Advances in Tropical Cyclone Vortex-Scale Data Assimilation using NOAA's Hurricane Ensemble Data Assimilation System (HEDAS) and Hurricane WRF (HWRF) Model

Altug Aksoy^{1,2}

Hui Christophersen^{1,2}, Nadine Schittko³, Brittany Dahl^{1,2}, Kathryn Sellwood^{1,2}, and Sim Aberson²

¹ Cooperative Institute for Marine and Atmospheric Studies, University of Miami – Miami, Florida ² Hurricane Research Division, NOAA/AOML – Miami, Florida ³ Karlsruhe Institute of Technology – Karlsruhe, Germany

> Funding, Data, & Computing Resources Provided by: NOAA UAS Program Office & SHOUT Project NOAA Hurricane Forecast Improvement Project (HFIP)

Hurricane Ensemble Data Assimilation System (HEDAS) NOAA/AOML/HRD's Vortex-Scale Data Assimilation System

HEDAS Characteristics

- Focus on tropical cyclone inner-core data assimilation for high-resolution vortex initialization
- Uses the ensemble square-root Kalman filter (Whitaker and Hamill 2002)
- Storm-relative observation processing capability (Aksoy 2013)
- Interfaced with NOAA's HWRF model
- Deterministic HWRF forecasts initialized with the HEDAS mean vortex analysis

Aircraft/Platforms Processed:

NOAA P-3 NOAA G-IV Air Force Reserve C-130 NASA Global Hawk Coyote Satellite AMVs AIRS & GPS-RO Retrievals

Hurricane Ensemble Data Assimilation System (HEDAS) NOAA/AOML/HRD's Vortex-Scale Data Assimilation System

HEDAS Characteristics

- Focus on tropical cyclone inner-core data assimilation for high-resolution vortex initialization
- Uses the ensemble square-root Kalman filter (Whitaker and Hamill 2002)
- Storm-relative observation processing capability (Aksoy 2013)
- Interfaced with NOAA's HWRF model
- Deterministic HWRF forecasts initialized with the HEDAS mean vortex analysis

Aircraft/Platforms Processed:

NOAA P-3 NOAA G-IV Air Force Reserve C-130 NASA Global Hawk Coyote Satellite AMVs AIRS & GPS-RO Retrievals

Hurricane Ensemble Data Assimilation System (HEDAS) Challenges: Observing Platform Inhomogeneity

HEDAS Characteristics

Focus on tropical cyclone inner-core data assimilation for high-resolution vortex initialization

Uses the ensemble square-root Kalman filter (Whitaker and Hamill 2002)

Storm-relative observation processing capability (Aksoy 2013)

Interfaced with NOAA's HWRF model

Deterministic HWRF forecasts initialized with the HEDAS mean vortex analysis

Aircraft/Platforms Processed:

NOAA P-3 NOAA G-IV Air Force Reserve C-130 NASA Global Hawk Coyote Satellite AMVs AIRS & GPS-RO Retrievals

Online Quality Control

Most DA Systems: Gaussian Assumption

Online Quality Control

Most DA Systems: Gaussian Assumption

Nonlinearity: Suboptimal DA on Distribution Tails

In-line Quality Control: In Search for a Global Threshold

In-line Quality Control: In Search for a Global Threshold

In-line Quality Control: In Search for a Global Threshold

Observation Error Inflation: Tuning Observation Impact

Minamide & Zhang (MWR, 2016): Inflate Observation Error to Reduce Impact

Observation Error Inflation: Tuning Observation Impact

Minamide & Zhang (MWR, 2016): Inflate Observation Error to Reduce Impact

Adaptive: Increases with Increasing \tilde{r}

Observation Error Inflation: Tuning Observation Impact

Observation Error Inflation: Tuning Observation Impact

Current Ratio:
$$r^{2} = \frac{\Delta^{2} y}{\sigma_{o}^{2} + \sigma_{b}^{2}}$$

Target Ratio:

$$r_t^2 = \frac{\Delta^2 y}{\mathbf{Z} \cdot \boldsymbol{\sigma}_o^2 + \boldsymbol{\sigma}_b^2}$$

Observation Error Inflation: Tuning Observation Impact

Observation Error Inflation: Tuning Observation Impact

Observation Error Inflation: Tuning Observation Impact

Approaches to Observation-Related Issues Joint Impact of Quality Control & Observation Error Inflation

Obs Not Assimilated

%	QC = 3	QC = 5	
No Inf	10	7	
Inf = 1	10	7	
Inf = 2	10	7	

Obs with Inflated Error

%	QC = 3	QC = 5	
No Inf	0	0	
Inf = 1	5	9	
Inf = 2	0	1	

Approaches to Observation-Related Issues Joint Impact of Quality Control & Observation Error Inflation

Obs I	Obs Not Assimilated		Obs with Inflated Erro			
%	QC = 3	QC = 5	%	QC = 3	QC =	
No Inf	10	7	No Inf	0	0	
Inf = 1	10	7	Inf = 1	5	9	
Inf = 2	10	7	Inf = 2	0	1	

Dropsde	AIRS	AMV	
63	753	1	
8	522	1	

Dropsde	AIRS	AMV	
157	255	16	
208	487	17	

Case: Hurricane Edouard (2014) 15 September 06Z – Global Hawk mission

QC = 5

Approaches to Observation-Related Issues Joint Impact of Quality Control & Observation Error Inflation						
Net Impact on Frcst Error (Bias + RMSE) Improvement over No QC/Inf						
	Dropsonde T AIRS T					
%	QC = 3	QC = 5		%	QC = 3	QC = 5
No Inf	-3	+1	ſ	No Inf	+41	+37
Inf = 1	+4	+4		Inf = 1	+45	+45

Approaches to Observation-Related Issues Joint Impact of Quality Control & Observation Error Inflation						
Net Impact on Frcst Error (Bias + RMSE) Improvement over No QC/Inf						
	Dropsonde Q AIRS Q					
%	QC = 3	QC = 5	9	6	QC = 3	QC = 5
No Inf	+6	+2	No li	nf	+58	+50
Inf = 1	+14	+13	Inf =	1	+61	+61

Approaches to Observation-Related Issues Joint Impact of Quality Control & Observation Error Inflation						
Net Impact on Frcst Error (Bias + RMSE) Improvement over No QC/Inf						
Dro	Dropsonde Wind AMV Wind					
%	QC = 3	QC = 5	%	QC = 3	QC = 5	
No Inf	-4	+0	No Inf	+0	+0	
Inf = 1	-11	-10	Inf = 1	+2	+2	

Summary

- A joint approach is introduced to Quality Control and Observation Error Inflation for Vortex-Scale Data Assimilation
- Tuning may be needed to reach the optimal balance between observations that are discarded versus observations whose impact is reduced by observation error inflation
- Impact is generally positive when QC and inflation are applied together
 - Some slight degradation on wind error requires further investigation
- Impact varies depending on observation type
 - Further tuning may be necessary specific to different observation types