Assessing the Value of the Coyote UAS Platform and Observations from the Perspective of Tropical Cyclone Data Assimilation and Prediction

Altug Aksoy^{1,2}

Collaborators:

Joe Cione^{2,3}

Hui Christophersen^{1,2}, Brittany Dahl^{1,2}

¹ Cooperative Institute for Marine and Atmospheric Studies, University of Miami – Miami, Florida ² Hurricane Research Division, NOAA/AOML – Miami, Florida ³ Physical Sciences Division, NOAA/ESRL – Boulder, Colorado

> Funding & Computing Resources Provided by: NOAA/OAR Assistant Administrator's Office NOAA/OMAO Aircraft Operations Center NOAA UAS Program Office NOAA Hurricane Forecast Improvement Project (HFIP)

Coyote Unmanned Aircraft System A New Tool to Better Observe Tropical Cyclones

The NOAA P-3 Aircraft Typically Penetrates Tropical Cyclones and Collects Data with a Suite of Instruments

> The Dropsonde System is Designed to Measure the Vertical Variations in the Atmosphere

The Coyote is a Small Aircraft that Uses the Dropsonde Deployment System and Sensor Suite and is Capable of Remaining Airborne for ~1 h or Longer

Hurricane Edouard (2014) Aircraft Missions

Coordination of Multiple Aircraft and Coyote Missions

Multiple Aircraft Conducted Successful Missions:

- NASA Global Hawk (AV6)
- NOAA P-3 (N42/N43) and G-IV (N49)
- Ocean Surveys (+)
- Coyote UAS Missions (x)

TODAY'S TALK

Hurricane Ensemble Data Assimilation System (HEDAS)

NOAA/AOML/HRD's Vortex-Scale Data Assimilation System

HEDAS Characteristics

- Focus on tropical cyclone inner-core data assimilation for high-resolution vortex initialization
- Uses the ensemble square-root Kalman filter (Whitaker and Hamill 2002)

•

- Storm-relative observation • processing capability (Aksoy 2013)
- Interfaced with NOAA's HWRF model
- Deterministic HWRF forecasts • initialized with the HFDAS mean vortex analysis

Aircraft/Platforms Processed:

NOAA P-3 NOAA G-IV Air Force Reserve C-130 NASA Global Hawk Coyote Satellite AMVs AIRS & GPS-RO Retrievals

Closer Look at What Was Observed

Comparison of Observations to the Final HEDAS Analysis

Strongest Analysis Deviations within the High Gradient Region
Suggests Potential Improvements in Position; RMW; Wind-Pressure Relationship

Altug.Aksoy@noaa.gov

General Observation-Space Performance of HEDAS

Slide: 7 of 12

Value of Coyote UAS Observations for TC Data Assimilation and Prediction

Impact of Coyote Observations in Model Space

Impact of Coyote Observations in Model Space

Impact of Coyote Observations in Model Space

Impact of Observations on Forecast

Summary

- Coyote UAS was successfully deployed twice by NOAA in Hurricane Edouard (2014) – sampled the eye/eyewall region in a 28-min mission
- Assimilation of the Coyote UAS observations in NOAA/HRD's HEDAS generally had slight positive impact on the vortex-scale analysis
 - Most distinct on kinematic fields
 - Noticeable impact on the inner-core structure & primary rainband
- Forecast impact was also slightly positive but impossible to make conclusions from a single case
- Future research directions:
 - How to assimilate spatially localized datasets in a TC vortex that typically exhibits strong gradients a new DA paradigm needed?
 - How to design future missions/patterns to maximize impact ideal for OSSEs