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ABSTRACT

Within the National Oceanic and Atmospheric Administration, the Hurricane Research Division of the

Atlantic Oceanographic and Meteorological Laboratory has developed the Hurricane Weather Research and

Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS) to assimilate hurricane inner-core

observations for high-resolution vortex initialization. HEDAS is based on a serial implementation of the

square root ensemble Kalman filter. HWRF is configured with a horizontal grid spacing of 9/3 km on the

outer/inner domains. In this preliminary study, airborne Doppler radar radial wind observations are simulated

from a higher-resolution (4.5/1.5 km) version of the same model with other modifications that resulted in

appreciable model error.

A 24-h nature run simulation of Hurricane Paloma was initialized at 1200 UTC 7 November 2008 and

produced a realistic, category-2-strength hurricane vortex. The impact of assimilating Doppler wind obser-

vations is assessed in observation space as well as in model space. It is observed that while the assimilation of

Doppler wind observations results in significant improvements in the overall vortex structure, a general bias in

the average error statistics persists because of the underestimation of overall intensity. A general deficiency

in ensemble spread is also evident. While covariance inflation/relaxation and observation thinning result in

improved ensemble spread, these do not translate into improvements in overall error statistics. These results

strongly suggest a need to include in the ensemble a representation of forecast error growth from other

sources such as model error.
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1. Introduction

In recent years, there has been a marked improvement

in our ability to predict hurricane tracks, while fore-

casting intensity has remained a major challenge with

virtually no improvement in this area (e.g., Berg and

Avila 2011). A recent study by Kaplan et al. (2010) found

that large-scale atmospheric factors outside the hurricane

core (e.g., vertical wind shear, upper-level divergence,

and low-level moisture) are only able to capture 35%–

65% of the skill in predicting rapid intensification (RI) for

a 25-kt threshold (see their Fig. 17c). This result suggests

that further skill may be obtained by factors associated

with the inner-core vortex dynamics and the upper ocean.

While operational regional hurricane forecast models like

the Hurricane Weather Research and Forecasting (HWRF)

model (e.g., Rappaport et al. 2009) and the Geophysical

Fluid Dynamics Laboratory (GFDL) Hurricane Prediction

System (e.g., Bender et al. 2007) are initialized with mostly

model-derived, nearly axisymmetric vortices, recent re-

search is beginning to convincingly point to the importance

of asymmetric vortex structure in determining storm evo-

lution (e.g., Reasor et al. 2004; Mallen et al. 2005; Nguyen

et al. 2008; Rogers 2010). Consequently, better initial vor-

tices that are consistent with the observed internal dynamics

may be necessary for successful hurricane intensity forecasts

(e.g., Houze et al. 2007; Chen et al. 2007). This could be

created with advanced data assimilation techniques.

In the past two decades, two categories of state-of-the-

art data assimilation techniques have evolved: variational

and ensemble based (e.g., Kalnay 2003). In the specific

area of high-resolution hurricane data assimilation, more

focus has been so far given to variational techniques (e.g.,

Zhao and Jin 2008; Xiao et al. 2007; Pu et al. 2009; Xiao

et al. 2009). While the positive impact of data assimilation

on hurricane intensity forecasts is demonstrated in these

studies, success was limited because of the limitation of the

variational methods in utilizing a background error co-

variance matrix with spatial and cross correlations charac-

teristic of the underlying vortex flow. As an alternative, the

ensemble Kalman filter (EnKF) utilizes an ensemble of

short-range forecasts to estimate flow-dependent spatial

and cross correlations for data assimilation (Evensen 1994;

Houtekamer and Mitchell 1998). Recent success with as-

similating radar observations of continental convective

storms (e.g., Snyder and Zhang 2003; Zhang et al. 2004;

Dowell et al. 2004, 2011; Aksoy et al. 2009, 2010) has raised

hopes that high-resolution hurricane models, too, can

benefit from the EnKF. In a proof-of-concept study, Zhang

et al. (2009) demonstrated that the EnKF exhibited more

skill than three-dimensional variational data assimilation

(3DVAR) in predicting the rapid formation and intensi-

fication of a landfalling hurricane using observations from

a land-based radar. The same data assimilation system was

then recently tested with airborne Doppler radar observa-

tions (Weng and Zhang 2012; F. Zhang et al. 2011) and

demonstrated improvement in the representation of the

vortex structure in Hurricane Katrina (2005), as well as

reduction in intensity forecast error in 61 cases from 2008

to 2010 when compared to operational dynamical models.

In this paper, assimilation experiments with simulated air-

borne Doppler radar data using an EnKF are conducted to

focus on how the assimilation of Doppler radar data im-

pacts the high-resolution representation of the hurricane

vortex.

The National Oceanic and Atmospheric Administration

(NOAA) has been collecting high-resolution airborne

observations in hurricanes for over 30 yr using NOAA’s

WP-3D (P-3) aircraft (e.g., Aberson et al. 2006), and for

15 yr from NOAA’s high-altitude Gulfstream-IV jet (e.g.,

Aberson 2010). Recently, the Hurricane Research Division

(HRD) at the Atlantic Oceanographic and Meteorological

Laboratory (AOML) has built a high-resolution, ensemble-

based data assimilation system to utilize these observa-

tions [Hurricane Ensemble Data Assimilation System

(HEDAS)]. HEDAS comprises an EnKF and HRD’s ex-

perimental HWRF model (Gopalakrishnan et al. 2011).

The current article focuses on the assimilation of simu-

lated airborne Doppler radar observations using HEDAS.

The purpose is to demonstrate how this data assimilation

approach produces hurricane vortex analyses in a con-

trolled environment through observing system simulation

experiments (OSSEs). A realistic nature run provides the

‘‘truth’’ from which radar observations are extracted.

Having full three-dimensional fields available from a na-

ture run further facilitates an in-depth analysis of the

performance of HEDAS based on a multitude of criteria

relevant to hurricane structure and dynamics that other-

wise would not be possible with real data. The availability

of such a nature run will allow for impact studies of various

observation types as well as developing alternative ob-

servation processing methodologies. Subsequent papers

will also focus on results with real data.

The experimental setup, along with the details of the

data assimilation and modeling systems, is described in

section 2. Section 3 details the simulation of the flight track

and observations, while section 4 presents a description

and quantitative evaluation of the nature run. Section 5

continues with the presentation of HEDAS data assimi-

lation results; the summary and discussion are in section 6.

2. Experimental setup

a. HRD’s experimental HWRF

A detailed comparison between HRD’s experimental

HWRF and operational HWRF (e.g., Rappaport et al.
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2009) can be found in Gopalakrishnan et al. (2011). Most

of the differences between operational HWRF and

HRD’s experimental HWRF arise from the choice of

physical parameterization schemes and resolution. For

example, operational HWRF has a nominal horizontal

grid spacing of 27/9 km for the outer/inner domains, while

experimental HWRF horizontal grid spacing is 9/3 km.

In the current study, the vortex-following nest motion

of the inner domain (Gopalakrishnan et al. 2002, 2006),

a feature in both the experimental and operational ver-

sions of HWRF, is suppressed during the spinup and data

assimilation cycles. This allows all ensemble members to

be initialized with collocated inner domains to facilitate

gridpoint-based spatial covariance computations in the

EnKF.

b. HEDAS

HEDAS employs the EnKF, which uses an ensemble

of short-range forecasts to estimate background error

covariances of the model state. The prior joint sample

covariances obtained from the ensemble are used to line-

arly regress observation innovations (differences between

observations and model forecasts in observation space) to

obtain prior state vector increments. The update loop that

processes model grid points within the influence region is

parallelized using Open Multi-Processing (OpenMP) ar-

chitecture. While OpenMP implementations are limited to

the respective number of computing cores on a given

processor, they offer the advantages of memory sharing,

thereby reducing the number of communications among

parallel threads (Chapman et al. 2007).

Similar to Zhang et al. (2009), HEDAS is based on a

serial implementation of the square root EnKF of

Whitaker and Hamill (2002). In a serial update loop,

each observation is treated as a scalar quantity, and the

update equations of Whitaker and Hamill (2002) are

simplified following Eqs. (4)–(7) in Snyder and Zhang

(2003). The square root EnKF is designed to eliminate the

need to perturb observations, which is shown to increase

the sampling error and thus reduce the accuracy of the

analysis-error covariance estimate (Whitaker and Hamill

2002).

Three-dimensional, distance-dependent covariance lo-

calization, using a compactly supported fifth-order corre-

lation function following Gaspari and Cohn (1999), is

applied. The horizontal localization length scale is chosen

to be 80 grid points (;240 km) so that most of the vortex

is updated given the limited spatial distribution of ob-

servations in each cycle [see discussion in section 4b

(point i); Fig. 8a]. In addition, state–space inflation

(Hamill and Whitaker 2005) and covariance relaxation

(Zhang et al. 2004) techniques are available to coun-

teract the underestimation of variance.

In HEDAS, data assimilation is only performed in the

inner domain, to focus on the impact of high-resolution

aircraft data on vortex-scale dynamics. To minimize

discontinuities along the boundaries between the do-

mains with and without data assimilation, a buffer zone

is created within the inner domain along the boundaries

where the impact of data assimilation is gradually re-

duced to zero following a distance-dependent weighting

function similar to the fifth-order correlation function in

Gaspari and Cohn (1999).

In the current application, HEDAS uses 30 ensem-

ble members. The initial ensemble perturbations are

obtained from operational National Centers for Envi-

ronmental Prediction (NCEP) Global Ensemble Fore-

cast System (GENS) analyses. A 6-h ensemble spinup

run is carried out to develop appropriate covariance

structures relevant for the scales at which the data as-

similation is performed. To simulate an actual P-3 flight,

4 h of observations are divided into 48-min intervals. A

final vortex analysis is obtained by the end of this period.

The general schematic of the experimental setup is depic-

ted in Fig. 1.

The types of observations currently assimilated in

HEDAS include Doppler radial wind, dropwindsonde/

flight-level wind, temperature, and specific humidity, and

Stepped Frequency Microwave Radiometer (SFMR)

10-m equivalent wind speed, although the focus of the

current study is on Doppler wind observations only.

Updated model fields include zonal wind speed (u), me-

ridional wind speed (y), sensible temperature (T), spe-

cific humidity (q), total cloud water mixing ratio (cwm),

and hydrostatic pressure (pd). The HEDAS configura-

tion is summarized in Table 1.

c. Description of data assimilation experiments

To test how the data assimilation system performs and

to determine an optimal filter configuration for data as-

similation, several experiments are conducted (Table 1):

In the control (CTRL) experiment, no data assimilation

is performed. In DA_BASIC, data assimilation is car-

ried out using a realistic volume of observations with

no special treatment of ensemble variance (i.e., no co-

variance inflation or covariance relaxation). As ensembles

are commonly known to be spread deficient in limited-

area ensemble-based data assimilation (Meng and Zhang

2011), various experiments are performed to investigate

the potential impacts of covariance inflation and obser-

vation thinning on ensemble spread. In DA_INF, DA_

BASIC is repeated with a combination of 5% covariance

inflation and 75% covariance relaxation to potentially

counter insufficient ensemble spread due to sampling

and/or model error. These values are commonly used in
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other data assimilation systems (Meng and Zhang 2011).

Finally, in DA_25%OBS, one-quarter of the volume of

observations used in DA_INF is randomly selected and

assimilated in each assimilation cycle to investigate the

potential impact of data volume on analyses. (Combina-

tions with varying values of inflation parameters and

thinning ratios are also tested but did not produce qual-

itatively different results.)

3. Simulation of the flight track and airborne
Doppler wind observations

In the current study, a standard butterfly-type flight

pattern (Fig. 2) that follows storm motion is simulated.

Similar to a typical NOAA P-3 hurricane flight, the

aircraft altitude is 3000 m, with an assumed ground

speed of 115 m s21. The total flight duration is assumed

TABLE 1. Summary of experimental setup.

Feature Explanation

HEDAS

Filter type Ensemble square root filter

Ensemble size, initialization 30 members, initialized from GFS analysis ensemble, 6-h spinup

Covariance localization, radii of influence Through a compactly supported fifth-order correlation function, 80 grid distances

in the horizontal and 15 model levels in the vertical

Assimilation domain Static inner nest during spinup and assimilation, 3-km horizontal resolution, with

a 10–gridpoint ‘‘buffer zone’’ to outer nest

Assimilation period, frequency 4 h, 48 min

Assimilated observation types Simulated airborne Doppler radial velocity superobservations

Observation error (std dev)

Doppler wind 11.2 m s21 (uncorrelated)

Experimental HWRF

Model version WRF Nonhydrostatic Mesoscale Model (NMM) core, version 3.0.1.1

Resolution Horizontal: 9-km outer nest of approximate size 608 3 608, 3-km inner nest of

approximate size 68 3 68; vertical: 42 eta levels with model top at 50 hPa

Physics Ferrier et al. (2002): microphysics, Hong and Pan (1998): cumulus (only in the outer

domain; explicit convection in the inner domain), Dudhia (1989): shortwave

radiation, Mlawer et al. (1997): longwave radiation, Hong and Pan (1996): PBL,

Moon et al. (2007): surface layer, and Ek et al. (2003): land surface

parameterization

Nature run

Resolution Horizontal: 4.5-km outer, 1.5-km vortex-following inner nests; vertical: 42 eta levels

Initial and boundary conditions From experimental GFS/EnKF analyses and forecasts

Physics Same as in data assimilation, except with explicit convection in both domains

Data assimilation experiments

CTRL No data assimilation (control)

DA_BASIC HEDAS with no covariance inflation/relaxation

DA_INF DA_BASIC with 5% covariance inflation, 75% covariance relaxation

DA_25%OBS DA_INF with 25% of the volume of observations

FIG. 1. General schematic of the experimental setup.
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to be 4 h and the storm-relative length of the radial legs

is 207 km.

For the simulation of Doppler radial velocities, the

plane attitude parameters (pitch, roll, drift) are assumed

to be zero for simplicity and a unique track angle is

assigned for each pass. At each geographical position

of the radar along the flight track, radar rays are simu-

lated in accordance with the fore–aft scanning strategy

(Gamache et al. 1995). Then, for each ray, the associated

azimuth and tilt angles are converted from aircraft-

relative to earth-relative values.

Radar bins along each ray are simulated using the

nominal NOAA P-3 tail radar gate-to-gate resolution

(150 m), and individual bin positions along a ray are

retrieved from the latitude and longitude of the radar,

the azimuth and elevation of the ray, and the distance

from the radar. Then, wind components predicted in the

nature run are interpolated to each radar bin position

and the Doppler radial speed is computed using the for-

ward operator given by

yr 5 (sina cosue)u 1 (cosa cosue)y 1 (sinue)w. (1)

Here, u, y, and w refer to model-predicted zonal, merid-

ional, and vertical wind speed, respectively, and a and ue

are earth-relative azimuth and elevation angles of the

radar beam, respectively. The projection involved in yr

assumes that the incoming data are corrected for terminal

fall speed (e.g., Black et al. 1996) so that they reflect the

true vertical wind speed along the radar beam.

To obtain realistic simulated Doppler radial obser-

vations, a threshold on the cloud water content (7.5 3

1025 g kg21) is prescribed, and this is used as a proxy to

limit data when too few scatterers exist to produce rea-

sonable radar echoes. (This parameter value is chosen

subjectively from among several values tested, based on

the spatial distribution of Doppler radial wind observa-

tions it produced.) In addition, radar rays are limited to

75 km in range from the radar. (This corresponds to the

unambiguous maximum range dictated by the pulse

repetition frequency used in real-time NOAA P-3 oper-

ations in hurricane conditions.) Finally, additive random

noise (2 m s21) is applied to simulate instrument error.

Observation errors are assumed to be uncorrelated, so

that only the diagonal part of the observation error co-

variance matrix is simulated.

Because the radar spatial resolution is greater than the

model resolution, which can result in large amounts of

potentially correlated data, the simulated Doppler data

are subsampled at 3-km resolution by ‘‘superobbing.’’

The superobbing method employed here is essentially

data averaging intended for real-time data assimilation

as described in Zhang et al. (2009).

4. The nature run

a. Case description: Hurricane Paloma (2008)

This study uses a case from Hurricane Paloma (2008).

The goal here is not to obtain a faithful reproduction of

Hurricane Paloma in a nature run, but to use a model rep-

resentation of the observed storm as a reference to initial-

ize from. This is done to ensure that there is a realistic

hurricane vortex present in the nature run simulation from

which inner-core observations are simulated. The nature

run, therefore, serves only as a hypothetical but realistic

truth to compare data assimilation results to. Consequently,

this study does not compare the details of the vortex evo-

lution in the nature run to the observed storm structure.

The life cycle of Hurricane Paloma (2008) is docu-

mented in detail in the National Hurricane Center’s

(NHC) tropical cyclone report on Hurricane Paloma

(Brown et al. 2010). The storm reached hurricane status at

0000 UTC 7 November and subsequently underwent RI

when its intensity increased by 50 kt (1 kt 5 0.5144 m s21)

in 24 h starting at 1200 UTC 7 November. The 24-h nature

run simulation overlaps with the observed RI period. The

nature run simulation, too, undergoes intensification dur-

ing the same period, although not as rapidly as in reality in

part because of initialization from a broad and weak initial

vortex from a low-resolution global model.

FIG. 2. General schematic of the simulated butterfly flight pat-

tern in a storm-relative framework. In practice, any orientation of

the flight pattern may be flown, to permit the location of the initial

point (IP) and final point to be closest to the base of operations. In

the current implementation, the IP is simulated to be due west.

JUNE 2012 A K S O Y E T A L . 1847



b. Model description

Many aspects of the experimental HWRF model are

modified from its HEDAS configuration to avoid an

identical-twin scenario where a lack of model error could

potentially impede the realism of an OSSE (Atlas 1997).

The following modifications are introduced to obtain

a realistic nature run with sufficient model differences to

amount to reasonable model error:

(i) The nature run horizontal grid spacing is half of

that used in HEDAS (4.5/1.5 km).

(ii) Initial and boundary conditions are obtained from

the experimental Global Forecast System (GFS)/

EnKF ensemble (Hamill et al. 2011), a higher-

resolution (T382L64) global data assimilation and

forecasting system than the GENS that initializes

the HEDAS ensemble. A single GFS/EnKF en-

semble member that had the best 18-h forecast

of storm central pressure and location valid at

0600 UTC 8 November is chosen to initialize the

OSSE run.

(iii) The nature run uses explicit convection in both

domains (cf. HEDAS configuration in Table 1).

(iv) The nature run is initialized 6 h earlier than the

initialization of the HEDAS ensemble.

(v) In the nature run, a vortex-following inner domain

is implemented, whereas in HEDAS, the inner

domain in ensemble members is static.

In the current application, the duration of the nature

run simulation is 24 h, short enough to ensure that the

nature run and the background HEDAS ensemble are

not too divergent from each other at the onset of data

assimilation. Such a scenario would likely significantly

violate the linearity and ‘‘Gaussianity’’ assumptions of

the EnKF.

c. Quantitative evaluation of the nature run

The storm produced within the nature run is analyzed

to establish an overall framework of reference with

which to compare data assimilation results presented

later. All the time series discussed here are from 12-min-

resolution model output, processed using a 1-h low-pass

filter to remove high-frequency variability.

1) STORM TRACK AND INTENSITY

The storm track in the nature run (Fig. 3) is generally

toward the northeast but meanders in the first 6 h of

simulation (likely due to the initial adjustment process

resulting from an imbalance between the initial vortex

from the low-resolution global model and model dynam-

ics at 1.5-km horizontal resolution). Minimum sea level

pressure (MSLP; Fig. 4a) decreases steadily from 997 to

974 hPa. Meanwhile, large fluctuations in maximum 10-m

wind speed (V10max; Fig. 4a) are observed throughout the

simulation. Storm intensity generally increases from an

initial tropical storm (;25 m s21) to a category-2 hurri-

cane (;40 m s21).

Since V10max is frequently tied to small-scale fea-

tures of the vortex flow, we also investigate more robust

and dynamically relevant fields of the vortex in the na-

ture run simulation to obtain a general understanding of

intensity evolution. Two such fields are the maximum

azimuthally averaged tangential and radial components

of the horizontal wind (VT and VR, respectively). The

evolution of the overall maxima of these fields is shown

in Fig. 4a. Both metrics indicate a steadier intensifica-

tion than V10max and point to a gradual spinup of the

primary and secondary circulations. (Note that the maxi-

mum azimuthally averaged tangential wind speed usually

occurs higher in the boundary layer and can, therefore, be

greater in magnitude than V10max, as observed between

12 and 21 h of the simulation.)

Finally, maximum updraft speed (Wmax), which char-

acterizes the intensity of convection within the vortex, is

computed. Figure 4b shows that Wmax exceeding 10 m s21

quickly develops in the simulation within 2 h. Wmax then

remains mostly steady at around 12 m s21.

2) KINEMATIC STRUCTURE

The vortex structure in the nature run simulation is

analyzed through time series of various quantities (Fig. 5).

FIG. 3. Storm track in the nature run simulation. Track position is

measured by the MSLP and is plotted every 12 min. Position circles

are plotted every 3 h.
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Radial aspects of the azimuthally averaged vortex are

shown in Fig. 5a. The radius of maximum azimuthally

averaged VT (radius of maximum wind; RMW)1 ex-

hibits a gradual decrease from 80 to about 40 km. The

maximum radius of hurricane-force, 10-m wind speed

(Rad_Hur) generally follows RMW evolution with slightly

greater magnitude, meaning that hurricane-force winds

extend to just outside RMW during most of the simulation.

Meanwhile, the maximum radius of tropical-storm-force,

10-m wind speed (Rad_TS) exhibits much larger fluctua-

tions throughout the entire simulation period.

FIG. 4. Diagnostics of intensity for the nature run simulation. (a)

MSLP (solid gray line; scale plotted on the left y axis), V10max (solid

black line; scale plotted on the right y axis), VTmax (dashed black

line; scale plotted on the right y axis), and VRmax (dotted black line;

scale plotted on the right y axis). (b) Maximum updraft speed.

FIG. 5. Diagnostics of the vortex structure for the nature run

simulation. (a) RMW (solid gray line), Rad_Hur (solid black line),

and Rad_TS (dotted black line). (b) PBL vertical structure as di-

agnosed by VTmax_hgt (solid black line) and VRrmw_hgt (dotted

black line). (c) Variance explained for the wavenumber compo-

nents of tangential wind speed (solid gray line: wavenumber 0; solid

black line: wavenumber 1; dotted black line: wavenumber 2).

1 RMW here is computed at the height at which the overall az-

imuthally averaged VT is at a maximum at each time. While this is

different than some of the other studies in the literature that use

a fixed height to compute RMW, this does not introduce a large

uncertainty here because the height of the overall azimuthally

averaged VT itself is relatively steady throughout most of the

simulation (see discussion in next paragraph).
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Diagnostics of the simulated storm’s planetary bound-

ary layer (PBL) structure are shown in Fig. 5b. The height

of the maximum azimuthally averaged tangential wind

speed (VTmax_hgt) exhibits a gradual decrease during

the first 9 h, with distinct fluctuations especially in the first

6 h. VTmax_hgt then settles to near 750 m throughout

the rest of the simulation. The depth of the inflow layer at

RMW (VRrmw_hgt) remains relatively large (2–4 km)

throughout the simulation, accompanied with fluctua-

tions as large as 3 km especially during the first half of the

simulation.2

Finally, the variance explained by wavenumbers-0–2

components of the tangential wind speed at 2-km height is

computed to show the azimuthal structure of the primary

circulation in the PBL. Though the tangential wind speed

is generally dominated by its wavenumber-0 component

(it explains over 50% of the variance more than half of the

time), large fluctuations in this quantity are observed in

the first ;9 h, when a large wavenumber-1 asymmetry

develops quickly from an initially mostly symmetric vor-

tex. Axisymmetrization of the vortex gradually occurs

during the second half of the simulation, but the energy in

the primary circulation continues to fluctuate between the

wavenumber-0 and wavenumber-1 components.3

3) THERMODYNAMIC STRUCTURE

The thermodynamic properties of the vortex are evalu-

ated in Fig. 6. Specifically, the focus is on the time evolution

of the radial variation of perturbations of temperature (T)

and specific humidity (q) near the surface (50 m) and

FIG. 6. Hovmöller diagrams of perturbations of (a),(b) temperature and (c),(d) specific humidity at (a),(c) 50-m

and (b),(d) 2000-m height in the nature run simulation as a function of radial distance from storm center. Positive

(negative) contours are plotted with solid (dotted) black lines. Simulation time increases along increasing y axes.

Radial distance (normalized by RMW) is plotted along x axes. All perturbations are computed with respect to

azimuthally averaged environmental values at 300-km radial distance.

2 The inflow layer is the shallow near-surface part of the ob-

served secondary circulation of an azimuthally averaged vortex

that points radially toward the storm center.

3 The wavenumber decomposition critically depends on the fidelity

of the storm position. The storm position calculation methodology is

generally robust, but there is nevertheless a degree of variability

introduced because of the high resolution of the nature run, which

could impact the partitioning of different components of the wind.
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higher in the PBL (2 km). Radial distance is normalized by

RMW at each time. Perturbations are from respective az-

imuthally averaged environmental values at a radial dis-

tance of 300 km from the storm center.

Near the surface and inside the RMW, positive near-

surface temperature perturbations are established after

;6 h but remain relatively weak, while the same region

consistently experiences the largest positive moisture

perturbations (2.5 g kg21 or more). Meanwhile, outside

the RMW, the appearance of negative temperature

perturbations is collocated with convection in the eye-

wall and rainbands (not shown). The fast contraction

of RMW in the first 12 h results in the appearance of

radial expansion of the cold perturbations in the RMW-

relative coordinate system.

At 2-km height, both within the RMW and outside, the

vortex is dominated by positive temperature and moisture

perturbations throughout the simulation. Consistent with

the warm-core structure of a hurricane, positive temper-

ature perturbations are mostly confined inside the RMW

after 12 h. Meanwhile, relatively large moisture pertur-

bations are seen throughout the simulation at radial dis-

tances of up to 6 RMW, indicative of the impact of

rainbands–convective cells in moistening the atmosphere.

4) TIME CORRELATIONS AMONG VARIABLES

To better understand the dynamical connections within

the vortex and to further analyze the transition from spinup

to an intense model vortex, time correlations are in-

vestigated among the time series of several of the variables

(rij), where i and j represent two variables. In Fig. 7, cor-

relation computations are shown separately for the first and

second halves of the simulation. Also, average absolute

correlations between each variable and all other variables

(ri) are shown. For brevity, only variables that exhibit rel-

atively large correlations with others are presented.

The first noteworthy observation is the overall greater

values of r
i

during the second half of the simulation,

which is generally interpreted as a sign of a dynamically

coherent vortex. This period will hereafter be denoted as

the ‘‘mature phase’’ of vortex evolution.

MSLP appears to be the variable that most consis-

tently exhibits high correlations with others during both

the spinup and mature phases (r
i
. 0:6 during both pe-

riods). This indicates that MSLP can provide information

on intensity as well as kinematic and thermodynamic

properties of the vortex during both the spinup and mature

phases of storm evolution. Similar to MSLP, VTmax is also

consistently well correlated with other variables. Mean-

while, the maximum azimuthally averaged radial inflow

(VRmax) exhibits strong correlations only during the

second half of the simulation, likely because of the slower

establishment of a secondary circulation in the simulation.

RMW is moderately correlated with other variables, but

a general reversal of the sign of correlations from the spinup

to the mature phase is likely due to the quick contraction of

FIG. 7. Time series of correlations among various variables (rij) discussed in the text in (a) 0–12 h of the nature run

simulation and (b) 12–24 h of the nature run simulation. Plus and minus symbols in boxes indicate the sign of respective

correlations. Shading in the variable name boxes represents the value of average absolute correlation of a given variable

with all other variables (r
i
). Self correlations (always equal to 11) are indicated by striped patterns along the diagonals.

Variables are sorted and grouped (by thicker lines) in the order they are presented and discussed in the text.
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RMW during the spinup phase followed by the slight ex-

pansion during the mature phase. In the mature phase,

Rad_Hur is highly correlated with RMW, since the radial

extent of the hurricane-force winds is linked to RMW.

VRrmw_hgt exhibits some of the highest correlations

to other variables, especially during the mature phase

when VRrmw_hgt is positively correlated with those that

indicate intensity, and exhibits a large negative correla-

tion with VRmax. However, the positive correlation is in

part due to the general increase of VRrmw_hgt during

intensification (Fig. 5b) to values greater than ;1.5 km,

which is typically observed in mature hurricanes in reality

(J. A. Zhang et al. 2011, their Fig. 5b; Rogers et al. 2012,

their Fig. 7d). Therefore, a climatology of the model itself

is likely needed to assess the realism of the VRrmw_hgt

evolution, which is beyond the scope of the current study.

Variance explained by the wavenumber-2 component

appears to be well correlated with other variables during

both phases of the nature run simulation. This suggests

that, while tangential wind speed is predominantly an az-

imuthally symmetric quantity, its wavenumber-2 asym-

metries could be a good indication of the evolution of

intensity. There is a negative correlation between variance

explained by the wavenumber-2 component and VTmax,

similar to that shown by Nguyen et al. (2011).

5. Results

a. Data assimilation

Having established a reference of truth through the

analysis of the nature run simulation, the impact of

assimilating observations extracted from the 12–16-h

period of the nature run is analyzed next. As demon-

strated in the previous section, this period corresponds

to a vortex with characteristics of a mature hurricane.

1) OBSERVATION-SPACE DIAGNOSTICS

Observation-space diagnostics are computed by accu-

mulating various statistics of innovations, or concurrent

observation-minus-forecast differences. Before assimi-

lating observations during a particular assimilation win-

dow, they are randomly separated into two equal-volume

groups. One group is used in data assimilation, and the

other group is used to compute diagnostics. Both groups

represent physically the same region of the vortex that

was observed during a particular assimilation window. A

detailed explanation of the types of observation-space

diagnostics discussed here can be found in Aksoy et al.

(2009). One deviation here is that ‘‘RMS innovations’’

are not computed by subtracting the mean innovation as

in Aksoy et al. (2009), but in a traditional sense as de-

scribed in Wilks [2006, his Eq. (7.53)].

The horizontal and vertical distributions of observa-

tions are shown in Fig. 8. The distribution at flight level

(;3 km) where the horizontal extent of observations is

greatest because of the radar scanning geometry is shown

(Fig. 8a). The time windows roughly allow observations

to be distributed into penetration and downwind legs.

Because of the thresholding through cloud water content,

the distribution is not homogeneous across the vortex and

there are big data gaps in the southern and western parts

of the storm where precipitation is limited or nonexistent

FIG. 8. (a) Simulated flight track in earth-relative coordinates and horizontal distribution of simulated Doppler wind

superobs near flight level (;3-km altitude). (b) Vertical distribution of simulated Doppler wind superobs.
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(cf. Fig. 13d for the distribution of total cloud mass).

There are also some differences in the vertical distribu-

tion (Fig. 8b) among assimilation cycles, but the greatest

observation density is generally in the boundary layer.

Observation-space diagnostics for filter performance

are shown in Fig. 9, where various statistics of the prior

(forecast) and posterior (analysis) innovations of Doppler

radial wind are plotted for each of the assimilation cycles.

Innovations in the control run (solid gray) are generally

random in nature, as mean innovations are much smaller

in magnitude than RMS innovations. Nevertheless, gen-

erally larger RMS and mean innovations are apparent

during penetration cycles (1, 3, 5) compared to downwind

leg cycles (2, 4). This is mainly due to the generally greater

wind speed values during penetration cycles compared to

downwind legs, as there are no other distinct differences in

terms of the spatial distribution (Fig. 8) or total amount

(Fig. 9d) of data.

When observations are assimilated, a noticeable re-

duction in RMS and mean innovations occurs. It is

worthwhile to note that both penetration and downwind

legs have a positive impact on innovations.

A quantitative diagnosis of ensemble spread in EnKF

applications is as important as the analysis error itself

because underdispersive ensembles are prone to filter

divergence. Filter divergence occurs when a data as-

similation system begins to assign too much weight to

the background state as, by design, it interprets small

ensemble spread as high confidence in the background

state. This naturally results in new observations being

given too little weight during the update cycle and the

analysis state to resemble the background. Repeated

occurrence of this phenomenon during cycling gradually

accumulates forecast error and the analysis irrecover-

ably diverges from reality. There are fundamental rea-

sons for the existence of spread deficiency such as

limited ensemble size, sampling error, and lack of rep-

resentation of model error in the ensemble, and meso-

scale ensemble data assimilation systems are especially

known to be prone to such issues (Meng and Zhang

FIG. 9. Observation-space diagnostics for Doppler radial wind observations: (a) Mean innovations, (b) RMS in-

novations, (c) spread sufficiency, and (d) number of observations assimilated. For (a)–(c), statistics are computed at

randomly selected locations that were not assimilated but were within the same respective flight legs as the assim-

ilated observations (see the text for more details).
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2011). Diagnosing ensemble spread therefore needs to

be a central aspect of the overall evaluation of an en-

semble data assimilation system.

An interesting result is obtained in the response of

ensemble spread to the various experiments performed.

Ensemble spread is analyzed through ‘‘spread suffi-

ciency’’ (Fig. 9c), which mainly measures how ensemble

variability compares to random error (Aksoy et al. 2009).

In an optimal ensemble that accurately reflects forecast

errors, a general correspondence of ensemble spread

(standard deviation) and random (RMS) error is ex-

pected and therefore spread sufficiency should be close to

1. When the ratio deviates to below 1, the variability in

the forecast ensemble is insufficient to explain the ran-

dom innovation error. Figure 9c presents a control en-

semble that is suboptimal in this regard. The DA_BASIC

experiment also yields comparable spread sufficiency

throughout the assimilation. This implies that the ex-

pected decrease in analysis ensemble spread at assimila-

tion times (not shown) is compensated for by sufficient

ensemble variability that is introduced during short-range

forecasts. Meanwhile, even as both the DA_INF and

DA_25%OBS experiments experience greater ensemble

spread, no improvement in error reduction is achieved

(Fig. 9b). Clearly, neither applying covariance inflation

nor thinning the observations (by assimilating fewer

observations or reducing potential error correlation

among observations) seems to reduce systematic errors

in the ensemble.

2) MODEL-SPACE DIAGNOSTICS

Diagnostics in the model space provide a broader

picture of the impact of data assimilation on unobserved

model variables and specific features of vortex structure.

A direct comparison of model variables is performed

by computing the mean and RMS errors as well as

a spread ratio, in reference to the nature run. Statistics

are computed in storm-relative cylindrical coordinates

(0–300 km radially at 1-km resolution, 08–3608 azi-

muthally at 18 resolution, and 1–20 model levels ver-

tically through the midtroposphere). Spread ratio is

computed as in Snyder and Zhang (2003), and the op-

timal ratio of Ne/(Ne 1 1), where Ne represents en-

semble size, is also plotted.

Figure 10 shows errors of absolute zonal wind (juj),

intended as a proxy for intensity (Figs. 10a–c). (The zonal

wind u is used here for convenience as, in HEDAS, en-

semble spread is only diagnosed for the prognostic model

variables.) Unlike what is seen in the observation-space

diagnostics, large mean error is now detected in the con-

trol run, indicating potential negative intensity bias (un-

derprediction of intensity). Assimilation of observations

FIG. 10. Model-space comparison to the nature run for (a)–(c) all absolute u components of horizontal wind and (d)–(f) absolute u

component of horizontal wind .30 m s21 in the nature run. Statistics shown are (a),(d) mean error, (b),(e) RMS error, and (c),(f) spread

ratio. Computations are performed in storm-relative coordinates within 300 km radially of respective storm centers.
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reduces the bias to less than 1 m s21 in the final anal-

ysis. The control run also exhibits RMS errors of

comparable magnitude to the bias. However, the re-

duction in RMS error when observations are assimi-

lated is smaller than the reduction in bias. The spread

ratio is also suboptimal—only about 20%–30% of its

expected optimal value both in the control run and

DA_BASIC experiment.

A similar but much more severe picture arises for the

tail of the juj distribution (Figs. 10d–f). A threshold of

30 m s21 is chosen so that only 2%–3% of the total u

population of the nature run is considered, roughly

corresponding to outliers of twice the standard deviation

or more. A very large negative mean error in the control

run (almost equal in magnitude to the 30 m s21 thresh-

old) implies that the control run does not contain a vortex

of hurricane intensity. It should be noted here, however,

that the spatial distribution of such extreme values is

naturally localized (not shown). Therefore, the magni-

tude of the mean error could arise from magnitude un-

derprediction as well as location mismatches. As will be

discussed later in more detail, comparable magnitudes

of mean error in the control run are also observed in the

10-m maximum wind speed parameter (see Fig. 12c),

which is only impacted by the underprediction of in-

tensity. Thus it is inferred that most of the mean error in

juj greater than 30 m s21 in the control run arises from

the underprediction of intensity.

Meanwhile, the assimilation of observations in

DA_BASIC reduces mean and RMS error magnitudes

to near 5 m s21 in the final analysis, despite the very

low values of spread ratio. Overall, the performance of

HEDAS is as good, if not better, for juj greater than

30 m s21 compared to all juj. We believe that this is

likely due to the very good azimuthal sampling of the

strongest portions of the vortex near the storm center,

a natural outcome of flight geometry.

For the rest of the model fields shown here, the focus

is on the tail of distributions (Fig. 11), with the as-

sumption that they will reflect HEDAS performance

in the strongest regions of the vortex. In each case,

a threshold value is applied that retains the greatest 2%–

3% of the values in the respective nature run population.

Updraft speeds greater than 1 m s21 (Figs. 11a–c) ap-

pear to exhibit ;21.5 m s21 mean error and ;2 m s21

RMS error in the control run. Vertical wind speed is not

a direct analysis variable in the HEDAS system (be-

cause it is not a prognostic variable in HWRF). In

the DA_BASIC experiment, a slight improvement of

;0.2 m s21 in the mean error persists through the cy-

cles, indicating that an improvement in the kinematic

structure also leads to somewhat stronger updrafts in

the model during cycling. However, large errors remain

even after data assimilation, implying that they are due

to systematic model differences between the nature run

and the ensemble, horizontal resolution likely being

a major contributor.

Thermodynamic properties are measured by com-

paring temperature and specific humidity perturbations

(Figs. 11d–i), where perturbations are computed as in

section 4c(3), computed separately for each model level.

Both temperature and specific humidity perturbations

indicate that ensemble runs (without and with data as-

similation) are cooler and less moist than the nature run.

Large RMS errors are also apparent in the control run.

It should be noted that the impact of data assimilation

on the thermal structure is indirect through ensemble

correlations, as observations only contain wind infor-

mation. Data assimilation helps improve the thermal

structure noticeably by as much as 2 K in both mean and

RMS values. As positive temperature perturbations are

associated with the warm core of a vortex, this is an in-

dication that the assimilation of Doppler wind data in-

directly has a positive impact on the representation of

the warm core in the analysis. Meanwhile, the assimi-

lation of Doppler wind information appears to lead to

the worsening of mean and RMS errors of moisture

perturbations. It is not clear at the moment why such a

worsening should occur in specific humidity. We suspect

that it is related to smaller-scale and less robust en-

semble covariances of moisture with wind, which would

likely result in a noisy update of moisture in HEDAS

[an indication of this is found by Poterjoy and Zhang

(2011)].

Total cloud water mass (CWM), which is the only mi-

crophysical variable updated in HEDAS, also exhibits

large negative bias (underprediction) in the control run

(Fig. 11j). This bias is partially offset by the application of

the EnKF. However, improvement in the RMS error is

smaller.

Ensemble variability appears to be smaller in model

space for the tails of distributions (cf. spread sufficiency

of ;0.5 in observation space in Fig. 10 to ;0.2 in model

space in Fig. 11, as well as the smaller ratio for thresh-

olded juj in Fig. 10c than all of juj in Fig. 10f). This hints

at an ensemble that is especially underdispersive in the

extreme ends of the probability distributions.

When the various data assimilation experiments are

compared in model space (Figs. 10, 11, black solid, dashed,

and dotted lines), the best results generally appear to be

obtained from DA_BASIC, although differences are

small in many cases. This result is consistent with the

findings in observation space. It also suggests that en-

semble underdispersion in the most convectively active

regions of the vortex is likely due to the model’s inability

to generate sufficient error growth.
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Further investigation of filter performance in model

space is performed for some of the parameters that were

deemed relevant during the analysis of the nature run

simulation. Figure 12 summarizes, for nine of these pa-

rameters, the deviations of the control and data assimilation

experiments from the nature run. For better comparison,

the deviation values are also computed for the ensemble

mean during the 6-h spinup.

First, large deviations from the nature run are exhibited

in the control run for position and intensity. Several as-

pects of the vortex appear to be improved when data

assimilation is performed in DA_BASIC. Position error

is quickly reduced from ;100 to ;20 km (Fig. 12a). In-

tensity is also improved to within ;2 hPa and 5 m s21 of

the nature run for MSLP and V10max, respectively (Figs.

12b,c). Improvement in maximum azimuthally averaged

FIG. 11. As in Fig. 10, but for (a)–(c) updraft speed .1 m s21, (d)–(f) absolute perturbation temperature .4 K, (g)–(i) absolute

perturbation specific humidity .4 g kg21, and (j)–(l) total CWM .2 g kg21.
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tangential wind speed is less dramatic, but error is still

reduced by 50% to ;10 m s21 (Fig. 12d) in DA_BASIC.

Error in maximum azimuthally averaged inflow ap-

pears to generally be in the 1–2 m s21 range, and is only

slightly improved in the DA_BASIC experiment (Fig.

12e). This may partially arise from the asymmetric na-

ture of the inflow. Observations along a single penetra-

tion cannot fully sample the asymmetry in the inflow

pattern (not shown), so that the update of the inflow

heavily depends on the underlying correlation structure

and is likely to be impacted by the errors in the forecast

model. Such behavior can therefore also be expected in

other variables that exhibit azimuthal asymmetry.

Large errors in the maximum updraft speed in the

control by ;10 m s21 indicate severe underprediction of

the intensity of convection (Fig. 12f). While errors still

remain after data assimilation in DA_BASIC, a reduction

by ;5 m s21 suggests that improvements in the kinematic

aspects of the vortex structure are ultimately translated to

stronger convection.

Very impressive improvement in the RMW error

suggests that Doppler wind observations contain rel-

evant information regarding the tangential wind struc-

ture (Fig. 12g). Meanwhile, the vertical structure of the

inflow appears to be hard to capture in the data assimila-

tion system (Fig. 12h). While there are improvements at

the assimilation times of the penetrations (odd-numbered

cycles), subsequent short-range forecasts do not ap-

pear to maintain these shallower inflow layers in the

analyses. This hints at a structural issue of the forecast

model in producing deeper inflow layers relative to the

nature run.

Finally, temperature perturbation within the hurricane

core at 2-km height is underpredicted in the control by

FIG. 12. Deviations of the spinup and control runs, as well as the data assimilation experiments, from the nature run for several of the

parameters used to evaluate simulation in section 5a. Time along x axis denotes hours since the start of the nature run simulation.
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;4 K, and data assimilation in DA_BASIC appears to

result in a slight improvement (Fig. 12i). These results are

generally better for temperature perturbation than for

specific humidity perturbation, and better at 2-km altitude

than at the surface (not shown). This suggests that, in the

current HEDAS configuration, the indirect update of the

thermodynamic fields is most successful for the warm-core

region and likely has a positive impact on the eventual

strengthening of convection in short-range forecasts.

b. Comparison of the final analysis to the
nature run

The vortex structure obtained in the final analysis is

now compared to the nature run and the control at the

same time. Since the best results are generally obtained

in the DA_BASIC experiment, here the focus is spe-

cifically on this experiment. Figure 13 compares storm-

relative horizontal cross sections of 10-m wind speed and

1-km CWM. The general wavenumber-1 asymmetry as

well as RMW is captured well in the final mean analysis,

although the wind update near the core appears noisier

than the truth. The horizontal distribution of CWM is

also more realistic, especially when compared to the

broad distribution in the control.

Figure 14 compares azimuthally averaged vertical

cross sections of tangential and radial wind speeds, as

well as equivalent potential temperature (ue). In general,

the structure of tangential wind speed is captured well in

the final analysis, although a general underestimation of

intensity by as much as 10 m s21 is apparent (cf. this

result to Fig. 12d). The structure of the radial flow, too, is

generally captured very well in the analysis, although the

vertical structure of the inflow in the PBL is somewhat

exaggerated in the final analysis. Finally, the thermal

structure is also well represented in the analysis in an

azimuthally averaged sense. The midlevel warm-core

structure is realistic but its magnitude is somewhat over-

predicted (Fig. 14h). This feature is nonexistent in the

control run (Fig. 14i). Meanwhile, generally overestimated

ue in the PBL is very similar to the values in the PBL of the

control run, suggesting that the assimilation of Doppler

wind observations did not have much impact on the

thermal structure of the PBL.

6. Summary and discussion

In this study, NOAA/AOML/HRD’s HEDAS is in-

troduced and a preliminary analysis of the impact of

airborne Doppler radar wind data is carried out in an

FIG. 13. (a)–(c) Storm-relative horizontal cross sections of 10-m wind speed (m s21) and (d)–(f) logarithm of 1-km total CWM in the

(a),(d) nature run, (b),(e) final mean analysis in DA_BASIC experiment, and (c),(f) control.
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OSSE, where the nature run simulation is obtained with

a higher-resolution (4.5/1.5 km horizontal grid spac-

ing) version of experimental HWRF. This version is

initialized from one member of the GFS/EnKF analysis

ensemble, configured with explicit convection in all do-

mains, and spun up for a longer time period with a vortex-

following inner nest.

The 24-h nature run simulation is initialized from the

1200 UTC 7 November 2008 GFS/EnKF representation

of Hurricane Paloma. The first 12 h of the simulation are

generally influenced by the adjustment to the initial

vortex from the much-lower-resolution global model.

Indications of this adjustment are seen in the fluctua-

tions in storm position and kinematic and thermody-

namic properties of the vortex. Time correlations among

various variables are also generally weak. In the second

12-h period, stronger time correlations and generally

smaller fluctuations in the fields suggest that the vortex-

scale dynamics have become more coherent.

During the 24-h simulation, the vortex in the nature run

steadily intensifies from a tropical storm to a category-2

hurricane. Although weaker than observed during the

FIG. 14. Vertical cross sections of azimuthally averaged (a)–(c) tangential wind speed (m s21) and (d)–(f) radial wind speed (m s21;

inflow with solid contours, outflow with dashed contours); and (g)–(i) equivalent potential temperature (K) in the (a),(d),(g) nature run,

(b),(e),(h) final mean analysis in DA_BASIC experiment, and (c),(f),(i) control.
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same period, the evolution of the vortex in the nature run

is sufficiently realistic in structure. Too strong a vortex,

in the presence of a weak initial vortex from the global

model, would introduce large innovations and likely

result in suboptimal data assimilation, whereas a weak

vortex would potentially not exhibit all the relevant

dynamical features by which to measure the impact of

Doppler radar data.

The Doppler radar radial wind data are produced by

simulating a butterfly-shaped flight pattern within the

nature run during the ‘‘mature phase’’ and then inter-

polating from model space using a realistic forward

operator. These are then processed to produce lower-

resolution superobservations and assimilated using

HEDAS. The impact of assimilating Doppler wind

superobservations is assessed in observation space as well

as in model space. In general, RMS innovations are ob-

served to be much greater than mean innovations, while

data assimilation reduces both. Errors are greater for

observations in penetrations than downwind legs, likely

because of much stronger winds in the inner core that are

only sampled during penetrations. Furthermore, ensem-

ble spread is only about 50% of what is expected optimally

when no covariance inflation is applied. However, while

covariance inflation and data thinning increase spread

sufficiency to near 100%, neither leads to improvement in

innovation-based performance characteristics.

In model space, too, improvements are observed when

Doppler wind data are assimilated, especially in the ki-

nematic aspects of the vortex structure; storm position,

MSLP, maximum 10-m wind speed, maximum azimuth-

ally averaged tangential wind speed, and RMW all ex-

hibit distinct improvements over the control experiment.

Meanwhile, the indirect impact on unobserved fields,

especially the thermal structure, is much smaller. Nev-

ertheless, the assimilation of Doppler wind observations

results in significant improvements in the vortex struc-

ture, while underestimation of overall intensity leads to

a general bias in the average error statistics.

Several aspects of these results are noteworthy. First,

a general deficiency in ensemble spread is observed.

More interestingly, while covariance inflation–relaxation

and observation thinning result in improved ensemble

spread, these do not result in improvements in overall

error statistics. This is an indication of the lack of en-

semble sampling in certain directions of the phase space,

which generally results from model error. Indeed, the

dominance of bias in certain error statistics, such as un-

derestimation of intensity and errors in the depth of the

inflow layer, does hint at the presence of model error. It

appears that modifications made for the nature run con-

tribute to significant differences between the models used

in HEDAS and the nature run. Therefore, representing

model error in the ensemble could be one approach to

remedy the lack of ensemble spread.

Furthermore, the mixed impact of the assimilation of

Doppler radar wind observations on unobserved aspects

of the hurricane vortex is in itself quite interesting.

Specifically, while consistent and significant improve-

ments are observed in the kinematic fields, improvements

are less consistent in the convective and thermodynamic

features of the vortex. Indeed, the hydrometeor distri-

bution from the horizontal cross section of the total cloud

water field, as well as the thermodynamic structure from

the vertical cross section of the azimuthally averaged

equivalent potential temperature field, both indicate that

data assimilation has a positive indirect impact through

model dynamics during cycling. However, the fact that

this is not reflected as much in domainwide average sta-

tistics is a sign that improvements are noisy in nature. This

may be due to generally smaller indirect correlations

between wind and other variables, as well as the smaller

spatial scale of such correlations associated with the

small-scale nature of convection, and suggests a need for

direct observations of the thermodynamic structure (as

available from flight-level and dropwindsonde observa-

tions in real P-3 flights).

Finally, Doppler wind data sampled in both pene-

tration and downwind legs appear to positively con-

tribute to HEDAS performance. However, data from

penetrations generally have greater impact than data

from downwind legs. This is likely due to better radial

sampling of the vortex by penetrations as well as the

ability to sample the most intense regions of the vortex

during penetrations. In contrast, downwind legs only

sample the outer regions of a vortex and therefore

observations from downwind legs lack information on

the most important characteristics of the inner core of

a vortex (such as intensity, RMW, and the patterns of

primary and secondary circulations) although they

could potentially be providing information on the at-

mospheric environment that the vortex is embedded in.

How to make optimal use of the combination of pen-

etration and downwind legs is a subject of future in-

vestigation.
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