Assimilation of High-Resolution Hurricane Inner-Core Data with the HWRF Hurricane Ensemble Data Assimilation System (HEDAS): Evaluation of the 2008-2011 vortex-scale analyses

Altuğ Aksoy^{1,2}

¹NOAA/AOML Hurricane Research Division ²U. Miami RSMAS Coop. Inst. Marine Atmos. Studies

Collaborators:

Sim Aberson, Tomislava Vukicevic, Kathryn Sellwood, Sylvie Lorsolo, Thiago Quirino, Bachir Annane, Shirley Murillo, Neal Dorst, Mike Page

The National Hurricane Center Seminar – 15 February 2012

Outline

- Brief introduction to data assimilation
- Advantages of ensemble-based data assimilation
- Description of HEDAS
- Overview of real-data cases
- Performance of analyses
- Conclusions

How Does *Scalar* Data Assimilation Work? Simplest Case

Let's consider the simplest possible scenario:

- We are concerned about the temperature of a room this is the quantity we would like to estimate (analysis), *T_a*
- We have two sources of information:
 - » A computer model that predicts the temperature (forecast, background)
 - » A thermometer placed somewhere in the room (observation)

$$T_f = 20^\circ$$
 C

$$T_a = 22^{\circ}$$
 (

In the absence of any other information, the simplest approach would be to just take the mean of the two estimates!

How Does *Scalar* Data Assimilation Work? Better Approach: Estimates of Uncertainty

If we are a little more systematic about our approach, we would also try to obtain estimates of uncertainties associated with these measurements:

observation is greater than in our model prediction, our final estimate should be closer to the observation, $T_c!$

How Does *Scalar* Data Assimilation Work? Statistical Estimation: Minimum Variance

With certain statistical assumptions, it is quite straightforward to obtain a mathematical relationship for the analysis temperature, T_a , that represents the *minimum-variance estimate*:

How Does *Scalar* Data Assimilation Work? Statistical Estimation: Incremental Form

With simple algebra, we can write the update (analysis) equation in incremental form:

 $T_{f} = 20$

 $\sigma_f = 2^{\circ}$

Observation innovation or *observation increment* : Additional information introduced by the observation

Similarly, analysis uncertainty σ_a can be expressed

 $\sigma_a^2 = (1-K) \sigma_f^2$

How Does *Scalar* Data Assimilation Work? Most Complex Case: Indirect Observations

A somewhat more complicated problem arises when we can only observe temperature indirectly, say through the measurement of infrared radiation:

How Does *Scalar* Data Assimilation Work? Most Complex Case: Indirect Observations

A somewhat more complicated problem arises when we can only observe temperature indirectly, say through the measurement of infrared radiation:

How Does *Scalar* Data Assimilation Work? Final Product: Full Update Equation

We have finally reached a full statistical solution for the scalar problem:

The DA Update Step with 2 Variables The Full Bayesian Picture

- When there are unobserved variables, information is propagated through the covariances among variables
- Let's see how an update would be carried out for two variables, one observed:

- The background consists of x₁ and x₂
- Both variables are normally distributed
- The two variables are correlated
- x₁ is directly observed as y⁰
- The observation is also normally distributed; but has smaller error than x₁
- Since observation error is smaller than x₁ background error, the analysis x₁^a is closer to y⁰
- The analysis error $s_1{}^a$ is smaller than both $s_1{}^f$ and $s_y{}^{}$
- The covariance between x₁ and x₂ relates changes in x₁ to changes in x₂ -> slope of regression
- The joint analysis probability distribution has become narrower, reflecting improved estimates in both x₁ and x₂

Ensemble-based Data Assimilation: The General Process

In ensemble-based data assimilation, we compute sample covariances from an ensemble of forecasts

Instead of a single state that represents the initial state of the atmosphere ...

... Start with an ensemble of states (ensemble members) that better represent the initial uncertainty about the

For the assimilation of obs, use covariances sampled from the ensemble of forecasts

Analysis uncertainty becomes the initial condition uncertainty for the new forecast cycle Subsequent forecast cycle is initialized from the previous analysis ensemble

Advantages of Ensemble-Based Data Assimilation

 Background covariances are sampled from the forecast ensemble

→ Flow-dependent covariances that are independent of any assumptions for the nature of flow (e.g., geostrophy)

- Provides a natural basis for probabilistic forecasts
- Easy to implement and maintain
 - No adjoints are needed to be developed which is especially complicated for highly nonlinear and discontinuous sub-grid parameterization schemes and/or nonlinear observation operators
- Straightforward application to domains with multiple nests
- Easily lends itself to parallelization
- Performance (so far) comparable to variational schemes

NOAA/AOML/HRD's HWRF Ensemble Data Assimilation System (HEDAS)

• Forecast model:

- Exp. HWRF with 2 nested domains (9/3 km hor. resolution, 42 vert. levels)
- Static inner nest to accommodate covariance computations
- Ferrier microphysics, explicit convection on inner nest

• Ensemble system:

- Initialized (cold start) from GFS-EnKF (NOAA/ESRL) ensemble member analyses
- 30 ensemble members

Data assimilation:

- Square-root EnKF filter (Whitaker and Hamill 2002)
- Assimilates data only on the inner nest
- Covariance localization (Gaspari and Cohn 1999)
- No explicit covariance treatment
- Filter solver parallelized using OpenMP

Aircraft Data of Interest

HEDAS Cycling Flow

HEDAS EnKF Workflow

2008-2011 Real-Data Cases Considered

2008:		Ike	09-10-00Z	Danny	08-26-12Z	Karl	09-16-18Z
Dolly	07-20-12Z	Ike	09-10-12Z	Danny	08-27-00Z	Richard	10-23-06Z
Dolly	07-21-00Z	Ike	09-11-00Z	Danny	08-27-12Z	Tomas	11-04-00Z
Dolly	07-21-12Z	Ike	09-11-12Z	Danny	08-28-00Z	Tomas	11-04-12Z
Dolly	07-22-00Z	Ike	09-12-00Z	2010:		Tomas	11-15-00Z
Dolly	07-22-12Z	Ike	09-12-18Z	Alex	06-29-00Z	Tomas	11-06-12Z
Fay	08-14-12Z	Kyle	09-23-00Z	TD2	07-07-00Z	Tomas	11-07-00Z
Fay	08-15-00Z	Kyle	09-24-12Z	TD2	07-07-12Z	2011:	
Fay	08-15-06Z	Kyle	09-25-00Z	TD2	07-08-00Z	Irene	08-24-00Z
Fay	08-15-18Z	Kyle	09-25-12Z	Earl	08-29-00Z	Irene	08-24-12Z
Fay	08-18-18Z	Kyle	09-26-00Z	Earl	08-29-12Z	Irene	08-25-12Z
Fay	08-19-06Z	Kyle	09-26-18Z	Earl	08-30-00Z	Irene	08-26-00Z
Gustav	08-30-00Z	Kyle	09-27-00Z	Earl	08-30-12Z	Irene	08-26-12Z
Gustav	08-30-12Z	Kyle	09-27-18Z	Earl	08-31-00Z	Irene	08-27-00Z
Gustav	08-31-00Z	Paloma	11-07-06Z	Earl	09-01-12Z	Irene	08-27-12Z
Gustav	08-31-12Z	Paloma	11-07-18Z	Earl	09-02-00Z	Lee	09-02-00Z
Gustav	09-01-00Z	Paloma	11-08-18Z	Earl	09-02-12Z	Ophelia	09-24-18Z
Gustav	09-01-12Z	2009:		Earl	09-03-00Z	Hilary	09-28-18Z
Dolly	07-20-12Z	Ana	08-17-00Z	Earl	09-03-18Z	Hilary	09-29-18Z
Dolly	07-21-00Z	Bill	08-19-00Z	Earl	09-04-00Z	Rina	10-26-00Z
Dolly	07-21-00Z	Bill	08-19-12Z	Karl	09-13-00Z	Rina	10-26-18Z
Dolly	07-20-12Z	Bill	08-20-00Z	Karl	09-13-12Z	Rina	10-27-00Z
Dolly	07-21-00Z	Bill	08-20-12Z	Karl	09-14-00Z	Rina	10-27-18Z

Distribution of Cases

Number of Assimilation Cycles

Number of Observations Assimilated

Number of Observations Assimilated

Distribution of Innovations (O-F & O-A)

Innovation Statistics – Zonal Wind Speed

Analysis Position Error

Analysis Intensity Error

Analysis Wind-Pressure Relationship

Analysis Doppler-Derived Structure

Waveno. Decomposition – Doppler vs. Analysis

Radial Profiles – FL Wind Speed

Radial Profiles – FL Temperature

Radial Profiles – FL Specific Humidity

Radial Profiles – H*Wind Surface Wind Speed

Radial Profiles – H*Wind Surface Wind Speed

Summary - 1

- HEDAS runs with 83 cases from 2008-2011 seasons are analyzed
- Realistic distribution of cases by intensity (most are tropical storm to cat-1 hurricanes)
- In a typical run:
 - -4-5 cycles of data are assimilated
 - 30-40K observations are assimilated, but Doppler wind observations dominate
 - -Best sampling is achieved below ~9 km
- Improvements in observation space are seen that can be directly associated with data assimilation

Summary - 2

- Position errors in analyses are on average ~20 km compared to the best track, tend to be "ahead" of the best track position as assim. cycles extend beyond the synoptic time
- Good fit of analysis intensity to best track is seen, but analyses are systematically weaker in MSLP by ~3 mb
- Structurally,
 - RMW fit much better for hurricanes
 - Azimuthal wavenumber-1 asymmetry is impacted by few outliers, especially from the 2008 season
 - -Wavenumber 0 and 1 structures well captured