
1With the exception of section 2.5, most of the material in this chapter was

published as Kepert (2001). 
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2. Linear Theory1

2.1 Introduction

Here, a linear analytical model of the boundary layer flow in a translating tropical

cyclone is presented and analysed. This model is an extension of the classical Ekman

boundary layer model, and of earlier work on boundary layers in stationary vortices. It

will  be argued that such an Ekman-type model is appropriate in tropical cyclones since

diurnal effects are weak or absent, turbulence is dominantly shear-generated, and

baroclinicity is weak. The major assumptions necessary to achieve an analytical solution

are a simplified form of the vertical diffusion, the omission of vertical advection, and

linearisation of the horizontal advection, although relaxation of the second of these will

be discussed. The solution is shown to have three components, a symmetric one due to

the cyclone, and two asymmetric ones that result from the interaction of the moving

cyclone with the earth’s surface. The asymmetric components are shown to be equivalent

to a frictionally stalled inertia wave, anchored in position by the asymmetric surface

friction.

The jet in the upper part of the boundary layer is similar to the supergeostrophic

flow found at the top of the classical Ekman spiral. It is only a few percent supergradient

in the linear model, although it will be shown that the neglect of vertical advection

substantially reduces the strength. The jet height scales as (2K/I)1/2, where K is the

turbulent diffusivity and I the inertial stabili ty, modulated by a function of a

dimensionless parameter. This height is typically several hundreds of metres in the

cyclone core, and increases with radius. In a moving storm, the jet is most supergradient
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– several times stronger than in a stationary storm – at the eyewall to the left (right) and

front of the storm in the Northern (Southern) Hemisphere. It also extends over a large

area to the left (right) of the storm. It is, however, much less marked to the right (left),

where the strongest near-surface winds are found. 

Current operation practise is that the factor for reducing upper winds to a near-

surface equivalent depends on the static stabili ty and surface roughness only. This factor

will  be shown to have a substantial spatial variabili ty, also. Larger values are found near

the eye due to the symmetric component of the solution. There is also a marked overall

increase from right to left (left to right) of the storm in the Northern (Southern)

Hemisphere; that is, the surface wind reduction factor tends to be stronger on the side

of the storm with weaker surface winds.



2Eliassen and Lystad (1977) used a vortex given in dimensional terms by V(r) =

r Ro f/(2(1 + (r/rm)2)) where rm the radius of maximum winds, and f the Coriolis

parameter. Thus the Rossby number is Ro = 4vm/(frm), where vm is the maximum wind,.
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2.2 Derivation of the Linear Model

A linear analytical model for the boundary layer flow in a tropical cyclone is now

developed. The formulation and solutions have some features in common with the well-

known Ekman spiral model of the boundary layer, but with some important differences.

The symmetric part, applicable to a stationary vortex, is similar to the model proposed

by Eliassen and Lystad (1977, henceforth EL77), although they obtained numerical

rather than analytical solutions. Their most intense vortex had a Rossby number of 202,

which is below tropical cyclone strength. However, their model has been verified in more

intense cyclones by Montgomery et al. (2001). The symmetric component was also

considered by Rosenthal (1962), although with a less accurate linearisation of the surface

boundary condition. The solution will be studied for a wider range of conditions than

was done by these earlier investigators. A significant advance here is that the asymmetric

components, which arise in a moving storm, do not appear to have been investigated

before.

The horizontal momentum equations for a steady-state vortex with constant

vertical turbulent diffusivity and no horizontal diffusion, in cylindrical coordinates

moving with the vortex, on an f-plane, are
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(2.2)

The symmetric gradient-level flow, V, is assumed to be in balance with the pressure

gradient, fV + V2/r = 
� �

/ � r. Additionally, the vortex is assumed to move with the

environmental flow, Ut, which is in geostrophic balance. When subtracting off the vortex

motion to obtain (2.1), the corresponding environmental geostrophic pressure gradient

was also removed, so there is no � �
/ � �  term. Equation (2.1) is linearised by replacing v

by V + v, assuming u, v, w << V and neglecting terms of second and higher order in u,

v and w to give

Here, it has been additionally assumed that the base state vortex is symmetric and

barotropic, V = V(r). In the limit r � 	 , (2.2) reduces to the classic Ekman equations in

Cartesian coordinates. 

Equations (2.2) represent the radial flow balance between accelerations due to

azimuthal advection, gradient-wind imbalance, and turbulent transport, and the balance

for the azimuthal component, between the azimuthal and radial advection of absolute

angular momentum, and its turbulent transport, respectively. This linearization will not

be valid in the case of an inertially neutral storm, when the coefficient of u in the second

of (2.2) will become 0, and other processes will have to balance the turbulent transport

of v. This case will be explored in chapter 3. Note that Smith (1968) commented that the

removal of vertical advection is not supported by scale analysis. In particular, for a

symmetric vortex within the radius of maximum inflow, the continuity equation gives

W/H ~ V/R, where W and V are scales for vertical and horizontal velocity, and H and R

are vertical and horizontal length scales. Then the vertical advection terms in (2.1) scale
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��

k � � �
ak(z) e ik � (2.6)

as WV/H ~ V2/R, which is the same order as other terms retained in (2.2). This will later

be shown to be one of the major sources of differing predictions by this linear model, and

the numerical model to come. However, the linear model will be seen to contain useful

physical insight, even though the neglect of vertical advection is not strictly justified.

Equations (2.2) may be written as

where u and v have been combined into the complex variable

and

Expanding (2.3) as a Fourier series in azimuth gives

for complex coefficients ak(z), whence
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��

k � � �
2i � k � � � ak(z) � a � �k (z) e ik 	 
 0 (2.7)

pk

 ±(1 � i) � 
 � k� . (2.8)

pk

 � (1 � i) � 
 � k� , � 
 � k� > 0

� (1 � i) |k|� � � 
 , � 
 � k� < 0.
(2.9)

Equating coefficients of exp(ik � ) to zero gives a family of second order ordinary

differential equations in ak(z). Seeking solutions ak(z) = Ak exp(pkz) for some constants

Ak and pk, yields

The solution with positive real part is immediately eliminated because of the

boundary condition that the perturbations u and v go to zero as z �  � . The required root

will be written as

To avoid the potential confusion of deciding which complex square root to take,

expressions will always be written so only positive real numbers appear under the square

root sign. While the former case will prevail in the cyclone core for low wave numbers

|k|, the latter can occur anywhere for sufficiently large negative k but may occur outside

the core even for k = � 1, in storms with a moderately peaked radial wind profile and

hence weak relative vorticity. The implications of this change of sign will be discussed

further below. In the intermediate case ( ��� )1/2 + k�  = 0, both roots are zero.

The usual approach to solving the Ekman equations uses a no-slip lower

boundary condition, u(0) = 0, v(0) = -V. This does not well represent atmospheric

conditions and also grossly violates the linearization here. Instead, a slip condition is
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K � u� z
� C (u � ut)

2 � (V � v � vt)
2 (u � ut)

K � v� z
� C (u � ut)

2 � (V � v � vt)
2 (V � v � vt).

(2.10)

ut
� 1

2
Ut e i � � e � i �

vt � i
2

Ut e i � � e � i � (2.11)

C V u(0) � ut � 	


K � u� z z � 0

C V V 
 2v(0) 
 2vt � ���K � v� z z � 0

(2.12)

applied near the surface, using a bulk formulation with drag coefficient C for the near-

surface stress after Taylor (1916),

This is evaluated at some height in the surface layer, which for convenience is taken to

be z = 0. Here, (ut, vt) is the cyclone translation velocity, which is taken as being in the

positive x direction with speed Ut, giving

Assuming that Ut << V, (2.10) may be linearised to

This assumption implies that the model is applicable only in the core region, or for very

slowly moving cyclones. Equations (2.12) cannot be written as an algebraic function of� , so it is necessary to separate out the real and imaginary parts of (2.6), giving
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A1 � � 
 [ 1 � 2 � / 
 � (1 � i)(1 � � / 
 ) � ] Ut

� / � [ (2 � 2i)(1 � � � ) � 3 � � 3i � ]

A0 � � � [1 � i(1 � � )] V

2 �
2 � 3 � � 2

A � 1 � �
� [ 1 � 2 � / � � (1 � i)(1 � � / � ) � ] Ut

� / � [ (2 � 2i)(1 � � � ) � 3 � � 3i � ]

(2.14)

A little care is needed in solving (2.13). Having taken real and imaginary parts, it is not

correct to simply equate coefficients of powers of exp(ik � ) to 0. One route is to

substitute in some suitable values for �  and solve the resulting system of equations. A

more elegant approach is to use the identities Re(z) = (z + z*)/2, Im(z) = i(-z + z*)/2,

where z* is the complex conjugate of z, to eliminate the Re and Im functions. The

coefficients of exp(ik � ) in the pair of equations thus obtained from (2.13) must then be

0. This gives a system of linear equations in Ak and Ak*, which are straightforward to

solve. For |k|   2, Ak = 0, since in a linear model with the present surface boundary

condition there is nothing to excite wave numbers above one. For |k| !  1 and ( "$# )1/2 %
&  > 0,

where



3 If �  is replaced by -i �  for A1 and by i �  for A � 1 in (2.16), then (2.14) is obtained.
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 i)(1 
 � / � ) 	 ] Ut
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u( 
 ,z) � u1( 
 ,z) � u0(z) � u � 1( 
 ,z)
v( 
 ,z) � v1( 
 ,z) � v0(z) � v � 1( 
 ,z) (2.17)

are dimensionless numbers, and I2 = (f + 2V/r)(f + V/r + � V/ � r) is the square of the

inertial stability. For ( ��� )1/2 �  �  < 0 (or equivalently, I < V/r), a slightly different form is

obtained for the asymmetric components3

using A �  instead of A to avoid ambiguity.

The boundary layer flow is thus given by

where u0 and v0 are respectively ( � / � )1/2 = ((f + 2V/r) / (f + V/r + � V/ � r))1/2 times the real
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�
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�
k � 1
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 	 k�
� 2K

I 	 kV/r
(2.21)

part, and the imaginary part, of

The asymmetric components (u1, v1) and (u � 1, v � 1) are similarly obtained from

and

The depth scales of the three components are

The solutions (2.19) are continuous at those radii where I = V/r, if such exist, although

the radial gradients become large. The behaviour there will be discussed further below.

The frictionally-induced agradient flow has thus been decomposed into three

components. The two components with azimuthal wave-number one are proportional

to product of the translation speed Ut and the gradient wind speed V, while the
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symmetric component is proportional to V2. Each solution has a different depth scale � k,

which is greatest for k = � 1, and least for k = 1. A physical explanation for these

different length scales is given later. Note that because of the linearization of the surface

boundary condition in (2.12), and particularly the assumption Ut << V, the asymmetric

parts of the solution do not reduce to the Ekman limit for straight flow far from the

vortex, although the symmetric part does. In fact, as r �  � , each of A0/V
2, A1/(VUt) and

A � 1/(VUt) approach nonzero constants, so each of the (uk, vk) �  0. However, in the

absence of that linearisation, the asymmetric components would become proportional

to Ut
2 in that limit, and so are valid only in that part of the vortex where V >> Ut. Note

also that the limiting behaviour A0 ~ V2 for small V follows from the semi-slip boundary

condition, rather than the circular geometry. Exactly the same behaviour arises when the

classical Ekman equations in Cartesian coordinates are solved with this boundary

condition.

The symmetric and asymmetric components of the solution are now considered

separately.
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2.3 The boundary layer of a stationary vortex

2.3.1 Horizontal Flow

Here, only the symmetric part (u0, v0) of the solution applies. It differs from the

classical Ekman spiral in three ways. The first is that the depth scale is � 0 = (2K/I)1/2,

which in the core of a tropical cyclone is much less than � E = (2K/f)1/2. The effect of

storm rotation in reducing the depth of the boundary layer has been noted before, for

example by EL77, Anthes and Chang (1978) and Frank (1984), the latter two of whom

took the depth as being proportional to (f + 2V/r) � 1/2. The analysis here, which will be

confirmed by the numerical modelling results in Chapter 3, suggests that (2K/I)1/2 is a

more appropriate scale.

The second important difference is that the square root term in (2.4) alters the

degree of turning of wind direction with height from the classic solution. Inside the eye

of a cyclone, this term will be close to 1. However, outside the eye, V/r and � V/ � r have

opposite signs and will partially cancel, leading to a stronger cross-isobaric component,

relative to the along-isobaric component, than in the solution for straight flow. This will

become more marked as the inertial stability of the storm decreases towards neutrality,

until at the neutral limit (where the model ceases to be valid) �  = 0. Further, the change

in sign of � V/ � r at the radius of maximum winds will produce a marked radial gradient

in the near-surface inflow there, and hence substantial near-surface convergence. The

vertical velocity forcing implied by this solution will be discussed in detail below.

The final important difference lies in the coefficient A0, which affects the phase

and amplitude of the spiral. This is different because of both the slip boundary condition,

and the arbitrary definition of z = 0 as being some height in the surface layer, rather than

the actual surface. While the first two of the differences noted here are due to the
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K � (turbulent length scale)2 shear � � 2
0

V�
0

� �
0V (2.22)

�
0 � V

I
(2.23)

application to a vortex, this latter one is rather a consequence of the surface boundary

condition. Indeed, the solution for horizontally homogeneous geostrophically balanced

straight flow in Cartesian coordinates with this surface boundary condition may be

recovered from (2.18) by replacing I by f in the definition (2.15) of �  ,and setting the

coefficient ( � / � )1/2 used in extracting u from (2.18) equal to 1.

The variation of the dimensionless parameter �  with wind speed is clearly of

interest. Unfortunately, determining this is not easy, as C, K and I will each vary with V.

Of these, the turbulent diffusivity is perhaps the most difficult dependence to assign. One

possibility is to take the turbulence length scale as proportional to height, on the grounds

that the turbulence is predominantly shear generated. Thus a representative length scale

for the whole boundary layer, as required here, is the boundary layer depth 
�

0, and the

diffusivity can be parameterised as

Substituting this and the definition of 
�

0 into the second of (2.15) gives �  ~ C. The

approximately linear increase of C with wind speed, at least up to 25 m s � 1, is well

documented (e.g. Garrett 1977, Large and Pond 1981), although there is some

disagreement about whether this increase is maintained at higher speeds (e.g. Frank

1984, Hubbert et al. 1991). Using (2.21) in (2.22) gives K ~ V2/I and hence 

removing the dependence on turbulence parameters. This result, while potentially useful,
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v0(zmax) 
 V e � arctan( � 1 � 2/ � )

2

� � 2 � 2 � � 2

2 � 2 � 3 � � 2

(2.24)

relies on a scaling argument for the turbulence parameters, and so should be used with

caution. This point is revisited in Chapter 3.

The height of the maximum azimuthal wind and the wind components there may

be found by solving � v0/ � z = 0, giving

Values for the arctan function here lie in the range 
 /2 to 3
 /4, so the precise details of

the storm can vary the height of the jet by about 50% within our scale estimate of � 0.

That u0(zmax) < 0 is important for two reasons: physically because it shows that there is

inflow in the presence of supergradient azimuthal flow, and mathematically since it

shows that v0(zmax) is indeed a maximum, as � 2v0/ � z2(zmax) = 2� u0(zmax) < 0. Note here that

an inertially more neutral storm will have a higher jet, through both � 0 and the arctan

term, and that increasing the drag coefficient will l ower the jet. Further, the strength of

the jet relative to the gradient flow is expressed entirely in terms of � . Figure 2.1 shows

the effect of individually varying the five of six parameters (diffusivity, drag coefficient,

gradient wind speed, radius and inertial stabili ty – the effect of varying latitude is,

unsurprisingly, negligible) through a physically reasonable range, on jet height and

relative strength. Here the inertial stabili ty is parameterised through a variable x, defined

by � V/ � r = xV/r, and the parameters are varied about the values K = 50 m2 s� 1, C =

0.002, V = 40 m s� 1, f = 3.77×10� 5 s� 1 (for latitude 15o), r = 40 km, and x = � 0.5 (Gray

and Shea 1973).
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Figure 2.1: The variation of relative jet strength (top) and jet height (bottom) with

various parameters in the linear model, according to (2.24). For each pair of graphs,

the parameters not varying have values C = 0.002, V = 40 m s �
1, K = 50 m2 s �

1, r = 40

km and x = � 0.5.
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The jet in this linear model is typically from 2% to 4% supergradient and thus

substantially weaker than in the observations. It will be argued later in this chapter, and

confirmed in the next, that this is a consequence of the linear model, and that

incorporating the vertical advection produces a result more consistent with the

observations.

An interesting feature of Fig 2.1 is that increasing the drag coefficient (over the

range given) markedly increases the jet strength, with only a minor effect on the height.

This is because greater surface friction leads to stronger inflow through much of the

boundary layer, and hence greater inwards advection of angular momentum. This is

potentially important, because of both the poorly known wind speed dependence of the

drag coefficient at high winds, and the marked increase that (usually) occurs at landfall.

The time scale for the boundary layer to develop was shown by EL77 to be 1/I, and is

less than an hour for the inner part of a hurricane. This therefore suggests that the jet

may strengthen as strong winds cross the coast. 

Increasing the gradient wind speed on its own is seen to lead to a shallower,

stronger jet. However, note that in the real atmosphere stronger winds would be

expected to lead also to an increase in turbulent diffusivity and drag coefficient. The

increase in K would tend to reverse this trend, while the increase in C would further

increase the strength, but slightly increase the height. 

Varying the radius alters the inertial stability, leading to a lower but weaker jet

for a more compact storm, all other things being equal. Finally, the effect of varying the

radial profile of the gradient wind is that, in a more peaked, inertially neutral storm, x

will be closer to � 1, giving a stronger but higher jet. Note also that just inside the radius
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V/

�
r

(2.26)

of maximum winds, where x is positive, the jet is predicted to be lower and weaker than

just outside. However, care is needed in interpreting this last pair of panels for in-eye

conditions as the gradient wind speed is held constant for them.

2.3.2 Vertical velocity forcing in a stationary vortex

The vertical velocity above the boundary layer can be found by integrating the

continuity equation vertically and applying the surface boundary condition w = 0, giving

Here, (2.2) and (2.12) were used to write

in a stationary vortex. A similar result was found by EL77. This has several interesting

consequences. Firstly, it is nearly independent of K – only the weak influence through

v(0) remains. Secondly, if the radial variation of (f + V/r + 
�
V/

�
r) � 1 in (2.25) can be

neglected, it is clear that the Ekman pumping velocity is proportional to the curl of the

surface stress, as in the classical solution. However, neglecting this gradient is clearly

invalid near the eyewall, and also where the vorticity is small. Finally, assuming for the

moment that v(0) is proportional to V, it is easy to consider three particular cases:



Solid body rotation V = � r, and w�  is proportional to r; that is, frictional forcing

produces ascent proportional to radius in the eye. This result was also obtained
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V � v(0)
V

� � 2 � 2 � � 2

2 � 2 � 3 � � 2
(2.27)

by Eliassen (1971) and EL77.

�
Rankine vortex dV/dr = � V/r, and w�  is proportional to � 1/r3 giving subsidence

increasing rapidly towards the centre of the storm. Thus storms with a highly

peaked wind profile will be subsident outside the radius of maximum winds

(RMW), although note that this case approaches the limits of applicability of the

linear model. The subsidence here is quite different to the predictions of the

standard Ekman model for this case, which predicts zero vertical velocity from

the irrotational gradient level flow. However, Carrier (1971, see correction in a

footnote due to J. McWilliams) found subsidence proportional to r � 2 in a similar

vortex. The weaker radial dependence found by them is due to their use of a no-

slip surface boundary condition.

�
Typical cyclone with V proportional to r � x and x �  1/2, and also � V/ � r + V/r >>

f. This gives w	  proportional to r 
 x and hence to V, and upwards.

Comparing the latter two of these cases with the first confirms that the maximum updraft

must lie in the vicinity of the RMW. Determining the precise location is somewhat more

difficult and the major influences on it are discussed in section 2.3.5. 

2.3.3 Surface wind reduction

Consider for simplicity the ratio of surface azimuthal wind component (rather

than full surface wind speed) to gradient wind. This is substantially different only in the

nearly inertially neutrality case, when the model is at the limits of its validity anyway.

Then the surface wind factor (SWF) is

which decreases monotonically from 1 at �  = 0 to a limiting value of 1/2 as � ��
 .
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Reasonable values of the parameters (near the eyewall, C = 0.002, V = 40 m s�
1, K = 50

m2 s�
1, and I = 10�

3 s�
1) give a factor of 0.81, which is consistent with the studies cited

earlier. At larger radii, where �  is smaller, relatively weaker surface winds will be found.

The observational studies cited earlier have shown that there is no universal constant

surface wind factor, and have tended to ascribe the differences to stabili ty effects. Here,

it has been shown that dynamical factors play a substantial role.

2.3.4 Application to a typical cyclone

The above may readily be applied to any of the several analytical wind profiles

in the literature. That of Holland (1980) is adopted, since it is in a form which enables

easy adjustment of the storm intensity, maximum wind radius, and shape of the wind

profile outside the radius of maximum winds, and it satisfies known constraints on radial

variation of angular momentum. In addition, it has been widely used and received

considerable verification against observations, both in the original paper and

subsequently (e.g. Harper et al. 1989, 1993). The profile within the eye is slightly

modified to remove the barotropic instabili ty present there. This is not strictly necessary

here, but will be in the next next chapter, and so is adopted here for consistency. The full

details are deferred until then.

Figure 2.2a shows the radial profiles of gradient wind from the Holland profile,

and “surface” wind speed components from the linear model here, for a cyclone with

maximum wind speed 40 m s�
1 at a radius of 40 km. The Holland b parameter, which

controls the radial velocity gradient and hence the inertial stabili ty outside the radius of

maximum winds, is 1.3, which is an average value for tropical cyclones. The inflow is

seen to increase inwards more slowly than the azimuthal wind, before decreasing again

inside the radius of maximum winds. The surface azimuthal wind is about 77% of the
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gradient wind outside the RMW, but relatively much stronger at and inside of the RMW

(Fig. 2.2e). This follows from (2.27) and the radial variation of � , which is nearly

constant outside the RMW, where V and I1/2 have similar radial tendencies, but decreases

rapidly to 0 at the centre, as V decreases and I1/2 remains large. The predicted near-

surface azimuthal flow is very similar to the analysis of Mitsuta et al. (1988), shown here

in Fig 1.8.

The jet strength (Fig. 2.2c) is quite weak, about 3% supergradient, outside the

RMW, decreasing rapidly inside the eye, while its height (Fig 2.2d) decreases nearly

linearly towards the centre. The vertical velocity at three levels is shown in Fig 2.2b; the

peak at the RMW and approximately linear dependence inside are apparent, as predicted

in the discussion above. An exact linear dependence is not found because the gradient

wind profile used does not have a linear dependence on radius here. It is interesting that

the radial profiles of w at 200 m and 500 m are much more peaked than the one for the

limit as z ��� , and that the updraft slopes outwards with height. This is partly a reflection

of the shallower boundary layer towards the centre, but also that the radius of maximum

inflow tilts outwards with height. In fact, as was pointed out by Rosenthal (1962), the

radius of maximum horizontal convergence lies just within the RMW at the surface.

Further aloft, the maximum horizontal convergence moves further out, to approximately

a radius of 150 km at a height of 1500 m in this case. The lower boundary layer flow at

large radii is accelerating inwards, and so there is comparatively weak low-level

convergence there.

Figure 2.2f shows the diffusive forcing of inflow K � 2u/ � z2 at the jet height. In

the present model, this is all that balances the outwards acceleration due to gradient wind

imbalance. In the real atmosphere, inflow is additionally forced by vertical advection
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Figure 2.2: Radial profiles of (a) gradient wind (solid), surface azimuthal (dashed) and

inflow (dash-dotted) components; (b) vertical velocity at 200 m (dashed), 500 m (dash-

dot) and infinity (solid); (c) jet strength relative to the gradient wind; (d) jet height

(solid) and depth scale � 0 (dashed); (e) surface wind reduction factor and (f) forcing

of inflow at the jet height by vertical diffusion (solid) and vertical advection (dashed).

The cyclone is prescribed by the analytic model of Holland (1980) with rmax = 40 km,

Vmax = 40 m s � 1, and b = 1.3, with the eye modification described in the next chapter.

Other parameters are C = 0.002, K = 50 m2 s � 1, latitude 15oN.
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-w 
�
u/

�
z, which is shown dashed in Fig 2.2f, using w calculated from the modelled

horizontal wind field by integrating the continuity equation. This is comparable to the

diffusive forcing of inflow, and had it been included in the model, a more strongly

supergradient flow could have been maintained in the upper boundary layer. Thus the

present model underestimates the jet strength in the core region. Note that this argument

is indicative rather than quantitative, as the vertical velocity field would be different in

a nonlinear model. Inclusion of a crude representation of vertical advection will be

considered in section 2.5, and it and the other nonlinear terms are considered in detail

in Chapter 3.

2.3.5 The location of the maximum updraft

Eliassen and Lystad (1977) found in their numerical results that the maximum

updraft was always located within the radius of maximum winds of their vortex, and that

it moved outwards as the vortex became stronger, and inwards as the drag coefficient

increased. However, when the updraft for the parametric wind profile of Holland (1980)

was calculated, the location of the maximum updraft above the boundary layer fell

slightly outside of the radius of maximum winds. Here, the analytical model is used to

explain the sensitivity of updraft location to vortex strength and drag coefficient noted

by EL77, and show that the maximum updraft for storms stronger than they considered

lies outside the radius of maximum winds, in this model.

 Using (2.27) in (2.25) gives 
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Figure 2.3: The approximate updraft w �

* in the limit C �  0, for various Ro (as marked)

in the vortex of EL77. The position of the maximum updraft moves outwards with

increasing Ro, due to the change in relative importance of the planetary and relative

vorticities in the denominator of (2.29).
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EL77’s vortex is given in dimensional form by V = r Ro f / (2(1 + (r/rm)2)), where Ro is

the Rossby number and rm the radius of maximum winds. Ignoring for the moment the

radial variation of � , the updraft is approximately proportional to 

Clearly, the shape of this curve as a function of r/rm depends only upon Ro, and varying

the other parameters will change only the magnitude. It is plotted for four different

values of Ro in Fig 2.3, including EL77’s maximum of Ro = 20; the outwards

displacement of the maximum for more intense vortices is clear. 

This placement of the maximum updraft outside of the RMW is in disagreement

with observations, which place it immediately inside the RMW. This is partly because

the limit w�  is being considered here, and the updraft slopes outward with height, as

shown in Fig 2.2b. It may also be a consequence of the neglect in the linear model of

some terms in the radial momentum budget equation which might be expected to be

important near the RMW; in particular the vertical and radial advection.

Figure 2.4 shows w�  from (2.28) for the parametric vortex of EL77 with Ro =

20 and various C. As C increases, the maximum updraft moves inwards and broadens,

with w�  being constant through much of the eye for C = 0.02. Note that the curves in

Figs 2.3 and 2.4 are not exactly the same as in EL77, since 

(i) in Fig 2.3 they are effectively the limit as C �  0,

(ii) EL77 considered a slowly decaying vortex after the boundary layer was spun

up, while these results are for a steady-state vortex,

(iii ) EL77 had an upper boundary at height 4.9� 0, and 
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Figure 2.4: The updraft w�  for the vortex of EL77 for Ro = 20 and C = 0.002, 0.006,

0.02, and the approximate updraft w� ’ /C, labelled limC �  0. The parameter �  at the

RMW is 0.27, 0.82, and 2.74 respectively, for the curves with nonzero C.



94

� � r C f
2K

Ro

1 � Ro
(2.30)

(iv) EL77’s results were at the level of maximum updraft, while here they are as

z �  � , and the updraft slopes slightly outwards with height. Indeed, the updraft locations

given in Table 2 of EL77 are always inside of those calculated with the present model,

except in the physically uninteresting C = 0.2, Ro < 10 cases.

To see why increasing drag coefficient displaces the maximum updraft inwards,

consider solid body rotation given by V = r Ro f /2 within the RMW, so that

is proportional to r. Then the first term of w�  in (2.28) is proportional to r for small r,

while the second behaves as r2, so w�  is proportional to r at small radii. As r �  � , both

terms tend to a constant limit. These changes in radial dependence are summarised in

Table 2.1, and clearly are contained entirely within the expressions involving � . Closer

examination shows that w�  becomes close to constant once �  exceeds about 2. If �  is

much less that this at the RMW, w�  will be close to proportional to r throughout the eye

and the maximum updraft will li e near the RMW. As �  at the RMW increases, the large

r limit begins to be felt and so w�  will i ncrease less rapidly with radius. Once �  at the

RMW reaches 2, the large r limit (i.e. that w�  is constant with radius) applies and so

there is a noticeable inwards displacement and broadening of the maximum updraft. Even

a very intense vortex with Ro = 100, f = 3.8×10-5 s� 1, K = 20 m2 s� 1, C = 0.005 and r =

30 km, gives only �  = 1.57. However, EL77 allowed C up to 0.2, and found that the part

of the eye over which w�  was proportional to r became smaller, and that the maximum

updraft moved inwards, as C increased. In Fig 2.4, the values of �  at the RMW are 0,

0.27, 0.82 and 2.72, and only in the last does w�  become approximately constant with

radius in the outer part of the eye, consistent with this analysis.
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 1 
 r 
 � 1 
 r 2

Large r 
 r � 1 
 r 
 � r � 2 
 r 2

Table 2.1: Limiting behaviour of terms in (2.28) for small and large r, for the case
of solid body rotation.
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2.4 The boundary layer in a moving cyclone

Each of the azimuthal wave-number one components in the agradient flow in

(2.19, 2.20) varies in height as an exponentially decaying sinusoid. The decay and

oscill ation depth scales � 1 and � � 1 are respectively shorter and longer than the symmetric

component’s scale, � 0. The phase of each component rotates with height. For (u1, v1),

the imaginary parts of the coefficients of z and �  in the argument to the exponential

function in (2.19) have opposite signs, so the phase rotates cyclonically with height.

Similarly, from (2.20), the phase of (u � 1, v � 1) rotates anticyclonically where I > V/r, and

cyclonically where I < V/r. The rate of rotation depends on the governing height scale,

so it is always quicker for (u1, v1) than (u � 1, v � 1), and is also quicker in the inertially

highly stable core of the cyclone. Approaching the limit I = V/r from either side, the

components become equal and constant with height, which corresponds to the double

root pk = 0. Physically, this is a surprising result, as it suggests that this component of

the flow is not frictionally retarded. However, the other two components are retarded,

and this component scales with the cyclone translation speed which was necessarily

assumed to be much less than the gradient wind speed. Thus the absence of shear in this

component is not unrealistic. A physical interpretation of the differing phase rotation

with height and depth scales follows later.

Figure 2.5 shows the components of the asymmetric and total storm-relative flow

at several heights, for the same cyclone as in Fig 2.2, but translating to the west at 5 m

s
� 1. Clearly (u � 1, v � 1) is several times stronger, and decays and rotates less rapidly with

height, than (u1, v1). Inside the eye, where I is large and greater than V/r, both

components have similar and relatively rapid rates of rotation with height, although in

opposite directions. 
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Figure 2.5: The two components of the asymmetric flow, (u � 1, v � 1) (left two columns)

and (u1, v1) (middle two columns), together with the total storm-relative radial and

azimuthal flow (last two columns) at the surface (bottom row), 500 m (second from

bottom), 1 km (second top), and 2 km (top), for the cyclone in Fig 2.2, moving to the

west at 5 m s
� 1. The central circles in all except the last column show the RMW, and

the domains are each 300 km square. The contour interval is 1 m s
� 1 in the first two

columns, 0.25 m s
� 1 in the next two, 2 m s

� 1 in the fifth, and 5 m s
� 1 in the last.

Negative contours are dashed, and the zero contour is bold.
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The asymmetric part of the flow is dominated by (u
� 1, v � 1), and consists of storm-

relative inflow in the right forward quadrant and outflow in the left rear, in good

agreement with observational studies (Shea and Gray 1973, Frank 1984). The slow

anticyclonic rotation of this asymmetry with height is likewise consistent with Frank

(1984, see Fig 1.6 here). Above 1 km in the right rear quadrant, the asymmetric outflow

component u
� 1 dominates the symmetric inflow component u0, due to its slower decay

with height, giving a significant area of net outflow. This appears similar to the strong

outflow found by Marks et al. (1999) in Hurricane Fran. Interestingly, there are two

small regions near the surface where u
� 1 exceeds the translation speed Ut. 

The asymmetry in the azimuthal flow gives a maximum on the left side near the

surface in the total storm-relative flow, rotating towards the front with increasing height,

due to the rotation with height of the dominant asymmetric term v
� 1. The other term, v1,

makes a noticeable contribution only very near the surface. Again, this azimuthal flow

is in reasonable agreement with the previously cited observational studies.

The effect of the asymmetries on the jet for the same storm are shown in the

upper panels of Fig 2.6. The jet is strengthened in the left front quadrant where the

asymmetric component v
� 1 is positive, and obliterated in the right rear. Here, the “jet

factor” is defined as the ratio of the wind speed at the jet core to the gradient wind, in

an earth-relative coordinate system. The asymmetry in height is less marked, particularly

in the core when the jet is nearer the surface. This is because the bulk of the vertical

variation in wind is explained by the symmetric part of the solution, with the asymmetric

parts either being much weaker in the case of (u1, v1), or varying over a substantially

longer depth scale in the case of (u
� 1, v � 1). In either case, they produce weaker vertical

shear than the symmetric component. Thus the height of the jet, where it exists, is not
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Figure 2.6: Jet strength, (left) and height (right), for the storm in Fig 2.5. Here, the

jet strength is the ratio of the maximum earth-relative wind speed in the profile, to the

gradient earth-relative wind speed. The central circles show the radius of maximum

winds. Contours of jet height are discontinuous in the rear right quadrant of the storm,

as there is no jet there.
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 dramatically modified from the symmetric case, although its strength is.

The effect of translation on the vertical velocity and surface wind factor are

shown in Fig 2.7. Above the boundary layer, the wave number 1 asymmetry induces an

enhanced updraft in the left forward quadrant, whilst eliminating the updraft at the right

rear. The weak anticyclonic spiral in the updraft is a consequence of the dominant

asymmetric (u � 1, v � 1) component. It is clearly not a forcing for spiral bands, but may be

partly responsible for convective asymmetries in the eye-wall. There is a broad left-right

gradient of the surface wind reduction factor (SWF), with relatively stronger surface

winds on the weaker side of the storm, as well as the enhanced values near the centre

noted earlier. The gradient is stronger when calculated with storm-relative winds than

with earth-relative, but is present in both cases. This left-right asymmetry does not seem

to have been previously noted, and is another possible dynamical explanation for the

aforementioned variation in observed surface wind reduction factors.

2.4.1 Physical interpretation of the asymmetries

If the time derivative is restored and the friction terms removed from the original

linear equations (2.2), the resulting system has an infinite family of inertia waves as

solutions, given (to within arbitrary phase and amplitude) by

For the case of interest |k| = 1, these have phase angular velocity V/r ± I; that is, I in

either direction, Doppler shifted by the cyclone’s gradient flow. For the moment, these
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Figure 2.7: Top left: Vertical velocity at 2-km height for the same storm as in Fig 2.5.

Lower left: Surface-wind reduction factor (SWF)  using storm-relative winds; that is,

the ratio of the storm-relative surface wind speed to the storm-relative gradient wind

speed. Lower right: SWF for earth-relative winds. (Note that the similar figure

showing the SWF in Kepert (2001) was incorrectly labelled as using earth-relative

winds when it was in fact calculated from the storm-relative azimuthal components).
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 will be called the “fast” and “slow” waves, depending on whether they are propagating

with or against the flow, respectively. The fast wave always travels cyclonically, while

the slow wave will propagate anticyclonically in the inertially highly stable cyclone core,

but may go the other way or be stationary in regions of weak inertial stabili ty.

Although supported by the linearised inviscid equations of motion, the waves

probably have little physical significance as they stand. For instance, their phase angular

velocity is a strong function of radius, so the radial phase relationship will vary with

time. Moreover, the wave (2.31) is divergent. The pattern of divergence will have a

complex time evolution due to the radial variation of azimuthal velocity V, but the

associated mass changes have been eliminated by the linearisation. The importance of

these waves is rather that they provide a physical interpretation of the two asymmetric

components. It will now be shown that in the viscid case, the vertical structure of these

waves is such that friction brings them to a halt. 

These waves have the same azimuthal structure as the solution components

(u1,v1) and (u � 1,v � 1). The friction K � 2/ � z2 term in those components is always in

quadrature with the velocity field, and lagging, relative to the direction of propagation

of the corresponding wave. Thus friction can only retard the waves, and not change their

amplitude.

Moreover,
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and similar relationships apply for the v components. This, in combination with the

quadrature phase relationship, shows that precisely enough friction is present to retard

the wave to stationarity. In the case where I = V/r, the wave is already stationary, no

retardation of the wave is required, and so no vertical shear is present in (u � 1, v � 1).

Now, (u1, v1) corresponds to the fast wave, and thus requires relatively more

friction to stop it, than (u � 1, v � 1). Hence the former has a shorter vertical length scale,

giving relatively stronger shear, than the latter. Moreover, since K is constant here, and

the amplitude of each wave decreases with height, it is easy to see that the vertical stress

divergence can only phase-lag the wave if the phase of the wave rotates in height in the

same direction as it would have propagated in the absence of friction. Thus the phases

of (u1, v1) and (u � 1, v � 1) will generally rotate in opposite directions, with height.

This physical interpretation can be extended to deduce the structure of the higher

wave-numbers in (2.6). While these are not present in the current model, they could be

excited by either nonlinear interaction of the wave-number one components, or by a

surface boundary condition containing higher wave-number asymmetries because, for

example, the cyclone was partly over land. For each pair of wave-numbers ±k, the

direction of the phase angular velocity ck = V/r + I/k of the inviscid wave determines the

direction of rotation with height of the corresponding component of the solution to the

viscid equations. Since I < f + 2V/r in tropical cyclones4, absolute wave-numbers three

and higher can be expected to rotate cyclonically with height. For wave-number 2, the

anticyclonically rotating component is possible only near and within the RMW, with the

precise details depending on the Rossby number. The magnitude |ck| of the phase velocity

is inversely related to the height scale, with (2.21) giving 
�

k = (2K / k |ck|)
½.
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2.5 The impact of vertical advection on the jet strength

The hypothesis under consideration is that steady supergradient flow could exist

in the boundary layer of a tropical cyclone only if there was a mechanism to force inflow

in the presence of the jet against gradient adjustment, which would tend to destroy

inflow. In the linear model, inflow is forced at the jet height by upwards turbulent

transport of inflow from near the surface, and is sufficient to produce winds that were

a few percent supergradient. The forcing of inflow by the updraft was calculated and

found to be similar in magnitude to the turbulent forcing, so it was argued that the linear

model significantly underestimates the jet strength. In this section, the linear model is

extended to include a crude representation of vertical advection, and the salient

properties of the extended model are outlined. 

Restoring the vertical advection terms in (2.3) gives

where w is the vertical velocity and other variables are as before. It is not in general

possible to solve this directly with w determined from u and v through the continuity

equation, but it is straightforward if w is assumed to be constant with height. This will

clearly be invalid near the surface, but is approximately true near the jet, in the upper

boundary layer. Then, seeking as before solutions of the form 

for complex constants Akw, gives equations for the pkw:
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with solutions

Clearly taking the minus sign here will result in pkw having a negative real part, necessary

for the solution to decay with height. For simplicity, attention is restricted to the most

important case ( ��� )1/2 + k�  > 0, since the other cases are unlikely to be associated with

large values of w. Before applying the surface boundary condition (2.12) to these, note

that the decay and oscill ation length scales of the solution are now different, because the

real and imaginary parts of pkw are unequal when w �  0. Indeed, in an updraft,

while in a downdraft
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In either case,

Summarising,

with equality applying if and only if w = 0.

Thus, while the oscillation length scale 1/|Im(pkw)| is always lengthened by

vertical motion, the effect on the decay scale 1/|Re(pkw)| depends on the sign of w. In an

updraft, the slower decay of the spiral with height will lead to a higher, more strongly

supergradient maximum in the upper boundary layer, than in the w = 0 case. Conversely,

in a downdraft, the more rapid decay will result in a weaker (or absent) maximum at the

top of the boundary layer. This applies to each of the three components of the solution.
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Applying the slip boundary condition (2.12) yields

and

where
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and

These reduce to (2.14, 2.15) when w = 0.

Figure 2.8 gives examples of profiles in a symmetric stationary storm for positive,

zero and negative w. The features discussed above are apparent, in that the wind speed

maximum is raised and strengthened by the updraft, and practically eliminated in the

downdraft. Mathematically, this results from the inequality of the decay and oscillation

scales. However, this is also physically consistent with the earlier discussion, in that the

updraft cases have stronger inflow and greater angular momentum advection in the

lower part of the supergradient layer. Moreover, the steeper gradient � u/ � z in the updraft
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cases will provide stronger forcing of inflow by vertical advection and diffusion there.

Note also that the layer of outflow above the jet, which results from an adjustment back

to gradient balance of the supergradient flow diffused and advected upwards, is stronger

when an updraft is present. Conversely, the jet and outflow layer are weakened (or

nonexistent) and lower in a downdraft.

The continuity equation was not used in deriving these profiles – indeed, it is

violated because the vertical motion is constant with height. Moreover, this

approximation would be expected to produce its largest errors near the surface.

However, the stronger near-surface inflow in the updraft cases will tend to be associated

with increased surface convergence there. Thus this solution is broadly consistent with

continuity. 

It is thus reasonable to speculate that there is a positive feedback mechanism,

where an updraft results in stronger surface inflow and enhanced surface convergence,

thereby reinforcing the updraft through continuity. This may be of importance in the

dynamics of rain-bands. Several studies have investigated the dynamics of waves on a

tropical-cyclone like basic state. For example, Will oughby (1977, 1978) showed spiral

rain-bands had features in common with inwardly propagating inertia-buoyancy waves.

Conversely, Guinn and Schubert (1993) have argued that vortex Rossby waves provide

an explanation of the observed structure of inner bands, and that outer bands are formed

through the stretching out of potential vorticity anomalies . However, these studies have

not included a boundary layer, and thus this possible effect has been neglected. 

In summary, the inclusion of vertical advection – albeit not in a physically

realistic form – results in a higher, stronger jet in an updraft, and a weaker or absent jet
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in a downdraft. Moreover, there is an increased lower boundary-layer inflow associated

with the updraft which may be part of a positive feedback mechanism relevant to the

dynamics of rainbands. However, these results should be regarded as indicative only, due

to the unrealistic vertical velocity profile prescribed here. The numerical solution of the

full equations of motion, to be considered in the next chapter, will allow a more realistic

treatment of the effects of vertical advection.
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Figure 2.8 Profiles of radial (left top) and azimuthal (right top) flow, together with a

hodograph (bottom) in a symmetric cyclone according to (2.33, 2.38), for w = 0.5 m

s�
1 (dash-dotted), w = 0.25 m s�

1 (dashed), w = 0 (solid) and w = � 0.25 m s�
1 (dotted).

Other parameters are V = 40 m s�
1, r = 40 km, f = 3.77 × 10�

5 s�
1, C = 0.002 and K =

50 m2 s�
1. The circles on the hodographs are every 500 m of height.
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2.6 Concluding Remarks

The properties of a supergradient low-level jet have been examined using a linear

analytical model of the tropical cyclone boundary layer, which also enabled deductions

as to the driving mechanisms. This model diagnoses the boundary-layer flow as the

frictional response to an imposed, prescribed gradient flow characteristic of a cyclone,

but ignores the feedback from boundary-layer processes onto the cyclone as a whole.

The solution bears some resemblance to the well-known Ekman boundary-layer model.

However, it has three component: a symmetric one due to the cyclone, and two

asymmetric ones resulting from the interaction of the moving cyclone with the

underlying surface. Each has a different depth scale, which vary from that of the classical

Ekman solution. There is also an asymmetry between the radial and azimuthal

components of the flow not present in the classic solution, which makes the radial

component relatively stronger than the azimuthal in all three components. The symmetric

component is an improvement of the symmetric vortex models of Rosenthal (1962) and

EL77, while the asymmetric solution is believed to be new.

It was shown that strong inwards advection of absolute angular momentum was

necessary to produce the jet. In the linear model, the required inflow was maintained

against gradient adjustment by vertical diffusion, and the wind maximum was found to

be a few percent supergradient in a stationary cyclone. It was argued that vertical

advection should be of similar size, and further strengthen the supergradient jet. It was

speculated that the outer side of a rainband may be a preferred location for jet formation,

since here there is stronger inflow and angular momentum gradient, and a stronger

updraft.

The jet height was predicted to scale as 
�

0 = (2K/I)1/2. It was argued that the
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introduction of vertical advection to the linear model would not bring any new height

scales but modify those already applying, and so this should also apply approximately in

a full nonlinear model. It was shown using a crude representation of the vertical

advection that the oscillation scale was always increased, while the decay length scale

increased in an updraft and decreased in a downdraft. This confirms the above argument,

and suggests that a stronger jet would be expected in regions of significant upward

motion.

The Ekman spiral, at least in its original form, is nowadays generally regarded

as a fairly poor model of the atmospheric boundary layer, yet here a related model is

advanced as being appropriate in tropical cyclones. However, several of the factors

which commonly disturb the classical Ekman spiral will apply to a much lesser degree

in the tropical cyclone boundary layer, and so the model is not thereby invalidated. The

first of these factors, the nonslip boundary condition, is here replaced by one of several

possible slip conditions.

Second is the role of buoyancy in generating turbulence. In the strongly sheared

environment of the tropical cyclone boundary layer, turbulence would be expected to be

dominantly shear-generated. This would lead to a relatively simple turbulent diffusivity

structure, not subject to large diurnal variations. In the normal atmospheric boundary

layer, the time scale 1/f for the establishment of an Ekman spiral is similar to the time

over which diurnally induced variations in diffusivity occur. Hence it is perhaps hardly

surprising that it is rarely observed over the land. Indeed, it is worth noting that Taylor

(1915), in his comparison of aircraft data to an Ekman spiral (with a slip boundary

condition), restricted attention to the strong wind case for precisely this reason. In a

tropical cyclone, on the other hand, significant diurnal changes in turbulent diffusivity
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do not occur, and the time scale 1/I for boundary-layer adjustment is much shorter, so

the boundary-layer winds are much more likely to be in equilibrium with the diffusivity.

Another factor that can eliminate or even reverse the turning of the winds in the

boundary layer is baroclinicity. This would be less important in a tropical cyclone, as the

near-surface temperature gradients are weak (except near the eye) and tend to be aligned

perpendicular to the flow. Near the eye, the thermal shear will tend to be directed against

the gradient wind, and this will tend to sharpen the maximum in the upper boundary

layer. Moreover, the altered scaling which results in a markedly shallower boundary layer

here also reduces the extent to which temperature gradients can contribute to significant

wind change across the boundary layer.

A final factor which, in contrast to the others, does apply in the tropical cyclone

boundary layer, is the hydrodynamic instability of the Ekman spiral. For instance, the

numerical studies of Faller and Kaylor (1966) and Lilly (1966), and the analytical work

of Brown (1970, 1972a, 1972b), show that the classical Ekman spiral is unstable and

breaks down into longitudinal rolls, aligned at approximately 14o to 17o to the

geostrophic flow. Longitudinal rolls are well known to occur in the atmospheric

boundary layer, and recently some evidence of their occurrence in the tropical cyclone

boundary layer has appeared (Wurman and Winslow, 1998).

Is the jet, then, nothing more than the weakly supergradient flow found near the

top of the Ekman boundary layer? In the context of the linear model, the answer is

essentially yes; albeit with the complication of three separate components in a moving

storm. However, it was indicated here, and will be confirmed in Chapter 3 using a

numerical model, that vertical advection plays a crucial role in strengthening the jet, and
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that the supergradient component may be several times stronger than is predicted by the

linear model. The major role of upwards advection seems to be peculiar to intense

vortices and does not occur in more normally considered cases. This is because the

rapid, almost step-like increase in inertial stability near the radius of maximum winds

produces an updraft which is much stronger than would be expected from the classical

theory, in which the updraft is proportional to the curl of the surface stress. 

It was also shown that the distribution of vertical velocity outside the core region

may not follow the predictions of the classical Ekman theory, as surface divergence may

prevail even in the presence of cyclonic relative vorticity, provided the inertial stability

is weak. Within the eye, the updraft is proportional to radius, in agreement with the

results of Eliassen (1971) and EL77.

For a moving storm, it was found that the supergradient jet was generally located

in the left forward quadrant of the storm (in the Northern Hemisphere), away from the

strongest (earth-relative) near-surface winds in the right forward quadrant. The jet was

substantially more supergradient than in the stationary case. The majority of the

asymmetric flow was shown to be contained in the deeper of the two asymmetric

components, with the shallower one being much weaker. The asymmetric components

were interpreted as frictionally stalled inertia waves, where the decay and rotation depth

scales adjust so as to provide precisely enough retardation to bring the wave to a halt.

The asymmetric components introduce a wave number one asymmetry to the vertical

motion, which is superimposed on that due to the symmetric component. The updraft

is greatly strengthened in the right forward quadrant, while weak subsidence occurs to

the left rear, in the Northern Hemisphere. This may contribute to the observed

convective asymmetries in the tropical cyclone eye wall.
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The ratio of the surface wind speed to the gradient wind speed is a useful

parameter which has been widely studied. The linear model predicts that in a stationary

storm, this will increase from approximately 0.7 at large radii, to 0.9 or more at and

inside of the RMW. A similar trend is found in the observational analysis of Mitsuta et

al. (1988). For a moving storm, there is additionally a left-to-right gradient, with higher

values on the left side of the storm (Northern Hemisphere); that is, the side with the

weaker surface winds. The use of a universal constant for surface wind reduction is thus

not supported by the linear model. As discussed in the first chapter, observational studies

have found wide variation in the surface wind factor, from approximately 0.55 to 1.

While some of this variation can be ascribed to stability variations, these are not present

here. Thus these dynamical factors appear to be a further cause of the observed

variability.


