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ABSTRACT

The Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System

(HEDAS) is developed to assimilate tropical cyclone inner-core observations for high-resolution vortex

initialization. It is based on a serial implementation of the square root ensemble Kalman filter (EnKF). In this

study, HWRF is used in an experimental configuration with horizontal grid spacing of 9 (3) km on the outer

(inner) domain. HEDAS is applied to 83 cases from years 2008 to 2011. With the exception of two Hurricane

Hilary (2011) cases in the eastern North Pacific basin, all cases are observed in the Atlantic basin. Observed

storm intensity for these cases ranges from tropical depression to category-4 hurricane.

Overall, it is found that high-resolution tropical cyclone observations, when assimilatedwith an advanced data

assimilation technique such as the EnKF, result in analyses of the primary circulation that are realistic in terms

of intensity, wavenumber-0 radial structure, as well as wavenumber-1 azimuthal structure. Representing the

secondary circulation in the analyses is found to be more challenging with systematic errors in the magnitude

and depth of the low-level radial inflow. This is believed to result from amodel bias in the experimental HWRF

caused by the overdiffusive nature of the planetary boundary layer parameterization utilized. Thermodynamic

deviations from the observed structure are believed to be caused by both an imbalance between the number of

the kinematic and thermodynamic observations in general and the suboptimal ensemble covariances between

kinematic and thermodynamic fields. Future plans are discussed to address these challenges.

1. Introduction

Numerical prediction of tropical cyclones (TCs) con-

tinues to be a challenge. Although improvements in track

forecasts have been relatively steady in recent years, vir-

tually no improvement has been made in forecasting in-

tensity (e.g., Berg and Avila 2011). Several factors could

be contributing to this, including model deficiencies,

suboptimal initialization caused by the lack of observa-

tions in the peripheral environment as well as the inner-

core circulation of a TC, and how existing observations

are incorporated into model initial conditions through

data assimilation. The goal of the present study is to focus

on the data assimilation aspects of the TC prediction

problem by exploring the impact of observations on the

analyses of high-resolution vortex structure using the

ensemble Kalman filter (EnKF).

The EnKF is an advanced data assimilation technique

that utilizes an ensemble of short-range forecasts to es-

timate flow-dependent spatial and cross correlations for

data assimilation (Evensen 1994;Houtekamer andMitchell
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1998). Recent success with assimilating radar observa-

tions of continental convective storms (Snyder andZhang

2003; Zhang et al. 2004; Dowell et al. 2004; Dowell et al.

2011; Aksoy et al. 2009, 2010) has raised hopes that high-

resolution TCmodels, too, can benefit from the use of the

EnKF. In a proof-of-concept study, Zhang et al. (2009)

demonstrated that a model initialized with the EnKF

exhibitedmore skill than the samemodel initialized with

three-dimensional variational data assimilation (3DVAR)

in predicting the evolution of a landfalling hurricane

using observations from a land-based radar. The same

data assimilation system was then recently tested with

airborne Doppler radar observations (Weng and Zhang

2012; F. Zhang et al. 2011) and demonstrated improve-

ment in the representation of the vortex structure in

Hurricane Katrina (2005), as well as smaller intensity

forecast errors in 61 cases from 2008 to 2010 when

compared to operational dynamical models. In this

study, the EnKF is combined with the National Oce-

anic and Atmospheric Administration’s (NOAA) Hur-

ricane Weather Research and Forecasting (HWRF;

Gopalakrishnan et al. 2010) model to obtain high-

resolution TC vortex analyses.

The HWRF Ensemble Data Assimilation System

(HEDAS;Aksoy et al. 2012, hereafterA12) is an ensemble-

based data assimilation system developed at NOAA’s

Hurricane Research Division (HRD) of the Atlantic

Oceanographic andMeteorological Laboratory (AOML)

to utilize high-resolution TC observations collected by

NOAA’s WP-3D (P-3) aircraft (Aberson et al. 2006),

high-altitude Gulfstream-IV (G-IV) jet (Aberson 2009),

as well as the C-130 aircraft of the 53rd Weather Re-

connaissance Squadron of the U.S. Air Force Reserve

Command (AFRC; e.g., Rappaport et al. 2009). HE-

DAS combines an EnKF with HRD’s experimental

HWRF model (Gopalakrishnan et al. 2012; X. Zhang

et al. 2011) to carry out short-range ensemble forecasts

during the cycling of observations. A12 demonstrated the

value of assimilating simulated airborne Doppler radar

radial wind data withHEDAS by showing not only direct

positive impact on the vortex wind structure but also in-

direct positive impact on the thermodynamic structure.

The current article focuses on the assimilation of real

airborne TC observations using HEDAS. Data assimi-

lation is carried out for 83 cases (20 individual TCs)

spanning the 2008–11 hurricane seasons. The TC posi-

tion, intensity, and structure in the high-resolution vortex-

scale analyses are evaluated by comparison to observations

and other analyses. To the authors’ knowledge, this is

the first comprehensive study to investigate statistically

the impacts of assimilating high-resolution TC obser-

vations on the analysis of vortex structure by systematic

comparison to observed structure. While the focus here

is only on vortex analyses produced by HEDAS,

a future study will investigate the characteristics of

the forecasts initialized with these analyses.

The details of the data assimilation and modeling as-

pects are described in section 2. Section 3 explains the

cases considered in the study. Section 4 continues with

the presentation of results; the summary and discussion

are in section 5.

2. The real-time HEDAS

a. HRD’s experimental HWRF

Most of the differences between HRD’s experimental

HWRF and the NOAA/National Centers for Environ-

mental Prediction (NCEP) operational HWRF arise

from the choice of physical parameterization schemes

and resolution. In the current study, the HRD experi-

mental HWRF is configured with a pair of two-way-

interacting computational domains (see Table 1 for

details). The vortex-following nest motion of the inner

domain (Gopalakrishnan et al. 2002, 2006) is suppressed

during spinup and data assimilation cycles and all en-

semble members are initialized with collocated inner

domains to facilitate gridpoint-based spatial covariance

computations in the EnKF. The 108 3 108 inner nest

is bigger than that of A12 and encompasses the entire

circulation zones of storms with varying rates of forward

motion. A thorough comparison of the physics param-

eterizations used in the experimental and operational

versions of HWRF can be found in Gopalakrishnan

et al. (2012).

b. HEDAS

HEDAS is based on a serial implementation of the

square root EnKF of Whitaker and Hamill (2002). In a

serial update loop, each observation is treated as a scalar

quantity, and the update equations are simplified fol-

lowing Snyder and Zhang (2003). The horizontal length

scale of covariance localization (Gaspari and Cohn 1999)

is chosen so that most of the vortex is updated given the

limited spatial distribution of observations in each cy-

cle (see discussion in A12). Further technical details of

HEDAS are explained in A12.

In its real-time application, HEDAS uses 30 ensemble

members. The initial and lateral boundary ensemble per-

turbations are obtained from the experimental, EnKF-

based global ensemble prediction system developed for

the NCEP Global Forecast System (GFS). The details

of this system and its performance for the prediction of

2009 and 2010 TCs are summarized in Hamill et al.

(2011a,b). An ensemble spinup is initialized 6 h prior to

the synoptic time around which a NOAA P-3 flight is
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centered. The spinup is carried out for 3–4 h (until the

first observations are available) to develop the co-

variance structures relevant for the scales at which the

data assimilation is performed.1 The experimental GFS/

EnKF initial perturbations, without any covariance

inflation, are found to result in comparable ensemble

spread to that in A12 [see section 5a(2) for more de-

tails]. Furthermore, A12 found that the impact of co-

variance inflation quickly became marginal as the rate

of inflation was increased and suggested unrepresented

model error to be an important cause of spread de-

ficiency. Whitaker and Hamill (2012) discuss that it is

generally more difficult to treat model-error-related

spread deficiency either through inflation or physically

based approaches. Given such inherent difficulties, the

only marginal improvements beyond the current level

of ensemble spread observed in A12 with inflation,

and the ad hoc nature of inflation that renders difficult

the tuning for systematic improvements, no covariance

inflation is applied in the real-data experiments dis-

cussed here.

3. 2008–11 aircraft cases considered

In this study, data assimilation experiments are car-

ried out only when Doppler radar observations were

available from NOAA P-3 flights. A total of 83 such

cases (20 TCs) are considered (see Table 2 for a list of

the individual cases). All but two cases (both from 2011’s

Hurricane Hilary in the eastern North Pacific) were in

the Atlantic basin. The geographical distribution of the

observed positions for these cases, as obtained from the

National Hurricane Center’s (NHC’s) hurricane data-

base (HURDAT; Landsea et al. 2004), also known as

the ‘‘best track database,’’ is shown in Fig. 1a. The general

proximity of the cases to land is caused by the range

limitations of the NOAA P-3 aircraft. The distribution

of the cases according to their best-track intensity cat-

egory is shown in Fig. 1b. A skewed distribution that

peaks at tropical storm intensity (17.5–32 m s21) is ev-

ident. Overall, more than half of the cases are tropical

storms or category-1 hurricanes (17.5–42 m s21).

4. Observations assimilated

The types of observations assimilated in HEDAS in-

clude Doppler radial wind superobservations (superobs;

see A12 for details), GPS dropwindsonde [to be called

dropsonde for brevity hereafter; Hock and Franklin

(1999)] data, aircraft flight-level wind and temperature

observations, and Stepped Frequency Microwave Ra-

diometer (SFMR; Uhlhorn et al. 2007) wind speed re-

trievals at 10-maltitude. Further details on the observations

and their processing can be found in Table 3. Observations

are assimilated in 1-h assimilation windows according to

TABLE 1. Summary of the experimental setup.

Feature Explanation

HEDAS

Filter type Ensemble square root filter

Ensemble size, initialization 30 members, initialized from GFS/EnKF analysis ensemble, 3–4-h spinup

Covariance localization,

radii of influence

Through a compactly supported fifth-order correlation function, 80 grid

distances in the horizontal and 15 model levels in the vertical

Assimilation domain Static inner nest during spinup and assimilation, 3-km horizontal resolution,

with a 10-gridpoint ‘‘buffer zone’’ to outer nest

Assimilation frequency, period 1 h, duration of availability of NOAA P-3 observations

Assimilated observation types Doppler radial velocity superobservations, dropsonde and flight-level wind and

temperature, and SFMR 10-m wind speed

Experimental HWRF

Model version WRF-Nonhydrostatic Mesoscale Model (NMM) core, version 3.0.1.1

Resolution Horizontal, 9-km outer nest of approx size 608 3 608 and 3-km inner nest

of approx size 108 3 108; vertical, 42 eta levels with model top at 50 hPa

Physics Ferrier et al. (2002) microphysics, Hong and Pan (1998) cumulus

(only in the outer domain, explicit convection in the inner domain),

Dudhia (1989) shortwave radiation, Mlawer et al. (1997) longwave radiation,

Hong and Pan (1996) PBL, Moon et al. (2007) surface layer, and Ek et al.

(2003) land surface parameterization

1 While a longer spinup period could improve the background

multivariate covariance structures (A12 found that a 12-h period

was needed for the initial adjustment in a nature run at 1.5-km

grid spacing), longer spinup periods would also result in greater

deviations of the background state from observations and

greater errors in the environmental flow, both of which would

deteriorate the analysis quality. Indeed, our tests with a 6-h-

longer spinup period did not produce analyses that were mea-

surably better than those with the current spinup length of 3–4 h

(not shown).
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their sampling time. While the selection of cases is re-

stricted to the availability of P-3 Doppler radar data, 1-h

assimilation cycles in a given case are carried out for as

long as the Doppler radar wind observations are avail-

able within the domain. The number of cases as a func-

tion of the number of assimilation cycles is shown in

Fig. 2. The distribution peaks sharply at 5 cycles, which

reflects the typical;4–5-h duration that the NOAA P-3

aircraft remains ‘‘on station’’ within the storm circulation.

Fewer assimilation cycles are the result of short on-station

times for distant storms and/or aborted missions, while

the greater number of cycles reflects longer data avail-

ability from overlaps with NOAAG-IV orAFRCC-130

flights and/or long on-station times for storms that are

closer to deployment sites.

The distribution of the number of cases as a function

of the number of observations assimilated by platform

(Fig. 3, top histograms in each panel) reveals that the

Doppler wind observations significantly outnumber obser-

vations from other platforms (by one order of magnitude

TABLE 2. Summary of the cases considered (1 kt 5 0.5144 m s21).

Storm namea Verification time and dateb Obs intensityc (kt) Storm namea Verification time and dateb Obs intensityc (kt)

Dolly 1200 UTC 20 Jul 2008 40 Alex 0000 UTC 29 Jun 2010 55

Dolly 0000 UTC 21 Jul 2008 45 TD2 0000 UTC 7 Jul 2010 N/A

Dolly 1200 UTC 21 Jul 2008 45 TD2 1200 UTC 7 Jul 2010 25

Dolly 0000 UTC 22 Jul 2008 45 TD2 0000 UTC 8 Jul 2010 30

Dolly 1200 UTC 22 Jul 2008 55 Earl 0000 UTC 29 Aug 2010 55

Fay 1200 UTC 14 Aug 2008 N/A Earl 1200 UTC 29 Aug 2010 65

Fay 0000 UTC 15 Aug 2008 N/A Earl 0000 UTC 30 Aug 2010 85

Fay 0600 UTC 15 Aug 2008 N/A Earl 1200 UTC 30 Aug 2010 105

Fay 1800 UTC 15 Aug 2008 35 Earl 0000 UTC 31 Aug 2010 115

Fay 1800 UTC 18 Aug 2008 50 Earl 1200 UTC 1 Sep 2010 110

Fay 0600 UTC 19 Aug 2008 55 Earl 0000 UTC 2 Sep 2010 120

Gustav 0000 UTC 30 Aug 2008 75 Earl 1200 UTC 2 Sep 2010 115

Gustav 1200 UTC 30 Aug 2008 110 Earl 0000 UTC 3 Sep 2010 90

Gustav 0000 UTC 31 Aug 2008 120 Earl 1800 UTC 3 Sep 2010 75

Gustav 1200 UTC 31 Aug 2008 100 Earl 0000 UTC 4 Sep 2010 60

Gustav 0000 UTC 1 Sep 2008 95 Karl 0000 UTC 13 Sep 2010 N/A

Gustav 1200 UTC 1 Sep 2008 95 Karl 1200 UTC 13 Sep 2010 N/A

Ike 0000 UTC 10 Sep 2008 65 Karl 0000 UTC 14 Sep 2010 25

Ike 1200 UTC 10 Sep 2008 80 Karl 1800 UTC 16 Sep 2010 70

Ike 0000 UTC 11 Sep 2008 85 Richard 0600 UTC 23 Oct 2010 45

Ike 1200 UTC 11 Sep 2008 85 Tomas 0000 UTC 4 Nov 2010 40

Ike 0000 UTC 12 Sep 2008 85 Tomas 1200 UTC 4 Nov 2010 45

Ike 1800 UTC 12 Sep 2008 95 Tomas 0000 UTC 5 Nov 2010 60

Kyle 0000 UTC 23 Sep 2008 N/A Tomas 1200 UTC 6 Nov 2010 60

Kyle 1200 UTC 24 Sep 2008 N/A Tomas 0000 UTC 7 Nov 2010 70

Kyle 0000 UTC 25 Sep 2008 30 Irene 0000 UTC 24 Aug 2011 80

Kyle 1200 UTC 25 Sep 2008 40 Irene 1200 UTC 24 Aug 2011 105

Kyle 0000 UTC 26 Sep 2008 45 Irene 1200 UTC 25 Aug 2011 90

Kyle 1800 UTC 26 Sep 2008 50 Irene 0000 UTC 26 Aug 2011 90

Kyle 0000 UTC 27 Sep 2008 55 Irene 1200 UTC 26 Aug 2011 85

Kyle 1800 UTC 27 Sep 2008 65 Irene 0000 UTC 27 Aug 2011 75

Paloma 0600 UTC 7 Nov 2008 65 Irene 1200 UTC 27 Aug 2011 75

Paloma 1800 UTC 7 Nov 2008 80 Lee 0000 UTC 2 Sep 2011 30

Paloma 1800 UTC 8 Nov 2008 125 Ophelia 1800 UTC 24 Sep 2011 40

Ana 0000 UTC 17 Aug 2009 N/A Hilary 1800 UTC 28 Sep 2011 70

Bill 0000 UTC 19 Aug 2009 105 Hilary 1800 UTC 29 Sep 2011 50

Bill 1200 UTC 19 Aug 2009 115 Rina 0000 UTC 26 Oct 2011 100

Bill 0000 UTC 20 Aug 2009 115 Rina 1800 UTC 26 Oct 2011 80

Bill 1200 UTC 20 Aug 2009 105 Rina 0000 UTC 27 Oct 2011 80

Danny 1200 UTC 26 Aug 2009 40 Rina 1800 UTC 27 Oct 2011 60

Danny 0000 UTC 27 Aug 2009 50

Danny 1200 UTC 27 Aug 2009 50

Danny 0000 UTC 28 Aug 2009 40

a All cases except Hilary (2011, eastern Pacific basin) were observed in the Atlantic basin.
b Verification time here is defined as the closest synoptic time to the time of a final analysis.
c Storm intensity for cases that did not exist in the best-track database is denoted as N/A.
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in the case of flight-level observations and by two orders

of magnitude in the cases of dropsonde and SFMR ob-

servations). When broken down by intensity category

(Fig. 3, 2D matrix plots in each panel), stronger TCs

generally have more observations assimilated for each

platform. The modes of these distributions also shift

toward higher values for each platform, except for

dropsonde observations that have the greatest number

of cases in the smallest observation bin for all intensity

categories. These differences can be explained by a com-

bination of the following facts. 1) More Doppler wind

observations are obtained in stronger storms as more

symmetric convection results in greater areal and vertical

hydrometeor coverage. 2) More flight-level and SFMR

observations are obtained in stronger storms as the like-

lihood of overlapping NOAA P-3 and AFRC C-130

flights increases with storm intensity. 3) The number of

dropsondes that are launched does not depend on storm

intensity.

When the average number of observations assimilated

per case is plotted by height (Fig. 4), the distribution of

flight-level observations is broad (Fig. 4a) with second-

ary maxima at low altitudes for relatively weak TCs.

This results from the combination of flight-level vari-

ability and the likelihood of low-level AFRC C-130

flights in weak TCs. In stronger TCs, the distributions

become unimodal and peak near 3-km altitude, which is

the standardAFRCC-130 andNOAAP-3 flight altitude

[near 10 000 ft (3048 m)] in mature storms. A similar

pattern of sharpening distributions with increasing in-

tensity is also evident for Doppler wind observations

(Fig. 4b), although the peaks are lower in altitude,

FIG. 1. (a) Geographical distribution of storm tracks and (b) frequency distribution of storm intensity for the 83

cases (20 TCs) examined in this study. Cases that do not exist in the best-track database (see Table 2) are assigned to

the ‘‘,TS’’ category. TS and H stand for tropical storm and hurricane, respectively.

TABLE 3. Observation platforms/types assimilated.

Platform/observation type Observation error (std dev) Notes on processing

Tail Doppler radar (P-3)

Radial wind speed 2 m s21 Processed into superobsa

HDOBS (P-3, C-130)

Flight-level zonal and

meridional wind speed

2 m s21 Observations with ‘‘questionable’’ quality control

values removed

Flight-level temperature 0.5 K Correction applied based on dewpoint temperature

if necessaryb

SFMR wind speed Rain-rate dependentc

with mean ;5 m s21
Observations with ‘‘questionable’’ quality control

values removed

TEMPDROP (P-3, C-130, G-IV)

Dropsonde zonal/meridional

wind speed

2 m s21 Position and time interpolated based on drift deduced

from wind speed, time, and location of release and splash

Dropsonde temperature 0.5 K Position and time interpolated based on drift deduced from

wind speed, time, and location of release and splash

a As in Aksoy et al. (2012).
b As in Eastin et al. (2002).
c As deduced from Uhlhorn et al. (2007).
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indicating that such peaks occur below the aircraft. Fi-

nally, the peaks for the dropsonde observations also shift

upward with intensity, which results from the generally

lower NOAA P-3 and AFRC C-130 aircraft altitudes in

weaker storms. Dropsonde observations sampled above

approximately 3–4-km altitude are generally from en-

vironmental surveillance missions.

5. Results

a. Observation-space diagnostics

In this section, the focus is on innovation-based sta-

tistics, where innovations represent observation-minus-

model (forecast or analysis) differences. The reader is

reminded that in all experiments, all observation types

are assimilated. Consequently, innovation statistics shown

here for individual observation types still reflect impacts

from other observation types.

First-cycle prior innovations reflect the observation-

background differences before the onset of data assimila-

tion; that is, they reflect the deviations from observations

in the GFS/EnKF global initial conditions carried over

into the HEDAS ensemble spinup. Last-cycle posterior

innovations reflect the observation–analysis differences

after the completion of assimilation of all inner-core

data, where thememory of the global initial conditions is

expected to be less impactful than the combined effects

of the EnKF and the experimental HWRF through cy-

cling. As the observations that are used in the first-

cycle prior statistics are spatially displaced and 4–5 h

apart from those in the last-cycle posterior statis-

tics, the comparisons are believed to be sufficiently

independent.

1) FREQUENCY DISTRIBUTIONS OF OBSERVATION

INNOVATIONS

Figure 5 shows the frequency distributions of inno-

vations for various observation types to depict the overall

statistical behavior of the analyses in direct comparison

to observations. The statistics are accumulated over all

cases of interest to emphasize systematic patterns.

There appear to be no discernible biases associated

with the model representation of Doppler wind obser-

vations. The main reason for this is that a Doppler wind

observation’s directional information is relative to the

tail radar location within a given storm. Depending on

the aircraft position, flight-track direction, and antenna

scanning direction, a Doppler wind measurement is

equally likely to be positive (away from the radar) or

negative (toward the radar). Accumulated over suffi-

ciently many observations over many cases, any appar-

ent observation innovation biases therefore tend to cancel

each other out so that innovation population density

peaks at approximately 0 m s21. Meanwhile, the wide

probability distribution of the first-cycle prior innova-

tions clearly points to large wind errors carried over

from the lower-resolution initial GFS/EnKF ensemble.

The errors in the last-cycle posterior innovations appear

to be considerably reduced, as deduced from the much

narrower innovation distribution of Doppler wind ob-

servations. There is a 46% likelihood of encountering an

absolute Doppler wind speed error of 3 m s21 or less in

the background field at the time of the first assimilation

cycle. Through data assimilation, that likelihood is in-

creased to 85% in the final analysis. Conversely, there is

a 3% likelihood to encounter an absolute Doppler

wind speed error of 20 m s21 or more in the back-

ground field at the first assimilation cycle, while this

likelihood is reduced to 0.01% by data assimilation in

the final analysis.

SFMR observations carry information about the wind

speed at 10 m and therefore are more likely to reflect

model–analysis biases in storm intensity than are Doppler

wind observations. Indeed, the probability distribution of

the first-cycle prior SFMR innovations peaks between 1

and 3 m s21, indicating that the background 10-m wind

speed is systematically underpredicted. An alternative

way of looking at this is to measure the total probability

of underprediction versus overprediction by the first-

cycle background: the likelihood of encountering un-

derpredicted 10-mwind speed is 68%as opposed to 32%

for overprediction. Data assimilation helps to reduce

this apparent bias and symmetrizes the posterior distri-

bution of innovations in the final analysis: the likelihood

of encountering underpredicted 10-m wind speed is now

57%, suggesting that observation–analysis differences

FIG. 2. Distribution of the number of cases with respect to the

number of assimilation cycles.
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have become more random in nature, but still suffer

from a slight bias of underestimation.

Zonal and meridional wind observations are assimi-

lated separately in HEDAS. For zonal wind, there appears

to be a slight easterly (positive) bias (57% likelihood)

for the first-cycle prior innovations (combined flight-level

and dropsonde platforms). However, since the zonal

wind observation is a vector, this result cannot be di-

rectly linked to intensity. (In other words, strong inten-

sity is equally likely to result in positive, eastward, and

negative, westward, zonal winds.) This bias is mostly re-

moved in the final analysis: the likelihood of encountering

FIG. 3. Distribution of the number of cases according to the number of observations assimilated per platform and

intensity category (2D matrix plots in each panel, gray scale at top right), binned by the number of observations per

platform (top histograms in each panel), and by intensity category (bottom-right histogram). The 2Dmatrix plots are

normalized by the respective overall maxima of populations for each observation type. TS, H, and HM stand for

tropical storm, hurricane, and major hurricane, respectively.
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underestimated easterly wind is down to 52%.The results

for the meridional wind are similar due to the cyclonic

nature of the phenomenon.

Finally, for temperature observations (combined flight-

level and dropsonde platforms), a slight positive bias in

the first-cycle prior innovations (55% likelihood) sug-

gests that the warm core is underpredicted; that is, a

weaker-than-observed background vortex is available

to the EnKF in the first assimilation cycle. In the final

analysis, the magnitude of this apparent bias is slightly

reduced but the bias becomes negative.

2) VERTICAL VARIATION OF OBSERVATION

INNOVATIONS

Figures 6–8 show the vertical variations of innovation

statistics for Doppler wind speed, SFMR, temperature,

and zonal wind speed as computed before the first as-

similation cycle (i.e., first-cycle prior) and after the last

assimilation cycle (i.e., last-cycle posterior). The 95%

confidence intervals are also provided so that the sta-

tistical significance of the differences can be inferred.

In computing the statistics, all observations of a specific

type are aggregated from all cases that are within the

intensity category of interest. Therefore, these statistics

reflect the average behavior of the EnKF as applied to

various intensity categories.

Figure 6 indicates that mean innovations of Doppler

wind speed are generally small, even at the first cycle.

Some biases of up to 1 m s21 are apparent at mid- and

upper levels of the troposphere (;4–14 km), which is

reduced in the analyses at the last cycle. Much more

prominent errors are observed in root-mean-square

(RMS) innovations at the first cycle, which become

gradually greater for storms of greater intensity (up

to ;10–12 m s21 for major hurricane cases). Clearly,

there appears to be a strong correlation between storm

intensity and the RMS departure of the background

model field fromDoppler wind speed observations. This

is a result of weaker-than-observed storm intensity in

the background wind field even after a spinup of 3–4 h

from the global GFS/EnKF analysis ensemble. Mean-

while, the RMS innovations are reduced to the level of

the observation error (2 m s21) in the final analysis,

which is an indication of the effectiveness of the EnKF in

obtaining a good fit to the inner-core observations in

observation space.

Innovation statistics of SFMR observations depict

a somewhat different picture than those of Doppler

wind speed (Fig. 6, square symbols in each panel), as

mean background–observation departures are some-

what greater in magnitude. Similar to Doppler wind

speed, RMS departures still increase with increasing

storm intensity and approach about 10 m s21 for major

hurricane cases. In the final analysis, mean innovations

are reduced to below 1 m s21 for all intensity categories

and RMS innovations are reduced to approximately

FIG. 4. Vertical distribution of number of observations for (a) flight-level, (b) Doppler wind and SFMR (circles for 0-m observations),

and (c) dropsonde platforms. In each panel, distributions are categorized by storm intensity. Cases not in the best-track database (see

Table 2) are assigned 20-kt intensity for plotting purposes.
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4 m s21, which is roughly themean observation error for

the SFMR platform.2

Although somewhat noisy in nature, innovation sta-

tistics for the zonal wind speed (as measured by aircraft

at flight level or by dropsondes) are similar to the SFMR

observations (Fig. 7). Innovations in the final analyses

are distinctly smaller than those in the first-cycle back-

ground at most vertical levels. However, unlike the

Doppler wind speed observations, RMS errors remain

greater than the 2 m s21 observation error in the lowest

1 km of the troposphere. While this hints at generally

greater wind speed errors near the surface, it is also

possible that the greatest impact on the near-surface

innovations is from SFMR observations, which would

partially explain the analysis innovations remaining near

4 m s21.

For temperature (measured by aircraft at flight level

or by dropsondes), there appear to be negative biases of

about 1–2 K below;1 km and generally positive biases

of about 1 K above;1 km in the first-cycle background

innovations (Fig. 8). The midlevel positive biases are

especially noteworthy for weaker cases but are eliminated

by data assimilation in the final analyses. Meanwhile, al-

though reduced, negative low-level biases remain in the

final analyses for the stronger cases. A similar trend is

observed in the RMS innovations. For cases of tropical

storm intensity or weaker, the RMS innovations in the

final analyses are reduced back to approximately 0.5 K,

comparable in magnitude to the observation error. How-

ever, stronger TC cases continue to exhibit RMS de-

partures in the final analyses of 1–2-K magnitude,

especially at lower levels.

Finally, the spread ratio (Fig. 6–8, right columns)

measures the sufficiency of the ensemble spread in

FIG. 5. Normalized frequency distribution (%) of innovations for (a) Doppler wind speed, (b) SFMR, (c) flight-

level and dropsonde zonal wind speed U, and (d) flight-level and dropsonde temperature observations T. In each

panel, prior distributions at the first assimilation cycle are shown in the top histogram, while posterior distributions at

the final assimilation cycle are shown in the bottom histogram. Statistics are accumulated over all of the cases

processed.

2 For SFMR observations, a variable observation variance is used

that is rain-rate dependent. The dependence of the SFMR surface

wind speed retrieval on the rain rate is explained in Uhlhorn et al.

(2007). Themean SFMRobservation error for all caseswas;5 m s21.
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FIG. 6. Observation-space innovation statistics for Doppler wind speed and SFMR (squares for 0-m innovations) first-cycle prior (thick

gray lines) and final-cycle posterior (thick black lines) distributions. Shown are (left) mean innovations, (middle) RMS innovations, and

(right) spread sufficiency ratio. For spread ratio, the black lines represent final-cycle prior distributions. The statistics are aggregated for

(a)–(c) weaker than tropical storm, (d)–(f) tropical storms, (g)–(i) category-1 and -2 hurricanes, and (j)–(l) major hurricanes. Thin lines

represent 95% confidence intervals.
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FIG. 7. As in Fig. 6, but for zonal wind speed observations. Gaps are due to the limited number of observations, in which

situation statistics are not computed.
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FIG. 8. As in Fig. 6, but for temperature observations.

JUNE 2013 AK SOY ET AL . 1853



comparison to random forecast error and observation

error. As explained in Aksoy et al. (2009), the optimal

ratio is 1, with smaller values reflecting insufficient en-

semble spread. Similar to the A12 findings, the HEDAS

ensemble appears to be somewhat deficient in spread,

especially for Doppler wind speed observations. How-

ever, one important difference between the HEDAS

implementation here and that inA12 is that, unlikeA12,

no covariance inflation is applied for the real-data cases

presented in this work. Therefore, it is only logical to

infer that what is lost in ensemble variability throughout

cycling from not applying any covariance inflation is

gained from using the GFS/EnKF analysis ensemble

perturbations at the cold start rather than the opera-

tional GFS ensemble perturbations that are used inA12.

Nevertheless, it is noted that spread sufficiency values

generally vary in the 0.5–1.0 range for all observed

variables.

b. Position and intensity compared to best track

In this study, the HEDAS final analyses (to be re-

ferred to as analyses hereafter) are verified by compar-

ison with the best-track analyses at the nearest synoptic

time. As the time of the final analyses is somewhat ar-

bitrary and depends on when the Doppler radar mea-

surements end, up to a 3-h difference is possible between

the verification and final analysis times. This introduces

a slight overestimation of analysis errors, especially for

storm position, which is temporally progressive in nature.

The distribution of analysis TC center locations [de-

fined here as the locations of minimum sea level pres-

sure (MSLP)] compared to those from the best track is

shown in Fig. 9a. For a relevant storm-relative compari-

son, the analysis–best-track displacements are shown

with respect to the storm motion direction (calculated

from the best track centered at the nearest synoptic

time). It is inferred from the centroid of displacements

that analyses exhibit a slight left and forward bias rela-

tive to the best-track storm position. When the distri-

bution of the distance between analysis and best-track

storm centers is analyzed (Fig. 9b), most of the cases

are found to exhibit 40 km or smaller position errors.

(When best-track position is interpolated into the final

analysis time, a mean position error of 38 km is obtained;

not shown.) Moreover, the cases with the greatest posi-

tion errors (;100 km or greater) are of tropical storm

intensity or weaker. This is likely the result of a combi-

nation of two possible scenarios. 1) The HEDAS system

is better capable of analyzing storm position in stronger

storms. This would mainly result from better-defined ra-

dial gradients that lead to stronger correlations between

wind observations and position. 2) The general procedure

of center finding itself is easier (and therefore more

accurate) in stronger storms, mainly because of stronger

FIG. 9. Position error in the final analysis as compared to the best track. (a) Analysis storm centers (plus markers)

relative to the best track. Azimuth is measured relative to observed stormmotionwhere 08 represents the direction of
storm motion. Radial distance is measured from the best-track storm center. The centroid location of all cases is

shown with the diamond marker. The standard deviation of position errors is indicated with the circle around the

centroid location. (b) Number of cases as a function of the analysis–observed radial distance of storm centers and

intensity category (2D matrix plot, gray scale on right), and cumulative as a function of the analysis–observed radial

distance of storm centers (histogram). The 2D matrix plot population bin values are normalized by the respective

maxima of populations for each intensity category.

1854 MONTHLY WEATHER REV IEW VOLUME 141



radial gradients and fewer local surface pressure minima

in stronger storms.

In terms of intensity, the analyses compare well against

the best track. Figure 10a shows that, for maximum 10-m

wind speed, which is the standard measure of intensity,

the coefficient of determination R2 is 87% (i.e., the

analyses explain 87% of the variance in the best track).

There is also a 1.1 m s21 negative bias in analysis inten-

sity (i.e., underestimation of intensity), although it is not

statistically significant at the 95% confidence level. An

even better linear regression fit is achieved for MSLP

(R25 97%; Fig. 10b). However, this is now accompanied

by a more distinct, positive bias of 3.7 hPa (underes-

timation of intensity) that is statistically significant. The

analysis–best-track similarities in maximum intensity

and MSLP are also reflected in the wind–pressure re-

lationship (Fig. 10c). For the cases analyzed here, both

HEDAS and the best track depict a linear relationship

with R2 5 82%–83%. The separation between the two

regression lines reflects the positive bias in analysis MSLP,

although it is not statistically significant at the 95%

confidence level (not shown).

It should be noted that while the analysis position and

intensity are compared here against those in the best

track, the best-track estimates themselves also contain

significant uncertainties. Torn and Snyder (2012) discuss

that best-track position accuracy varies with storm in-

tensity from ;40 n mi (74 km) for tropical depressions

to ;15 n mi (28 km) for category-4 and -5 hurricanes.

AlthoughHEDAS position error demonstrates a similar

dependence on intensity, generally greater values of

average HEDAS–best-track deviations than the best-

track uncertainty estimates by Torn and Snyder (2012)

indicate smaller position accuracy in HEDAS than the

best track. For intensity, Torn and Snyder (2012) point

out a generally flat intensity uncertainty profile at 9–

12 kt (;4.5–6 m s21) for storms of tropical storm or

greater intensity. A generally similar trend is seen in Fig.

10a for both the HEDAS analyses and the best track,

where the uncertainties in the intensity estimates against

the linear regression line are computed as 9.3 and 9.8 m s21,

respectively.

c. Primary circulation compared to airborne Doppler
radar observations

The focus is now turned to the properties of the

primary (i.e., azimuthal) circulation structure in the

HEDAS analyses as compared against those obtained

from airborne Doppler radar composite wind retrievals.

Three-dimensional wind retrievals of NOAA P-3 tail

Doppler radar data using a variationalmethod (Gamache

1997; Gao et al. 1999; Reasor et al. 2009) are routinely

performedaboard the aircraft after each center penetration.

FIG. 10. Intensity error in the final analysis as compared to the

best track. (a) Analysis vs observed scatter diagram of maximum

10-m wind speed (kt) for all cases in the best-track database. The

solid black line represents the linear regression between the anal-

ysis and observations. The gridlines represent intensity category

thresholds. (b) As in (a), but for MSLP. (c) Wind–pressure relation-

ship in observed (square markers, solid linear regression line) and

analysis (diamond markers, dashed linear regression line) data.
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No background vortex information is used in the re-

trievals produced in this way. After the completion of all

such retrievals for a particular flight, they are compos-

ited within a storm-relative framework: for each grid

point, the wind speed with highest magnitude is found,

and the zonal and meridional components of the wind

are computed. Therefore, they reflect the characteristics

of the observed vortex structure as closely as possible at

available data points. As Reasor et al. (2009) explain,

the smallest uncertainties of the tangential and radial

wind speed retrievals, in the range of 2–3 m s21, are

found in the eyewall region and below 3-km altitude

where most scatterrers are encountered.

It should be noted in advance that the quality of the

computation of the structural characteristics of the pri-

mary circulation discussed here depends greatly on the

accuracy of the storm position itself. As was mentioned

in the previous section, the storm position accuracy varies

with storm intensity and is greatest for the weakest

tropical cyclones. Therefore, a general increase in the un-

certainty of the structural characteristics with intensity

is expected.

In terms of the maximum azimuthally averaged tan-

gential wind speed (at any altitude), Fig. 11a shows a

robust linear fit between analyses and radar observa-

tions with R2 5 89%. However, a statistically significant

negative bias of 4.0 m s21 is also apparent, indicating

that, in an azimuthally averaged sense, HEDAS has a

tendency to underestimate the strongest part of the

primary circulation. It is also worthwhile to note that

a more distinct bias is apparent in maximum azimuthally

averaged tangential wind speed than in maximum 10-m

wind speed. As was discussed in A12, this reflects the

noisier nature of the maximum 10-m wind speed as a

measure of overall TC intensity.

The dependence of the analysis–observed intensity

difference is also analyzed as a function of observed

intensity. Figure 11b shows the frequency distribution of

the number of cases for each intensity category as a

function of analysis–observation difference in maximum

azimuthally averaged tangential wind speed. It is evi-

dent that the mode of the probability distribution shifts

toward more negative values (more underestimation)

with increasing intensity. Furthermore, the widening

distributions with increasing intensity point to the greater

degree of disagreement between HEDAS and radar ob-

servations on TC intensity. Possible causes of such sys-

tematic errors in theHEDAS analyses are investigated in

Vukicevic et al. (2013).

Analyses are also compared against how well they

represent the structure of the primary circulation. Being

purely observational in nature, the gridded radar re-

trievals contain data gaps due to instrument limitations.

In some cases, such gaps can lead to uncertainties in de-

termining the structural properties of the vortex. Lorsolo

and Aksoy (2012) provide a discussion on the impacts of

FIG. 11. Maximum azimuthally averaged tangential wind speed (m s21) as compared to radar observations.

(a) Analysis vs observed scatter diagram for all cases in the best-track database. The solid black line represents the

linear regression between the analysis and observations. (b) Number of cases as a function of analysis–observation

difference and intensity category (2D matrix plot, gray scale on right), and cumulative as a function of analysis–

observation difference (histogram). The 2D matrix plot population bin values are normalized by the respective

maxima of populations for each intensity category.
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gap size on wavenumber analysis of azimuthally dis-

tributed data. Here, for a fair comparison of model and

observed radar data, cases with relatively large maxi-

mum azimuthal gap size in the radar data are not con-

sidered in the investigation of the primary circulation

structure (Figs. 12 and 13). Following the recommen-

dations in Lorsolo and Aksoy (2012) for a signal that is

either wavenumber-0 or wavenumber-1 dominant (as is

generally the case for the tangential wind speed) and at

least with two gaps present in the data, a maximum gap

size of 1508 at 1-km altitude and a radial distance of one

radius of maximum azimuthally averaged tangential

wind (RMW) is allowed for the retrieval of these

wavenumbers. This threshold resulted in 47 of the 83

cases (57%) being disregarded for the rest of this sec-

tion. All comparisons in Figs. 12 and 13 are carried out at

1-km altitude, where the tangential wind speed is typi-

cally maximized (J. Zhang et al. 2011, their Fig. 10;

Rogers et al. 2012, their Fig. 7).

In Fig. 12a, the RMW is investigated. When all cases

are considered, R2 5 58% (dashed line). However, a

much better agreement is achieved (R2 5 76%) when

hurricane-only cases are considered (solid line). This

shows that the ability of HEDAS to estimate the size of

the inner-core vortex, as measured by the RMW, is

clearly a function of observed intensity.

The structure of the tangential wind is further inves-

tigated through the azimuthal phase of the wavenumber-1

asymmetry at the RMW (Fig. 12b). No linear statistical

relationship is discernible between analyses and radar

observations (R2 5 0%, dashed line). Unlike RMW,

wavenumber-1 asymmetry correlation between HE-

DAS and observations does not appear to respond to

intensity either: for the hurricane-only cases, the vari-

ance explained remains very low at 2% (not shown).

However, there exist some noticeable outlier pairs in the

wavenumber-1 asymmetry scatter diagram (Fig. 12b).

When a threshold of 908 is applied for the maximum

absolute difference to be allowed between analyses

and radar observations (roughly limiting the azimuthal

phase to the same quadrant), five cases (14% of all cases)

are deemed outliers. Without these outlier cases, a much

better degree of statistical agreement between the anal-

yses and observations is achieved (R2 5 77%, solid line).

The outlier cases do not reveal distinct common features:

no preference for characteristics such as intensity, geo-

graphical location, and RMW are found (not shown). It

is inferred that the occurrence of these outliers is mostly

random in nature.

The primary circulation structure is also examined in

terms of the azimuthal wavenumber-0 and -1 compo-

nents (Fig. 13).Wavenumber amplitudes are obtained at

the RMW while the variance explained by the wave-

number components is computed for a radial range of

0–300 km. The magnitude of the wavenumber-0 ampli-

tude (Fig. 13a) reveals a very good linear fit atR25 89%.

A statistically significant negative bias of 2.4 m s21 is

also apparent, indicating that analyses tend to slightly

underestimate the intensity of the mean azimuthally av-

eraged tangentialwind speed. These results are consistent

FIG. 12. (a) Scatter diagram of analysis vs radar-observed RMW (km) at 1-km altitude for all cases with maximum

gap size of 1508 or less (see text). Filled squares represent hurricanes. The thick dashed (solid) line represents the

linear regression between analyses and observations for all (hurricane) cases. (b) As in (a), but for the azimuthal

phase of wavenumber-1 asymmetry (8 from storm motion) at 1-km altitude and one RMW radial distance. Filled

squares represent cases that are deemed not to be outliers (see text). The thick dashed (solid) line represents the

linear regression between the analysis and observations for all (nonoutlier) cases.
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with those for the maximum azimuthally averaged tan-

gential wind speed (Fig. 11a). That a greater negative bias

of 4 m s21 exists for themaximum of this parameter is an

indication that HEDAS could have more difficulty in

capturing the extrema of the primary circulation than its

average properties.

The variance explained by the wavenumber-0 com-

ponent of the tangential wind speed (i.e., how well the

wavenumber-0 component is correlated with the full

field) is also compared between analyses and radar

observations (Fig. 13b). A relatively good statistical

fit of R2 5 59% is obtained. On average, HEDAS

appears to overestimate the variance explained by

the wavenumber-0 component by 5.6%. The over-

estimation of the wavenumber-0 component in HEDAS

is accompanied by underestimation of the variance ex-

plained by the wavenumber-1 component by a compa-

rable magnitude (Fig. 13d). It appears that the signal

that HEDAS tends to allocate to the wavenumber-0

component occurs at the expense of the signal in the

wavenumber-1 component. In other words, there is

a small but systematic tendency (5% of the total

variance) in HEDAS to axisymmetrize the primary

circulation.

FIG. 13. Analysis vs radar-observed scatter diagram of azimuthal wavenumber-0 and -1 characteristics of azi-

muthally averaged tangential wind speed at 1-km altitude for all cases with maximum gap sizes of 1508 or less (see
text) in wavenumber-0 (a) amplitude (m s21) and (b) variance explained (%). (c),(d) As in (a),(b), but for wave-

number-1. The solid lines represent the linear regressions between the analysis and observations for each parameter.

In (c), filled squares represent cases that are deemed not to be outliers (see text). The dashed line represents the

linear regression between the analysis and observations for nonoutlier cases. In (a) and (c), computations are at 1

RMW while in (b) and (d), a radial range of 0–300 km is used.

1858 MONTHLY WEATHER REV IEW VOLUME 141



Finally, analyses are found to be the least effective in

representing the amplitude of the wavenumber-1 com-

ponent of the tangential wind speed. For this parameter,

although eliminating outlier cases (absolute difference

between analyses and observations of 3 m s21 or greater)

improves somewhat the linear fit between analyses and

radar observations, at R2 5 43%, the linear relationship

is still quite weak. As the variance explained by the

wavenumber-1 component is found to exhibit a much

better linear fit, it is concluded that the assimilation of

radar observations in HEDAS has a stronger influence

on the spatial pattern of the wavenumber-1 asymmetry

than its amplitude. Furthermore, when outlier cases are

not considered, the average wavenumber-1 amplitude

magnitude of 3.5 m s21 for analyses (same for radar

observations) is comparable to the standard error of

the wavenumber-0 amplitude of 1.9 m s21 (2.1 m s21

for radar observations). It is therefore conjectured that

the wavenumber-1 amplitude exhibits a low signal-to-

noise ratio compared to the variability of its wavenumber-0

counterpart.

d. Secondary circulation compared to radar
observations

Here, only the low-level radial inflow component of

the secondary circulation is investigated, as there are

very few observations in the upper-level outflow region

to carry out statistically sound comparisons and the

vertical motion is not analyzed in HEDAS (see A12 for

details).

Estimating the secondary circulation with HEDAS is

found to be more challenging than the primary circula-

tion. This is partially as a result of the uncertainty in the

storm center estimation itself, as this uncertainty sig-

nificantly impacts the robustness of the computation of

the radial wind especially near the RMW. Nguyen and

Molinari (2012) demonstrate this effect nicely in their

Fig. 9.

Figure 14 compares the magnitude (Fig. 14a) and the

depth (Fig. 14b) of the maximum azimuthally averaged

radial inflow for analyses and radar observations. For all

cases considered, analyses underestimate the magnitude

of the radial inflow by 8.9 m s21 and overestimate its

depth by 0.8 km. Both estimates are statistically signif-

icant at the 95% confidence level. Bao et al. (2012)

documented the systematically positive inflow depth

bias in the experimental HWRFmodel (cf. their Fig. 4a,

which represents the experimental HWRF configura-

tion, to their Fig. 4b) that arises from the choice of the

physical parameterizations, while Gopalakrishnan et al.

(2013) demonstrate the impact of eddy diffusivity on the

vertical structure of the boundary layer in the same

model. It is believed that the findings here are consis-

tent with those findings. For a given magnitude of mass

convergence in the boundary layer, this systematically

deeper inflow in HEDAS is then translated to weaker

mass flux in the boundary layer.

e. Composite radial profiles

In Figs. 15–18, the azimuthally averaged kinematic

and thermodynamic structure in the analyses is inves-

tigated in a composite sense and compared to corre-

sponding composites obtained from P-3 observations

at flight level and Real-time Hurricane Wind Analysis

System (H*Wind) analyses at the surface (Powell et al.

1998).

FIG. 14. (a) Scatter diagram of analysis vs radar-observedmaximum azimuthally averaged radial inflow (m s21) for

all cases in the best-track database. The black solid line represents the linear regression between the analyses and

observations for all cases. (b) As in (a), but for the depth of the radial inflow (km).
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Composite radial profiles of wind speed, temperature,

and specific humidity are computed as follows. First,

analysis fields (both HEDAS and H*Wind) are normal-

ized in the radial direction by RMW and then trans-

formed to polar coordinates using the flight-level vorticity

centroid as the center. These fields are sampled at 608
azimuthal resolution at the reported approximate pres-

sure altitude of the flights to mimic the usual sampling

strategy during P-3 flights. Flight-level radial profiles are

similarly normalized by the RMW. RMW is computed

separately for observations and HEDAS analyses at

flight level and for H*Wind analyses at the surface.

It should be noted that the average RMWand altitude

values reported for flight level and the surface in the

inserts of Figs. 15 and 18, respectively, are generally

consistent between observations and analyses. Overall,

sufficient agreement exists between analyses and ob-

servations for RMW and flight altitude so that their

comparison for normalized radial structures in Figs. 15–

18 is meaningful. Some inconsistencies exist for RMW,

especially for the weaker cases, which is in accordance

with the previous findings in Fig. 12a.

At flight level, the mean structures of the horizontal

wind speed are very similar for all cases up to hurricane

category 2 (Figs. 15a,b) and statistically are not distin-

guishable at the 95% confidence level. For stronger

hurricanes (Fig. 15c), analyses underestimate peak wind

speed by approximately 5 m s21 but overestimate wind

speed farther out at about 3 RMW. It is also interesting

to note that, except for weaker cases outside the RMW,

the statistical uncertainty of wind speed at flight level is

comparable between observations and analyses.

FIG. 15. Composite radial profiles of azimuthally averaged horizontal wind speed (m s21) at P-3 flight level for HEDAS final analyses

(black solid) and in situ aircraft observations (gray solid) for (a) all cases that had tropical storm or weaker intensity in the best-track

database, (b) all cases with category-1 and -2 hurricane intensities, and (c) major hurricanes. The 95% confidence intervals are shown as

dashed lines. Average RMW and flight altitude (Alt) in the analyses as well as in the observations are shown in the box inserts, along with

corresponding 95% confidence intervals.

FIG. 16. As in Fig. 15, but for temperature (K).
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The thermodynamic structure at flight level reveals

a more biased picture for the analyses, especially for the

weaker cases. Figures 16a,b (weaker cases) show that

while analyses capture the warm-core temperature at

the storm center well, a warm bias of approximately 3 K

exists outside the core. For major hurricanes (Fig. 16c),

the picture reverses and analyses underestimate the warm-

core temperature by approximately 4 K but capture well

the temperature structure outside the core. A similar

scenario is also observed for specific humidity, for which

an overall overestimation of approximately 1 g kg21 by

HEDAS is evident for the weaker cases (Figs. 17a,b).

Meanwhile, the structure is captured relatively well for

major hurricanes (Fig. 17c).

The systematic overestimation of temperature and

specific humidity in analyses is likely caused by a com-

bination of multiple factors. The update of the thermo-

dynamic fields in HEDAS relies heavily on the quality of

information obtained indirectly by the correlations with

Doppler wind observations. Although flight-level and

dropsonde temperature observations are assimilated,

they are sparse and their impact is limited to the cyclone

core, likely because of the better spatial resolution in

observations achieved in the core. Outside the core,

limited impact from temperature observations reveals

more clearly the underlying systematic tendencies in

HEDAS (Vukicevic et al. 2013). The systematically

deeper boundary layer that was discussed in section 5d

also increases the probability of a warm andmoist bias at

any given altitude in the boundary layer. However, it is

interesting that these biases become less pronounced

outside the core for major hurricanes despite persistent

boundary layer depth biases. Meanwhile, the distinct

underestimation of the warm core for these cases ap-

pears to be consistent with the underestimation of ki-

nematic intensity.

Finally, at the surface, analyses are in good general

agreementwithH*Windanalyses (Fig. 18).Underestimation

FIG. 17. As in Fig. 15, but for specific humidity (g kg21).

FIG. 18. As in Fig. 15, but for surface (10 m) wind speed (m s21). Here, HEDAS analyses are compared to H*Wind analyses.
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of peak wind speed by approximately 2 m s21 for major

hurricanes in HEDAS analyses is consistent with pre-

vious findings.

f. Storm size

Figure 19 shows a comparison of storm size among

HEDAS, H*Wind, and the best-track database for 34-,

50-, and 64-kt wind speeds at 10 m. For a more com-

prehensive understanding, storm size is computed as

both the maximum radius of the respective wind speed

from storm center in any quadrant and the total area

spanned by the respective wind speed.

In terms of both metrics considered, largest (smallest)

vortices are found in HEDAS (best track). Moyer et al.

(2007) provide a thorough comparison of gale radius

statistics between H*Wind analyses and best-track es-

timates and show that objective estimates of tropical

storm force wind radii in H*Wind analyses were con-

sistently larger than the best track. This finding appears

to be consistent with Fig. 19. However, Moyer et al.

(2007) also mention that when storm size was subjec-

tively compared against observations in individual cases,

it was found to be consistently underestimated in ob-

jective analyses fromH*Wind because of the smoothing

associated with the objective analysis procedure. This

last finding suggests that the relatively large storm size

seen in the HEDAS analyses may very well be realistic,

although a more detailed investigation would be needed

for a quantitative verification.

6. Summary and discussion

The impact of aircraft inner-core TC observations on

analyses of high-resolution vortex structure is inves-

tigated through the use of NOAA/AOML/HRD’s EnKF-

based data assimilation system, HEDAS. Eighty-three

cases (20 individual TCs) from years 2008 to 2011 are

considered. With the exception of Hilary (2011) in the

eastern North Pacific basin, all cases are in the Atlantic

basin. Observed intensity ranges from tropical depres-

sion to category-4 hurricane, with most cases falling into

the tropical storm category.

HEDASassimilates available observations fromNOAA

P-3, G-IV, and/or AFRC C-130 flights at 1-h intervals.

Among the 83 cases, 4 h of cycling is the most frequently

encountered length of assimilation period. Assimilated

observation types include aircraft Doppler radar wind

superobs, temperature, and zonal and meridional wind

from aircraft flight-level measurements and dropsondes,

and SFMR 10-m wind speed retrievals. Among these

FIG. 19. Horizontal box chart that shows case-averaged storm size in HEDAS, H*Wind, and

the best-track database for 34-, 50-, and 64-kt wind speeds at 10 m. Storm size is measured by

(left) total area (3103 km2) and (right) maximum radius (km). Number of cases considered in

computing the averages are shown on the left of the maximum radius boxes. Statistical sig-

nificance is indicated by the 95% confidence intervals.
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observation types, Doppler wind superobs are about one

order of magnitude greater in number than the other

types of aircraft data.

Observation-space diagnostics reveal some under-

dispersiveness in the HEDAS ensemble, especially for

Doppler superobs. Although this finding is similar to

that of A12, one important difference between the

HEDAS implementation here and that in A12 is that,

unlike A12, no covariance inflation is applied. There-

fore, it is inferred that what is lost in the ensemble var-

iability from not applying any covariance inflation is

gained from using the GFS/EnKF analysis ensemble

perturbations at the cold start rather than the opera-

tional GFS ensemble perturbations that were used in

A12. The remaining ensemble spread deficiency is likely

caused by model error that is not accounted for in the

forecast ensemble. Covariance inflation techniques may

have limited success in ameliorating this shortcoming.

This was also demonstrated in A12, where the applica-

tion of various covariance inflation techniques reduced

but did not totally eliminate the spread deficiency.

When compared to the best track, the assimilation of

inner-core aircraft observations by HEDAS produces

generally robust analyses with respect to position and

intensity. A mean position error of 38 km is obtained,

and the position errors depend on intensity; in weaker

cases, greater position errors are observed, likely both

because the wind-position correlations are expected to

be weaker because of weaker radial gradients and be-

cause the center finding process itself becomes more

uncertain. For intensity, 10-m maximum wind speed ex-

hibits a mean error of21.1 m s21 that is not statistically

significant at the 95% confidence level because of the

large uncertainty associated with this intensity parame-

ter. Meanwhile, a much smaller variability in minimum

sea level pressure renders the 3.7-hPa mean error (un-

derestimation of intensity) statistically significant. The

tangential wind speed also exhibits similar indications

of statistically significant intensity underestimation

through both its azimuthally averaged maximum

(4.0 m s21 mean error) and its wavenumber-0 amplitude

(2.4 m s21 mean error). Regardless, all of these indi-

cators of intensity of the primary circulation exhibit

strong correlations with their observed counterparts;

linear regression analysis reveals coefficient of deter-

mination values in the range of 87%–97% for all cases

considered.

HEDAS also produces good analyses in other aspects

of the structure of the primary circulation, such as RMW

and wavenumber-1 asymmetry. For RMW, the assimi-

lation of inner-core observations performs the best in

the hurricane cases. Obtaining a good analysis of wave-

number-1 asymmetry appears to bemore challenging, but

when 15% of the cases are excluded as outliers, a rela-

tively good degree of agreement with observations is

achieved. A tendency in HEDAS to axisymmetrize the

primary circulation is also noted, albeit by about 5% of

the total variance explained. Overall, a coherent picture

emerges that suggests that inner-core, high-resolution

observations, when assimilated by a state-of-the-art

data assimilation technique such as the EnKF, result in

analyses of the primary circulation that are realistic in

terms of intensity, wavenumber-0 radial structure, as

well as wavenumber-1 azimuthal structure, although the

smaller signal-to-noise ratio in the wavenumber-1

component of the tangential wind leads to a weaker

statistical signal in the quality of the analyses in this

respect.

Estimation of the secondary circulation in HEDAS

is found to be more challenging. Systematic under-

estimation of the maximum azimuthally averaged radial

inflow and overestimation of the depth of the inflow

layer are observed. It is believed that this is the result of

a model bias in the experimental HWRF caused by the

overdiffusive nature of the planetary boundary layer

parameterization utilized. Further investigation of the

impact of forecast biases on the final HEDAS analyses is

presented in Vukicevic et al. (2013).

In terms of the thermodynamic structure, HEDAS

overestimates both temperature and specific humidity

for weaker cases and underestimates the warm-core

perturbation in stronger cases. It should be noted here

that the update of the thermodynamic variables in the

current configuration of HEDAS relies more heavily on

the indirect information content of the kinematic ob-

servations, as temperature observations that are assim-

ilated are relatively sparse. Consequently, the observed

errors in the analyzed thermal structure are expected to

be caused by both an imbalance between the volume of

the kinematic and thermodynamic observations in gen-

eral and the suboptimal ensemble covariances between

kinematic and thermodynamic fields.

Our future plans include addressing the former issue

through observing system simulation experiments to

explore the optimal combination of kinematic and ther-

modynamic information content in vortex-scale data as-

similation. The latter issue is much more complex as it is

linked to model error. Recently, upgrades to the oper-

ational HWRF model addressed model bias through

adjustments in the vertical diffusion parameter in the

boundary layer as well as momentum and heat exchange

coefficients in the surface layer (S. G. Gopalakrishnan

2012, personal communication). Starting in the 2012

hurricane season, these model upgrades were integrated

into HEDAS, which is expected to lead to a more re-

alistic representation of the secondary circulation in
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analyses. Work is also under way to investigate methods

of accounting for model error in the HEDAS ensemble

through the uncertainties associated with the subgrid-

scale processes such as surface fluxes and boundary layer

turbulence. Finally, methods of balancing solutions be-

tween the primary and secondary circulations to con-

strain the spinup of the vortex structure in short-range

forecasts are being explored.
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