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Let’s consider the simplest possible scenario: 
• We are concerned about the temperature of a room – this is the quantity we would like to 

estimate (analysis), Ta 

• We have two sources of information: 
» A computer model that predicts the temperature (forecast, background) 
» A thermometer placed somewhere in the room (observation) 

Tf = 20°C To = 24°C Ta = 22°C 

In the absence of  any other 
information, the simplest 
approach would be to just 
take the mean of  the two 

estimates! 

How Does Scalar Data Assimilation Work? 
Simplest Case 



If we are a little more systematic about our approach, we would also try to obtain 
estimates of uncertainties associated with these measurements: 

How Does Scalar Data Assimilation Work? 
Better Approach: Estimates of Uncertainty 

Tf = 20°C To = 24°C 

σf = 2°C σo = 1°C 

22°C < Ta < 24°C  
Since our confidence in our 
observation is greater than 

in our model prediction, 
our final estimate should be 

closer to the observation, 
To! 



With certain statistical assumptions, it is quite straightforward to obtain a mathematical 
relationship for the analysis temperature, Ta

 , that represents the minimum-variance estimate: 

How Does Scalar Data Assimilation Work? 
Statistical Estimation: Minimum Variance 

Tf = 20°C To = 24°C 

σf = 2°C σo = 1°C 

Ta = 23.2°C  

This approach also allows 
us to obtain an estimate for 
the analysis uncertainty, σa : 
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σo
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σa ≈ 0.45°C 



With simple algebra, we can write the update (analysis) equation in incremental form: 

How Does Scalar Data Assimilation Work? 
Statistical Estimation: Incremental Form 

Tf = 20°C To = 24°C 

σf = 2°C σo = 1°C 

Ta =  Tf   + 
σf

2 

σf
2+σo

2 
(To-Tf) 

Observation innovation or 
observation increment : 
Additional information 

introduced by the observation 

Similarly, analysis 
uncertainty σa can be expressed 

as: 
σa

2 = (1-K) σf
2 

K 



A somewhat more complicated problem arises when we can only observe temperature 
indirectly, say through the measurement of infrared radiation: 

How Does Scalar Data Assimilation Work? 
Most Complex Case: Indirect Observations 

Tf = 20°C Obs. power = Po 

σf = 2°C P = H(T) ≈ νT4 

Pa – Pf  =  K’ (Po-H(Tf)) 

Analysis increment is in 
observation space, but 
the observation and 

model increments are 
related through their 

correlation: 
ΔT ~ ρPT ΔP 

σP ≈ H(σT) 

Now it is easiest to 
perform the update in 
observation space first! 



A somewhat more complicated problem arises when we can only observe temperature 
indirectly, say through the measurement of infrared radiation: 

How Does Scalar Data Assimilation Work? 
Most Complex Case: Indirect Observations 

Tf = 20°C Obs. power = Po 

σf = 2°C P = H(T) ≈ νT4 

Pa – Pf  =  K’ (Po-H(Tf)) 

ΔTa = ρPT          ΔPa 
σf 

H(σf) 

σP ≈ H(σT) 

Notice that this is the 
slope of  the linear 

regression line between 
ΔT and ΔP !! 



We have finally reached a full statistical solution for the scalar problem: 

How Does Scalar Data Assimilation Work? 
Final Product: Full Update Equation 

Tf = 20°C Obs. power = Po 

σf = 2°C P = H(T) ≈ νT4 

σP ≈ H(σT) 

To obtain the final form, 
let’s expand K’: 

Ta – Tf  = ρPT           K’ (Po-H(Tf)) 
σf 

H(σf) 

H2(σf) 
H2(σf) +σo

2 
K’ = 

K = cov[σf  ,H(σf)] 
H2(σf) +σo

2 



The DA Update Step with 2 Variables 
The Full Bayesian Picture 

• When there are unobserved variables, information is propagated through 
the covariances among variables 

• Let’s see how an update would be carried out for two variables, one 
observed: 

• The background consists of x1 and x2 

• Both variables are normally distributed 
• The two variables are correlated 
• x1 is directly observed as y0 

• The observation is also normally distributed; but 
has smaller error than x1 

• Since observation error is smaller than x1 
background error, the analysis x1

a is closer to y0 
• The analysis error s1

a is smaller than both s1
f and 

sy 

• The covariance between x1 and x2 relates changes 
in x1 to changes in x2 -> slope of regression 

• The joint analysis probability distribution has 
become narrower, reflecting improved estimates 
in both x1 and x2 
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In ensemble-based data assimilation, 
we compute sample covariances 
from an ensemble of forecasts 

Ensemble-based Data Assimilation: 
The General Process 

t = t0 t = t0+Δt t = t0+2Δt 

For the assimilation of obs, use covariances 
sampled from the ensemble of forecasts 

Analysis uncertainty becomes the initial 
condition uncertainty for the new forecast cycle 

Subsequent forecast cycle is 
initialized from the previous 

analysis ensemble 
… Start with an ensemble of 
states (ensemble members) 

that better represent the 
initial uncertainty about the 

“mean” state 

Instead of a single state that 
represents the initial state of 

the atmosphere … 

EnKF 

Observations 



Advantages of Ensemble-Based Data 
Assimilation 

• Background covariances are sampled from the forecast 
ensemble 
→ Flow-dependent covariances that are independent of any 
assumptions for the nature of flow (e.g., geostrophy) 

• Provides a natural basis for probabilistic forecasts 
• Easy to implement and maintain 

• No adjoints are needed to be developed which is especially 
complicated for highly nonlinear and discontinuous sub-grid 
parameterization schemes and/or nonlinear observation operators 

• Straightforward application to domains with multiple nests 
• Easily lends itself to parallelization 
• Performance (so far) comparable to variational schemes 



• Forecast model: 
– Exp. HWRF with 2 nested domains (9/3 km hor. resolution, 42 vert. levels) 
– Static inner nest to accommodate covariance computations 
– Ferrier microphysics, explicit convection on inner nest 

• Ensemble system: 
– Initialized (cold start) from GFS-EnKF (NOAA/ESRL) ensemble member analyses 
– 30 ensemble members 

• Data assimilation: 
– Square-root EnKF filter (Whitaker and Hamill 2002) 
– Assimilates data only on the inner nest 
– Covariance localization (Gaspari and Cohn 1999) 
– No explicit covariance treatment 
– Filter solver parallelized using OpenMP 

 
 

NOAA/AOML/HRD’s 
HWRF Ensemble Data Assimilation System 

(HEDAS) 



C-Band Weather 
Radar 

GPS navigation 

Stepped-frequency 
Microwave Radiometer 

Aircraft Data of Interest 

Humidity 
Gust probe 

C-Band Weather Radar 

Chemistry 
inlet 

Radiometer 
Lower-fuselage 
Weather Radar 

Launch tubes and 
chutes: 

Pylons 

Tail Doppler Radar 

Radar altimeter GPS 

(Stepped-frequency 
Microwave Radiometer, cloud 
physics, aerosol) 

P-3 Aircraft 
(eye penetrations) 

G-IV Aircraft 
(environmental) 

HRD EnKF Effort Primarily Focusing on 
Dropsonde, Doppler Radar, Flight-Level, and SFMR Obs 

Tail Doppler Radar (new) 

Dropwindsonde chute 

Dropwindsonde, 
AXBT, AXCP, 
AXCTD 

Observation Error 

Doppler wind speed 2 ms-1 

FL/Dropsonde Temperature 0.5 K 

FL/Dropsonde zonal/merid. wind speed 2 ms-1 

SFMR Variable, mean ~5 ms-1 



HEDAS Cycling Flow 

T T + 126 h T – 6 h 

Ensemble 
Spin-up 

DA Cycling 
with EnKF 

Deterministic HWRF 
Forecast from Ens. 

Mean 

Real-Time 
Observation 

Pre-Processing 

Ensemble 
Initialization from 
T-6h GFS-EnKF  

Mean of Final 
Analysis Assumed 

Valid for T 

1-hour Cycles 



HEDAS EnKF Workflow   

Read ensemble 
members 

from previous 
model run 

Write domain-1 to 
restart files (no 

update) 

Construct state 
vector for domain-2 
XA(dimstate,NE+1) 

Model & Obs I/O 
Preprocessing 

Read observations 
and construct 

obs array 
Y0(nobs,ndims) 

+ 

Loop over 
observations and 
update state point 
within influence 

region 

Perform and write 
out prior 

diagnostics 

EnKF Update 

Perform and write 
out posterior 
diagnostics 

Write domain-2 to 
restart files 

Convert updated 
domain-2 state 
vector ensemble 
perturbations to 

individual member 
model states  

Model I/O 
Postprocessing 



2008-2011 Real-Data Cases Considered 
2008:   Ike 09-10-00Z Danny 08-26-12Z Karl 09-16-18Z 
Dolly 07-20-12Z Ike 09-10-12Z Danny 08-27-00Z Richard 10-23-06Z 
Dolly 07-21-00Z Ike 09-11-00Z Danny 08-27-12Z Tomas 11-04-00Z 
Dolly 07-21-12Z Ike 09-11-12Z Danny 08-28-00Z Tomas 11-04-12Z 
Dolly 07-22-00Z Ike 09-12-00Z 2010:   Tomas 11-15-00Z 
Dolly 07-22-12Z Ike 09-12-18Z Alex 06-29-00Z Tomas 11-06-12Z 
Fay 08-14-12Z Kyle 09-23-00Z TD2 07-07-00Z Tomas 11-07-00Z 
Fay 08-15-00Z Kyle 09-24-12Z TD2 07-07-12Z 2011:   
Fay 08-15-06Z Kyle 09-25-00Z TD2 07-08-00Z Irene 08-24-00Z 
Fay 08-15-18Z Kyle 09-25-12Z Earl 08-29-00Z Irene 08-24-12Z 
Fay 08-18-18Z Kyle 09-26-00Z Earl 08-29-12Z Irene 08-25-12Z 
Fay 08-19-06Z Kyle 09-26-18Z Earl 08-30-00Z Irene 08-26-00Z 

Gustav 08-30-00Z Kyle 09-27-00Z Earl 08-30-12Z Irene 08-26-12Z 
Gustav 08-30-12Z Kyle 09-27-18Z Earl 08-31-00Z Irene 08-27-00Z 
Gustav 08-31-00Z Paloma 11-07-06Z Earl 09-01-12Z Irene 08-27-12Z 
Gustav 08-31-12Z Paloma 11-07-18Z Earl 09-02-00Z Lee 09-02-00Z 
Gustav 09-01-00Z Paloma 11-08-18Z Earl 09-02-12Z Ophelia 09-24-18Z 
Gustav 09-01-12Z 2009:   Earl 09-03-00Z Hilary 09-28-18Z 
Dolly 07-20-12Z Ana 08-17-00Z Earl 09-03-18Z Hilary 09-29-18Z 
Dolly 07-21-00Z Bill 08-19-00Z Earl 09-04-00Z Rina 10-26-00Z 
Dolly 07-21-00Z Bill 08-19-12Z Karl 09-13-00Z Rina 10-26-18Z 
Dolly 07-20-12Z Bill 08-20-00Z Karl 09-13-12Z Rina 10-27-00Z 
Dolly 07-21-00Z Bill 08-20-12Z Karl 09-14-00Z Rina 10-27-18Z 



Distribution of Cases 



Number of Assimilation Cycles 



Number of Observations Assimilated 



Number of Observations Assimilated 



Distribution of Innovations (O-F & O-A) 



Innovation Statistics – Doppler Wind, SFMR 



Innovation Statistics – Temperature 



Innovation Statistics – Zonal Wind Speed 



Analysis Position Error 



Analysis Intensity Error 



Analysis Wind-Pressure Relationship 



Analysis Doppler-Derived Structure 

2008 Fay (1) 
2008 Gustav (2) 

2008 Ike (1) 
2008 Kyle (4) 

2008 Paloma (1) 
2009 Danny (1) 

2010 Earl (1) 
2010 Karl (2) 

2010 Tomas (1) 
2011 Irene (2) 



Waveno. Decomposition  – Doppler vs. Analysis 

2008 Fay (1) 
2008 Gustav (2) 

2008 Ike (4) 
2008 Kyle (7) 

2008 Paloma (1) 
2009 Bill (1) 

2009 Danny (1) 
2011 Irene (2) 
2011 Hilary (1) 



Radial Profiles – FL Wind Speed 



Radial Profiles – FL Temperature 



Radial Profiles – FL Specific Humidity 



Radial Profiles – H*Wind Surface Wind Speed 



Radial Profiles – H*Wind Surface Wind Speed 



Summary - 1 

• HEDAS runs with 83 cases from 2008-2011 seasons are 
analyzed 

• Realistic distribution of cases by intensity (most are 
tropical storm to cat-1 hurricanes) 

• In a typical run: 
–4-5 cycles of data are assimilated 
–30-40K observations are assimilated, but Doppler 

wind observations dominate 
–Best sampling is achieved below ~9 km 

• Improvements in observation space are seen that can 
be directly associated with data assimilation 



Summary - 2 

• Position errors in analyses are on average ~20 km 
compared to the best track, tend to be “ahead” of the 
best track position as assim. cycles extend beyond the 
synoptic time 

• Good fit of analysis intensity to best track is seen, but 
analyses are systematically weaker in MSLP by ~3 mb 

• Structurally, 
– RMW fit much better for hurricanes 
– Azimuthal wavenumber-1 asymmetry is impacted by few 

outliers, especially from the 2008 season 
– Wavenumber  0 and 1 structures well captured 
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