope here is rather to

explore just one side of what is undoubtedly a two-way interaction. Also, there is no

attempt to resolve the effects of convection on the boundary-layer, concentrating rather

on larger scales. While studies (e.g. Powell 1990a, b, Barnes and Powell 1995) have

shown significant modulation of boundary-layer structure in the vicinity of rain bands on

scales comparable to the band width, the focus of this study is on building an

understanding of the larger scale features of the tropical cyclone boundary-layer. 

Accordingly, a shallow model domain is used, with the top boundary condition

including a translating parametric pressure field intended to represent the remainder of

the cyclone. A benefit of this approach is that it allows much higher vertical resolution

in the boundary-layer than is customary in the numerical simulation of tropical cyclones,

as there is no need to waste grid levels on resolving the entire storm. In most of the

simulations presented here, the top boundary is set at 2.25 km. A further benefit is that

the intensity, radial wind profile and movement of the storm, are easily and

independently adjustable.

Consistent with the focus on the boundary-layer as a response to the “free

atmosphere” flow, the representation of that by a parametric pressure field, and the

neglect of convection, moisture is excluded from the model. Had it been included, its



2The numerical model is formulated in Cartesian coordinates, while the linear

model of Chapter 2 and the analysis of results to come are in cylindrical coordinates.

Although u and v are used for the velocity components in both coordinate systems and

there is thereby a risk of confusion, the context will always make it clear which is

intended.
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sole role (apart from that of passive tracer) would be a tiny contribution to the height

variation of pressure, through the hydrostatic equation.

Tropical cyclones are known to support a variety of instabilities that may result

in the formation of smaller scale structures embedded in the flow. These transient

features would complicate the analysis, without contributing to understanding of the

larger-scale boundary-layer structure. Some are suppressed by the use of a prescribed

fixed pressure field here, but it is necessary to carefully choose this so that the barotropic

instability analysed by Schubert et al. (1999) is not supported. In the real atmosphere,

it is expected that the cyclone-scale boundary-layer flow described here may be

modulated by these smaller scale features.

3.2.1 Governing equations

The boundary-layer model is based on the three-dimensional nonlinear primitive

equations of a dry, continuously stratified, hydrostatic atmosphere.  The governing

equations2 are
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where

and

is the Exner function with p0 = 1000 hPa. In these equations, u, v and w are wind

components in the x-, y- and z-directions respectively, �  is the potential temperature, f

the Coriolis parameter (evaluated at 15o N), p the pressure, Cp the specific heat capacity

of dry air at constant pressure, g the gravitational acceleration, KH the horizontal

diffusion coefficient, and Kv and Kh the turbulent vertical diffusivities for momentum and

heat, respectively. 

3.2.2 Physical parameterisations

The horizontal diffusion is calculated according to Smagorinsky et al. (1965)
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KH �
1
2

k 2 � 4 |D| (3.4)

with the modifications by Grell et al. (1994) to enhance the damping of short waves, and

the diffusion coefficient given by

where k = 0.4 is the von Kármán constant, 
�

 is the horizontal grid spacing and |D| the

total horizontal deformation. For the simulations presented here, this gives maximum

values of 
� 2KH in the range 2 – 4 × 103 m2 s� 1 near the radius of maximum winds. 

The vertical turbulent exchange coefficients are given by the turbulence closure

scheme, which is the quasi-equili brium E-l scheme of Galperin et al. (1987), also known

as the level 2 1/4 scheme in the Mellor-Yamada hierarchy. A potential problem with the

Mellor-Yamada schemes is that there are parts of the parameter space where some of

the basic assumptions are violated, and the scheme can produce grossly unphysical

results. This is generally avoided by the use of some “realisabili ty conditions” to ensure

reasonable behaviour when application of the scheme is not formally justified. The

properties of the Mellor-Yamada level 2 ½ scheme were analysed in detail by Helfand

and LaBraga (1988) and Gerrity et al. (1994), who showed that when the turbulent

kinetic energy was substantially below its equili brium value in statically unstable

conditions, the scheme became unphysical and even included singularities. In particular,

the turbulent kinetic energy production rates could be either negative or infinite in that

part of the parameter space, when they should clearly be positive but finite. Here, the

crucial assumption of Mellor and Yamada was that the turbulence is approximately

isotropic. This is untrue in rapidly growing turbulence in an unstably stratified situation,

where the large buoyant production term will be associated with a much larger variance

of vertical velocity, than of horizontal.
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A similar analysis of the level 2 1/4 scheme was carried out. It was found that

although the details of the unphysical behaviour was different, the overall features, and

severely deleterious effect on numerical modelling, were similar. Realisability conditions

based on those proposed by Helfand and LaBraga (1988) and Gerrity et al. (1994) were

imposed.

Surface fluxes are handled by Monin-Obukhov similarity theory with over-sea

roughness lengths according to Charnock (1955) as modified by Smith (1988) for

momentum, and Liu et al. (1979) as modified by Fairall et al. (1996) for heat and

moisture. The Charnock coefficient is 0.011 as recommended by Fairall et al. (1996)

throughout this chapter. The literature offers a range of values for this parameter up to

at least 0.035 (Garratt 1992, Table 4.1). It is generally accepted as varying with water

depth and fetch, and there are also several studies suggesting a sensitivity to wave age

(e.g. Donelan et al. 1993, Maat et al. 1990, Toba et al. 1990). The value adopted is

appropriate for long fetch, mature waves and deep water, and may therefore be on the

low side for tropical cyclones. The effect of varying it will be discussed briefly in chapter

4.  The sea surface temperature is held fixed and constant at 300 K. 

3.2.3 Numerical Method

The governing equations are discretized and numerically integrated over an

unstaggered grid in the horizontal and a staggered grid in the vertical. To reduce the size

of the domain, a translating coordinate system is used in which the lower boundary

together with the mesh of the model is shifted backward so that the parameterised

tropical cyclone is stationary in the model domain. This results in the addition of a vector

equal to the cyclone translation velocity to the horizontal advection flow. The horizontal

mesh in the simulations presented consists of 201 by 201 grid points with a uniform grid
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spacing of 5 km, unless stated otherwise.

There vertical grid is stretched in the vertical, with the midpoints of the 20 layers

at z =  10, 23, 39, 60, 87, 121, 165, 222, 294, 386, 504, 655, 849, 1049, 1249, 1449,

1649, 1849, 2049 and 2249 m.  Horizontal velocity, potential temperature, and Exner

function are defined at these midpoints, with the vertical velocity w and turbulence

variables (including the turbulent kinetic energy, mixing length, and vertical diffusivities)

on the interfaces.  

A two-time-level, explicit time-split scheme similar to that used in Wang (1998)

is used for the model time integration.  The procedure consists of an adjustment stage

followed by an advection stage, and then the physical process stages. The same time step

of 24 s is used for all stages to reduce the time-split errors.  The time step is rather

smaller than required by the Courant-Friedrichs-Lewy (CFL) criterion to reduce errors

in the splitting of the nearly-balanced adjustment and centripetal (carried by the

horizontal advection) terms. 

Horizontal advection is calculated using the forward-in-time upstream scheme

developed by Wang (1996). This has third-order accuracy for time-dependent and non-

uniform flow, and possesses very weak dissipation, very small phase errors, and good

shape-conserving properties. The order of calculating the u- and v- advection is

alternated each time step to improve accuracy. 

The adjustment stage is accomplished by the forward-backward scheme with the

Coriolis force term treated implicitly in order to dampen inertial oscillations. The

horizontal pressure gradient at the top of the model is known exactly from the applied
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pressure field, and the small differences to this in the remainder of the model are

calculated by integrating the horizontal gradient of the hydrostatic equation downwards

from the upper boundary, using centred second-order differences for the horizontal

temperature gradient. As the horizontal pressure gradient at any level is due almost

entirely to the prescribed upper boundary condition, the use of a lower order of accuracy

for the discretization of the horizontal temperature gradient is unimportant.  

Vertical advection is calculated by a second-order, centred differencing scheme,

with vertical motion diagnosed by integrating the continuity equation upwards from the

surface. Thus mass is allowed to enter or exit the top of the model as required by the

local net horizontal convergence. 

Vertical diffusion is accomplished by a semi-implicit centred scheme with weight

1.5 on a future time step  (Kalnay and Kanamitsu 1988), to avoid the nonlinear

numerical instabilities often found in parameterisations of vertical turbulent transport.

The horizontal diffusion is discretised via a centred second-order scheme for the space

derivatives, and a forward time stepping scheme.

The model was run out for 24 hours, by which time all fields had attained an

almost steady state. The use of a time split integration scheme greatly facilitated the

calculation of budgets, which were done by saving the model state after each successive

physical process was calculated. These were transformed from Cartesian into cylindrical

coordinates and  the tendency due to each physical process calculated from successive

saves.
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V(r) � c1r
� c2r

2 � c3r
3, r < rmax (3.5)

3.2.4 Initial and Boundary Conditions

The initial condition was that winds in gradient balance with the prescribed

pressure field, except in the lowest level where they were reduced by 35%, primarily to

ensure they remained within the validity range of the surface-layer scheme. The

temperature field was stably stratified with a Brunt-Vaisala frequency of 10
� 3 s

� 1.

The pressure field at the top of the model is prescribed using a slight modification

of the analytical profile of Holland (1980), translating with the prescribed velocity. A

uniform pressure gradient to represent the environmental boundary-layer flow was

added. In the calculations presented here, this is set equal to the cyclone translation. The

Holland (1980) profile has a number of advantages, as discussed in chapter 2. A minor

deficiency is that it has a reversed radial vorticity gradient within the radius of maximum

winds  and therefore satisfies the necessary conditions for barotropic instability

(Schubert et al., 1999). This is clearly an undesirable feature for the forcing of a

numerical model such as this, as energy will be continually available to be fed into the

unstable barotropic modes, but the concomitant horizontal mixing will not remove the

source of the instability, as it would in the real atmosphere or a fuller model.

Accordingly, the profile inside the RMW is modified to have a cubic dependence of V

on r, 

where c1, c2, and c3 are chosen to make V and its first two derivatives continuous at the

RMW. A cubic dependence was chosen as this was similar to the stable profiles in

Schubert et al. (1999) and was the simplest modification which had continuous radial

derivatives of vorticity and inertial stability. The linear model results indicate the need

for a continuously differentiable  radial profile of vorticity, in that (2.25) shows that



3In fact, an earlier attempt at modifying the flow within the eye used a quadratic

rather than cubic, so that the vorticity and inertial stabili ty were merely continuous. This

resulted in a split eyewall updraft in the upper part of the model domain, with one local

maximum inside, and another outside, the radius of maximum winds. 

4Willoughby (2002) has very recently proposed a new parametric profile which

is sharper at the RMW than Holland’s, and can be formulated to be barotropically stable

in the eye. It is used for some of the observational comparisons in Chapter 4, but became

available too late for the analysis in this chapter.
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discontinuities there will lead to discontinuities in w, which is undesirable as it could

cause numerical problems or unphysical results3. The profile used is relatively broad at

the RMW, while observed profiles are often quite sharp there. This may have a small

effect on the relative jet strength very close to the RMW. However, a sharper profile

cannot be easily tested in the present model because of the need to not support

barotropic instabili ty4.

In the cases analysed here, the prescribed environmental flow is the same as the

cyclone translation, so the gradient wind is the sum of the environment and vortex flows.

This is easily shown by changing to a coordinate system moving with the vortex. The

flow at the top of the model would not be expected to be exactly in gradient balance,

even in the absence of discretisation and roundoff errors, since the dynamics there

includes horizontal and vertical diffusion, and vertical advection. Moreover, the

asymmetric component of the linear model of chapter 2 may still have an amplitude of

1 or 2 m s
� 1 at the model top, as the depth scale 

� �
1 of the dominant asymmetric

component is similar to the model depth. It is important that the top boundary condition

used should not interfere with similar structures in this model. To check, one integration

was performed with double the domain depth, and the results found to be very similar
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to those obtained from the usual domain, including the representation of the asymmetric

flow at these levels.

The remainder of the upper boundary condition is that vertical gradients of heat,

velocity and turbulent kinetic energy are zero. 

The lower boundary condition for mass is that w = 0. The lower boundary

condition for turbulent kinetic energy is derived by assuming balance between dissipation

and production terms in the turbulent energy equation, and by applying Monin-Obukhov

similarity theory. 

On the lateral boundaries, a radiation boundary conditions after Miller and

Thorpe (1981) is used. A trial was also made of fixed and sponge boundary conditions;

however they tended to generate vorticity which leads to weak spiral band-like features

in the outer part of the domain, even in a stationary, symmetric storm. These were

virtually eliminated when the radiation condition was used. As they were clearly an

artifact of the boundary condition, they were regarded as not having any physical

significance and the radiation condition was chosen. In any event, the results in the core

of the cyclone are barely affected by the lateral boundary conditions used.
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3.3 The Boundary-Layer of a Symmetric Storm

Three stationary, symmetric storms in a quiescent environment are considered.

In the first two cases, the wind and pressure profiles are representative of a moderate

cyclone with maximum gradient-level wind of 39.3 m s �
1 at a radius of 40 km. Storm I

has a moderate radial-wind profile and is the same as the case analysed using the linear

model, while storm II is much more peaked, giving an annulus of zero radial Ma gradient

outside the radius of maximum winds. Storm III is inertially stable throughout, but

considerably more severe, with a maximum gradient wind of 59.2 m s �
1. Parameters used

in defining the storms are defined in Table 3.1, while Fig 3.1 shows their radial profiles

of gradient-level wind speed and absolute angular momentum.

3.3.1 The Inertially Stable, Moderately Intense Case

A radial cross-section through the inner part of storm I is shown in Fig 3.2. The

azimuthal flow at 2 km is very close to gradient balance, so clearly supergradient flow

occurs at some height everywhere outside the RMW, and to some distance inside. It is

clear also that the height of the jet decreases markedly towards the centre, in agreement

with the results of the linear model. The upper panels of Fig 3.3 show that the jet height

is similar in the linear and numerical models, albeit with a weaker radial gradient in the

former, but that the linear model predicts a substantially weaker jet. From earlier

discussion, this difference is at least partly due to the omission of vertical advection. The

impact of the other nonlinear terms will be discussed below. For this comparison, the

drag coefficient and average turbulent diffusivity below 1 km from the full model

calculation were used in the linear model, to ensure that both models represented the

wind speed dependence of these parameters consistently. The choice of 1 km as an

averaging height for the diffusivity was arbitrary, and other reasonable choices made

only a small difference.
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Figure 3.1 Radial profiles of gradient wind speed (top) and absolute angular momentum

(bottom) for the three stationary storms defined in Table 3.1: I solid, II dashed and III

dash-dotted.
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Also shown in Fig 3.2 are contours of Ma, which bow outwards above the jet as

the wind speed decreases. The vectors of (u, w) follow the Ma contours above the jet,

demonstrating that diffusive processes play only a very minor role in the angular

momentum budget here. The heavy solid line shows the height at which the advection

of Ma goes to 1% of its surface value at that radius. Diffusion plays a negligible role on

the budget of Ma above this, but will shortly be shown to be important to the radial flow

balance up to about 1 km at the RMW. 

The scaling V/I for jet height proposed in (2.23), also shown in Fig 3.3, is seen

to underestimate the height near the cyclone centre. This is because in the numerical

model, K increases towards the centre more rapidly than the scaling (2.22), since the

turbulence length-scale in the closure scheme used does not diminish towards the centre

as 
�

0 does. This in turn is because in the strong ascent at the core, there is no marked

Storm Max wind RMW b Latitude Storm movement

I 39.3 m s�
1 40 km 1.3 15 N 0

II 39.2 m s�
1 40 km 2.1 15 N 0

III 59.2 m s�
1 40 km 1.3 15 N 0

IV 39.3 m s�
1 40 km 1.3 15 N 5 m s�

1

Table 3.1: Parameters defining the storms discussed in the text. The maximum wind

is the gradient wind which would apply for a stationary asymmetric storm in the

Holland (1980) parametric model. Radius of maximum winds is the radius of

maximum gradient wind, and b is the parameter determining the “peakiness” of the

parametric radial gradient-wind profile. These first four parameters determine the

central pressure deficit, relative to the environment.



133

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

42.4

Radius (km)

H
ei

gh
t (

m
)

Figure 3.2 Radial cross-section through storm I. The solid light lines are contours of v,

the dashed lines contours of Ma, the solid heavy line marks the top of the layer in which

vertical diffusion plays a marked role in the angular momentum budget, and the vectors

are of (u, w) with only every second model level shown.
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increase in static stabili ty above what has been identified as the boundary-layer top. Thus

the turbulence closure is unable to identify the boundary-layer top and reduce its length

scale accordingly. Clearly there is an inconsistency between the scaling argument for K

and the turbulence closure implementation; which length-scale formulation is correct is

less clear. If instead the turbulence length-scale had been taken to be constant with

radius, then the earlier scaling argument would have given � 0 ~ (V/I)½. This would tend

towards zero less strongly in the core than V/I, and been more consistent with the

numerical model. Neither formulation is particularly inconsistent with currently accepted

boundary-layer theory; perhaps what this best ill ustrates is the tropical cyclone

boundary-layer has some unusual aspects which require further research.

The extreme shallowing of the boundary-layer towards the centre could account

for some of the large variabili ty observed in observed wind profiles. For instance,

consider profiles taken at 24 and 69 km radius, shown in Fig 3.4. Both have a gradient

wind speed of 35 m s� 1, but are on opposite sides of the RMW. These profiles are

separated by a mere 45 km, yet the jet heights differ by a factor of over two, and the

corresponding 10-m winds are 28.6 and 25.5 m s� 1 respectively, giving surface-wind

factors of 0.82 and 0.73.

The updraft at the RMW is nearly twice as strong here as in the linear model, as

well as being slightly less widely distributed (Fig 3.3, 3rd panel). The surface-wind factor

(Fig 3.3, last panel) is very close to that derived using the linear model. Also shown is

a surface-wind factor calculated relative to the wind at 700 m, which is near or below

the jet height and might be expected to possibly remove some of the increase towards

the centre. It is nearly constant outside the RMW, but the strong gradient inside remains.
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Figure 3.3 A comparison of jet strength (top) and height (second from top), vertical

velocity at the top of the boundary-layer (second from bottom) , and surface-wind

reduction factor (bottom), between the linear (dashed lines) and numerical (solid)

models, for Storm I. The height panel additionally includes the variation of V/I (dash-

dotted), which was proposed as a turbulence-parameter-free scale for the jet height. The

wind reduction factor additionally shows a model derived reduction from 700 m, near

or below the jet height (dash-dotted). The vertical lines in each panel are at the radius

of maximum winds.
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Figure 3.5 shows vertical profiles of radial and azimuthal wind for a point at the

RMW of storm I. Again, the flow is nearly gradient above 1 km, and it is therefore

natural to identify this as the boundary-layer top. This is a few hundred metres higher

than the dark curve in Fig 3.2, which was based rather on where the influence of vertical

diffusion on the angular momentum budget became negligible. It will be shown that

vertical diffusion is important to the radial-wind balance up to about 1 km, so it is

preferable to regard this as the top of the boundary-layer. Below this height, the inflow

component increases steadily to a maximum of 9.2 m s�
1 at 40 m height, while the

azimuthal component shows a broad maximum of 42.4 m s�
1 at 500 m, which is 8%

supergradient. 

The terms in the balance equations for radial velocity and absolute angular

momentum are also shown in Fig 3.5. Looking first at the angular momentum, below the

jet maximum the inward advection of angular momentum is balanced largely by vertical

diffusion, with upwards advection playing a smaller, also weakening role. Above the jet

maximum, transport of jet momentum by the eyewall updraft becomes important. This

is balanced by a weak outflow of maximum strength 2 m s�
1 at 850 m, which reverses

the sign of the horizontal advection term. Note that the contribution of vertical diffusion

becomes very small above 700 m height. 

The budget for radial velocity at levels where the flow is supergradient is

dominated by an outwards acceleration due to the imbalance in the gradient wind terms

(that is, the pressure gradient, Coriolis and centrifugal terms). This is balanced largely

by upwards advection and vertical diffusion of inflow, with a smaller contribution from

horizontal advection. Above the jet, the gradient-wind imbalance maintains the weak

outflow mentioned above – in essence, supergradient momentum carried aloft by the
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Figure 3.4 Profiles of radial (left) and azimuthal (right) wind components in Storm I, at

radii of 24 km (heavy line) and 69 km (light line).
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eyewall updraft is centrifuged out from the storm centre, leading to a return to gradient

balance as the influence of the frictionally forced inflow recedes. A similar outflow was

found by Montgomery et al. (2001) in their numerical study of vortex spindown. The

role of ascent here, in helping to define the top of the boundary-layer, is in contrast to

the usual role of vertical motion in boundary-layer dynamics, where subsidence produces

a shallower boundary-layer with a more marked top, and emphasises the strong

departures from textbook ideas of one-dimensional, horizontally homogeneous

boundary-layers that are present here. Note that the model is dry and so may be

underestimating the updraft strength as it does not include the buoyant forcing due to

latent heat release. This would further strengthen the jet, although is probably not a

major issue as the jet heights found are near or below typical cloud bases.

The budget for radial velocity at levels where the flow is supergradient is

dominated by an outwards acceleration due to the imbalance in the gradient wind terms

(that is, the pressure gradient, Coriolis and centrifugal terms). This is balanced largely

by upwards advection and vertical diffusion of inflow, with a smaller contribution from

horizontal advection. Above the jet, the gradient wind imbalance maintains the weak

outflow mentioned above – in essence, supergradient momentum carried aloft by the

eyewall updraft is centrifuged out from the storm centre, leading to a return to gradient

balance as the influence of the frictionally forced inflow recedes. A similar outflow was

found by Montgomery et al. (2001) in their numerical study of vortex spindown. The

role of ascent here, in helping to define the top of the boundary-layer, is in contrast to

the usual role of vertical motion in boundary-layer dynamics, where subsidence produces

a shallower boundary-layer with a more marked top, and emphasises the strong

departures from textbook ideas of one-dimensional horizontally homogeneous boundary-

layers that are present here. Note that the model is dry and so may be underestimating
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Figure 3.5 Vertical profiles of radial (top left) and azimuthal (lower left) velocity

components, for a point at the gradient RMW of storm I. The dashed lines represent the

gradient wind at that point. Note the strong inflow at the surface and weak outflow

above 600 m, and the broad supergradient jet maximum around 500 m. Budgets of radial

velocity (top right) and angular momentum (lower right) for the same point. The

components are horizontal advection (solid with circles), vertical advection (solid),

vertical diffusion (dashed), horizontal diffusion (dotted), and adjustment (dash-dotted).

The adjustment terms for the radial velocity represent the acceleration due to the

imbalance in the pressure gradient, Coriolis and centrifugal terms. For Ma, the adjustment

is simply the azimuthal pressure gradient, which is zero in this axisymmetric storm. The

numbers in the lower left panel are the maximum azimuthal wind, gradient wind, and

their ratio, at this point.
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the updraft strength as it does not include the buoyant forcing due to latent heat release.

This would further strengthen the jet, although is probably not a major issue as the jet

heights found are near or below typical cloud bases.

Closer to the surface, the radial flow balance is almost entirely between the

gradient wind imbalance accelerating inflow, and vertical diffusion retarding it, as in the

linear model. Horizontal advection is larger here than aloft, but still dominated by the

other terms.

Some of the effects of the linearisation in the analytical model can also be

discerned from Fig 3.5. The Ma budget at and below the jet is largely a balance between

radial advection of angular momentum and its turbulent transport into the sea, as

required by the linear model. Vertical advection plays a significant, but generally not

dominant role there, being several times smaller than and opposite in sign to the

horizontal advection. Above the jet, the vertical advection of Ma dominates the vertical

diffusion, but since its sign is generally the same, it does not produce qualitatively

different results to the linear model.  Calculating the radial advection using 
�
Ma/

�
r at the

top of the boundary-layer, as in the linear model,  rather than within it as here, produces

its largest inaccuracies near the surface. However, as the surface-wind reduction factor

is here around 0.8, the relative error is not large. 

In contrast, vertical advection of radial velocity is of similar importance to

vertical diffusive transport in the upper part of the boundary-layer. It was the linear

model’s neglect of this which so weakened the jet there, and is thus the major

shortcoming of that model. This is in accordance with the heuristic and mathematical

arguments advanced in chapter 2, and also the scaling argument of Smith (1968)
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discussed there, but note that the stronger updraft in the nonlinear model will provide

an even greater enhancement of the jet. Figure 3.3 contains further evidence that it is the

neglect of vertical velocity which is the major reason for the weak jet in the linear model.

Outside of 140-km radius, where the numerical model has almost no updraft, the two

models agree closely on the jet strength. Inside of this, where the updraft becomes

significant, the numerical model produces a much stronger jet than the linear model. 

The surface-wind strength is less affected than the jet by the neglect of vertical

advection in the linear model, since this term tends to be is largest in the middle and

upper boundary-layer where w is approaching its peak and before � u/ � z starts to decline.

In contrast, the u � u/ � r = � (u2/2)/ � r term would be expected to be larger in the lower part

of the boundary-layer (where the inflow is stronger) and in the inner core, where inflow

is beginning to decrease rapidly towards zero at the centre. It may also be important

beneath buoyant updrafts, where observational studies (e.g. Powell 1990a, Barnes and

Powell 1995) have found a marked radial gradient of inflow. It is therefore more

important to the strength of the near-surface winds than to the strength of the jet, and

leads to weaker near-surface winds outside the radius of maximum inflow, and stronger

ones inside, than would apply if it were omitted. Near the surface, the radius of

maximum inflow is about 60 km, and so this term is largest in the vicinity of the RMW.

However, the inflow budget there is shown in Fig 3.5 to be dominated by the vertical

diffusion and gradient imbalance terms, with horizontal advection being much smaller.

So neglect of this term in the linear model does not produce substantial errors in the

near-surface flow in this case.

In summary, the analytical formulae for jet height and surface-wind factor

derived from the linear model are applicable to the full model, as the nonlinearities are
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�
/ � u � iv � A exp( � z/ � decay) exp(iz/ � osc) (3.6)

not dominant influences to these. However, vertical advection of inflow contributes

strongly to jet strength, which is substantially under-predicted by the linear model.

3.3.2 Height scales in Storm I

Although the linear model substantially under predicts the jet strength in regions

of strong updraft, relative to the numerical model, it was shown above that there was

substantially better agreement with the height. The linear model boundary-layer depth

scale � 0 ignores vertical advection. However, w increases from 0 at the surface to a

maximum at the boundary-layer top. Thus one could argue that adding vertical advection

to the physics does not therefore introduce any fundamentally new depth scale, but

rather modifies that already pertaining, and so the linear-model scale for jet height is

perhaps applicable here. Alternatively, in the extension of the linear model in section

2.3.6, where a constant vertical velocity was imposed, it was shown that the stronger jet

found in an updraft could also be interpreted as a modification of the spiral, where the

oscillation scale decreases and decay scale increases. To test this, curves of the form

for complex coefficient A and real depth scales � decay and � osc, were fitted to the wind

profiles from the numerical model. Sample modelled and fitted hodographs are shown

in Fig 3.6, which show both the essentially spiral character of the numerical results, as

well as the very good fit to them of such curves. The corresponding decay and oscillation

depth scales are shown in Fig 3.7, with the predicted difference in the core region being

apparent. The vertical velocity at a height of 1 km is also shown, and it is remarkable that

the region where the decay length is longer than the oscillation depth corresponds very

closely with the region of significant updraft, in agreement with the above discussion
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Empirical curves of the form (3.6) thus describe well the profiles in the numerical

model. The decay length-scale is longer (shorter) than the oscillation scale, in an updraft

(downdraft), in agreement with the analysis in section 2.5. This thus provides further

confirmation of the importance of the vertical velocity in defining the shape of the wind

profile in the tropical cyclone boundary-layer. It also demonstrates that the introduction

of more complicated physics here does not produce major changes in the basic shape of

the profiles. 

3.3.3 Comparison to the nocturnal jet

It will now be shown that the jet here is distinct from the familiar nocturnal jet.

The latter has been widely studied, with many simulations of data from, for example, the

Wangara experiment (Clarke et al. 1971), showing the effect. Here, the comparison will

be with the simulation of Mellor and Yamada (1974, henceforth MY74) as they use a

similar turbulent closure to the present model, and include figures of all the relevant

terms. 

Figure 3.8 shows the Richardson number Ri, the turbulence kinetic energy

(TKE), and the turbulent diffusivity for momentum for the same RMW point in Storm

I. Note firstly that Ri is very small in magnitude through the boundary-layer, suggesting

shear production will dominate the TKE budget, and is in fact slightly negative at and

below the jet. This is completely contrary to the situation in the nocturnal jet (MY74 Fig

5), where strong stabilisation and buoyant suppression of turbulence are necessary for

the decoupling which then allows the inertial oscillation which produces the jet. The TKE

decreases from a surface maximum to become nearly zero at about 1 km, the top of the

boundary-layer, so the jet here occurs entirely within the boundary-layer. Again, this is

distinct to the nocturnal jet, which occurs at the top of the nocturnal boundary-layer,
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Figure 3.8 Vertical profiles of Richardson number (left), turbulence kinetic energy

(centre) and turbulent diffusivity for momentum (right), for the same eyewall point in

Storm I as Fig 3.5.
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where TKE has become essentially zero (MY74 Fig 6). Finally, observe that the

turbulent diffusivity has a maximum immediately below the jet. This maximum occurs

because the diffusivity in the level 2 1/4 closure is the product of the square root of the

TKE, the master length-scale, and a stability dependent term. Their respective height

variation through the boundary-layer is to decrease to nearly zero, to increase from zero

and to be nearly constant, with the net result being a maximum about halfway up the

boundary-layer. This confirms that the jet is in a region of strong turbulent transport, and

is therefore not a consequence of frictional decoupling. The negative values of Ri, and

local maximum in KM, near 1500 m, are a consequence of weak static instability and

weak shear well above the boundary-layer in the numerical model, and are of no

dynamical significance. Note, however, that Black and Holland (1995) found evidence

of a jet due to surface cooling and low level decoupling in the periphery of Tropical

Cyclone Kerry (1979). The large positive values of Ri they found beneath the maximum

suggest it may be distinct to the one being analysed here.

3.3.4 An Inertially Stable, Intense Storm

Turning to the more intense storm III, the jet is again most marked just inside of

the gradient RMW, where at 65.8 m s �
1 it is 11% stronger than the gradient wind. Figure

3.9 shows vertical profiles of angular momentum and radial velocity at the RMW, as well

as the terms in the budget equations. These are similar in appearance to those for the

weaker storm I, albeit with considerably larger values. One significant change is that the

outflow above 1 km has become considerably more marked. The strong upwards

advection of Ma responsible for this is partly due to the larger vertical gradient of Ma

associated with the stronger jet, but more to the fact that the eyewall updraft has doubled

in strength, giving much stronger vertical advection in this more intense storm. The other

significant nonlinear term, u
�
u/

�
r, has also increased in relative importance here,



147

−20 −10 0 10
0

500

1000

1500

2000

u (m s−1)

H
ei

gh
t (

m
)

40 50 60 70
0

500

1000

1500

2000

H
ei

gh
t (

m
)

v (m s−1)

65.1

59.2

1.10

−50 0 50

u tendency (10−3 m s−2)

−500 0 500
M

a
 tendency (m2 s−2)
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of curves is the same as Fig 3.5.
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although is still dominated by the diffusion and adjustment terms. Thus, as before, the

main shortcoming of the linear model is its neglect of vertical advection.

The analysis so far has strongly suggested that the radius of maximum winds is

a highly favourable location for low-level jet occurrence, due to the sudden increase in

inertial stabili ty allowing a strong updraft there, and the increased radial gradient of Ma
5.

Tropical cyclone rainbands are also associated with strong updrafts, and observational

studies (Powell 1990a) have showed that the strong convergence beneath the band is

associated with enhanced inflow on the outer side of a band, and weak or absent inflow

on the inward side. Also, the along-band wind maximum sometimes observed would give

an enhanced radial gradient of Ma of the outside of the band. It has been shown above

that inflow across such a gradient will generate a jet, and that an updraft will enhance it.

It is therefore reasonable to speculate that rainbands may be a favourable location for

jets. Note, however, that the mechanism described here can produce supergradient flow

anywhere there is inflow and inertial stabili ty, and also that the observational record is

equivocal. While Moss and Merceret (1975) found their jet in such a location, Powell’s

analysed along-band flow (1990a, his Fig 13b) shows a maximum at about 500 m

extending from about 5 km outside, to at least 20 km inside, of the band. Similarly, of

the three stepped-descent profiles he presents (his Fig 15), the two taken inside the band

show a jet at about 500 m, while the one taken outside the band show no evidence of a

jet. Clearly, the rainband scale structure of the jet requires further research.

3.3.5 The Inertially Neutral Case

The radial strength and height of the jet for the peaked wind profile, storm II ,

where gradient-level absolute angular momentum is essentially constant with radius for
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several hundred kilometres outside of the radius of maximum wind, are shown in Fig

3.10. With no possibility for radial advection of angular momentum outside of 60-km

radius, the jet is confined to the immediate vicinity of the RMW, where the steep, almost

step-like, gradient in Ma produces a marked jet with azimuthal wind component 48.3 m

s �
1, which is 25% supergradient, near 500 m just inside the gradient RMW. The updraft

is likewise now restricted to the vicinity of the RMW, and the surface-wind factor shows

a peak here associated with the strong jet. In contrast to the previous cases, the linear

model shows little agreement here, with the vertical velocity in particular being a poor

representation of reality. This is not unexpected, as the linear model is outside its range

of validity in the annulus of inertial neutrality.

Vertical profiles and budgets of u and Ma at the RMW for this storm are shown

in Fig 3.11. Although the signs of the various terms and the general shapes of their

profiles are similar to those for storm I, their relative magnitudes and depth scale have

changed dramatically. Both the strength of the jet and the strength of the near-surface

inflow have more than doubled relative to storm I. This is accompanied by substantial

increases in the contribution from nonlinear advective terms in the budgets. In particular,

vertical advection is now approximately as important as vertical diffusion in balancing

the inwards advection of angular momentum below the jet, while above there is now

substantial outflow above the jet as the strongly supergradient flow in the updraft returns

to balance. In the radial flow budget, vertical diffusion is of relatively minor importance

away from the surface, and the outwards acceleration due to gradient adjustment is

balanced largely by upwards advection of inflow.

This great increase in the importance of vertical advection is largely due to the

much stronger updraft in this storm. Indeed, the radial distribution of vertical velocity,
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shown in Fig 3.10, is quite different in the two storms, with the much stronger eyewall

updraft in storm III being surrounded by a ring of weak subsidence, as was hinted at in

the analysis of the linear model. Since the storm is symmetric, the horizontal divergence

associated with this subsidence requires that the inflow increase inwards at least as

rapidly as 1/r. Thus the near-surface inflow at the RMW here is twice as strong as in

Storm I. 

The dynamics behind this rapidly accelerating inflow are shown in Fig 3.12,

which shows wind components and budgets at three times the RMW,  near the peak

subsidence. Frictional destruction of Ma near the surface produces subgradient flow

there, and consequently a strong inwards acceleration in the adjustment term in the

radial-wind budget. Except very near the surface, this inwards acceleration is balanced

dominantly by the u
�
u/

�
r term rather than by friction. From a Lagrangian point of view,

the imbalance in the adjustment terms directly accelerates the air parcels inwards. In the

inertially stable storm, the inflow produced sufficient horizontal advection of Ma to

balance the frictional destruction. While storm II here has zero radial gradient of Ma at

gradient level, the lighter winds near the surface increase the relative importance of the

fr2/2 term over rv and allow a weak near-surface radial gradient of Ma. The accelerating

inflow thus provides sufficient radial advection of Ma to largely balance frictional

destruction. Downwards advection by the subsidence makes a further contribution,

which is of similar magnitude to horizontal advection above 1 km. 

The stronger inflow here, compared to storm I, appears to be similar to the

differences noted between Hurricanes Hilda and Inez (Hawkins and Rubsam 1968,

Hawkins and Imbembo 1976). Inez was a relatively small storm with a peaked wind

profile and therefore similar to Storm II, while Hilda was larger with a flatter wind
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profile. The inflow in Inez was analysed to be 2 – 3 times stronger than that in Hilda,

consistent with these results.

In summary, frictional destruction of Ma outside the RMW produces inflow. In

the inertially-neutral outer core of this storm, only weak advection of Ma then arises, so

the inflow continues to accelerate, leading to low-level divergence and subsidence. When

the inrushing air encounters the inertially stable core, overshoot (shown by the u � u/ � r

term in Fig 3.11) leads to a very strong jet and near-surface winds. Gradient adjustment

of these strong winds eventually stops the inflow, with a strong updraft resulting.

The much stronger inflow in this case can be related to the results of the balanced

vortex diagnostic models (e.g. Will oughby, 1979). A key finding of these was that the

strength of the radial response to forcing in an axisymmetric tropical cyclone was

determined by the inertial stabili ty. The much stronger inflow in the inertially neutral

Storm II can be regarded as a consequence of this. Note, however, that the balanced

models do not produce supergradient flow since they are by definition balanced, and that

where they produce outflow above a layer of boundary-layer inflow, it is because their

high background static stabili ty vertically constrains a circulation whose outwards

branch’s role is to satisfy continuity. In contrast, the outflow above the jet found here is

a direct result of gradient imbalance. The boundary conditions here impose no stabili ty

constraint on upwards motion above the boundary-layer, and mass is allowed to exit the

top of the model. This is appropriate, since in a real cyclone latent heat release would be

occurring in this updraft, and while the balanced vortex modellers have been concerned

with the cyclone-scale response to various forcings, the focus here is on resolving the

details of the boundary-layer response to forcing by the cyclone.
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Figure 3.11  Flow components and budgets at the RMW of the inertially neutral storm

II. Meaning of curves is the same as Fig 3.5.
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In summary, this storm is quite different to the inertially stable case. The jet is

much stronger, but confined to the immediate vicinity of the radius of maximum winds.

The updraft there is stronger than before, and surrounded by an annulus of subsidence,

while the inflow is markedly stronger. The dynamics are markedly different, in that

nonlinear processes completely dominate those in the linear model. The poor comparison

between the numerical and linear model in Fig 3.10 is thus not surprising.
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3.4 The Effect of Cyclone Movement

3.4.1 Boundary-Layer Flow in a Translating Cyclone

The flow in a moving storm will now be illustrated, using storm IV, which is

identical to storm I, but embedded in and translating with a 5 m s �
1 easterly flow. It thus

corresponds to the moving storm case of chapter 2. 

The near-surface storm- and earth-relative wind fields for this storm are shown

in Fig 3.13. The maximum storm-relative azimuthal wind is located in the left-forward

quadrant, with the strongest winds just inside the radius of maximum gradient-level

winds. This is downstream of the maximum storm-relative inflow,  in the right-forward

quadrant. The maximum earth-relative azimuthal and inflow components lie slightly to

the right of the front and to the right of the track, respectively. This distribution is highly

consistent with the linear model, as well as the observational studies cited earlier. 

The updraft (Fig 3.14) is strongest in the right-forward quadrant, with weak

subsidence opposite, in good agreement with the linear model. However the asymmetries

are markedly stronger and located closer to the RMW than in the linear model, while the

anticyclonic spiral character of w is more marked. The sense of this spiral is opposite to

that for a rain band, and it is confined to the vicinity of the RMW. Thus it should not be

interpreted as a forcing for a rain band, but rather an eyewall asymmetry similar to that

in the (u
�

1, v
�

1) component of the linear model. The surface-wind factor is in close

agreement, although a little weaker, than was found in the linear model. However the

spatial variability is qualitatively very similar, and the quantitative differences are partly

due to the use of different values for the drag coefficient and diffusivity in the two

models.
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The distribution and relative magnitude of the jet are also shown in Fig 3.14. The

virtual obliteration of the jet to the right-rear of the storm is in very good agreement with

the linear model. However, the structure to the left-front of the storm is rather different.

The strongest jet is in the left-forward quadrant just inside the radius of maximum

gradient winds, where it is 28% supergradient, or over three times what was found in the

stationary nonlinear case. This large value will be shown later to be partly due to the

conjunction of some favourable nonlinear factors, combined with the basic asymmetry

described by the linear model. The maximum jet location is slightly downwind of where

Shapiro (1983) found the maximum winds (which were also supergradient)  in his slab

model, although some care is needed in comparing the maximum wind within a profile

here, with Shapiro’s mean wind in a slab boundary-layer. There is a steep radial gradient

of jet height around here, but the height of the maximum jet is 540 m.

A subtlety arises in calculating the jet strength and surface-wind factors. So far,

these have been calculated relative to the gradient wind, in earth-relative coordinates.

However, in practice, the gradient wind is hard to measure and it might be preferred to

use, for instance, an aircraft measurement at 2-km altitude. For the stationary storm, the

boundary-layer is shallow and there is no practical difference. However, the components

(u
� 1, v � 1) in the linear model had a distinctly larger depth scale, and examination of the

flow near 2 km in the numerical model shows a similar but much larger wave number one

asymmetry, of amplitude ±6 m s
� 1. This is large enough to have a significant effect on the

patterns of surface-wind factor and jet strength if they were calculated relative to this,

rather than to the gradient wind. Figure 3.15 shows the asymmetric earth-relative

azimuthal flow at 2 km from the numerical model, and the surface-wind factor and jet

strength calculated relative to the total wind (in stationary coordinates) at this level,

which should be compared to those in Fig 3.14. The latter two fields show an area of
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enhanced values extending into the right-rear quadrant, precisely where the asymmetric

v component is acting to reduce the net 2-km azimuthal component. Comparison on this

basis also reduces the apparent strength of the surface and jet flows in the left-forward

quadrant, where the asymmetric v component increases the 2-km wind. This suggests

that for practical use, different factors may be required depending upon whether one is

trying to reduce gradient winds, or observations, to the surface.

In the linear model, the flow components due to the motion were independent of

the symmetric component. While interaction between these components would be

expected in a full model, the symmetric part nevertheless provides a good starting point

for understanding the flow here. The azimuthal average around the RMW of the wind

components and their budgets is shown in Fig 3.16. The strength of the jet and near-

surface inflow have increased by 0.5 m s
� 1  and 1 m s

� 1 respectively from the stationary

case, while the maximum azimuthal-mean updraft at 1 km (not shown) has gone from

0.21 m s
� 1 to 0.29 m s

� 1. Similarly, the jet height, and terms in the momentum budgets,

are in very good agreement with the stationary case. The major difference is that the

supergradient flow extends further above the jet core than in the stationary case.

However, the overall picture of vertical advection and turbulent transport of inflow being

necessary to maintain the inflow against gradient adjustment of the supergradient jet is

still valid.

The asymmetries in the jet can be understood either in terms of the linear model,

or in terms of enhanced inflow forcing (associated with storm asymmetries) allowing

stronger supergradient flow to develop. Here, both interpretations are given. At the

RMW at the front of the storm (Fig 3.17), low-level inflow is maintained in the presence

of a 23% supergradient flow by both horizontal and vertical advection. The role of
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of the surface-wind speed to the 2-km wind speed (lower left), and the jet strength

relative to the 2-km wind speed (lower right), for Storm IV. Earth-relative wind speeds

are used in all panels.
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vertical diffusion, in contrast to the stationary case, is virtually negligible here. The

horizontal advection is dominated by the azimuthal advection of the asymmetric part of

u (not shown), a term which is included (in linearized form) in the linear model. The

inflow layer is about 1 km deep, the substantial outflow aloft being associated with a sign

reversal of the angular momentum horizontal-advection term and a gradual return to

gradient balance above the jet. Comparison of the symmetric and full components of the

radial-wind shows that the inflow is stronger below, and the outflow stronger aloft, than

in the azimuthal average. The azimuthal wind component here is almost everywhere

stronger than its azimuthal average. Both of these are qualitatively consistent with the

flow components  (u
� 1, v � 1) for the linear model shown in Fig 2.5.

To the left of the storm, (Fig 3.18), the jet is lower and slightly weaker. Inflow

is nearly absent except for very near the surface. Here, the decline in the updraft, and

also the reversal of the sign of the advection of radial flow aloft, have allowed the flow

above 1.1 km to become subgradient. The supergradient flow closer to the surface is

maintained by azimuthal advection around from the front of the storm, rather than by

inwards advection. The jet is thus weakening here, and may be regarded as the decaying

remnants of the maximum jet found in the left-front quadrant. Again, the differences

between the flow here and the azimuthal average are in qualitative agreement with the

linear model.

Behind the storm (Fig 3.19), no obvious jet is present below 2 km and the flow

below 1300 m is both subgradient and inwards, with the reverse applying aloft. The weak

inflow, and azimuthal advection, both contribute to maintaining the azimuthal flow

against frictional dissipation, but are insufficient to generate supergradient flow below

1 km. Only aloft is this marginally present. The flow relative to the symmetric component
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Figure 3.16 Flow components and budgets for an azimuthal average around the radius

of maximum winds in Storm IV. Meaning of curves is the same as in Fig 3.5.
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is now virtually reversed from that in front of the storm, and is therefore again in

agreement with that found in the linear model.

Finally, to the right of the storm (Fig 3.20) the flow is broadly supergradient from

400 m to above 2 km, accompanied by strong inflow. In one sense, this flow, although

supergradient, is not sufficiently confined in the vertical to be regarded as a jet. Here, the

asymmetric components are quite close to being the opposite of those to the left of the

storm, and thus detract from, rather than sharpening, the low-level maximum in the

symmetric component. Remarkably, the terms in the angular momentum budget virtually

vanish above 800 m. However, this is a somewhat misleading picture, as the radial and

azimuthal components of the horizontal advection (not shown)  are both of order 100

m2 s
� 2, and cancel. This could be regarded as a characteristic of the inertial wave

discussed in chapter 2. Alternatively it can be interpreted in terms of the linear model,

as an area where the peaks and troughs in the symmetric and asymmetric components

cancel, as therefore do the various terms in the budgets, giving the apparently near-zero

terms above about 800 m.

It is clear from Figs 3.17 – 3.20 that the asymmetric components of the flow are

generally greater than the symmetric part near 2 km. This is consistent with the linear

model, as the depth scale 
�

� 1 of the dominant asymmetric component is almost twice that

for the symmetric component, 
�

0.
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Figure 3.17 The same as for Fig 3.16, except at the front of the eyewall of Storm IV.

Meaning of curves is the same as in Fig 3.5, with the addition of the dashed line in the

left panels, which shows the azimuthal-mean flow.
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Figure 3.18 The same as Fig 3.17, except at the left of the eyewall of storm IV.
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Figure 3.19 The same as Fig 3.17, except at the back of the eyewall of storm IV.
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Figure 3.20 The same as Fig 3.17, except at the right of the eyewall of storm IV.
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3.5 Summary and Conclusions

In this chapter, a high resolution numerical model, with a sophisticated turbulence

closure and surface layer parameterisation, was presented and used to extend the linear

analysis of chapter 2 to include the nonlinear terms. It was found in chapter 2 that a

supergradient jet could be produced by strong inwards advection of angular momentum,

with the inflow maintained against gradient adjustment by upwards diffusion. The main

conclusion from this chapter is that including the nonlinear terms and particularly the

vertical advection of radial wind provided enhanced inflow forcing and allows a jet that

is several times more supergradient than in the linear model, and therefore more realistic.

In particular, the wind maxima were found here to be up to approximately 10% to 25%

supergradient in a stationary cyclone, with the jet being more supergradient in a more

intense system, or near the RMW in a storm with a peaked radial gradient-wind profile.

The linear model did, however, predict a jet height in close agreement with that

obtained from the numerical model, especially in the inertially stable case. This seems to

be because the height scale set by the turbulent diffusivity and inertial stability, � 0 =

(2K/I)1/2, also defines the height at which the frictionally induced updraft becomes fully

established. Thus the introduction of vertical advection to the linear model does not bring

any new height scales, but instead is governed by an already existing one.

Is the jet, then, nothing more than the weakly supergradient flow found near the

top of the Ekman boundary-layer? In chapter 2, it was argued that the answer is

essentially yes; albeit with the complication of three separate components in a moving

storm, and several reasons were given for such dynamics being more realistic in the

tropical cyclone boundary-layer than elsewhere in the atmosphere. In particular, the

linear model used a slip surface boundary condition, buoyant generation of turbulence
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would be expected to be minor in a tropical cyclone boundary-layer, and baroclinicity is

weak. However, it was shown here that vertical advection plays a crucial role in

strengthening the jet, giving a supergradient component several times stronger than in

the linear model. The major role of upwards advection may well be peculiar to intense

vortices and does not occur in more normally considered cases. This is because the rapid,

almost step-like increase in inertial stabili ty near the radius of maximum winds produces

an updraft which is much stronger than would be expected from the classical theory, in

which the updraft is proportional to the curl of the surface stress. The earlier answer to

this question is thus qualified, by adding that nonlinearities – particularly vertical

advection – significantly modify the Ekman profiles, giving markedly stronger agradient

flow in the upper part of the spiral.

The spatial distribution of the jet in the axisymmetric storm was found to depend

upon the “peakiness” of the radial gradient-level wind profile. A compact storm with a

relatively rapid decrease in wind speed outside the radius of maximum wind tended to

produce a strong jet confined to the immediate vicinity of the eyewall, while a more

inertially stable radial profile resulted in a more widely distributed but less intense jet.

The difference was explained in terms of the different angular momentum profiles of the

two storms, and the consequently differing abili ties of the two storms to generate

significant horizontal advection of angular momentum.

For a moving storm, it was found that the jet was generally located in the left-

forward quadrant of the storm in the Northern Hemisphere, away from the strongest

earth-relative near-surface winds in the right-forward quadrant. The asymmetric part of

the flow was found to decay more slowly with height than the symmetric, in agreement

with the linear results.
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Surface-wind reduction factors were calculated and the largest values were found

to be near the radius of maximum winds, and to the left of the storm (Northern

Hemisphere). Their distribution is thus similar to that of the jet. It was shown that some

caution may be necessary in choosing a level for comparison in calculating these, as the

asymmetric component can still be large as high as 2 km above the surface in the

nonlinear model.

The use of a universal constant for surface-wind reduction is thus shown by both

the linear and numerical models to be incorrect. In one sense, this is hardly surprising as

the strong contribution of horizontal advection to the momentum budgets means that the

assumption of one-dimensionality in profile models is invalid. The variability in the

reduction factor between different observational studies is similar to that found here.

Powell and Black (1990) have shown that differences in the static stability can explain

some of the observed variability in the SWF. These are not present here, and so it is

suggested that these dynamical factors are another major reason for the observed

variability.
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