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ABSTRACT

Performing wavenumber decomposition on azimuthally distributed data such as those in tropical cyclones

can be challenging when data gaps exist in the signal. In the literature, ad hoc approaches are found to

determine maximum gap size beyond which not to perform Fourier decomposition. The goal of the present

study is to provide a more objective and systematic method to choose the maximum gap size allowed to

perform a Fourier analysis on observational data. A Monte Carlo–type experiment is conducted where signals

of various wavenumber configurations are generated with gaps of varying size, then a simple interpolation

scheme is applied and Fourier decomposition is performed. The wavenumber decomposition is evaluated in

a way that requires retrieval of at least 80% of the original amplitude with less than 208 phase shift. Maximum

allowable gap size is then retrieved for wavenumbers 0–2. When prior assessment of signal configuration is

available, the authors believe that the present study can provide valuable guidance for gap size beyond which

Fourier decomposition is not advisable.

1. Introduction

Understanding atmospheric phenomena such as trop-

ical cyclones (TCs) usually involves in-depth study of

their kinematic and thermodynamic structures. Although

common practice often involves axisymmetric analyses

of various fields, it is well known that TC internal pro-

cesses are also modulated by asymmetric processes (e.g.,

Montgomery and Kallenbach 1997; Schubert et al. 1999).

To investigate such asymmetries, azimuthal wavenumber

decomposition of storm-relative fields is typically carried

out. Vertical wind shear, for example, can cause low

wavenumber asymmetric structures as seen in Reasor

et al. (2000), whereas mesovortices can be identified in

high wavenumber asymmetries (Aberson et al. 2006;

Montgomery et al. 2006). The need to better understand

both axisymmetric and asymmetric structure through

observational data has further increased with the need to

validate high-resolution model output.

Doppler radar data have increasingly become the pri-

mary source of observations to study hurricane structure

(Marks et al. 1992; Roux and Marks 1996; Lee et al. 2000)

and validate models (Nolan et al. 2009). However, re-

trieving wavenumber components of the kinematic fields

has proven to be quite challenging, mainly because of

missing data inherent in observational datasets (Reasor

et al. 2009; Lee et al. 2000). Indeed, Doppler radar data

often exhibit gaps azimuthally, which affects the quality

of Fourier decompositions. Conversely, model kinematic

fields are fully available on regular grids. To circumvent

the problem, interpolation schemes are usually used to fill

in the data gaps. A maximum allowable gap size is usually

chosen beyond which a wavenumber decomposition is

deemed not worth performing. Lee et al. (2000) restricted

the missing data gap size as a function of the considered

wavenumber (see Table 2 in their paper). However,

reasons for the choice of the maximum gap size were not

discussed in detail and were only valid for the tangential

wind retrieved using the ground-based velocity track

display (GBVTD) technique.

Recently, various studies investigating hurricane

structure have used airborne Doppler analyses obtained

from a variational method (Gamache 1997; Gao et al.

1999). These analyses provide three-dimensional wind
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components and, if the quality of the wind retrieval

permits, wavenumbers of kinematic fields can be com-

puted (Reasor et al. 2009). However, storm structure

and data quality can often cause a wide range of missing

data at various radii from the storm center. Reasor et al.

(2009) only performed Fourier decompositions for

analyses where at least 60% of data were present. This

threshold value was chosen after multiple tests, but was

essentially a subjective choice (P. D. Reasor 2010, per-

sonal communication).

The intent of the present study is to provide a more

objective and systematic method to choose the maxi-

mum data gap size allowed to perform a Fourier analysis

on observational data. Although this study originally

targets the problem of ‘‘gappy’’ data1 in Doppler radar

analyses of TCs, the issue of missing data is also en-

countered when studying other phenomena such as

tornados, or other types of smaller-scale vortices em-

bedded in a mean wind field. Thus, we foresee that the

method presented here can be applied to a greater va-

riety of azimuthally spaced observational datasets. A

Monte Carlo experiment is designed to assess the quality

of Fourier decompositions when taking into account

signal shape, the position of the gap(s) in the signal, and

the number and size of the gap(s).

2. Methodology

The goal of this paper is to implement a method that

will provide a systematic way of choosing the largest gap

allowed to compute the wavenumber components of an

azimuthally varied signal. The method will help deter-

mine the maximum allowable gap size for Fourier de-

composition depending not only on the signal shape,

but also on the desired quality of the retrieved wave-

numbers.

Because this study was initiated by the need to better

understand the kinematic structure of TCs, the signal

shapes discussed here will present similar characteristics

to those of TCs. As an example, Fig. 1 presents sample

tangential, radial, and vertical wind fields from a realistic

model simulation of Hurricane Paloma (2008) and their

associated amplitude spectra at 50 km from the storm

center. The amplitude of wavenumber 0 (Fig. 1b) is much

larger than that of the higher wavenumbers for the tan-

gential wind while for the radial wind, wavenumber 1

largely dominates (Fig. 1d). The vertical wind presents

a more complex picture (Fig. 1e), with higher wave-

numbers explaining a large portion of the variance.

In this study a ‘‘dominant’’ wavenumber component is

defined as one that accounts for about 50% of the total

variance in the signal. The goal is to be able to determine

the largest gap size that will permit the retrieval of various

wavenumber components with a preset accuracy. For this

study, only wavenumber 0, 1, and 2 (referred as n 5 0, 1,

and 2, respectively) are retrieved. First, signals with spe-

cific wavenumber configurations are randomly gener-

ated, and then gaps are inserted at random places. These

gaps are then filled with a chosen interpolation scheme

and a Fourier decomposition is performed on the in-

terpolated signal. The wavenumber components com-

puted as such are then compared to the wavenumbers of

the original signal with no gaps. The experiment is re-

peated multiple times to obtain statistically representa-

tive results.

a. Signal generation

The first step of the experiment is to generate signals

from which the wavenumber components are com-

puted. The signals are generated as linear combinations

of various wavenumbers, and white noise is added as

a proxy for energy at higher wavenumbers as described

in Eq. (1):

X 5 A0 1 �
3

n51

An sin[nu 1 fn]

 !
1 j, (1)

where u is azimuth angle by which the signal is assumed

to vary (at 18 resolution), An represents the amplitude of

the wavenumber n component, Fn is phase, j represents

white noise, and A0 represents the mean value of the

signal. The amplitude and white noise are randomly

generated assuming normal distributions. The phase is

random with an assumed uniform distribution within

[0, 2p]. The standard deviation of the assumed normal

distribution for amplitude is approximately 10% of the

amplitude of the most energetic wavenumber.

Five types of signal are generated with specific wave-

number configurations described in Table 1. Individual

wavenumber components are generated based on as-

sumed variance explained and the following standard

relationship between wave amplitude and variance:

Varn 5
A2

n

2
, (2)

where Varn is the variance of the wavenumber n com-

ponent and n 5 1, . . . , 3. For each configuration, A0 is

equal to the amplitude of the most energetic wave-

number(s) of each considered signal.

1 In this study we will use the term ‘‘gappy’’ to mean missing data

for brevity.
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FIG. 1. Horizontal cross sections of (a) tangential, (c) radial, and (e) vertical wind speed (m s21) at 3-km height

from the Hurricane Paloma (2008) nature run. Solid lines and dashed lines delineate positive and negative values,

respectively. (b),(d),(f) The associated amplitude spectra (m s21) at 50 km from the storm center.
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For each signal configuration, four levels of noise are

generated that account for 0%, 1%, 10%, and 20% of the

total variance, respectively. The configuration for which

no noise (0%) is added is chosen as a baseline (best-case

scenario) and where noise contributes to 20% of the total

variance represents extreme cases for which the original

data would be very noisy. Cases where the noise accounts

for 1% and 10% of the total variance roughly represent

the noise level generally contained in the radar wind

analyses (especially the horizontal wind) that motivated

the present study. For j . 0, the variance explained by

noise offsets the variance explained by wavenumbers 1–3,

but they always amount to the same relative contribution

(see Table 1 for an example where noise contribute to

10% of the total variance).

For each signal configuration and noise level, 30 signals

are generated by randomly varying Ai, F, and j as ex-

plained above. Thus, a total of 600 signals are generated.

Figure 2 demonstrates one example of signal generation,

for configuration WV1 and 10% noise variance, where

each wavenumber component and noise are generated

individually (Fig. 2a) and then combined into a full signal

(Fig. 2b). Figure 3 shows an example of amplitude spectra

of signals of configuration WV1, WV2, and WV3 with

wavenumbers 1, 2, and 3, respectively, dominating in each

configuration and the noise contribution represented at

the higher wavenumbers.

b. Gap insertion

For each signal generated, one to five nonoverlapping

gaps of equal width are created by removing azimuthal

data points. To measure the impact of gap size for

a particular number of gaps, individual gap size is varied

from 08 to a maximum total gap size never to exceed 1808

(e.g., for one gap, gap size is increased up to 1808; for two

gaps, gap size is varied up to 908; etc.). This value of 1808

was motivated by the fact that in the case of real ob-

servations, wavenumber 0 is often computed only if

there is less than a 1808 gap (note that in theory wave-

number 0 can be retrieved even with only one point

present). When more than two gaps are inserted, the

gaps have the same size so that each gap pattern is, to

some extent, unique. Here, for brevity, we do not focus

on situations with gaps of different sizes. We reason that

those signals would be dominated by the largest gap

present and therefore resemble the situation with one

gap of the largest size. For each gap pattern, gap loca-

tions are determined randomly in 100 realizations to

avoid any bias due to a specific location within the signal.

TABLE 1. Description of types of signal generated and assumed variance explained (%) by wavenumbers 1–3 when the percentage of

additive noise is 10% [var(j) 5 10% total variance].

Configuration Dominant wavenumber

Percent variance explained when j contributes to 10%

Wavenumber 1 Wavenumber 2 Wavenumber 3

WV1 1 50 25 15

WV2 2 25 50 15

WV3 3 25 15 50

FLAT ‘‘Flat’’ 30 30 30

WV12 1 and 2 35 35 20

FIG. 2. (a) Wavenumber components contained in a signal of WV1

configuration and (b) the resulting signal.
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Figures 4a–c present an example of the procedure that

generates gaps at random locations. A signal of con-

figuration WV1 is generated, represented by the solid

curves, and data are randomly removed from the signal

where the locations of the gaps are depicted by the

dashed lines within the curves.

c. Filling and Fourier decomposition

To perform Fourier decomposition on the gappy sig-

nals obtained as in the previous section, the gaps need to

be filled first. Although many sophisticated interpolation

schemes exist, a simple and computationally inexpensive

filling algorithm is implemented here that generates lin-

early interpolated data between the end points of a given

gap. Figure 4d illustrates the filling procedure applied on

the signal shown in Fig. 4c.

After the gaps are filled, a fast Fourier algorithm is

applied to the signals. Finally, inverse fast Fourier trans-

forms are performed on individual wavenumber compo-

nents to determine their ‘‘retrieved’’ amplitudes in the

physical domain.

d. Evaluation metrics

Once individual wavenumbers from the filled signals

are calculated (hereafter referred to as retrieved wave-

numbers), they are compared to the wavenumbers of

their respective original, ‘‘nongappy’’ signal (hereafter

referred to as original wavenumbers) in terms of both

amplitude and phase. The retrieval of amplitude alone

would indicate how well a certain wavenumber component

FIG. 3. Single-sided amplitude spectra resulting from configura-

tions WV1, WV2, and WV3 with 10% of noise variance.

FIG. 4. Illustration of gap insertion, randomization, and filling procedures. (a),(b),(c) The same signal (solid) with

various gap locations (dashed). (d) The filling procedure applied on the signal depicted in (c).
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explains total variance. However, if a large error exists in

the phase of the retrieved wavenumber at the same time,

which means that the underlying structure is not retrieved

well, one may question whether the amplitude is retrieved

for the wrong reasons. Therefore, here, we focus on the

accuracy of amplitude and phase simultaneously. An

evaluation parameter is designed as a function of ampli-

tude and phase as follows:

rn(F, A) 5
RMS(X̂n 2 ~Xn)

RMSmax

, (3)

where F and A denote phase and amplitude, respec-

tively; n 5 1, . . . , 3 is wavenumber; X̂n and ~Xn represent

retrieved and original quantities, respectively; and RMS

is short for root-mean-square defined as follows:

RMS(X̂n 2 ~Xn) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
�f[Ân sin(nu 1 F̂n)]2 2 [ ~An sin(nu 1 ~Fn)]2g

r
, (4)

where M is the number of generated signals.

The parameter r therefore measures, for a given

wavenumber n, the RMS of the difference between the

retrieved and original wavenumber components nor-

malized by the maximum possible value of the RMS,

which occurs when the specific wavenumber compo-

nents are completely out of phase (F 5 p), resulting in

the greatest difference between amplitudes. Because

wavenumber 0 (azimuthal mean) does not contain any

phase, r is not suitable to assess the quality of the re-

trieved wavenumber 0 components. For the retrieval

of wavenumber 0, the retrieved value will simply be

normalized directly by the azimuthal mean of the

original signal and the evaluation parameter will be

designated as r0.

We choose RMS of the difference between the re-

trieved and original wavenumber components as the

metric to measure the accuracy of retrievals as it takes

into account both amplitude and phase error. Figure 5

illustrates how r can be used to evaluate the retrieved

wavenumbers. If the retrieved and original wave-

numbers differ only in phase (i.e., no amplitude loss), as

seen in Fig. 5a, r increases with increasing phase shift,

from a value of 0 when the retrieved wavenumber is

identical to the original wavenumber to 1 when it is

completely out of phase (Fig. 5c). If the retrieved and

original wavenumbers differ only in amplitude (i.e., no

phase shift), as in Fig. 5b, r varies from 0 when amplitude

is fully retrieved to 0.5 when no signal for that wave-

number can be retrieved (Fig. 5d).

In more realistic cases where retrieved wavenumbers

exhibit errors in both phase and amplitude, in-

terpretation of r becomes more involved. Figure 6 rep-

resents a scenario when r is a function of both phase and

amplitude error, when one value of r does not uniquely

represent a specific amplitude loss or phase shift, but

instead, defines a range of amplitude and phase errors.

For example, an r value of 0.1 can mean that the original

amplitude was fully retrieved (i.e., 0% amplitude error

line) with 148 phase shift. Conversely, the same r value

can also mean that the retrieved amplitude is within

80% of the original one (i.e., 20% amplitude error line)

with no phase error. In other words, the best (‘‘safest’’)

interpretation for r 5 0.1 is that the retrieved amplitude

is at least within 80% of the original amplitude with less

than ;208 phase shift. It should be noted that there

could be situations for which the amplitude of the re-

trieved wavenumber can slightly exceed that of the

original wavenumber. However, the likelihood of such

events is found to be quite minimal (not shown).

Another noteworthy result that emerges from the

dual nature of r in Fig. 6 is that, beyond ;508 of phase

error, it appears as though a decreasing percentage of

amplitude retrieved (i.e., more amplitude error) leads to

smaller r. While this result may seem self-contradictory

at first, it actually only points to the fact that when re-

trieved and original signals are significantly out of phase,

total error becomes dominated by the opposing ampli-

tudes of the signals, so that more amplitude error results

in smaller actual difference in the opposing signals,

hence leading to smaller r. We therefore emphasize here

that the metric r is reliable only in a small-error regime.

Consequently, we will only interpret signals with r val-

ues of less than 0.1 as exhibiting acceptable retrieval

quality. From the previous example, this value corre-

sponds to a maximum of 20% loss of amplitude and

;208 phase shift error. Hereafter we will use r̂ 5 0:1 to

denote this threshold value.

It should be noted that the phase shift represents

a phase error between the complete analyzed field and

the retrieved field from the gappy data, which is differ-

ent from phase errors that occur when the assumption of

stationarity does not fully hold during data sampling.

When analyzing wavenumbers retrieved from gappy

data, one should be aware that there could be two

sources of phase error: phase error inherent to the data

collection method that exists even in nongappy data, and

phase error due to gaps in the data.
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In the case of wavenumber 0, an 80% threshold value

is chosen for an acceptable retrieval quality. Hereafter

we will use r̂0 to denote this threshold.

3. Results

a. Determination of the maximum total gap size

The r parameter is computed for all retrieved wave-

numbers and signal configurations. For a given configu-

ration, the effect of gap size on the Fourier decomposition

of particular wavenumber components is evaluated by

analyzing the change of r with gap size. Our goal is, by

implementing the thresholds r̂ and r̂0, to deduce maxi-

mum allowable gap size for each wavenumber retrieved

within each configuration.

As an example, Fig. 7 presents the variation of r with

increasing total gap size and number of gaps for signal

configuration WV1 with no noise (0%). The thick lines

represent the mean r values while the shaded area de-

picts the deviation of r from its mean. For a given

number of gaps, errors in the retrieved wavenumbers

grow with increasing total gap size, due to greater neg-

ative impact of gap filling (interpolation) on the re-

trieved signal. Meanwhile, for a given total gap size,

larger errors occur with fewer gaps, as this results in

larger contiguous gaps and hence greater negative im-

pact from gap filling. Therefore, from Fig. 7, the largest

acceptable gap size for one gap is found by intersecting

the respective error curve (thick solid line) with r
0

5 r̂
0

and r 5 r̂ and for wavenumber 0 and wavenumber 1,

respectively. In the rest of the analysis, we repeat this

procedure for all signal configurations and wavenumbers

and only report the average maximum acceptable gap

size for one gap in each case. Results will be shown for

cases where there is no noise added to the signal.

Figure 8a presents the resulting total maximum al-

lowable gap size for each signal configuration and

wavenumber when one gap is present in the signal.

Overall, for a given wavenumber, the total allowable

gap size is always the greatest when considering the

configuration in which that wavenumber contributes

FIG. 5. (a) Example of signals (dashed) exhibiting phase shift with respect to an original signal (solid) and (c) the

associated r evolution. (b) Example of signals (dashed) exhibiting amplitude loss with respect to an original signal

(solid) and (d) the associated r evolution.
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most to total variance. Moreover, retrieval of wave-

number 0 allows the biggest gap size compared to

wavenumbers 1 and 2 in all configurations, with total

maximum gap size always greater than 1008. Maximum

total gap size is much smaller for wavenumbers 1 and 2

with most values under 808. Meanwhile, the total gap

size increases substantially when more than one gap is

present in the signal (Fig. 8b). Figure 8b shows the max-

imum allowable gap size for varying gap number and all

wavenumbers for configuration WV1. For wavenumber

0, when two or more gaps are present, the maximum al-

lowable gap size reaches the maximum value of 1808. The

retrieval of higher wavenumbers is also greatly impacted

by the number of gaps, resulting in considerably smaller

maximum allowable gap size for one gap. Maximum al-

lowable total gap size approaches 1808 when three or

more gaps are present. Qualitatively similar results are

obtained in other configurations.

There are situations in which a more restrictive thresh-

old value r̂ could be preferred. For example, if one is

requiring a very accurate assessment of the wavenumber

amplitude, obtaining an amplitude within 90% of the

original amplitude might be desired. For this case, a new

threshold value r̂ 5 0:05 would be used. This new thresh-

old value would also reduce the phase error criterion to

less than 108. The maximum gap size allowed in this sce-

nario, for all configurations with one gap and no noise is

presented in Fig. 9a and shows that the maximum gap

sizes are very limited, with all values under 908. On the

other hand, if one is interested in a rather qualitative study

of the wavenumber structure, the threshold value could be

relaxed. A threshold value r̂ 5 0:15, would allow the

magnitude of the retrieved wavenumber to be within 70%

of the original amplitude, with a phase shift still smaller

than 208. Figure 9b shows the resulting maximum gap size

for this threshold value, for the same signal configuration

as in Fig. 9a. For this threshold, the maximum gap size

allowed to retrieve wavenumber 0 reaches the maximum

value of 1808 for all configurations. For wavenumbers 1

and 2 the maximum gap sizes allowed increase but the

increase seems to be dependent on the importance of the

wavenumber in the signal. For instance, when wave-

number 2 contributes most to the signal (i.e., WV2), the

increase is greater than 208 whereas when it contributes

the least in the signal (WV3), the increase is only by a few

degrees.

The impact of the noise is also evaluated. The addition

of noise reduces the total variance contributed by the

wavenumbers, which would result in a more challenging

retrieval. Figure 10 illustrates the impact of noise on the

maximum allowable gap size for wavenumber 1 re-

trieval, when one (Fig. 10a) or three (Fig. 10b) gaps are

FIG. 6. Variation in r as a function of phase and amplitude error.

Each line represents the evolution of r with increasing phase error

for amplitude error of 0% (darkest gray shade) to 100% (lightest

gray shade).

FIG. 7. Variation in r with gap size and number of gaps for WV1

configuration for (a) n 5 0 and (b) n 5 1. Thick lines denote mean

values while the standard deviation is shown by the gray shaded

envelop around the thick lines.
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present in the signal. Smaller noise levels provide slightly

better results as smaller noise decreases errors in the re-

trieval and hence increases the maximum allowable gap

size. Meanwhile, the number of gaps in the signal also

impacts the results. More gaps present in the signal gen-

erally result in a greater drop in allowable gap size.

The results described above are obtained with a mean

(wavenumber 0) signal value equal to the amplitude of

the most energetic wavenumber(s) of each considered

signal configuration. This allows for a relatively non-

challenging wavenumber 0 retrieval. However, wave-

number 0 retrieval becomes more challenging when the

assumed mean signal value is smaller than the amplitude

of the most energetic wavenumber(s). To assess the

impact of the mean signal value on the retrieval and

therefore on total allowable gap size, the one-gap ex-

periment above is repeated where the mean signal value

is varied from 20%–100% of the amplitude of the

wavenumber that contributes the most to total variance.

Results are summarized in Fig. 11 and clearly show that

the accuracy of retrieval of wavenumber 0 is highly de-

pendent on the relative mean signal strength. For a WV1

configuration, for example, the maximum allowable gap

size is restricted to 408 when the mean signal is only 20%

of the wavenumber 1 amplitude. Such configuration can

be found in the radial wind field of landfalling tropical

cyclones, where wavenumber 1 amplitude can signifi-

cantly exceed the mean radial wind (Liou et al. 2006).

On the other hand, the maximum allowable gap size is

1458 when the mean signal and wavenumber 1 amplitude

are comparable. This type of configuration has been

documented in real observations (Roux and Marks 1996;

Marks et al. 1992). These findings are critical to perform

the widely used radius–height azimuthal means of gappy

FIG. 8. Maximum gap size allowed for wavenumbers 0–2 for (a)

all five signal configurations when one gap is present in the signal

and (b) various numbers of gaps for WV1 configuration.

FIG. 9. Maximum gap size allowed for wavenumbers 0–2 for all

five signal configurations when one gap is present in the signal for

(a) r̂ 5 0:05 and (b) r̂ 5 0:15.
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data and should be considered when computing these

means.

b. An example from real observations

The present study stems from the need to better un-

derstand the kinematic structure of TCs by analyzing the

various wavenumbers contained in fields such as tan-

gential wind and vorticity. In the previous sections, we

focused on synthetic data where gaps were inserted to

simulate missing data often encountered in real obser-

vations and more specifically in Doppler data analyses.

An example from a real case is now presented to illus-

trate how the methodology can be applied to real data.

Figure 12a shows a radial wind analysis from Hurricane

Guillermo (1997). The data were acquired with the tail

Doppler radar of a National Oceanic and Atmospheric

Administration (NOAA) WP-3D (P-3) aircraft. The

wind field exhibits a strong wavenumber 1 component at

all radii, but higher wavenumbers are also clearly visible

as seen at ;20 km from the center. The wind field dis-

plays large azimuthal gaps (.1308) of missing data be-

yond 60 km from the storm center, while between 20 and

60 km there are in general two gaps of total size smaller

than 1308. Inside the 20-km radius, there are places with

one gap of small size. Based on the results presented in

section 3a (Fig. 7b), the gap size criteria are met up to

60 km and wavenumber 1 retrieval for this field may

therefore be performed. Figure 12b presents the resulting

wavenumber 1 field computed from the radial wind field

after the gaps were filled in the same manner as explained

previously, exhibiting a rather realistic distribution com-

pared to the original field. Wavenumbers 0 and 2 can be

retrieved following a similar procedure and the guidance

provided for WV1 configuration.

4. Conclusions and recommendations

In this study, a Monte Carlo–type experiment is con-

ducted to assess the maximum gap size to be allowed

when performing Fourier analysis on ‘‘gappy’’ azimuth-

ally distributed data. Numerous signals of various wave-

number configurations and noise levels are generated

with gaps of varying size. A simple linear interpolation

scheme is then applied and Fourier decomposition is

performed. The wavenumber decomposition is evaluated

in a way that requires retrieval of at least 80% of the

original amplitude with less than 208 phase shift. The re-

sults indicate that, when two or more gaps are present in

the signal, the maximum gap size allowed is greater than

originally suggested in the literature (Lee et al. 2000).

FIG. 10. Maximum gap size allowed for wavenumber 1, all con-

figurations and noise contributing to 0%, 10%, and 20% of total

variance when (a) one gap and (b) three gaps are present in the

signal.

FIG. 11. Maximum gap size allowed for wavenumber 0 when its

amplitude is 20%–100% of the amplitude of the most energetic

wavenumber(s). Experiment performed for all configurations

when one gap is present.

1954 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



Increasing noise negatively impacts the maximum gap

size allowed. It is also found that the impact of noise is

amplified when there are more gaps in the signal.

However, noise does not appear to influence the relative

distribution of the maximum allowable gap size among

various wavenumber configurations.

We also found that wavenumber components are best

retrieved when they contribute most to total variance.

Wavenumber 0 is retrieved with most accuracy when its

amplitude (i.e., mean signal value) is at least equal to the

amplitude of the wavenumber that contributes the most

to the total variance. It should be noted that, since errors

in both amplitude and phase are quite restricted, aliasing

that can arise with large gaps in the signal is not expected

to impact results negatively here.

The results described here can serve as a reference

when dealing with azimuthally distributed gappy data

and the guidance provided here can be extended to

other atmospheric phenomena and datasets. Indeed, the

present methodology can be applied to phenomena for

which data are azimuthally distributed such as tornados

or other types of vortices. Gaps in tornado radar data-

sets due to sidelobes effect and ground clutter due to

trees and buildings can seriously impede wavenumber

analysis (Bluestein et al. 2003); the present method can

be applied in a similar manner to deal with issues posed

by missing data. Although the case described in

Bluestein et al. (2003) was wavenumber 2 dominant and

the results provided here could be applicable to such

a case, it is not necessarily obvious whether the sig-

nal configurations used in the present study would be

generally applicable to observed tornado wavenumber

configurations, as higher wavenumbers might contribute

more to the total variance. The method could even be

extended to point measurement data such as tightly

clustered mobile mesonet instruments. To apply the

present results to this type of dataset, however, it would

be crucial that the density of the data allow for more

than just the resolution of the signal wavenumbers,

which would require an extensive amount of in-

struments.

For the particular problem of Fourier decomposition

of gappy Doppler radar analyses that motivated the

present study, results using two gaps will be most im-

portant, as it is the most common gap pattern found in

this type of data. Also, the results presented here can be

most useful when the wavenumber to be studied con-

tributes most to total variance, which is generally the

case. Finally, although one does not usually know the

exact wavenumber configuration of an observed signal

or the importance of a particular wavenumber, prior

information (from earlier time period or other altitude),

knowledge of physical processes that contribute to the

signal, or availability of alternate data sources all can

lead to a general expectation of a particular signal con-

figuration. Especially when such prior assessment of

signal configuration is available, we believe that the

present study can provide valuable guidance for gap size

beyond which Fourier decomposition is not advisable.
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